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Abstract

Exploiting a rich database on natural hazards and detailed information on firm geographical
location, we investigate the dynamic impacts of flood events on European manufacturing firms
during the 2007-2018 period. We find that water damages have a significant and persistent adverse
effect on firm-level outcomes. In the year after the event, an average flood deteriorates firms’
assets by about 2%, without clear signs of full recovery even after 8 years. While adjusting more
sluggishly, employment follows a similar pattern, experiencing growth in negative territory for
the same number of years at least. While the estimated order of magnitude may appear negligible,
the frequency of water hazards suggest a significant compound effects from repeated floods with
potentially disruptive economic and social consequences for regions that are hit repeatedly.

1 Introduction

Natural disasters, particularly those related to climate change, have become more frequent and severe
in recent decades Agency (2019). Damages and economic losses associated to these hazards have also
been on an upward trend. In the European Union (EU), such losses already average over 12 Cbillion
per year. Conservative, lower bound estimates show that exposing today’s EU economy to global
warming of 3°C above pre-industrial levels would result in an annual loss of at least 170 Cbillion, or
1.36% of EU GDP.

Against this backdrop, floods are among the climate-related hazards most likely to intensify be-
cause of the long-term increase in temperature and the subsequent more extreme weather patterns.
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Blöschl et al. (2020) document that the past three decades were already among the most flood-rich
periods in Europe in the past five hundred years, and that this period differs from other flood-rich
periods in terms of its extent, air temperatures and flood seasonality. Long-term projections from
climate models (Feyen et al. (2020)) suggest that, in a scenario with inaction against a 3°C increase in
temperature in 2100, almost half a million people in Europe would be exposed to river flooding each
year, or nearly three times the number at present. Moreover, river flood losses would rise by a factor
of six compared to current magnitudes, reaching nearly 50 Cbillion/year. By the same token, coastal
flood losses would grow by two orders of magnitude and climb to 250 Cbillion/year in 2100, while
2.2 million people per year would be exposed to coastal inundation, compared to 100,000 at present.

As the frequency and severity of flood events, and the associated economic, social, and envir-
onmental costs, are expected to increase further in the decades ahead due to global climate change,
understanding their impact is of paramount importance, particularly for the design of policies and
private schemes aimed to increase the resilience of the affected economic agents and local communit-
ies. The European Green Deal, while committing to climate neutrality by 2050, aims also to better
prepare the EU to the unavoidable impacts of climate change through an ambitious adaptation action,
in line with the Paris Agreement. Reinforcing adaptive capacity and minimising vulnerability to cli-
mate impacts requires a better understanding of how economic behaviour and activity might evolve
following natural disasters. While there is abundant literature on the aggregate economic impacts
of natural disasters, empirical studies with a microeconomic perspective have emerged only recently
thanks to the availability of sufficiently granular data. Such microeconomic evidence is particularly
relevant in order to better design and tailor policy intervention.

In this paper we investigate the dynamic impacts of flood events on European manufacturing firms
during the 2007-2018 period. We exploit a rich database on natural hazards and detailed information
on firm geographical location to pin down companies that are directly affected by the floods hitting a
specific region. We find that water damages have a significant and persistent adverse effect on firm-
level outcomes. In the year after the event, an average flood deteriorates firms’ assets by about 2%,
without clear signs of full recovery even after 8 years. While adjusting more sluggishly, employment
follows a similar pattern, experiencing growth in negative territory for the same number of years at
least. While the estimated order of magnitude may seem negligible, the frequency of flood events
suggest a significant compound effects from repeated floods with potentially disruptive economic and
social consequences for regions that are hit repeatedly.

Our paper is related to the growing literature investigating the economic consequences of natural
disasters using firm-level data. Leiter et al. (2009) consider the shock caused by the 2000 floods that
hit France, Italy, Spain, and United Kingdom. Relying on the NUTS2 geographic classification, they
find that assets and employment of firms located in the affected regions increase compared to firms
located in untreated regions in the two years following the event. They document a heterogeneous
effect across firms, with a stronger impact among those with high shares of intangible assets. Yet, after
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the flood, productivity decreases, particularly when the share of intangible assets is higher. Coelli and
Manasse (2014) investigate the short-term impact of the 2010 flood in the Italian region of Veneto.
Using a difference-in-difference setting, they document that firms affected by floods have a value
added growth in the two years after the shock in the order of 6.9 percentage points, of which 2
percentage points are due to disaster aids.

In contrast to early studies that suggest ’creative destruction’, more recent papers uncover neg-
ative and persistent effects of natural hazards and climate risks on firm performance and behaviour,
including location choices, investment decisions and upward and downward business relationships.
Hossain (2020) studies the impact of floods on manufacturing Indian firms using satellite images. She
finds a negative effect on output, capital, and employment with some differential effect across firms
based on productivity. She also documents a certain level of reallocation of employees to the informal
sector. Severe impacts on employment are documented also in Indaco et al. (2019). They study the
impact of hurricane Sandy on the New York area in 2012 using establishment-level data. The authors
document a drop in employment and wages in the period 2013-2017, and a relocation of some firms
to less risky areas suggesting that climate risk may affect business location.1 In Hsu et al. (2018) nat-
ural disaster reduces operating profits of firms in affected areas in the range of 1-2 percentage points.
Still, technology diversity – measured with the Herfindahl index of technology categories of patents
– allows firms to absorb these shocks with less disruptive consequences. In Hsu et al. (2019) firms
with high corporate social responsibility (CSR) ratings are the ones that, when affected by natural
disasters, experience a less marked reduction in profitability.

Extreme weather events, which are becoming more frequent because of climate change, have
consequences also for firms’ investment choices into particular assets. Focusing on the electricity
producing industry, Lin et al. (2019) show that utilities invest more in flexible power plants in those
regions where extreme weather conditions cause more volatile and hotter temperatures. The effect
seems to be driven by long-term changes in climate rather than abnormally high temperatures that
occur over a short period. By the same token, using Indian monsoon data, Rao et al. (2021) show that
rain-sensitive firms adjust their investment strategies to generate value based on the extreme rainfall
conditions. In other words, they tend to significantly increase their investments following excess rain-
fall periods, while reducing investment following deficit rainfall periods. Li et al. (2020) document
that, in response to higher unexpected climate risk, public firms significantly increase their investment
but experience lower employment growth the following year. Moreover, there is evidence that climate
related risks decrease firms’ market valuations (Hong et al. (2019); Sautner et al. (2020)) and increase
borrowing costs (Faiella and Natoli (2019); Rehbein and Ongena (2020); Correa et al. (2020)). Brown
et al. (2021) find that banks charge higher interest rates, accompanied by stricter loan provisions, to

1These findings are related to the literature investigating how climate change impacts on real estate prices (see, e.g.,
Baldauf et al. (2020); Murfin and Spiegel (2020)).
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firms drawing on their credit lines in response to the cash flow shocks from unexpectedly severe
winter weather and snowfalls.

The availability of detailed customer-supplier data for some countries has enabled the analysis of
the disruptions that natural disasters cause to production networks. Evidence from the 2011 earth-
quake in Japan highlights spillover effects in the supply chain (Todo et al. (2015); Carvalho et al.
(2021)) that propagated across countries via multinational firms (Boehm et al. (2019)).2 Idiosyncratic
shocks from major natural disasters that affect suppliers are found to impose substantial output losses
on customers, especially when the produced inputs are specific. These output losses translate into
significant market value losses, and spill over to other suppliers (Barrot and Sauvagnat (2016)).

Climate change risks not only reduces the operating performance of suppliers and customers, but
may also lead to termination of supply chain relationships (Pankratz and Schiller (2019)). Similarly,
exploiting production networks, Custodio et al. (2020) find that increases in local temperature lead
to a reduction in supplier sales. This effect, which is more pronounced among suppliers in man-
ufacturing and heat-sensitive industries, can be attributed mainly to a contraction of labour supply
and productivity due to workers’ absence or harder working conditions from weather shocks.3 This
finding is in line with previous evidence suggesting that climate change leads to a reduction in labour
supply and productivity (Graff Zivin and Neidell (2014); Chen et al. (2019)).

A related strand of literature considers the impact of natural disasters on the economy at aggregate
level, with mixed conclusions. While most of the evidence point to a negative aggregate impact of
natural disasters in the short-run (Raddatz (2007); Noy (2009)), there are some exceptions (Cunado
and Ferreira (2014); Cavallo et al. (2014)). Cunado and Ferreira (2014) document a positive impact
on GDP already two years after the flood events, while Cavallo et al. (2013) find that there is no
statistically significant impact on GDP. As for the long-run impacts, against the mixed predictions of
macroeconomic growth models, the empirical evidence points to a positive effect of natural disasters
(Skidmore and Toya (2002); Cuaresma et al. (2008)). Positive impacts on income per capita at the
county level are uncovered by Tran and Wilson (2020) starting from eight years after the disaster,
however with some variability across disaster severity, types of disaster, pre-disaster level of income,
and the frequency with which individual areas have previously been hit. Overall, heterogeneity across
the areas that are considered in the different studies might be an important determinant of the lack
of consensus on whether natural disasters have positive or negative economic impacts. Indeed, in-
stitutional and other domestic factors (i.e. political factors) seem to affect both the severity of the
macroeconomic effect and the subsequent recovery (Cavallo et al. (2013); Felbermayr and Gröschl
(2014)).4 An emerging strand of the literature highlights the role of natural disasters as a source of

2Some papers document an impact of earthquake also on pricing behaviours Cavallo et al. (2014); Heinen et al. (2019).
3Differently, Addoum et al. (2020) conducting an analysis at establishment-level find no effect for extreme temperat-

ures on sales, productivity and profitability.
4Also higher temperatures are negatively related on GDP growth and trade, however with heterogeneous effect across

countries (Dell et al. (2008); Jones and Olken (2010)).
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risk for public finance and financial stability. Klomp (2014) show that natural catastrophes threaten
the solvency of commercial banks. Böhm (2020) study climate risk in a sample of emerging countries
and find detrimental effects on sovereign creditworthiness. Vulnerabilities to climate risks are associ-
ated to an increase in public spending, which reduces public debt sustainability (Klomp (2017)), and
may further restrict market access for those sovereigns that are frequently hit and, thus, more exposed
to default (Mallucci (2020)).

Our paper differs from these studies in several ways. From a methodological point of view, we
use a panel version of the local projections estimator, which allows us to characterize the dynamic
reaction of relevant firm-level variables following the exogenous climate shock. To the best of our
knowledge, the local projection method has so far been applied to study the effect of natural disasters
only by Tran and Wilson (2020), who investigate their local economic impact on affected counties
in the US. Moreover, the sheer majority of existing studies providing firm-level evidence refer to a
single region, one or a limited number of countries, and often a single disaster event. By contrast,
we employ a rich cross-country dataset covering 17 European countries for the period 2007-2018.
While we focus on floods, our setup allows us to derive a comprehensive picture of the effect of this
specific type of climate-related hazards on firms in the the context of developed countries, which are
increasingly affected by extreme weather events Agency (2019).

The remainder of this paper proceeds as follows. First, Sections 2 and 3 present the data and
describe the sample. Then, Section 4 introduces the econometric strategy. Section 5 illustrates the
main results of the impact of floods on firm-level outcomes. Section 6 concludes.

2 Data

Flood data are from the Risk Data Hub (RDH) loss dataset compiled by the Joint Research Centre of
the European Commission (Faiella et al. (2020)). The dataset is a harmonized collection of multiple
databases and metadata of past natural disasters in Member States. The data available include the
type of hazard (flood, earthquake, forest fire, landslide, tsunami, volcano), the year of the event, and,
crucially for our identification strategy, the area affected. Quantitative information on the event – such
as the area affected, the number of injured and dead people – is available only for about half of the
sample.

We focus on floods (river floods, flash floods and coastal floods) and retain events for which the
affected areas could be identified at the NUTS3 level. Furthermore, we drop from the sample countries
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with no or very few events recorded during the 2007-2018 period.5 The final sample includes 17
European countries, accounting for about 86 per cent of the GDP of the EU28.6

Financial data and information on firms’ location are retrieved from the Orbis historical data-
set, the largest international database for firms compiled by Bureau van Dijk, a Moody’s Analytics
Company. Orbis collects detailed information on firms’ balance sheets and income statements at an
annual frequency from official business registers, annual reports, newswires, webpages, and commer-
cial information providers. As the database includes a large universe of firms across the globe,7 an
increasing number of academic papers rely on it (see, e.g., Cravino and Levchenko (2017); Aminadav
and Papaioannou (2020)). For each firm, we consider unconsolidated financial information, the sec-
tor of activity (NACE Revision 2 codes),8 and the headquarter’s address. We restrict our sample to
manufacturing firms over the 2007-2018 period.

The two datasets are linked using firms’ location at the NUTS3 level. To further refine the iden-
tification of impacted firms, we exploit as much as possible the information on firms’ exact location
and their distance from the nearest river or coast. We assume that firms which are located closer to
a river or the coastline have higher probability of being damaged than more distant firms whenever a
flood occurs in the region.

Orbis includes the exact coordinates (latitude and longitude) for the majority of firms (about 55%;
see the second row of Table 1). For the rest, we merge firms’ postal codes in Orbis with the GeoNames
database on geographic coordinates of all postal codes in the relevant countries.9 An additional 40%
of firms are thus geolocalised relying on the full postal code (maximum number of digits for a given
country; third row of Table 1). In about 2 per cent of the cases, the postal codes recorded in Orbis can-
not be perfectly matched with the postal codes in Orbis. In these cases, we either take the postal code
in the numerical vicinity available in the GeoNames database (the nearest neighbour postal code), or
– in countries with alphanumeric postal codes: UK and Ireland – we identified firms’ location using
3-digit outward postal codes (fourth and fifth rows of Table 1).10 Finally, we exclude from the estim-
ation sample about 4% of the firms for which the geographical location cannot be identified (first and
last rows of Table 1).

5These countries are: Cyprus, Denmark, Estonia, Finland, Latvia, Lithuania, Luxembourg, Malta, Netherlands, and
Sweden. Moreover, we also exclude Greece from the estimation sample, since geolocalised postal codes – which are used
to calculate the distance of the firms from the nearest river or coast; see more on this in Section 4.2 – are not available for
this country.

6Source: Eurostat. The data refers to 2019.
7Yet, coverage varies from country to country, particularly of small firms.
8NACE Rev. 2 is the revised classification of the official industry classification used in the European Union adopted

at the end of 2006.
9The GeoNames database is downloaded from http://download.geonames.org.

10For Ireland, only 3-digit outward postal codes (Eircodes) are available in the GeoNames database for copyright
reasons. On average, 3-digit postal codes correspond to an area of 3.7 km × 2.9 km.
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Table 1: Geocode

Nb. of obs. %

Missing geographic info 341,504 3.71

Firm geolocalised 5,048,987 54.89

Postal code geolocalised 3,613,313 39.29

Nearest neighbour postal code 166,926 1.81

3-digit postal codes for the UK and IE 26,368 0.29

Not geolocalised 474 0.01
Notes: The table tabulates the geographic information used for geolocalising firms.

The first three rows of Table 2 show the distance (in km) between the firms’ geographic location
based on their exact coordinates and the location defined by their postal codes for firms for which both
sources of location information are available. Geodesic distances (i.e. the shortest path between two
points along the surface of the Earth) are calculated using the formula developed by Vincenty (1975).
With full postal codes, the average distance between the firm’s location based on its coordinates and
the centroid of the area defined by the postal code is 3.1 km, and the median is 1.7 km. The distance
increases when less precise postal codes are used (second and third row).

The distribution of the distance measures can also be used to spot likely errors in the location data:
if the distance defined above exceeds a certain threshold, either the firm level latitude and longitude
data or the postal code is probably inaccurate. We classify an observation as outlier if the distance
measure is more than 5 times the interquartile range above the third quartile. The number of outliers
is reported in the last row of Table 2. In these 115,689 cases (1.3% of the sample), the geolocalisation
based on the full postal codes is accepted.11

Hydrographic data are taken from the US National Centers for Environmental Information. The
shapefiles contain high resolution geographic coordinates of all rivers, lakes, and shorelines/coastlines
worldwide.12 As before, geodesic distances between firms’ location and the geographic location of
rivers and coastlines are calculated using Vincenty’s formula. The shortest distance to any river or
coast is recovered using an iterative process.

11The choice of trusting the information on the postal code rather than the firm’s coordinate recorded in Orbis is based
on random inspection of the data. A few outliers are also detected when the nearest neighbour or 3-digit postal codes are
used. In these cases, we keep the firms’ location data in Orbis.

12We use high resolution shapefiles for both the shoreline and the river database. The data are distributed in several
levels. For the shoreline data, we keep only (L1) continental land masses and ocean islands, and (L2) lakes. Islands
in lakes, ponds in islands within lakes, and data on Antarctica (L3 to L6) are not considered. As for the rivers, we
consider (L1) Double-lined rivers (river-lakes); (L2) permanent major rivers; (L3) additional major rivers; (L4) additional
rivers; (L6) major intermittent rivers; (L7) additional intermittent rivers; and (L9) major canals. Minor rivers (L5) and
intermittent rivers (L8), as well as irrigation canals (L11) are disregarded.
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Table 2: Distances (in km) between spatial data points defined by the firms’ geographic location, the
postal codes and the nearest river or coast

Distances between the firms’ location and the
centroid of the area defined by the postal code

Distances from the
closest river or coast

Postal
code

Nearest
neighbor

postal code

3-digit
postal codes
(UK and IE)

All
firms

Firms in
impacted
regions

Mean 3.133 7.729 5.408 15.401 15.434

Std. 3.929 7.390 7.316 14.991 14.938

Min. 0.001 0.018 0.028 0.002 0.002

P5 0.055 0.701 0.310 0.677 0.714

P25 0.527 2.601 1.014 3.347 3.423

Med. 1.715 5.210 2.519 10.884 10.906

P75 4.153 9.612 5.602 22.890 23.158

P95 11.339 21.587 23.753 46.015 45.828

Max. 23.823 53.065 37.862 108.254 108.254

Nb. of outliers* 115,689 552 238
Notes: The first three rows of the table show the distance (in km) between the firms’ geographic location based on their
exact coordinates and the location defined by their postal codes for firms for which both sources of location information
are available. The last two rows present the distribution of the distances between the firm location and the nearest river
or coast, separately for all firms in the database and for firms located in impacted regions. *An observation is classified
as outlier if the distance measure is more than 5 times the interquartile range above the third quartile.

The last two rows of Table 2 present the distribution of the distances between the firm location
and the nearest river or coast, separately for all firms in our database and for firms located in impacted
regions. The distance varies between 0 and 108 km, with a mean of 15.4 km and a median of 10.9
km. The method for estimating the relevant distance below which a firm is considered as impacted by
the flood is presented in Section 4.2.

3 Recent floods in Europe

In the past three decades Europe suffered from one of the most flood-rich periods over the past 500
years. Not only floods have become more frequent and bigger in extent since the early ’90s, but
the recent period also differs from previous flood-rich periods in the timing of the floods and the
relationship between flood occurrence and air temperatures. While previous flood-rich periods were
associated with relatively (about 0.2 – 0.3 °C) lower average air temperatures, global warming with
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increasing air temperatures (about 1.4 °C warmer than the previous interflood period) is one of the
main drivers of the current flood-rich period (Blöschl et al. (2020)).

Figure 1 shows the geographical distribution of flood events in Europe between 2007 and 2018,
with darker blue colours indicating a higher frequency of flood events in the region. Floods are
particularly frequent in the Mediterranean basin area, where enhanced evaporation and convective
activity have been increasing the frequency of autumn floods during the past few decades (Barriendos
and Rordigo (2006); Barrera-Escoda and Llasat (2015)). In the Atlantic region, in particular in the
UK and in Ireland, the seasonal shift of winter storms has resulted in more frequent winter floods. The
seasonality of the floods has also become more pronounced in Central Europe, where earlier snowmelt
and fewer ice-jam floods have shifted the dominant flood season towards the summer (Xoplaki et al.
(2004); Berghuijs et al. (2019)). In this region, floods are typically associated with prolonged heavy
precipitation hitting large areas, which is sometimes aggravated by higher than usual soil moisture
due to relatively cold winter or spring. One of the most important flood events in our sample, the
flood of June 2013 in Central Europe affecting the Danube and Elbe catchments, is an example of
such phenomenon (Blöschl et al. (2013)).

Overall, about 78 per cent of the NUTS3 regions in the selected countries have been hit at least
once by a flood during the 2007-2018 period (see the last column of Table 3). Out of the 1,026
affected regions, 681 have been deluged more than once. In some regions, in particular in the United
Kingdom, Spain, and Romania, floods are so frequent that they represent the norm rather than the
exception (Table 3). Conversely, Germany, Poland and Croatia experienced relatively fewer flood
events. In these countries, 33 - 43 per cent of the regions have been spared flooding during the period
considered. This is, however, at least partly related to the higher spatial granularity of the areas
defined at the NUTS3 level, especially for Germany and Croatia.13

Repeated floods in the same regions present a challenge for isolating the long-term economic
impact of one particular flood. The 345 regions with only one flood event during the 2007-2018 period
provides an important piece of information for the identification of firms’ dynamic responses to floods.
In the rest of the impacted regions, firms’ performance after a specific flood is also contaminated by
the persistent impact of past floods. As shown in Table 4, on average, the temporal distance between
flood events in regions affected by multiple floods is about three years. Expectedly, the average
number of years between events is decreasing with the number of events in a given region. It is thus
crucial to take into account previous flood events in any attempt to assess the dynamic impact of
floods (see Section 4 for the technical details).

13For example, the average size of a rural district (Landkreise) in Germany is 1,422 km2, and that of an urban district
(kreisfreien Städte) is 150 km2. For comparison, an average province in Spain has an area of 9,729 km2. Districts in
Germany and provinces in Spain correspond to NUTS3 regions.
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Figure 1: Map
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Notes: Canary Islands, Overseas France, the Azores and Madeira are not shown.
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Table 3: Frequency of flood events between 2007 and 2018

1 2 3 4 5 6 7 8 9 Total %

AT 0 11 21 1 2 0 0 0 0 35 100

BE 16 14 9 2 0 0 0 0 0 41 93

BG 0 3 2 8 11 3 0 0 0 27 96

CZ 0 5 5 3 1 0 0 0 0 14 100

DE 166 73 10 0 0 1 0 0 0 250 66

ES 8 10 13 9 7 4 4 1 1 57 97

FR 19 43 19 6 3 0 0 0 0 90 89

HR 4 6 1 0 1 0 0 0 0 12 57

HU 6 9 1 1 0 0 0 0 0 17 85

IE 0 0 1 2 3 2 0 0 0 8 100

IT 24 22 25 27 9 0 0 0 0 107 97

PL 22 17 4 1 0 0 0 0 0 44 61

PT 14 3 1 0 0 0 0 0 0 18 72

RO 0 1 10 11 9 5 4 1 1 42 100

SI 1 4 4 0 0 0 0 0 0 9 75

SK 0 4 3 1 0 0 0 0 0 8 100

UK 30 23 33 21 20 19 18 4 1 169 98

All 345 266 171 107 68 34 26 6 3 1,026 78
Notes: Number of regions by frequency of floods. The column “Total” displays the total number
of regions affected by a flood at least once between 2007 and 2018. The last column shows the
percentage of the regions in a given country with at least one flood event recorded in our sample.
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Table 4: Average number of years between events

2 3 4 5 6 7 8 9 All

AT 4.1 3.1 3.3 2.8 3.2

BE 5.7 4.8 3.3 4.9

BG 6.0 4.2 3.3 2.7 2.2 3.0

CZ 3.6 2.4 2.6 2.8 2.7

DE 4.3 3.2 1.8 3.9

ES 3.5 4.2 3.0 2.5 2.0 1.8 1.6 1.4 2.7

FR 3.0 3.5 1.9 2.2 2.9

HR 2.5 2.0 2.0 2.2

HU 3.2 2.0 2.3 2.9

IE 5.0 3.2 2.3 2.0 2.6

IT 3.3 2.8 2.4 2.1 2.5

PL 1.4 3.0 3.0 2.0

PT 5.0 5.0 5.0

RO 2.0 3.5 2.7 2.5 2.0 1.8 1.3 1.4 2.4

SI 5.0 4.5 4.7

SK 4.5 5.2 3.7 4.6

UK 4.9 3.1 2.5 2.4 2.0 1.7 1.5 1.2 2.3

All 3.9 3.4 2.5 2.4 2.0 1.8 1.5 1.3 2.8
Notes: The table presents the average number of years between flood events in regions affected
by multiple floods during the 2007-2018 period.

4 Identification strategy

4.1 The econometric models

To assess the impact of a flood on manufacturing firms, we rely on three interrelated econometric
models. In our first model, we use local projections (LP) to investigate the firms’ dynamic responses
to flood events. The general LP method is documented in Jordà (2005). In a panel framework, the
impulse response function is estimated sequentially for each horizon h = 0, ..., H using the following
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equation:

yi,t+h − yi,t−1 = βhDit +
h∑

τ=0,τ 6=t

θτDiτ + γhXi,k<t−1 + δsch + εith (1)

where yi,t+h−yi,t−1 is the cumulative change in the outcome variable of firm i between time t−1

and t + h; Dit is the treatment dummy indicating that the firm i is impacted by a flood in time t;∑h
τ=0,τ 6=t θτDiτ is a set of dummies controlling for all other floods that occurred before the current

event or between the current disaster and the horizon of interest h; and δsch are region- and industry-
specific (NUTS3×NACE3) fixed effects. In addition, a vector Xi,k<t−1 controls for predetermined
firm characteristics. More specifically, the vector X includes the second and the third lag of the
firm’s total assets; the number of employees; the share of tangible, intangible and fixed assets in total
assets; leverage; and the firm’s age. To control for the cyclical position of the economy, we also
include in vector X the country’s output gap (deviations of the country’s log annual real GDP from
its HP-filtered trend with a scaling factor λ = 100).

The sequence of the estimated parameters β̂h at horizons h = 0, ..., H represents the impulse
response function of the representative firm to an average flood, i.e. the average path of the outcome
variable of the impacted firms relative to the other firms unaffected by the flood. Assuming that the
error-terms εith are independent and identically normally distributed, the H + 1 equations can be
estimated separately for each horizon using simple ordinary least squares (OLS). Tran and Wilson
(2020) use a similar LP method to study the local, county-level impact of natural disasters in the U.S.
on a broad range of outcome variables.

Our second and third models combine the LP methodology with a quasi-experimental estimation
approach. The identification strategy involves two stages. First, a binary probit model is estimated to
determine the probability that the firm i is impacted by a flood in time t based on observed predeter-
mined characteristics:

Pr (Dit = 1|Xi,k<t−1) = Φ (αXi,k<t−1) (2)

where Pr denotes probability, Xi,k<t−1 is the same set of controls as previously defined, and Φ is
the Cumulative Distribution Function (CDF) of the standard normal distribution. The probabilities of
being assigned to the treated group conditional on observed characteristics (i.e. the propensity scores)
are then predicted using the estimated eq. 2.

In the second stage, we estimate the LP model in eq. 1 by weighting the observations with the
inverse of the propensity scores obtained from the first stage. The weights used for treated firms is
given by 1/P̂r, whereas non-treated firms receive a weight equal to 1/(1−P̂r). This inverse propensity
score weighting (IPW) scheme mitigates confounding by placing more weights on observations that
were difficult to predict, thereby improving on the covariate balance between the treated and the
control groups (Rosenbaum and Rubin (1985)).
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The conventional IPW method does not require adjusting for the same set of covariates in a second
stage regression. To control for previous flood events (

∑h
τ=0,τ 6=t θτDiτ ) and the fixed effects (δsch),

we estimate the second stage outcome regressions as in eq. 1, but without including Xi,k<t−1 as
additional covariates. We refer to this model as the augmented inverse propensity weighted (AIPW)
estimator.

In our third model, the controls Xi,k<t−1 are included both in the first stage probit and the second
stage LP equations. Since the same covariates are taken into account via two channels, the literature
refers to this method as “doubly robust”. The main advantage of this approach is that it provides
consistent estimates if either the first stage model for the propensity score or the outcome regression
model (or both) are correctly specified (Glynn and Quinn (2010)). We refer to our third model as the
doubly robust AIPW estimator. With a different objective, Jordà et al. (2016) use a similar method
(IWP combined with LP in a doubly robust way) to compare the path of the economy in normal
recessions and during financial crisis.

4.2 The treated and the control groups

Firms impacted by a flood are not directly observed. As explained in Section 2, the flood events are
recorded in our database at the NUTS3 regional level only. Nonetheless, the whole region is unlikely
to be affected whenever a flood occurs in the region.

To better distinguish between firms affected by the flood and those in the same region which
haven’t been damaged, we assume that the likelihood of being affected depends on the distance
between the firms’ geographical location and the nearest river or coast. This distance is calculated
as explained in Section 2. To identify the relevant distance below which an average flood is likely to
cause damage, we recursively re-estimate eq. 1 by taking different threshold values for the distance
from nearest river or coast below which the firm is considered as treated (and more distant firms are
placed in the control group). In each iteration, the treated group and the control group are redefined
according to the given threshold. The outcome variable is the change in firms’ total assets between
one year before and one year after the flood event. That is, we fix h = 1 for each estimation. Even if
the flood occurs close to the end of the year, we expect the impact of the flood on the treated firms’
total assets to be detectable in the following year.

Figure 2 presents the results of this exercise. The X-axis shows the relevant distance in km, and
the Y-axis presents the estimated impact of the flood on the firms’ total assets (in log) one year after
the flood event. The blue line is the estimated coefficient β̂1 of eq. 1 for a threshold starting from
300m up to 10km away from the closest river or coast, and the grey area is the corresponding 95%
confidence interval. The model is re-estimated for every 100m up to 5km, then every km up to 10km.
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Figure 2: Impact on total assets & distance from the closest river or coast

Notes: the figure shows the estimation results from the LP model with h = 1 for different threshold
values for the relevant distance from the closest river or coast above which the firm is considered
as treated. In each iteration, the treated group and the control group are redefined according to
the the given threshold. The X-axis shows the distance in km, and the Y-axis presents the estimated
impact of the flood on the firms’ total assets (in log) one year after the flood event. The blue line
is the estimated coefficient β̂1 of eq. 1 for a threshold starting from 300m up to 10km away from
the closest river or coast, and the grey area is the corresponding 95% confidence interval. The
model is re-estimated for every 100m up to 5km, then every km up to 10km.

Results reveal that the largest difference between the treated and the control groups is identified
when 700m is taken as the threshold for the distance that discriminates between the two groups.
Above this threshold, more and more unaffected firms are considered as treated. As a consequence,
the difference between the firms’ total assets in the treated and the control groups one year after a
flood event slowly converges towards zero as the threshold is increased. Conversely, as we approach
closer and closer to the river or the coast, we misclassify more and more affected firms by placing
them into the control group. As a result, the difference between the outcome for the treated and the
control groups quickly disappears.

In our empirical specifications, we thus define treated firms those which are located up to 700m
away from the closest river or coast in an impacted region. Overall, about 5% of the firms are directly
exposed to a flood of an average size (see Table 2 in Section 2). By taking into account the number
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of regions affected by a flood event and the frequency of floods in our sample, we arrive to the
conclusion that, on average, about 1% of the manufacturing firms suffer from water damage every
year in the countries considered. The location of the affected firms is displayed on a map in Figure
A.1 in Appendix A.

To make sure that the control group does not include affected firms, we drop from the estimation
sample all firms that are located at a distance between 700m and 10km from the nearest river or coast.
At a distance of 10km and above, firms are unlikely to be damaged by the flood, even if we take into
account the uncertainty of our calculated distance measure.

5 Estimation results

The purpose of the first step of the AIPW and the doubly robust AIPW models is to rebalance the
treated and the control groups with respect to all possible pre-treatment characteristics, so that the
reweighted sample satisfies the unconfoundedness assumption. The balance tables on the unweighed
and the weighted samples – where weights are given by the inverse propensity scores obtained from
the first-stage probit (eq. 2) – are shown in Table 5. The unweighted mean and median values of the
covariates in the treated and the control groups (first two columns of the table) are reasonably close
to each other. When propensity scores are used (last two columns), the resulting groups are almost
perfectly balanced with respect to all observed characteristics.

Figure 3 shows the estimated impulse response functions using the LP (graphs on the left-hand
side), the AIPW (in the middle) and the doubly robust AIPW models (on the right-hand side) for total
assets (in log, first line) and the number of employees (in log, second line). The X-axes correspond
to the number of years after the flood events (h). The blue lines indicate the estimated impacts of the
flood on the outcome variable h years after the event (β̂h), and the the grey areas are the corresponding
95% confidence intervals.

The results from the three models are very similar (Figure 3), suggesting that specification errors
are negligible. Water damages have a significant and persistent adverse effect on firms’ total assets.
In the following year after the event, an average flood deteriorates firms’ total assets by about 2%.
Although the impact of the flood on total assets is not statistically significant after about 5-7 years
(depending on the model), the impulse responses do not show clear sign of recovery even after 8
years.
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Table 5: Balance table on predetermined variables

Unbalanced sample Balanced sample

Control Treated Control Treated

Total assets (t-2) 12.898 12.282 13.685 13.685
(13.069) (12.445) (13.578) (13.591)

Total assets (t-3) 12.958 12.391 13.635 13.635
(13.119) (12.533) (13.537) (13.533)

Nb. of employees (t-2) 2.299 2.126 2.461 2.461
(2.197) (1.946) (2.303) (2.303)

Nb. of employees (t-3) 2.324 2.095 2.448 2.448
(2.197) (1.946) (2.303) (2.303)

Share of intangible assets (t-2) 0.029 0.046 0.027 0.026
(0.000) (0.000) (0.000) (0.000)

Share of intangible assets (t-3) 0.028 0.045 0.028 0.028
(0.000) (0.000) (0.000) (0.000)

Share of tangible assets (t-2) 0.268 0.309 0.279 0.276
(0.192) (0.170) (0.221) (0.211)

Share of tangible assets (t-3) 0.271 0.281 0.280 0.277
(0.196) (0.172) (0.223) (0.211)

Share of fixed assets (t-2) 0.306 0.320 0.330 0.327
(0.246) (0.229) (0.288) (0.283)

Share of fixed assets (t-3) 0.311 0.330 0.330 0.327
(0.250) (0.235) (0.289) (0.283)

Share of current assets (t-2) 0.700 0.739 0.671 0.673
(0.754) (0.770) (0.712) (0.717)

Share of current assets (t-3) 0.697 0.700 0.671 0.673
(0.750) (0.765) (0.711) (0.717)

Leverage (t-2)* 0.781 0.846 0.713 0.784
(0.687) (0.689) (0.672) (0.686)

Leverage (t-3)* 0.758 0.809 0.708 0.771
(0.686) (0.684) (0.684) (0.696)

Age 16.603 14.297 20.618 20.617
(13.000) (11.000) (17.000) (17.000)

Output gap -0.000 -0.011 -0.007 -0.007
(0.001) (-0.015) (-0.006) (-0.002)

Notes: the table shows the mean values and the medians (in parentheses) of the predetermined variables
(two and three years before the flood event) for the control and the treated groups. The first two columns
display the raw statistics on the unbalanced sample, while the last two columns correspond to the rebalanced
(reweighted) sample. * To remove extreme outliers, the leverage (both the second and third lags) are winsored
at the 1st and the 99th percentiles.
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The number of employees reacts more slowly to flood damages. The following year after the
event, the number of employees remains unaffected, and it becomes significantly lower than in the
control group only after 3 years. The impulse response then follows a prolonged U-shaped path. The
magnitude of the shock after 5 years is comparable to that of the total assets. Although the recovery
in the number of employees is more visible than in total assets, the point estimates remain negative at
least until 8 years after the event.

Several factors can possibly explain the sluggish adjustment in employment. For example, legal
impediments to dismissal, severance pay, or the activity of the trade unions may all prevent firms to
adjust employment in response to shocks. Moreover, employers may find it optimal to choose other
means of adjustment (such as through hour worked, wages, or simply by reducing work intensity and
accepting profitability loss) if they perceive the shock as temporary. In this case, firms may choose
to hoard labour in order to avoid future hiring costs (advertising, screening, processing and training
new employees) and any sunk costs associated with human capital investments in employees. If the
persistence of the shock is not known in advance, firms may still respond sluggishly to shocks, as the
positive option value to waiting decreases the propensity to adjust quickly and induces them to gather
more information on the exact nature of the shock. Finally, labour hoarding can also be encouraged
by state intervention, such as subsidised working time reductions or other forms of compensation for
workers’ income losses, which reduce the costs of labour hoarding for firms. See Hamermesh and
Pfann (1996) for a comprehensive survey on the implications of adjustment costs on factor demand.

Overall, the impact of an average flood on firms and employees is significant and highly persistent,
but the magnitude of the shock is rather limited. Every year, about 1% of all manufacturing firms in
the 17 countries considered suffer from the consequences of an average flood. By simply multiplying
the share of affected firms by the estimated average loss of about 2%, we could conclude that the
aggregate impact of an average flood is negligible.

Nonetheless, there are several additional considerations that should be taken into account to get
the full picture on the risks related to floods. First, our estimates show the dynamic impact of one
flood event. However, many firms are repeatedly damaged by a flood. About 78% of the regions were
partly flooded at least once during the 12 years between 2007 and 2018, and more than half of them
were flooded at least twice (Table 3). When more than one flood events occurred during this period,
the average number of years between the events was less than 3 (Table 4). The damaged firms are
presumably always the same ones: those which are located in a floodplain or a coastal area. That
is, the majority of these companies have had no time to recover before they were damaged again.
Second, our data do not allow us to accurately disentangle large-scale floods from relatively less
important events. It is possible (and even likely) that bigger floods have a more damaging impact.
Third, our analysis does not take into account the damage caused by the flood in the infrastructure and
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– most importantly – in terms of human casualties. Finally, the climate change is likely to amplify
both the strength and the frequency of floods. The adverse economic and humanitarian impacts of the
floods are thus likely to increase in the future.

Figure 3: Impact of an average flood on firms’ total assets and the number of employees

Notes: the figure displays the impulse responses derived from the local projections (LP, graphs to the left), the augmented
inverse propensity weighted estimations (AIPW, in the middle) and the doubly robust AIPW estimations (to the right) for
total assets (in log, first line) and the number of employees (in log, second line). The X-axes correspond to the number of
years after the flood events (h). The blue lines indicate the estimated impacts of the flood on the outcome variable h years
after the event (β̂h), and the the grey areas are the corresponding 95% confidence intervals.

6 Conclusion

Floods are among the climate-related hazards most likely to intensify because of the long-term in-
crease in temperature and the subsequent more extreme weather patterns. In this paper we investigate
the dynamic impacts of flood events on European manufacturing firms during the 2007-2018 period.
We exploit a rich database on natural hazards and detailed information on firm geographical location

19



to pin down companies that are directly affected by the floods hitting a specific region. We find that
water damages have a significant and persistent adverse effect on firm-level outcomes. In the year
after the event, an average flood deteriorates firms’ assets by about 2%, without clear signs of full
recovery even after 8 years. While adjusting more sluggishly, employment follows a similar pattern,
experiencing growth in negative territory for the same number of years at least. While the estimated
order of magnitude may seem negligible, the frequency of flood events suggest a significant com-
pound effects from repeated floods with potentially disruptive economic and social consequences for
regions that are hit repeatedly.
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Appendix

A Firms affected by a flood

Figure A.1: Location of firms affected by flood

1

2

3

4 or more

Notes: Canary Islands, Overseas France, the Azores and Madeira are not shown.
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B Number of affected regions

Table B.1: Number and share of affected regions by country

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

AT 21 6 22 4 0 0 29 1 0 10 0 6
(60) (17.1) (62.9) (11.4) (82.9) (2.86) (28.6) (17.1)

BE 0 10 0 31 6 0 5 0 0 8 0 19
(22.7) (70.5) (13.6) (11.4) (18.2) (43.2)

BG 25 0 0 4 0 17 0 21 23 2 7 18
(89.3) (14.3) (60.7) (75) (82.1) (7.14) (25) (64.3)

CZ 9 0 7 12 0 0 11 0 0 1 0 2
(64.3) (50) (85.7) (78.6) (7.14) (14.3)

DE 31 4 23 36 55 6 57 6 6 49 52 23
(8.16) (1.05) (6.05) (9.47) (14.5) (1.58) (15) (1.58) (1.58) (12.9) (13.7) (6.05)

ES 37 3 37 18 2 12 21 10 7 21 6 33
(62.7) (5.08) (62.7) (30.5) (3.39) (20.3) (35.6) (16.9) (11.9) (35.6) (10.2) (55.9)

FR 12 8 6 14 2 0 17 31 8 39 14 50
(11.9) (7.92) (5.94) (13.9) (1.98) (16.8) (30.7) (7.92) (38.6) (13.9) (49.5)

HR 0 0 0 6 0 1 3 7 2 0 3 2
(28.6) (4.76) (14.3) (33.3) (9.52) (14.3) (9.52)

HU 1 0 0 12 0 0 8 9 0 1 0 0
(5) (60) (40) (45) (5)

IE 0 6 8 0 3 0 7 0 1 0 6 7
(75) (100) (37.5) (87.5) (12.5) (75) (87.5)

IT 1 11 29 26 18 34 17 59 25 13 26 37
(.909) (10) (26.4) (23.6) (16.4) (30.9) (15.5) (53.6) (22.7) (11.8) (23.6) (33.6)

PL 3 0 27 37 0 0 0 0 0 5 0 0
(4.17) (37.5) (51.4) (6.94)

PT 6 1 6 1 0 0 0 6 1 1 0 1
(24) (4) (24) (4) (24) (4) (4) (4)

RO 24 6 41 30 0 7 7 32 12 15 0 22
(57.1) (14.3) (97.6) (71.4) (16.7) (16.7) (76.2) (28.6) (35.7) (52.4)

SI 7 0 0 2 0 3 1 5 0 0 0 3
(58.3) (16.7) (25) (8.33) (41.7) (25)

SK 4 0 4 4 0 0 3 0 0 0 0 6
(50) (50) (50) (37.5) (75)

UK 105 97 61 5 1 121 78 14 38 16 51 53
(61) (56.4) (35.5) (2.91) (.581) (70.3) (45.3) (8.14) (22.1) (9.3) (29.7) (30.8)

Notes: Number of regions affected by a flood in a given year. Percentage of the total number of NUTS3 regions are in parentheses.
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