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This paper analyses the application of a switching volatility model to forecast the

distribution of returns and to estimate the Value-at-Risk (VaR) of both single assets and

portfolios. We calculate the VaR value for 10 Italian stocks and a number of portfolios

based on these stocks. The calculated VaR values are also compared with the variance-

covariance approach used by JP Morgan in RiskMetricsTM and GARCH(1,1) models.

Under backtesting, the VaR values calculated using the switching regime beta model

are preferred to both other methods. The Proportion of Failure and Time Until First

Failure tests (Kupiec (1995)) con…rm this result.
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1 Introduction

Value at Risk (VaR) is a risk-management technique which has been widely used to

assess market risk. VaR for a portfolio is simply an estimate of a speci…ed percentile of

the probability distribution of the portfolio’s value change over a given holding period.

The speci…ed percentile is usually in the lower tail of the distribution, e.g., the 95th

percentile or the 99th percentile.

Calculation of portfolio VaR is often based on the variance-covariance approach and

makes the assumption, among others, that returns follow a conditional normal distribu-

tion. We show that this assumption is at odds with reality and often results in misleading

estimates of VaR.

There is substantial empirical evidence (Hsieh (1988), Meese (1986)) that the dis-

tribution of returns on equities and other assets is typically leptokurtic, that is, the

unconditional return distribution shows high peaks and fat tails. This feature can arise

from a number of di¤erent reasons, in particular: jumps, correlation between shocks

and changes in volatility, and time series volatility ‡uctuations usually characterized by

persistence.

The literature commonly describes persistence in time series volatility using ARCH or

GARCH models that give rise to unconditional symmetric and leptokurtic distributions.

Here leptokurtosis follows from persistence in the conditional variance, which produces

the clusters of “low volatility” and “high volatility” returns.

In RiskMetricsTM ; volatility is estimated using the exponentially weighted moving

average (EWMA) approach which places more emphasis on more recent history in esti-

mating volatility. As Phelan (1995) demonstrates, this approach is a restrictive case of

the GARCH model.

However, these models do not account for jumps in stock returns. Nevertheless, as

risk measurement focuses in particular on the “tails” distribution, jumps deserve careful

study.

For this reason, we suggest a new and relatively simple method for estimating VaR:

the “switching regime approach”. This approach is able to (i) consider the conditional

non-normality of returns, (ii) take into account time varying volatility characterized by

2



persistence, and (iii) deal with events that are relatively infrequent (e.g. some changes

in the level of volatility).

The solutions proposed in the VaR literature to the last problem have been the use of:

(i) the ex-post historical simulation approach, (ii) the (ex-ante) Student-t distributions,

and (iii) a mixture of two normal distribution, as proposed by RiskMetrics (Longerstaey

(1996)).

Each of these solutions is only partially able to deal with the problems of skewness and

kurtosis in the return distribution as they do not entirely correct the under-estimation

of risk.

In the …nancial literature, the non-normality of asset returns has attracted particular

attention both as a problem in its own, and because of its implications for the evaluation

of contingent claims, in particular options. A number of di¤erent time series models have

been employed to capture these distributional feature: stationary fat-tailed distributions

such as Student’s t (Rogalski and Vinso (1978)) and the jump di¤usion process (Akgiray

and Booth (1988)); Gaussian ARCH or GARCH models (Bollerslev, Chou and Kroner

(1992)); chaotic models; non standard classes of stochastic processes such as stable

processes (see Mandelbrot (1963)), and subordinated stochastic processes (Clark (1973),

Geman and Ané (1996), and Müller et al. (1993)).

In our paper we model this phenomenon using the “switching regime” approach

that gives rise to a non-normal return distribution in a simple and intuitive way. The

improved forecast of return distribution obtained with this approach is important since

VaR methodology is indeed based on forecasting the distribution of future values of a

portfolio.

The approach is similar to the mixture of distributions (proposed by JP Morgan

to embed skewness and kurtosis in a VaR measure), but with the di¤erence that the

unobserved random variable characterizing the regime is the outcome of an unobserved

k-state Markov chain instead of a Bernoulli variable. The advantage of using a Markov

chain as opposed to a Bernoulli speci…cation is that the former allows conditional in-

formation to be re‡ected in the forecast and it captures the well known fact that high

volatility is usually followed by high volatility.
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The purpose of this paper is to describe the application of this approach to the

estimation of VaR and so allow for a more realistic model of the tail distribution of

…nancial returns. We focus on the measurement of market risk in equity portfolios and

illustrate our method using data on 10 Italian stocks and the MIB30 Italian Index.

The plan of the paper is as follows. Section 2 provides a description of the evaluation

framework for VaR estimates. Section 3 describes the di¤erent switching regime models

used to estimate VaR. Section 4 shows the results of the empirical investigation of these

models on the Italian equity market and compares the results with (i) RiskMetrics and

(ii) GARCH(1,1) approaches. Section 5 concludes.

2 Evaluation of VaR estimates

2.1 VaR de…nition

Value-at-Risk is a measure of market risk for a portfolio of …nancial assets1 and measures

the level of loss that a portfolio could lose, with a given degree of con…dence a, over a

given time horizon h. Analytically it can be formulated as follows:

Pr[Wt+h ¡Wt < ¡V aRW (h)] = a (1)

where Wt is the portfolio value at time t and V aRW (h) is the VaR value of the

portfolio W with a time horizon h.

The con…dence level (1 ¡ a) is typically chosen to be at least 95% and often as high

as 99% or more (a equal to 5% or 1%). The time horizon h varies with the use made of

VaR by management and asset liquidity.

It is possible to express the VaR measure in terms of return of the portfolio instead

of portfolio value. Analytically it can be formulated as follows:

Pr[RWt+h < ¡V aRR(h)] = a (2)
1There is an extensive recent literature on VaR. Nevertheless, for an introduction to VaR see Lins-

meier and Pearson (1996).
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where RWt+h = ln
³
Wt+h
Wt

´
is the portfolio return at time t + h and V aRR(h) is the

VaR value of portfolio returns RW with a time horizon h.

Clearly, VaR is simply a speci…c quantile of a portfolio’s potential loss distribution

over a given holding period.

Assuming RWt s ft, where ft is a general return distribution, the VaR for time t+h,

estimated using a model indexed by m; conditional on the information available at time

t and denoted VaRm(h; a), is the point in fmt+h model m’s estimated return distribution

that corresponds to its lower a percent tail. That is VaRm(h; a) is the solution to:

Z V aRm(h;a)

¡1
fmt+h(x)dx = a (3)

Di¤erent models can be used to forecast the return distribution and so to calculate

VaR. Given the widespread use of VaR by banks and regulators, it is important to

determine the accuracy of the di¤erent models used to estimate VaR.

2.2 Alternative Evaluation Methods

As discussed in Kupiec (1995) a variety of methods are available to test the null hypoth-

esis that the observed probability of occurrence over a reporting period equals a. In our

work two methods are used to evaluate the accuracy of the VaR model: the Proportion

of Failure (PF) test (Kupiec (1995)) and the time until …rst failure (TUFF) test (Kupiec

(1995)).

The …rst test is based on the probability under the binomial distribution of observing

x exceptions2 in the sample size T . In particular:

Pr(x; a; T ) =

0
@ T
x

1
A ax(1 ¡ a)T¡x (4)

VaR estimates must exhibit that their unconditional coverage a, measured by â =

x=T; equals the desired coverage level a0 (usually equal to 1% or 5%). Thus the null

hypothesis is H0 : a=a0, and the corresponding Likelihood ratio statistic is:
2x exceptions means the number of times the observed value RWt+h is lower than V aRR(h).
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LRPF = 2[ln(âx(1 ¡ â)T¡x) ¡ ln(ax0(1 ¡ a0)T¡x)] (5)

which is asymptotically distributed as Â2(1).

The TUFF test is based on the number of observations before the …rst exception.

The relevant null hypothesis is, once again, H0 : a=a0 and the Likelihood ratio statistic

is:

LRTUFF (
s
T; â) = ¡2 ln[â(1 ¡ â)

s
T¡1] + 2 ln[(1=

s
T )(1 ¡ 1=

s
T )

s
T¡1] (6)

where
s
T denotes the number of observations before the …rst exception. The LRTUFF

test statistic is also asymptotically distributed as Â2(1).

Unfortunately, as Kupiec observed, these tests have a limited power to distinguish

among alternative hypotheses. 7However this approach has been adopted by regulators

in the analysis of internal models to de…ne the zones (green, yellow and red) into which

the di¤erent models are categorized in backtesting. In particular, for a backtest with 250

observations regulators place a model in the green zone if x (the exception number) is

lower than 4; from 5 to 9 these models are allocated to the yellow zone and the required

capital is increased by an incremental factor that ranges from 0.4 to 0.85. If x is greater

than 9, the incremental factor is 1.

3 Switching regime models

The risk pro…le of a …rm or of the economy as a whole does not remain constant over

time. A variety of systematic and unsystematic events may change the business and

…nancial risk of …rms signi…cantly. It is argued here that this might derive from the

presence of discontinuous shifts in return volatility.

The change in regime should not be regarded as predictable but as a random event.

The e¤ect of these risk shifts should be taken into account by risk analysts in the fore-

casting process, by risk managers in the assessment of market risk and capital allocation,

and by regulators, in the de…nition of capital requirements.
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3.1 Simple Switching Regime Models

A Simple Switching Regime Model (SSRM) can be written as:

Rt = ¹(st) + ¾(st)"t (7)

where Rt = ln(Pt=Pt¡1), "t s IIN(0; 1), Pt is the stock price or the index price, st is a

Markov chain with k states and transition probability matrix ¦. In particular if k = 2,

we have:

Rt =

8
<
:
¹0 + ¾0"t if st = 0

¹1 + ¾1"t if st = 1

and the transition matrix ¦ is:

¦ =

2
4 p 1 ¡ p

1 ¡ q q

3
5 (8)

where the parameters p and q are probabilities that volatility remains in the same regime.

In the model the variance and mean of returns change only as a result of periodic, discrete

events3.

Switching regime models have been applied by Rockinger (1994) and van Norden

and Schaller (1993) to stock market returns, assuming that returns are characterized by

a mixture of distributions. This gives rise to a fat-tailed distribution, a feature of the

return data which has been extensively documented since the early work by Mandelbrot

(1963).
3Switching regime models is a methodology which has encountered great success in macroeconomics

applications. In the path-breaking works by Quandt (1958), as well as Goldfeld and Quandt (1973,

1975) it was used to describe markets in disequilibrium. Hamilton (1989, 1994) has brought about

a Renaissance of this methodology by modelling business cycles. In Engel and Hamilton (1990), the

switching approach is successfully applied to exchange rates. Firstly, applications to …nance have been

scarce, noteworthy exceptions being Pagan and Schwert (1990), Turner, Startz and Nelson (1989), as

well as van Norden and Schaller (1993), Rockinger (1994) and Hamilton and Susmel (1996). Now there

is high interest for this type of models: see for example Billio and Pelizzon (1997), Ang and Bekaert

(1999), Campbell and Li (1999), Khabie-Zeitoun, Salkin and Christo…des (1999), Jeanne and Masson

(1998).
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This approach is di¤erent to the mixture of two normal distributions proposed by

JP Morgan as a new methodology for measuring VaR (Longerstay (1996)). In the JP

Morgan approach the discontinuous shift random variable is a Bernoulli variable, that

is, st assumes the values 0 and 1 with respectively probability ¼ and (1 ¡ ¼). The

future value of this variable (st+1) is independent of the value st, that is, future values

of the state variable are independent on the current state. In the JP Morgan approach

the distribution of future returns depends only on the unconditional probabilities of the

Markov chain:

¼ =

2
4 (1 ¡ q)=(2 ¡ p¡ q)

(1 ¡ p)=(2 ¡ p¡ q)

3
5 (9)

instead of the conditional probabilities p and q. The two approaches are the same only

if p and q are equal to 0:5.

The advantage of using a Markov chain as opposed to a Bernoulli speci…cation for

the random discontinuous shift is that the former allows to conditional information to be

used in the forecasting process. This allows us to: (i) …t and explain the time series, (ii)

capture the well known cluster e¤ect, under which high volatility is usually followed by

high volatility (in presence of persistent regimes), (iii) generate better forecasts compared

to the mixture of distributions model, since switching regime models generate a time

conditional forecast distribution rather than an unconditional forecasted distribution.

To calculate the VaR, under the SSRM process, it is necessary to determine the criti-

cal value of the conditional distribution for which the cumulative density is a. Assuming

k = 2, the critical value (and so the VaR) is de…ned as:

a =
X

st+h=0;1

Pr(st+hjIt)
Z V aR

¡1
N

¡
x; ¹ (st+h) ; ¾2 (st+h) jIt

¢
dx (10)

where N is the normal distribution, It is the available information at date t, Pr(st+hjIt)
is obtained by the Hamilton’s …lter (see Hamilton (1994)), ¹ (st+h) and ¾2 (st+h) are

respectively the mean and the variance with ¹ (0) = ¹0, ¹ (1) = ¹1, ¾2 (0) = ¾20 and

¾2 (1) = ¾21:

The SSRM we present above is a special case of other, more general, switching regime
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models that we present below.

3.2 Switching Regime Beta Models

The SSRM does not provide an explicit link between the return on the stock and the

return on the market index. The Switching Regime Beta Model (SRBM) is a sort of

market model or better a single factor model in the APT framework where the return

of a single stock i is characterized by the regime switching of the market index and the

regime switching of the speci…c risk of the asset. The SRBM can be written as:

8
<
:
Rmt = ¹m(st) + ¾m(st)"t; "t s IIN(0; 1)

Rit = ¹i(sit) + ¯i(st; sit)Rmt + ¾i(sit)"it; "it s IIN(0; 1)
(11)

where st and sit are two independent Markov chains and "it and "t are independently

distributed.

In such a framework the conditional mean of the risky asset is given by the parameter

¹i(sit) that is speci…c to the asset plus the factor loading (¯i(st; si;t)) on the conditional

mean of the factor. The factor loading compensates for the risk of the asset which

depends on the factor: higher covariances demand higher risk premium. The variance is

the sum of variance of the index market weighted by the factor loading and the variance

of the idiosyncratic risk.

To calculate VaR, we use the approach as before. Assuming that k = 2 for both the

Markov chains we have:

a =
X

st+h=0;1

X

si;t+h=0;1

Pr(st+h; si;t+hjIt)
Z V aR

¡1
N

¡
x; ¹(st+h; si;t+h); ¾2(st+h; si;t+h)jIt

¢
dx

(12)

whereN is the normal distribution with ¹(st+h; si;t+h) = ¹i(si;t+h)+¯i(st+h; si;t+h)¹m(st+h)

and ¾2(st+h; si;t+h) = ¯2i (st+h; si;t+h)¾2m(st+h) + ¾2i (si;t+h), It is the available information

at date t and Pr(st+h;si;t+hjIt) is obtained, as before, by the Hamilton …lter:

The SRBM considers a single asset only, but can be generalized to calculate the VaR

for a portfolio of assets taking into account the correlation between di¤erent assets.
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3.3 Multivariate Switching Regime Model

The generalized version of the SRBM, considering N risky assets, that we call the Mul-

tivariate Switching Regime Model (MSRM), can be written as:

8
>>>>>>>>><
>>>>>>>>>:

Rmt = ¹m(st) + ¾m(st)"t; "t s IIN(0; 1)

R1t = ¹1(s1t) + ¯1(st; s1t)Rmt + ¾1(s1t)"1t; "1t s IIN(0; 1)

R2t = ¹2(s2t) + ¯2(st; s2t)Rmt + ¾2(s2t)"2t "2t s IIN(0; 1)
...

RNt = ¹N(sNt) + ¯N(st; sNt)Rmt + ¾N(sNt)"Nt; "Nt s IIN(0; 1)

(13)

where st and sjt, j = 1; :::; N are independent Markov chains, "t and "jt, j = 1; :::; N ,

are independently distributed.

Using this approach we are able to take into account the correlation between di¤erent

assets. In fact, if we consider k = 2, two assets, and, for example, st = s1t = 0 and

s2t = 1; the variance-covariance matrix between the two assets is:

§(0; 0; 1) =

2
4 ¯

2
1(0; 0)¾2m(0) + ¾21(0) ¯1(0; 0)¯2(0; 1)¾2m(0)

¯2(0; 1)¯1(0; 0)¾2m(0) ¯22(0; 1)¾2m(0) + ¾22(1)

3
5 (14)

then the correlation between di¤erent assets is given by ¯’s parameters and market

variance.

In this model, as in the market model, the covariance between asset 1 and asset 2

depends on the extent to which each asset is linked, through the factor loading ¯; to the

market index.

To calculate VaR for a portfolio based on N assets it is enough to use the approach

presented above. In particular, considering 2 assets and assuming that k = 2 for all the

three Markov chains we have:

a =
X

st+h=0;1

X

s1;t+h=0;1

X

s2;t+h=0;1

Pr(st+h; s1;t+h; s2;t+hjIt)
Z V aR

¡1
N

µ
x; w0 ¹ (st+h; s1;t+h; s2;t+h) ; w0§(st+h; s1;t+h; s2;t+h)wjIt

¶
dx

(15)

where w is the vector of the percentage of wealth invested in the two assets and
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¹ (st+h; s1;t+h; s2;t+h) is the vector of risky asset mean returns based on the single

asset mean returns already described in the SRBM. For example with st = s1t = 0 and

s2t = 1, we have:

¹ (0; 0; 1) =

8
<
:
¹1(0) + ¯1(0; 0)¹m(0)

¹2(1) + ¯2(0; 1)¹m(0)
(16)

However, MSRM requires the estimation of a number of parameters that grows ex-

ponentially with the number of assets. In fact, the number of possible regimes generates

by this model is 2N+1:

3.4 The Factor Switching Regime Model

One possible solution to the problem that a¤ects the MSRM is to consider the speci…c risk

distributed as IIN(0; ¾2i ) (without a speci…c Markov chain dependency) and characterize

the systematic risk with more than one source of risk. This approach (that we call Factor

Switching Regime Model (FSRM)) is in line with the Arbitrage Pricing Theory Model

where the risky factors are characterized by switching regime processes. Formally, we

can write this model as:

8
>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

Fjt = ®j(sjt) + µj(sjt)"jt; "jt s IIN(0; 1)

R1t = ¹1 +
gX

j=1

¯1j(sjt)Fjt + ¾1"1t; "1t s IIN(0; 1)

R2t = ¹2 +
gX

j=1

¯2j(sjt)Fjt + ¾2"2t; "2t s IIN(0; 1)

...

RNt = ¹N +
gX

j=1

¯Nj(sjt)Fjt + ¾N"Nt; "Nt s IIN(0; 1)

(17)

where Fjt is the value of factor j at time t (j = 1; 2; ::; g), ¯i(sjt) is the factor loading

of asset i on factor j and sjt is the Markov chain that characterizes factor j. Further,

sjt, j = 1; :::; g are independent Markov chains, "jt, j = 1; :::; g, and "it, i = 1; :::; N , are

independently distributed.

The FSRM is more parsimonious, in fact the introduction of an extra asset means

that only g + 2 parameters need to be estimated.
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This approach is valid when the number of assets in the portfolio is high and the

speci…c risk is easily eliminated by diversi…cation.

Using this approach, the variance-covariance matrix is simply:

§(st) =

2
6666664

¯21(st)µ2(st) + ¾21 ¯1(st)¯2(st)µ2(st) :::: ¯1(st)¯N(st)µ2(st)

¯2(st)¯1(st)µ2(st) ¯22(st)µ2(st) + ¾22 :::: ::::

:::: :::: :::: ::::

¯N(st)¯1(st)µ2(st) :::: :::: ¯2N(st)µ2(st) + ¾2N

3
7777775

(18)

The VaR for a portfolio based on N assets, one factor and k = 2 is de…ned as:

a =
X

st+h=0;1

Pr(st+hjIt)
Z V aR

¡1
N

µ
x; w0 ¹ (st+h) ; w0§(st+h)wjIt

¶
dx (19)

where ¹ (st+h) is the vector of risky assets mean returns, that is:

¹ (st+h) =

2
6666664

¹1 + ¯1(st+h)®(st+h)

¹2 + ¯2(st+h)®(st+h)

::::

¹N + ¯N(st+h)®(st+h)

3
7777775

(20)

4 VaR estimation

4.1 VaR estimation of a single asset

The data used in the empirical analysis are daily returns based on closing price of 10

Italian Stocks4 and the MIB30 Italian market index. The data cover the period from

November 29, 1995 to September 30, 1998: a total of 714 daily observations. Table 1

gives summary statistics and a normality test: all the series fail to pass the Jarque-Bera

normality test.

The …rst step in the empirical analysis is the estimation of all the models presented

above using all the observations in the data set. We assume that all the Markov Chains
4Comit, Credit, Fiat, Imi, Ina, Mediobanca, Ras, Saipem, Telecom, Tim.
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have two states: [0,1] and we estimate the parameters5 using Maximum Likelihood and

Hamilton’s …lter6

In order to determine the future distribution, we need to know the actual regime. The

probabilistic inference of being in one of the two regimes can be calculated for each date

t of the sample using the Hamilton’s …lter and smoother algorithm (Hamilton (1994)).

For an illustrative purpose, the resulting series for the MIB30 market index and 2 stocks

are shown in …gures 1, 2, 3 and 4. It is easy to observe how rapidly the probability

of switching from one regime to the other changes during time. This demonstrates the

ability of the model to capture the e¤ect of potential changes in the volatility of returns.

It is interesting to observe that even if the estimation is carried out one stock at a

time (that is the MIB30 market index and each single stock), the market Markov chain

behavior is almost the same. This means that the identi…cation of the market index

parameters is possible from each single equation.

The second step is the estimation of VaR for di¤erent single stocks. We split the

sample of 714 observations in two sets: the …rst 250 observations and the remaining 464.

We estimated the daily VaR at 1%, 2.5% and 5% level of signi…cance for the second

subset (the last 464 observations in the data set). The VaR estimations performed are

based on the …rst 250 observations of the data set and the parameters are re-estimated

increasing the sample every 50 observations. Between the di¤erent estimations, VaRs

are determined using the same parameters and the forecasted probability of switching

day by day determined by the Hamilton …lter augmenting the data set each day with

one observation.

In order to analyse the results of our di¤erent models we performed a backtesting

analysis, that is, we analysed the number of exceptions observed in the 464 daily VaR

values estimated. The goodness of …t test is applied to the null hypothesis that the
5Parameters ¹i(0) and ¹i(1) are not statistically di¤erent and we improved the estimation by consid-

ering ¹i(sit) as a constant term ¹i. The estimated betas are quite di¤erent in each regime: we performed

a test on the null hypothesis that they are all equals and in all cases this hypothesis is rejected at the

5% level, even if, in some cases, two by two they are not statistically di¤erent.

The parameter estimation will be provided by request.
6See Hamilton (1994) for an analytic description of it.
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frequency of such exceptions is equal respectively to 1%, 2.5% and 5% with respect to

the di¤erent VaR estimations.

We also compared these results with the performance of other approaches suggested

in the VaR literature: the JP Morgan (1995) RiskMetrics variance-covariance approach

and the GARCH approach.

The RiskMetrics approach assumes that returns conditionally follow a joint normal

distribution with mean zero and time varying variance-covariance matrix estimated us-

ing an exponentially weighted moving average approach. In particular at time t the

estimated covariance between asset i and asset j is determined as:

¾i;j = (1 ¡ ¸)
HX

h=0

¸hRi;t¡hRj;t¡h (21)

where ¸ is the decay factor and in the RiskMetrics approach is chosen to be 0:94:

For the RiskMetrics variance-covariance model we considered both the approach

suggested by JP Morgan where the VaR for each asset is based on its volatility (we call

this RM) and the approach for equities: where the calculation is based on the risk of

the Market index and the beta of the stocks (we call this RMB). Speci…cally, in the RM

model we have:

V aRi = ©(a)p¾i;i (22)

where:

V aRi is the VaR of the generic stock i;

©(a) is the cumulate standard normal distribution coe¢cient

¾i;i is the asset i variance.

In the RMB model we calculate VaR as:

V aRi = ¯i;mV aRm (23)

where:

V aRm is the VaR of the Market index

¯i;m= is the beta of the beta of asset i with respect to the market index.
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For VaR calculation based on RiskMetrics approach we used a moving window of 250

observations.

Regards the GARCH approach we consider four models. The …rst is a GARCH

model with conditional normal distribution and zero mean (in line with the RiskMetrics

approach). In particular, we assume that returns follows a GARCH(1,1), that is:

Rt = ut = ´t"t (24)

where:

"t s N(0; 1)

E(u2t jIt¡1) ´ ´2t = a+ bu2t¡1 + °´2t¡1
It is the information set.

With this model we have:

V aRi = ©(a)´t+1 (25)

where:

´t+1 is the GARCH asset i variance.

The second is a beta-GARCH model (or one factor model), that we call GARCHB,

with the following return speci…cation:

8
<
:
Rmt = ¹m + umt;

Rit = ®i + ¯iRmt + uit;
(26)

where:

uit = ´it"it

"it s N(0; 1)

E(u2itjIt¡1) ´ ´2it = a+ bu2i;t¡1 + °´2i;t¡1
um;t = ¾m;t"mt

"mt s N(0; 1)

E(u2mtjIt¡1) ´ ¾2m;t = am + bmu2m;t¡1 + °m¾2m;t¡1
Cov(uit; Rm;tjIt¡1) = 0
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With this model we have7:

V aRi = ¹i;t+1 +©(a)¾i;t+1 (27)

where:

¹i;t+1 = ®i + ¯iE(Rm;t+1jIt) = ®i + ¯i¹m;t
¾i;t+1 =

q
¯2i ¾2m;t+1 + ´2i;t+1

The third and the fourth models are only an extension of the previous ones. We also

consider in fact t Student innovation and we generate GARCH-t(1,1) and GARCHB-

t(1,1). In these cases we estimate the degrees of freedom for each stock.

Figure 5 shows the backtesting analysis results of SSRM, SRBM, RM, RMB and the

two versions of GARCH(1,1) and beta GARCH models (GARCH, GARCHB, GARCH-t

and GARCHB-t) for the individual stocks8. Tables 2 reports an analysis of the mean

absolute di¤erence between the observed and theoretical con…dence level.

From …gure 5 and table 2 it is evident that the SRBM performs quite well for almost

every percentile and every stock. In fact the results are close to the theoretical values

and it does not seem that the model persistently either under or over estimates any of the

con…dence level. In particular, it is interesting to observe that the SRBM performs always

better than the SSRM which suggests that the link with the market is fundamental to

risk estimation.

Moreover, the SRBM performs better than all GARCH models. In fact the Gaussian

GARCH and GARCHB models do not work very well as the number of extreme ob-

servations deviates signi…cantly from the theoretical values for almost all the stocks.

Generally the values are higher than the theoretical ones and means that the models

underestimates risk. The Student-t versions perform better but generally overestimate

risk.

With regard to the RM and RMB models, the RMB performs poorly, as expected,

on single assets. In contrast the RM performs quite well and is preferable to the RMB
7For a derivation of conditional moments in a factor model see Gouriéroux (1992) pag. 218.
8Regards GARCH-t model, the degrees of freedom estimated are: Comit 9, Credit 8, Fiat 8, Imi 10,

Ina 5, Ras 6, Saipem 6, Telecom 8, Tim 16. The estimation of Mediobanca degree of freedom does not

converge and then we consider only the Gaussian version of the GARCH(1,1) model.
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and GARCH models. However, RM usually overestimates risk at the 5% and the 2.5%

con…dence levels, while it underestimates risk at the 1% level. This implies that this

model is unable to capture the extreme events. Moreover, it overestimates risk given its

inability to return quickly to “normal condition” when the market has already returned

to normality after a shock. Comparing the results of RM with the SRBM we have that,

in most of the cases, the SRBM performs better. In fact, the SRBM is able to account

for both the information coming from the market index and those that characterize the

single stock. The RM and the RMB models are unable to do this.

An important issue here is testing the goodness of …t for the null hypothesis that

the probability of an observation falling in the category of extreme returns is equal to

respectively 1%, 2,5%, 5%. As discussed earlier we evaluate the di¤erent models using

two di¤erent tests.

The results of the PF, and TUFF tests are shown in tables 3 and 4. In almost all the

cases Gaussian GARCH and GARCHB models do not perform well and in many cases

the null hypothesis is rejected. The Student-t versions (GARCH-t and GARCHB-t)

perform better, but they fail to pass tests more frequently than the RM model.

In summary, the SRBM and the RM perform quite well, and, in most of the cases

the SRBM results presents a higher p-value. The test results are consistent with those

shown in table 2.

Moreover, for the 1% level using the approach adopted by the regulators, the SRBM

always falls in the green zone, while, the RM sometimes falls in the yellow zone.

4.2 VaR estimation of a portfolio of assets

We consider 21 di¤erent portfolios, constructed by combining the di¤erent stocks pre-

viously considered two at a time. Every combination is characterized by three di¤erent

combinations of weights: 50%-50%, 80%-20%, 20%-80%. To evaluate the performance

of our model we use the MSRM presented above and the multivariate RM approach. We

do not consider the GARCH(1,1) models and the RMB given their poor performance in

the single asset case.

The results are interesting since, in almost all the portfolios, the MSRM performs
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better than the RM approach as reported in …gure 6 and table 5. It is easy to observe

that the di¤erence in performance between the MSRM and the RM is greater than in

the single asset case. Moreover, the RM model continues to underestimate risk at the

5% and 2.5% con…dence level while the MSRM does not.

When we consider the equally weighted portfolio containing all 10 assets the MSRM

model cannot be used because the number of parameters which it is necessary to estimate

is too high. The same reason led JP Morgan to propose the RMB to estimate VaR. The

FSRM does not present this problem and, for this reason, we prefer to use, for the

equally weighted portfolio VaR estimation, the FSRM with only one factor: the market

index (one-FSRM). We compare the result of this model with the RMB model. Tables

6 and 7 give the results.

As the result show, both models perform poorly relative to the previous cases. The

one-FSRM underestimates risk for all the con…dence level and the RMB overestimates at

the 5% and the 2.5% percentile. However, the tests show that the one-FSRM is always

accepted at the 1% p-value while the RMB is not (see the 5% percentile of PF test).

For the TUFF test, the one FSRM is always better than the RMB. In summary, the

one-FSRM is preferred on a statistical basis to the RMB. The one-FSRM could be easily

improved by increasing the number of factors.

Furthermore, it is interesting to note the implications of the two models for VaR

based capital requirements9. It is evident from …gures 7 and 8 that the one-FSRM is

better than the RMB to capture quickly the changes in volatility of the returns. This

implies that the former model requires a high capital allocation only when the market is

highly volatile and avoids high capital when market volatility returns to normality. In

contrast RMB always requires an high capital even when market volatility decreases.

Furthermore, it is interesting to observe that the average VaRs at the di¤erent con-

…dence levels are: for the FSRM, 2.46%, 3.05% and 3.86% with a standard deviation
9In Jannuary 1996, the Basle Supervisory Commitee issued a Market Risk Ammendment to the 1988

Accord (Basle Commitee on Banking Supervision(1996)), specy…ng a minimum capital requirement

based on bank internal models for market risks. This approach takes daily VaR calculations from the

bank’s own risk management system and applies a multiplier to arrive at a required capital set-aside to

cover market portfolio risk.
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of respectively: 0.62%, 0.77% and 0.89%; while, for the RMB the VaRs at the di¤erent

con…dence levels are on average: 2.99%, 3.57% and 4.23% with a standard deviation of:

0.87%, 1.04% and 1.23% respectively. This means that the FSRM leads to a lower level

of capital required and smaller revision to required capital.

5 Conclusion

This paper has analysed the application of switching regime models to measuring VaR in

order to account for a non normal return distribution. Four di¤erent switching models are

considered: SSRM, SRBM for one asset, MSRM for two assets portfolio and the FSRM

for an equally weighted portfolio containing 10 assets. To illustrate the application of

our approach we calculate the VaR for 10 individual Italian stocks and for the MIB30

market index. We compare our results with those obtained from the variance-covariance

RiskMetrics approach and two versions of the GARCH(1,1) model.

For portfolios with one and two assets the SRBM and MSRM perform well for almost

every percentile and every portfolio. In fact the results are close to the theoretical

values and it does not seem that models persistently under or over estimate each level of

con…dence. The SRBM model always performs better than the SSRM and this means,

as expected, that the link with the market is fundamental for the estimation of equity

risk.

The SRBM performs better than GARCH and GARCHB models. In fact the GARCH

and GARCHB models do not work well as the number of exceptions deviates signi…cantly

from the theoretical values for almost all the stocks. Generally the values are higher than

the theoretical ones for the Gaussian version and lower for the Student-t version. This

means that these models always underestimate (Gaussian) or overestimate (Student-t)

risk.

With regard to the RiskMetrics approach we considered two models: one (RM) based

on the variance estimation of the single asset and the other (RMB) where the risk of

a single asset is determined by its beta with respect to the market index. The RM

performs better that the RMB for all the portfolios. Moreover, RM and RMB usually
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overestimate the risk at the 5% and the 2.5% con…dence levels, and underestimate the

risk at the 1% level. In other words this approach does not reliably capture the risk

of the extreme events. Comparing the RM results with the SRBM for one asset and

with the MSRM for the two asset portfolio we …nd that in most of the cases the SRBM

and MSRM performs better than RM and RMB. These results are con…rmed by two

tests: the PF test and the TUFF test and by the approach adopted by regulators for

backtesting.

Finally, we estimate VaR for an equally weighted portfolio containing all 10 stocks.

We use the one-FSRM and the RMB in order to estimate VaR. Both models performs

poorly. However, the PF test and the TUFF test indicate that the one-FSRM is statis-

tically preferable to the RMB model. This result is important and suggests that, with a

higher number of factors, the FSRM has the potential to provide reliance estimates of

market risk.
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Mean Standard error Asymmetry Kurtosis Jarque-Bera test

Comit 0.0017 0.0239 -0.0679 5.1638 136.8291

Credit 0.0020 0.0233 0.2916 4.8368 108.1382

Fiat -0.0002 0.0211 0.0713 5.3558 162.2487

Imi 0.0013 0.0229 0.0362 5.2777 151.2175

Ina 0.0011 0.0194 0.4588 8.2976 845.6066

Mediobanca 0.0006 0.0245 0.0768 5.5915 196.4285

Ras 0.0001 0.0188 -0.3125 6.1520 301.4666

Saipem 0.0010 0.0196 -0.0548 5.2827 152.0853

Telecom 0.0013 0.0203 -0.1053 4.3811 56.5893

Tim 0.0018 0.0201 0.0601 3.6938 14.2079

MIB30 0.0010 0.0156 -0.2469 4.8238 103.8987

Table 1: Data description (Jarque-Bera test critical value at 5% is 10.597).

®¤ SRBM SSRM GARCH GARCH-t GARCHB GARCHB-t RM RMB

5% 0.009 0.014 0.017 0.012 0.025 0.013 0.011 0.035

2.5% 0.004 0.009 0.019 0.010 0.017 0.009 0.005 0.026

1% 0.002 0.004 0.014 0.004 0.011 0.004 0.005 0.020

Table 2: Mean absolute error of ®-values over 10 single asset portfolios.
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Figure 1: SRBM: smoothed probabilities of regime 0 for the market chain when estimated

together with Comit.
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Figure 2: SRBM: smoothed probabilities of regime 1 for the Comit speci…c chain.
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Figure 3: SRBM: smoothed probabilities of regime 0 for the market chain when estimated

together with Tim.
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Figure 4: SRBM: smoothed probabilities of regime 1 for the Tim speci…c chain.
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Figure 5: Backtesting over 464 observations. Each point represents one stock for di¤erent

degree of con…dence.
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Figure 6: Two asset portfolios backtesting over 464 observations. Each point represents

one portfolio for di¤erent degrees of con…dence.
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Figure 7: One FRSM: backtesting VaR values for the equally weighted portfolio at

di¤erent con…dence level.

Figure 8: RMB: backtesting VaR values for the equally weighted portfolio at di¤erent

con…dence level.
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PF Test Degree of SRBM GARCH GARCHB GARCH-t GARCHB-t RM

Con…dence % p-value % p-value % p-value % p-value % p-value % p-value %

5.0 42.96 96.60 16.50 35.63 55.81 24.97

Comit 2.5 7.02 7.79 2.33 48.92 13.28 68.29

1.0 1.32 0.04 0.00 86.82 54.38 7.16

5.0 42.96 3.09 4.90 3.50 1.82 0.88

Credit 2.5 62.62 1.19 21.55 0.91 2.71 25.72

1.0 86.82 15.52 30.57 41.33 16.48 41.33

5.0 13.28 4.90 7.55 79.66 63.41 35.63

Fiat 2.5 86.82 13.28 2.33 14.02 85.71 14.02

1.0 66.86 54.38 15.52 75.97 41.33 75.97

5.0 3.09 3.09 0.06 16.64 79.66 48.55

Imi 2.5 85.72 21.56 2.33 25.72 42.12 85.72

1.0 30.58 0.35 54.38 86.82 75.97 7.16

5.0 16.50 3.09 1.90 35.63 35.63 86.54

Ina 2.5 21.56 0.05 0.05 14.02 14.02 48.92

1.0 54.38 0.00 0.00 3.95 16.49 0.35

5.0 16.50 4.36 0.06 16.64

Mediobanca 2.5 21.56 3.02 2.71 62.62

1.0 86.82 0.33 41.33 75.97

5.0 37.45 0.27 1.82 0.00 0.00 24.97

Ras 2.5 27.35 0.04 0.91 0.04 0.00 62.62

1.0 41.82 0.02 16.49 16.49 16.49 54.38

5.0 23.36 4.36 0.06 16.64 35.63 33.31

Saipem 2.5 13.28 7.16 0.12 25.72 85.72 7.16

1.0 31.64 0.35 0.14 41.33 75.98 1.32

5.0 64.96 4.36 64.96 36.60 79.66 48.55

Telecom 2.5 16.50 3.02 16.50 25.72 42.12 85.72

1.0 31.64 0.35 31.64 41.33 41.33 54.38

5.0 70.48 11.32 11.32 48.55 42.96 6.25

Tim 2.5 68.29 3.02 7.79 85.72 21.56 86.82

1.0 30.58 1.32 3.02 41.33 75.97 82.92

Table 3: P-values of the Proportion of Failure test (PF) for the di¤erent models (given

the poor performance of SSRM and RMB models we avoid to present their test value).
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TUFF Test Degree of SRBM GARCH GARCHB GARCH-t GARCHB-t RM

Con…dence % p-value % p-value % p-value % p-value % p-value % p-value %

5.0 1.44 1.44 1.44 1.44 1.44 1.44

Comit 2.5 0.24 0.66 0.66 0.66 0.66 0.66

1.0 62.15 0.24 0.24 87.13 87.13 0.24

5.0 22.01 1.44 1.44 1.44 1.44 1.44

Credit 2.5 10.99 22.01 0.66 0.00 22.01 0.66

1.0 36.33 10.99 7.87 4.93 4.93 7.87

5.0 6.68 1.44 1.44 1.44 1.44 95.84

Fiat 2.5 59.83 50.05 71.84 6.68 6.68 6.68

1.0 83.83 59.83 59.83 59.83 59.83 59.83

5.0 46.53 46.53 46.53 44.30 46.42 6.84

Imi 2.5 97.96 97.96 97.96 97.96 97.96 22.01

1.0 50.86 44.51 44.51 50.86 50.86 77.00

5.0 91.53 6.84 91.53 91.53 91.53 6.84

Ina 2.5 47.32 47.32 47.32 1.29 1.29 47.32

1.0 32.61 8.11 26.63 32.61 32.61 8.11

5.0 2.35 44.30 15.61 77.88

Mediobanca 2.5 32.61 23.52 23.52 23.52

1.0 87.88 32.61 94.51 32.61

5.0 81.24 12.26 92.09 92.09 92.09 81.24

Ras 2.5 12.26 12.26 58.07 70.82 70.82 65.81

1.0 55.73 55.73 27.76 27.76 27.76 25.50

5.0 1.44 1.44 1.44 1.44 1.44 1.44

Saipem 2.5 0.66 0.66 0.66 0.66 0.66 0.24

1.0 0.11 0.11 0.24 32.61 0.24 0.11

5.0 46.53 6.84 6.84 46.52 46.52 84.72

Telecom 2.5 22.01 22.08 22.01 63.26 63.26 63.26

1.0 24.37 24.37 24.37 24.37 24.37 24.37

5.0 46.53 46.53 46.53 46.53 46.53 46.53

Tim 2.5 60.62 22.01 22.01 60.62 60.62 60.62

1.0 32.61 67.60 67.60 32.61 32.61 67.60

Table 4: P-values of the Time Until First Failure Test (TUFF) for the di¤erent models.
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®¤ SRBM RM

5% 0.007594 0.014594

2.5% 0.005088 0.007512

1% 0.002928 0.004093

Table 5: Mean absolute error of ®-values over 21 two asset portfolios.

®¤ One FSRM RMB

5% 5.8% 2.6%

2.5% 3.9% 1.08%

1% 1.7% 1.08%

Table 6: 10 assets equally weighted portfolio backesting over 464 observations.

®¤ One FSRM RMB

p-value p-value

5% 42.96% 0.9%

PF Test 2.5% 7.81% 2.72%

1% 15.56% 86.82%

5% 46.53% 46.53%

TUFF Test 2.5% 22.01% 1.29%

1% 38.53% 32.61%

Table 7: P-values of Failure test (PF) and Time Until First Failure Test (TUFF) of the

10 assets equally weighted portfolio.
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