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Abstract

The substantial economic transformation required to mitigate and adapt
to climate change will lower the value of certain businesses as well as
some firms’ assets in the not-too-distant future. Firms will need to tran-
sition to a less carbon-intensive business model, but may do so at differ-
ent times and at different speeds, incurring different costs and risks in
the process. We propose and implement a novel market-based measure
of exposure to transition risk (transition risk factor) and examine how
this risk affects firms’ creditworthiness. We discipline the exercise by us-
ing Credit Default Swap (CDS) spreads to capture differential exposure
to transition risk across economic sectors. We show that the transition
risk factor is a relevant determinant of CDS spreads and provide evi-
dence of the relationship between the differential exposure to transition
risk and firms’ cost of default protection. This effect is particularly
pronounced during deteriorating credit market movements. However,
effects vary substantially across industries, reflecting the fact that tran-
sition risk impacts firms’ valuation differently depending on their sector.
Our findings also suggest that investors seek greater protection against
transition risks in the short– to medium-term, indicating an expectation
of a swift transformation of the entire economic structure.
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1 Introduction
«There is no company whose business model won’t be profoundly affected by the transition
to a net-zero economy [...]. As the transition accelerates, companies with a well-articulated
long-term strategy, and a clear plan to address the transition to net zero, will distinguish
themselves with their stakeholders [...] by inspiring confidence that they can navigate this
global transformation. But companies that are not quickly preparing themselves will see their
businesses and valuations suffer, as these same stakeholders lose confidence that those com-
panies can adapt their business models to the dramatic changes that are coming.»

— Larry Fink, Open letter to CEOs, January 26, 2021

In this statement, the chairman and CEO of BlackRock recognises the scope and speed of
economic transformation required to mitigate and adapt to climate change. The necessary
transformation of the economic structure requires policies to mitigate climate change via
reduction of carbon dioxide emissions, considerable technological innovations and changes
in consumer and corporate behaviour. These changes can generate sizable costs and have
consequential financial impacts for unprepared sectors and companies. Some companies are
already well-positioned, harnessing the opportunities presented by the low-carbon transition,
and some are actively preparing by reducing their exposure to transition risks. Others,
however, will see their businesses and valuations suffer as investors lose confidence in their
ability to adapt to the dramatic changes that are coming. This could severely affect their
ability to fulfill their financial obligations, ultimately affecting their creditworthiness. As
such, it is essential to capture potential risk differentials between industries and firms that
are more or less sensitive to the risks associated with the transition to a low-carbon economy.
The transition to a low-carbon economy will be effected through a combination of changes
in public regulation, technology, and consumers’ preferences, triggering changes in demand-
related factors. The risks related to this transition arise from uncertainties regarding the
nature of the low-carbon pathway – i.e. the speed and timing of reducing greenhouse gas
emissions, which will necessarily restructure the economy.
While there has been a rapid expansion of concepts and evidence concerning transition risks
from academia, private industry, and regulators (e.g. Bolton et al., 2020; NGFS, 2019), there
is no comprehensive theoretical framework linking the low-carbon structural change to credit
dynamics. It is not yet clear what the risk drivers, sectoral origins and transmission channels
will be. Most of the current debate on transition-related financial risks focuses on brown
industries. For instance, there is a widespread preoccupation with the financial repercussions
of asset stranding: the unanticipated or premature write-downs, devaluations, or conversions
to liabilities of assets (Caldecott, 2018; van der Ploeg and Rezai, 2020). However, climate
change mitigation policy, changing preferences, and ongoing technological change (Syrquin,
2010) will cause some parts of the economy to grow and others to decline in relative impor-
tance. Some firms will be more exposed to transition risk, which may manifest themselves
through increased default risk or lower asset values, others will be less exposed. At the same
time, a number of the world’s biggest companies have committed to decarbonising their
businesses, either by setting emissions intensity targets or by setting time limits on reaching
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net-zero emissions. Although not legally binding, non-compliance with self-imposed com-
mitments might become a reputational risk and therefore credit risk. Equally, unambitious
emission-reduction strategies might become a transition risk and are therefore credit risk.
This is where our analysis makes a contribution: measuring the extent to which firms are
exposed to the low-carbon transition and how the market believes this exposure will develop
in the future.

To examine whether firms’ exposure to transition risk is reflected in their credit risk, we
test whether lenders prefer to hold Credit Default Swaps (CDS) of businesses more exposed
to transition risk. This is because the CDS is a credit derivative that provides protection
against the risk of a credit default. The buyer of the protection makes periodic payments,
often referred to as the spread, to the seller of the protection until the occurrence of a credit
event or the maturity of the contract. In return, if a credit event occurs, the buyer of the
protection receives compensation for the loss incurred by the credit event. We posit that,
if lenders demand more of the CDS of more exposed firms, then they are are willing to pay
higher spreads. An important data point for calculating risk exposure is the Expected Loss
(EL) in case of a default. This is generally defined as the product of three variables: the
exposure at default (EAD), the loss given default (LGD), and the probability of default (PD).
Whereas historical data are available for EAD, this is not the case for PD and LGD. CDS
spreads adequately represent the product PD × LGD (Jarrow, 2011).1 As such, changes in
lenders’ exposures at default are driven by changes in CDS spreads.
The use of CDS offers a multitude of advantages over other commonly used credit risk
measures such as corporate bonds (or ratings). First, trading in the CDS market is sufficiently
active, whereas bonds have been shown to be inflated by a non-default component due to
their illiquidity (Longstaff et al., 2005; Ederington et al., 2015). Second, CDS have been
shown to be more reactive to new information arriving in the market than bonds or ratings
(Blanco et al., 2005; Zhu, 2006; Norden and Weber, 2009). Third, CDS admit standardized
contractual characteristics like prespecified maturity, default event and debt seniority, which
make them comparable within the corporate universe. In contrast, corporate bonds may be
embellished with additional idiosyncrasies such as embedded options or specific guarantees.
The determinants of CDS spreads have been comprehensively analyzed in the literature (Das
et al., 2009; Ericsson et al., 2009; Zhang et al., 2009; Galil et al., 2014; Pereira et al., 2018).
Most relevant drivers identified in these works include firm-specific variables like stock return
and volatility, but also common variables like the underlying market condition. Despite
the consensus on the choice of variables, their sign and magnitude remain unstable yielding
ambiguous findings on the effects of these covariates. Other than analyzing the effects on
CDS with a fixed maturity, the available grid of different maturities for each CDS additionally
allows us to unfold the effects on the term structure of a firm’s credit risk. Using the slope of
the CDS between different maturities as a term structure measure Han and Zhou (2015) find
different market variables (interest rate, slope of the risk-free yield curve, return of market
index) as well as the firm-specific variable stock volatility to be among the most influential
determinants.

1The CDS spread captures a few other risk premia, which in a first approximation can be omitted. We
refer to Jarrow (2011) for a more rigorous discussion.
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Literature establishing the link between climate change and credit risk is growing. Kleimeier
and Viehs (2018) show a significant and negative relationship between CO2 emission levels
and the cost of bank loans. Delis et al. (2018) observe that banks appeared to start pricing
climate policy risk after the Paris Climate Agreement, while Ginglinger and Moreau (2019)
find that greater climate risk leads to lower leverage in the post-2015 period. Capasso et
al. (2020) investigate the relationship between exposure to climate change and firms’ credit
risk and find that the exposure to climate risks affects the creditworthiness of loans and
bonds issued by corporates. Jung et al. (2018) provide evidence of the existence of a positive
association between the cost of debt and carbon-related risks for firms. Rajhi and Albu-
querque (2017) submit that natural disasters are predictive of higher nonperforming loans
and higher likelihood of default in developing countries. Battiston et al. (2017) find that
while direct exposures to the fossil fuel sector are small, the combined exposures to climate
policy-relevant sectors are large, heterogeneous, and amplified by large indirect exposures via
financial counterparties. Ilhan et al. (2020) show for a sample of S&P 500 companies that
higher emissions increase downside risk – the potential losses that may occur if a particular
investment position is taken. Monasterolo and de Angelis (2020) indicate that investors re-
quire higher risk premia for carbon-intensive industries’ equity. Within the CDS framework
Barth et al. (2021) enhance well-established fundamental models with ESG data and show
that the market valuation of environmental performance predominantly drives changes in
CDS spreads. Kölbel et al. (2020) construct textual, forward-looking measures of climate
risk exposure and are able to show that transition risk is priced in CDS, whereas physical
risk is not.2

We contribute to the existing string of literature on multiple dimensions. First, we propose a
novel market-based measure of transition risk (TR) that captures firms’ relative differential
exposure to the aforementioned risk. Building upon classical factor construction theory and
using reliable environmental data, we identify green and brown groups and construct a factor
that aptly captures the CDS spread difference between the two groups. As a sensible notion of
difference, we use the Wasserstein distance, which, unlike the classical mean spread approach,
allows us to extract the entire distributional distance and thus more relevant information. In
addition, the reliance on CDS data within our construction ensures that we get a forward-
looking measure of the market’s perception of transition risk.
Second, we use quantile regression allowing us to provide a more detailed picture of the
observed effects. While recent literature (Barth et al., 2021, Kölbel et al., 2020) uncovers
sensible effects of transition risk on CDS spreads, their results mostly originate from con-
ditional mean models. Instead, our approach models the entire conditional distribution of
CDS spread changes and as such allows for a deeper examination of the exposition by e.g.
making statements about the effects on the tails of the distribution. In fact, our results reveal
that transition risk impacts are particularly pronounced when CDS spreads are subject to
extreme changes. The observed quantile heterogeneous effect is asymmetric and particularly
highlighted for positive changes, i.e. when firm-specific creditworthiness deteriorates. From

2Physical risk reflects the uncertain economic costs and financial losses from tangible climate-related
adverse trends and more severe extreme events. For example, low-lying coastal real estate and public infras-
tructure face physical risk from higher sea levels and more destructive storms, and hotter temperatures pose
chronic risks to human health, worker productivity, and food production.
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a risk management perspective, these findings are of particular relevance for institutional
investors and regulators.
Third, we set up a detailed sectoral analysis and are able to unfold different effects across
industries. In a recent study Kölbel et al. (2020) provide evidence for a positive risk premium
in CDS spreads of firms where climate risk is assumed to be a material risk. Following up
on their work, we find that certain carbon-intensive sectors (e.g. Energy, Basic Materials)
exhibit an increase in default protection cost due to an increased perception of transition
risk. More importantly, we also observe a risk mitigation effect for less carbon-intensive
industries. This suggests that the market acknowledges those sectors that are well positioned
for a transition to a low-carbon economy.
Fourth, we provide a comprehensive analysis of the effect on the temporal dimension of credit
risk. Using information from the entire CDS spread curve we show that a shift in the expected
temporal materialisation of transition risk directly affects the steepness of the CDS slope.
The effect on the CDS term structure is particularly salient for shorter time horizons – this
suggests that the market perceives transition risk as a short– to medium-term risk.

The remainder of this paper is organised as follows. Section 2 presents our data basis and
discusses the construction of our transition risk factor (TR). In Section 3 we present our
panel quantile regression modelling approach. Section 4 reports and discusses the main
results. Finally, Section 5 concludes.
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2 Data Description and Measuring Transition Risk Ex-
posure

The way firms transition to a low-carbon economy, by adopting new technologies and re-
ducing their emissions, or carrying on their business as usual can have significant financial
implications, affecting their credit risk profile and, potentially, impairing their ability to op-
erate. Moreover, transition can occur at different times and at different speeds, resulting in
different costs and risks in the process. Thus, transitioning to a low-carbon economy drives
a wedge between firms more and less exposed to climate transition risk. Understanding how
the market perceives firms’ different exposure to transition risk requires measuring firms’ en-
vironmental profiles. We capture environmental quality/profiles using an assessment of the
firms’ emission intensity by a third-party ESG rating agency (Refinitiv). Then, we test for
the firms’ different exposure to transition risk using firms’ credit default swap (CDS) spreads,
the dependent variable in our empirical analysis.

2.1 Credit Default Swap Spreads

A single-name CDS is a swap contract that provides protection against adverse credit events
(e.g. default) of the reference firm. The protection buyer makes a periodic payment to
the protection seller until a credit event occurs, or until the maturity date of the contract,
whichever is sooner. This fee, quoted in basis points per USD 1 notional amount, is called
the CDS premium, or CDS spread. The higher the perceived risk, the more expensive is
protection, thus a higher CDS spread. CDS spreads are therefore market-based indicators
of a firms’ perceived riskiness and confidence in their future fundamentals. Intuitively, the
transition to a low-carbon economy will impact firms’ assets, cash flows and ultimately, their
creditworthiness. Thus, the larger (smaller) the exposure to transition risk, the higher (lower)
the CDS spread.

We obtain CDS spread data from Refinitiv for the period from January 1, 2013 to December
31, 2018. The data set covers single-name CDSs with maturities of 1, 3, 5, 10 and 30 years for
North American (US & Canada) entities. Each CDS is denominated in US dollars, refers to
senior-unsecured debt and contains the "no restructuring" clause (XR). We exclude all firms
with missing values or illiquid CDSs, but retain firms with large CDS spreads.3 In total, our
sample comprises 277,535 available CDS spreads for an unbalanced panel of 212 firms.

Several extant studies explore the time series properties of CDS spreads (Collin-Dufresne et
al., 2001; Avramov et al., 2007; Ericsson et al., 2009; Galil et al., 2014; Huang, 2019; Koutmos,
2019). The emerging consensus is that CDS spread levels tend to be non-stationary. Similar
to the majority or previous studies, we find that our CDS spread series are not level-stationary
and so we analyse first-differences. For each firm, we calculate the CDS spread change as
follows:

∆CDSmi,t = CDSmi,t − CDSmi,t−1,

3Illiquid CDS are identified as CDS where no price movement takes place for at least 250 consecutive
trading days. Also, some studies exclude firms with CDS spreads exceeding a certain large threshold. Our
robust modeling approach allows us to keep these firms in the sample under investigation.
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where CDSmi,t is the m-year CDS spread of firm i at day t.

2.2 Control Variables

In the empirical analysis we examine the key determinants of both the CDS spreads and the
term structure of the CDS spreads. A number of firm-specific and market-specific measures
are commonly used as factors in the finance literature that examines CDS spreads. Firm-
specific measures include stock return and stock volatility. Market-specific measures include
general market conditions, interest rates and the term structure of interest rates. These
measures account for both firm-specific and common factors that can affect the probability
of default and the expected recovery rate. These have been shown to adequately account for
the behaviour of CDS spreads, largely outperforming alternative models (Galil et al., 2014).
We use these as control variables to isolate the contribution of transition risk exposure to
CDS spread differentials by establishing that the transition factor’s significant performance
survives controlling for the canonical factors.

Stock return (Return) is calculated as the difference of the natural log of daily stock prices;
ri,t = log (Si,t)−log (Si,t−1) where Si,t denotes the stock price of firm i at time t. By measuring
the relative change in a firm’s market value of equity, the stock return is considered to be
one of the main explanatory variables of a firm’s probability of default. Empirical results
indicate that default probability decreases with the firm’s past stock returns. Consequently,
we expect a negative relationship between CDS spread and stock return ri,t. The stock data
are also provided by Refinitiv. Additionally, we include the stock volatility (Vol) measured
as the annualized variance of a firm’s returns (estimated on a 245-day rolling window). The
volatility of a firm’s assets captures the general business risk of a firm and provides crucial
information about the firm’s probability of default. Empirical results indicate that default
probability increases with stock return volatility and hence we expect a positive relationship
between CDS spread and changes in stock volatility ∆σi,t.

We also include information from the market. Specifically, we include a market condition
(MRI) variable that captures the perceived general economic climate. Our assumption is that
improvements in market-wide conditions decrease the probability of default and automatically
lead to lower credit spreads. We follow Galil et al. (2014) and measure the current business
climate using the change in the Median Rated Index ∆MRImi,t. The MRI is defined as the
median CDS spread of all firms in the S&P rating supercategories “AAA/AA”, “A”, “BBB”
and “BB+ or lower”.4 It has been documented that MRI has a positive relationship with
CDS spread (Galil et al., 2014).

In our analysis, we also empirically examine whether firms are adapting their business models
to a low-carbon economy in a timely fashion. We do this by investigating the effect of
transition risk on the term structure of CDS spreads. The term structure of CDS spreads
reflects the shape of the conditional default probability over different time horizons (Han
and Zhou, 2015). The term structure of CDS spreads may be driven by a heterogenous set
of firm-specific and market-specific factors. In particular, a variety of macro variables have

4Later, when examining term structure effects, we use ∆MRISlopem,n
i,t to account for term-adjusted

changes in the business climate.

7



been shown to explain the slope of CDS spreads. We follow Collin-Dufresne et al. (2001) and
Han and Zhou (2015) and include the risk-free interest rate (IR). As a proxy for ∆IRt, we
choose the change in the 10-year constant maturity Treasury yield using data collected from
the St. Louis Federal Reserve (FRED). Our starting observation is that an increase in the
IR reduces risk-adjusted default probabilities, and hence the CDS spread falls. Therefore,
we expect a negative relationship between the slope of the CDS spreads and the IR.

Finally, following Han and Zhou (2015), we include the market’s view on the future interest
rate: the difference between short-term and long-term interest rates. We proxy the change of
the slope of the risk-free yield curve ∆Termt computing the difference between the 10-year
and 1-year constant maturity Treasury yields. An upward-sloping curve reflects the market’s
expectation of lower future interest rates. Consequently, an increase in the change of ∆Termt

increases default probabilities, and hence CDS spreads rise. We therefore expect a positive
relationship between the slope of the CDS spreads and the risk-free yield curve.

While our control variables are widely recognised as natural observable proxies for the unob-
servable fundamental drivers of credit risk (according to theoretical models), it is important
to recognise that these proxies do not contain information about firms’ exposure to transition
risk. Instead, practitioners often use the carbon intensity of firms as a proxy for transition
risk exposure (Oestreich and Tsiakas, 2015; In et al., 2019; Barnett, 2019; Bolton and Kacper-
czyk, 2020; Cornell, 2021 and Görgen et al., 2020). This literature provides evidence that
(i) firms with higher carbon emissions have a higher cost of capital (Chava, 2014), and that
carbon emission risk) is reflected in (ii) equity markets (Bolton and Kacperczyk, 2020) and
(iii) out-of-the-money put option prices (Ilhan et al., 2020). This literature concludes that
there are differences in low– and high-carbon intensity firms, respectively “brown” and “green”
firms, and that investors tend to demand appropriate remuneration for holding high-carbon
intensity firms and/or buy more protection against the possibility of default of high-carbon
intensity firms.

This paper analyses spreads from the perspective of structural form models following (Merton,
1974). Central to this approach is that default and, therefore, the value of the default-sensitive
security depends on a number of determinants – the key ones have been described earlier.
Appendix A shows analytically, starting from the (Merton, 1974) model, how CDS spreads
subsume also the determinant linked to the transition exposure that can affect the firm’s
credit risk. The next empirical challenge is to construct an appropriate criteria to sort firms
based on their exposure and build a transition risk factor using the observation that the the
difference between spreads highlight the relative impact of transition costs.

2.3 Measuring Transition Risk Exposure

The first step in our analysis is to construct an index that measures differential exposure to
the risks and opportunities associated to a transition to a low-carbon economy. A variety of
choices must be made when constructing an index that tracks the exposure to the risks arising
from the transition to a low-carbon economy. How should we identify the firms’ exposure to
transition risk that reflects the information investors use in their investment decisions? Once
we identify the appropriate data, how do we measure its relative intensity over time? Below
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we describe how we consider differential exposure using a market-based measure and how we
capture environmental profiles using firms’ emission intensity.

To date, the finance literature on climate change has approached the pricing of transition
risk by focusing on how various financial assets reflect investor concerns about regulatory and
carbon pricing risk. In most studies, firms’ exposure to transition risk is codified using firms’
emission intensity data. This literature argues that high-emitting firms may incur greater
costs from emission abatement, policy compliance, and product changes in response to more
stringent government policies and changes in consumers’ preferences. Substantial financial
efforts will be required to adapt business models to the new economic conditions. These
could significantly affect the firms’ cash flow, their financial wealth, and the value of their
collateral, ultimately undermining the firms’ capacity to generate enough income to service
and repay their debt, and eventually leading to higher probabilities of default.
In this literature, transition risk generally results in repricing where high emitting firms’
valuations are bid down and low emitting firms’ valuations are bid up in response to changing
investor beliefs. Crucially, firms may transition at different times and at different speeds. As
such, they are exposed differently to transition risk (Meinerding et al., 2020) and exposure
does not solely depend on the sectors in which they operate. In fact, firms in the same
industry or sector can have vastly different challenges and transition risks will affect them
differently depending on how and where they do business.

We examine firms’ different/relative exposure to transition risk investigating how firms’ CDS
spreads and the term structures of CDS spreads change in response to the costs that firms
may face due to changes in public regulation, technology, and consumers’ preferences (CDS
spreads) and the speed at which these costs could materialise (term structures of CDS
spreads). Importantly, CDS spreads respond quicker to changes in market conditions than
alternative financial markets, as CDS contracts are traded on standardised terms. Moreover,
the CDS market is dominated by professional investors who have the ability to take emission
intensity and related environmental information into account.

Examining how the market perceives firms’ different exposures to transition risk requires
a measurement of firms’ environmental profiles and emission intensity as is done in the
finance literature on climate change (Bolton and Kacperczyk, 2020). Our primary data are
yearly emission intensity (scope 1, 2 & 3 emissions normalized by revenue) from Refinitiv.5
Estimated emissions were used when no actual emissions were reported. We chose firms’
emission profiles because other prominent metrics (e.g. environmental ratings provided by
Asset4, MSCI, etc.) have been shown to deliver mixed signals, seriously weakening their
reliability in terms of environmental classification (Berg et al., 2020; Dimson et al., 2020).
Later, when constructing the transition risk exposure measure, we balance the CDS spread
data with information on firms’ credit rating, as determined by an agency that incorporates

5Refinitiv firm-level carbon emissions data follows the Greenhouse Gas Protocol that sets the standards for
measuring corporate emissions. The Greenhouse Gas Protocol distinguishes between three different sources
of emissions: scope 1 emissions, which cover direct emissions over one year from establishments that are
owned or controlled by the company; these include all emissions from fossil fuel used in production. Scope
2 emissions come from the generation of purchased heat, steam, and electricity consumed by the company.
Scope 3 emissions are caused by the operations and products of the company but occur from sources not
owned or controlled by the company.
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environmental and climate change considerations into their rating decision.6

Having identified the market information that captures the effects of transition costs on
firms and the measure of relative intensity, the next empirical challenge is to track/quantify
how the differential exposure evolves over time. Following the standard approach used in
empirical asset pricing, we partition the universe of firms based on their emission intensity
profile and their credit rating. For emission intensity, we partition firms into terciles: low,
intermediate, and high emission-intensity. This grouping allows us to capture the gradient
of carbon intensity per unit of revenue while retaining a sufficient number of firms within
each group. With regard to the credit dimension we proceed similarly and group firms into
poor, medium and good credit rating terciles based on S&P credit ratings.7 From this two-
dimensional split, we obtain nine groups in total. We then classify firms into groups according
to how they are likely to be affected by a transition to a low-carbon economy. Conditional
on low or high emission intensity, we select the firms in the two best (good/medium) and two
worst (poor/medium) groups with respect to credit rating, respectively. We define the former
set (good/medium credit rating with low emissions intensity) as "green" firms, and the latter
set (poor/medium credit rating with high emissions intensity) as "brown" firms. The set of
firms within the former and latter class are denoted green GGreen

t and brown GBrownt category,
respectively.8 The assignment of firms into both groups is updated on a daily basis.9 Figure
1 illustrates the group assignment for the first day in our sample. Indicated by brown and
green points we can see that all firms with a scaled emission intensity below 24.15 (above
186.78) and an S&P rating above BBB (below BBB+) were classified as green (brown) firms
on that day.
Building upon these two classes, we now compute the empirical cumulative distribution
functions (ECDF) of the CDS spreads for some fixed maturity m ∈ {1, 3, 5, 10, 30} within
each class

F̂m
t (x) =

1

|GGreen
t |

∑
i∈GGreen

t

1{CDSmi,t≤x},

Ĝm
t (x) =

1

|GBrownt |
∑

i∈GBrown
t

1{CDSmi,t≤x}.

Equipped with the ECDF of the CDS spreads of green and brown companies, we track
their relative evolution in time. Specifically, we measure the first-order Wasserstein distance
between these ECDFs and label it the transition risk factor (TR). A first hypothesis is
that investors would prefer to hold protection for exposed firms. The larger the exposure,
the larger the demand for protection, the higher the CDS spreads. Essentially, TR tracks
the time evolution of the differential exposure to transition risk measured by the Wasserstein
distance between the empirical distribution of the CDS spreads of green and brown companies

6We use the credit rating issued by the rating agency Standard & Poor’s (S&P).
7In case of ties, we randomly assign firms to one of the two groups in question.
8A more formal description of the construction of GGreen

t and GBrown
t can be found in Appendix B.

9Although these quantiles are time-dependent they do not change too frequently (for emission intensity
yearly and for credit rating only when there is a change in at least one credit rating at time t).
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Figure 1: This figure displays each firm’s emission intensity vs. its S&P credit rating on 2013/01/02. Blue dashed lines indicate
the terciles of the respective (scaled) variable. Green-, brown- and gray-colored dots depict the assignment of a firm to the green
class, brown class or no class at all.

TRm
t =

∫ 1

0

∣∣∣∣(F̂m
t

)−1

(u)−
(
Ĝm
t

)−1

(u)

∣∣∣∣ du.
The Wasserstein distance captures an intuitive notion of similarity between distributions.
The theoretical framework of Wasserstein distance has been applied to the comparison of
complex objects in fields of application such as image retrieval (Rubner et al., 2000), computer
vision (Ni et al., 2009), pharmaceutical statistics (Munk and Czado, 1998), climate modelling
(Vissio et al., 2020) and finance (Rachev et al., 2011), to name but a few.10 For the purpose
of this study, using the Wasserstein distances to measure the transition risk factor helps
uncover distributional divergence and provides a more precise representation of the differential
exposure to transition risk. This differs from the canonical construction of factors in the
empirical asset pricing literature. Traditionally, these are computed as the difference between
two aggregate measures (e.g. weighted means) and thus only capture the difference with
respect to one point of the distribution.

As discussed earlier, it is crucial to estimate which firms (not just which sectors) are more
10In statistics, Wasserstein distances play a prominent role in theory and methodology, and more recently

have become an object of inference in themselves.
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exposed to transition risk. It might be reasonable to argue that ‘brown’ industries, like fossil-
fuel utilities and mining are the most exposed to transition risk, whereas ‘green’ industries,
like renewable energy and technology, are the least exposed. This, simplification, however,
fails to capture intra-industry exposure variation. Some fossil fuel companies have been more
progressive in developing alternative energy products. The Wasserstein distance allows us to
examine the differential exposure to transition risk of firms otherwise equally credit-worthy.
TR aptly tracks in time the evolution of the differential exposure of firms to transition risk.
Thus, we argue that the TR contains valuable fundamental information which would be more
strongly reflected in the extreme tail of the CDS distribution.

To illustrate the relevance of TR, we examine the behaviour of TR in response to events
that affect the transition risk faced by firms without changing either the performance nor the
environmental profile of the firms – that is, without affecting firms’ fundamentals. Figure
2 plots the evolution of the TR over time for the entire grid of maturities (1, 3, 5, 10 and
30 years). We observe that TR, the wedge between CDS spreads of high and low emission
intensity firms, has steadily increased since the middle of 2014. TR aptly captures investors’
response to specific climate policy events, such as the speech of the governor of the Bank of
England, Mark Carney, on climate change and financial stability and the Paris Agreement.
On the one hand, Carney warns that transition risks associated with the revaluation of assets,
caused by the adjustment to a lower-carbon economy, could lead to financial crises. On the
other hand, the Paris Agreement calls for more ambitious plans to reduce emissions in the
near future. It is reasonable to argue that policies associated with these events can increase
costs for those firms that are less prepared for a transition to a low-carbon economy. Thus,
these firms can be perceived as facing higher transition risks and investors might demand
more protection, pushing the corresponding CDS spreads up.
Figure 2 shows dramatic changes around the Paris Agreement, arguably a consequence of a
larger demand for default protection for firms largely more exposed to transition risk in the
aftermath of the Agreement, followed by a partial reversal due to the uncertainty surround-
ing which policy would ultimately result from the Agreement.11 Thus, although the Paris
Agreement could have affected investors’ expectations of increased exposure to transition risk
in the U.S., this change in expectations and demand for CDS of these companies may have
been short-lived for the investors.

Being derived from CDS spreads we can also consider a suitable term structure measure
of transition risk. In a similar vein to the CDS spread slope, we use the slope of the TR
TRSlopemnt = TRm

t − TRn
t , defined as the difference between two TRs of differing maturity,

to track how the market’s perception of transition risk changes with respect to different time
horizons. Figure 3 depicts the TR slope for the 5Y-1Y (green) and 30Y-5Y (orange) slopes.
Analogously to the TR, we observe distinct behaviors around the turn of the year 2015–2016.
In parallel to the movements of the TRs, the slope of the 5Y-1Y TR steadily increases towards
the end of 2015 and reaches its peak contemporaneously with the TRs at the beginning of
2016. On the other hand, the 30Y-5Y TR slope decreases. This suggests that the above-

11The Agreement was reached in December, with 195 nations committing to reduce greenhouse gas emis-
sions. The uncertainty around the ultimate policy arose because of the 2016 presidential elections in the
U.S. As made clear by the US presidential campaign, large differences existed regarding how to approach the
Paris Agreement.
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Figure 2: Evolution of the TR over time for maturities 1Y (green), 3Y (yellow), 5Y (orange), 10Y (blue) and 30Y (red). The
vertical lines refer to the Carney speech (darkblue) and the Paris agreement (darkgreen), respectively.

mentioned events prompted investors to hedge against transition risk, but also that investors
expect transition risk to materialize more in the short– to medium-term. Given that the
5Y-1Y TR slope increased more than the 30-5Y TR slope over the entire sample period, it
would seem that over time, the short– to medium-term transition risk became relatively more
salient relative to the very long-term risk.
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Figure 3: Evolution of the TR slope over time for 5Y-1Y (green) and 30Y-5Y (orange) slopes. The vertical lines refer to the
Carney speech (darkblue) and the Paris agreement (darkgreen), respectively.

2.4 Descriptive Statistics

Table 1 presents descriptive statistics for all – dependent and independent – variables under
consideration.12 Average CDS spread changes fluctuate around zero and slightly decrease
towards longer maturities. The corresponding standard deviations indicate a large dispersion
with numbers varying around 12 to 18. All maturities admit maximum spread changes around
4,000 basis points, with the shortest maturity of 1 year being an exception by reaching a
maximum change of over 7,500 basis points. The CDS spread change distributions are heavily
right-skewed and characterised by fat tails, especially for the shorter maturities. These CDS
spread statistics are in line with the one reported in previous literature and illustrate the
typical the unconventional characteristics of CDS data.13 In contrast, all dependent variables
(including CDS-dependent data such as the MRI and TR) exhibit considerably less extreme
statistics.
Table 2 shows descriptive statistics for 5-year CDS spread changes differentiated by (i) sec-
tor, (ii) year, and (iii) rating category. Within our sample we use the 10-sector classification
provided by ThomsonReuters (TRBC 2012) to identify a firm’s sectoral affiliation.14 Panel

12We omit descriptive statistics for the variables used in term structure models (e.g. CDSSlopem,n
i,t , IRt,

etc.). They resemble the statistics shown here and are available upon request.
13Compared to previous literature, these descriptive measures are even significantly smaller in magnitude.

E.g. also due to the financial crisis, the data of Han and Zhou (2015) are interspersed with many more
outliers and move on a larger scale in general.

14The ThomsonReuters Business Classification (TRBC) is a global industry classification system owned
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Variable Mean Median Q25 Q75 Min Max SD Skew Kurt
Dependent variables

∆CDS1
i,t -0.0082 0.0000 -0.0100 0.0100 -2204.5080 7549.7430 17.7551 263.7060 119286.7062

∆CDS3
i,t -0.0123 0.0000 -0.0300 0.0200 -1424.4690 4652.3510 12.5897 168.8718 68658.1391

∆CDS5
i,t -0.0046 0.0000 -0.0400 0.0300 -1506.4420 4668.3000 12.7267 165.8394 66584.6442

∆CDS10
i,t -0.0008 0.0000 -0.0800 0.0400 -1434.8210 4391.3870 12.9242 130.9449 49518.0900

∆CDS30
i,t -0.0001 0.0000 -0.1340 0.0700 -1618.8710 3940.7600 13.2365 87.6400 30018.5712

Independent variables

ri,t 0.0002 0.0002 -0.0074 0.0082 -0.5174 0.4206 0.0183 -0.5715 31.8825
∆σi,t 0.0000 0.0000 -0.0002 0.0002 -0.2653 0.3127 0.0032 3.2333 1863.1696
∆MRI1i,t -0.0019 0.0000 -0.1400 0.0900 -79.1700 83.5450 1.2709 1.8226 397.5380
∆MRI3i,t -0.0069 0.0000 -0.2400 0.1010 -183.9600 181.8300 2.7068 1.1695 1085.8993
∆MRI5i,t 0.0002 0.0000 -0.2900 0.1950 -265.2549 255.5099 4.3349 2.0155 1271.2578
∆MRI10

i,t -0.0018 0.0000 -0.3700 0.2400 -318.6550 317.1349 5.1811 2.2768 1178.0998
∆MRI30

i,t -0.0035 0.0000 -0.4500 0.2700 -359.5399 352.2948 5.5990 1.5136 1013.6336
∆TR1

t 0.0021 0.0007 -0.3176 0.3228 -48.8961 172.6987 5.5181 19.2311 637.3361
∆TR3

t 0.0188 0.0000 -0.5393 0.5537 -34.4526 105.6897 4.3793 8.0344 235.5177
∆TR5

t 0.0417 -0.0322 -0.7073 0.6993 -37.3378 105.6400 4.6587 6.6439 186.3657
∆TR10

t 0.0497 -0.0036 -0.8030 0.8396 -36.8462 99.1012 4.6578 5.3644 147.7664
∆TR30

t 0.0477 0.0000 -0.9284 0.9652 -37.7713 88.7951 4.5756 4.0249 106.3806

Table 1: This table presents descriptive statistics (mean, median, 1st & 3rd quartile, minimum, maximum, standard deviation,
skewness, kurtosis) for all independent and dependent variables (except term structure variables) in our sample.

A shows that within our sample, Financials constitute the lion’s share with 21%, followed
by Cyclical Consumer Goods & Services (CCGS) and Industrials with 14% and 13%, respec-
tively. At the lower end we have the Healthcare, Utilities and Telecommunication Services
sectors with a share of 7%, 5% and 4%, respectively. In terms of CDS characteristics, it is
apparent that the Energy sector exhibits by far the most extreme statistics. Itemized by
years, Panel B reveals the most extreme CDS spread movements occurred in the year 2016,
in the aftermath of the Paris Agreement and when the oil price crisis induced by the 2010s
oil glut took place.
For our subsequent modeling it is crucial to understand how changes in perceived transition
risk act on changes in the CDS spread. As a starting point, Figure 4 shows a boxplot of 5-year
CDS spread changes as a function of 5-year TR changes. It is evident that the distribution
of CDS spread changes depends on the level of TR changes. But more importantly, there
is a clear tendency for the CDS spread change distribution to widen for more extreme TR
changes, constituting a U-shaped pattern.

and operated by Refinitiv. We consider the following sectors: Basic Materials (BM), Cyclical Consumer
Goods & Services (CCGS), Energy, Financials, Healthcare, Industrials, Non-Cyclical Consumer Goods &
Services (NCGS), Technology, Telecommunication Services, and Utilities. We refer to this document for an
overview of the classification.
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Mean Median Q25 Q75 Min Max SD Skew Kurt Share

Panel A Sector

BM -0.0124 0 -0.1300 0.0400 -366.0300 400.2500 10.9234 3.0561 293.7067 0.0836
CCGS -0.0135 0 -0.4000 0.0790 -136.5859 280.5000 5.0232 4.7846 375.3873 0.1357
Energy 0.0676 0 -0.1399 0.0630 -1506.4420 4668.3000 35.8255 75.8098 10800.0300 0.0981
Financials -0.0540 0 -0.0300 0.0200 -576.0301 245.6799 6.0063 -17.0600 1779.0740 0.2054
Healthcare 0.0013 0 -0.0300 0.0200 -79.8898 93.4099 3.7099 2.6528 156.3194 0.0706
Industrials -0.0216 0 -0.0300 0.0200 -213.1800 216.8000 5.0961 0.0279 604.2530 0.1256
NCGS 0.0284 0 -0.0300 0.0268 -216.2098 141.8602 5.9587 -1.0522 219.3201 0.1091
Technology -0.0489 0 -0.0700 0.0300 -230.8802 318.5098 6.9383 5.0186 414.6709 0.0808
Tel. Services 0.1787 0 -0.0200 0.0200 -200.7900 184.5400 8.1150 1.8683 207.0310 0.0413
Utilities -0.0227 0 -0.0101 0.0200 -193.4599 80.7359 3.1807 -15.5252 1108.3880 0.0498

Panel B Year

2013 -0.2026 0 -0.0200 0.0280 -576.0301 117.6489 5.0123 -34.4432 3752.6150 0.1767
2014 0.0278 0 -0.0200 0.0100 -102.8600 196.1699 3.6499 4.6940 291.6455 0.1716
2015 0.3362 0 -0.0300 0.0300 -366.0300 683.2770 10.5325 14.2909 847.7378 0.1622
2016 -0.2826 0 -0.0300 0.0200 -1506.4420 4668.3000 27.5530 97.0757 18089.1600 0.1674
2017 -0.0413 0 -0.1000 0.0200 -213.3400 280.5000 5.3127 5.4916 543.1269 0.1626
2018 0.1624 0 -0.1600 0.1800 -200.7900 184.5400 5.8984 -1.0975 287.5394 0.1596

Panel C S&P rating category

BB+ or lower -0.0115 0 -0.3501 0.1300 -1506.4420 4668.3000 26.0599 87.2116 17102.6600 0.2214
BBB 0.0123 0 -0.0300 0.0200 -245.1202 245.6799 4.3833 3.1368 498.4099 0.4596
A -0.0214 0 -0.0200 0.0200 -157.2200 153.9600 2.8488 -9.0142 862.3179 0.2647
AAA/AA -0.0370 0 -0.0200 0.0200 -83.2500 79.9400 3.3343 0.1622 178.7875 0.0542

Table 2: This table presents descriptive statistics (mean, median, 1st & 3rd quartile, minimum, maximum, standard deviation,
skewness, kurtosis, share) of 5-year CDS spread changes ∆CDSmi,t differentiated by industry (Panel A), year (Panel B) and
rating category (Panel C).
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Figure 4: Boxplots of 5-year CDS spread change distributions for different levels of TR changes (5Y). The solid black line within
each box indicates the median. The upper and lower limits of the boxes represent the first and third quartiles, respectively.
The horizontal bars outside of the boxes represent the whiskers. For the sake of illustration, outliers outside of the whiskers are
omitted.
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3 Panel Quantile Regression Framework
Rather than solely modeling the conditional mean of the response within a standard regres-
sion framework, quantile regression (QR) allows us to characterize the effects on the entire
conditional distribution. In particular, it relaxes the strong assumption of identically dis-
tributed error terms across all points of the conditional distribution and thus acknowledges
heterogeneity of effects across different states. Figure 4 empirically illustrates the need to
loose this assumption in our setting. QR can further mitigate some typical empirical problems
frequently encountered in least squares models, like the presence of outliers and non-normal
errors. In the CDS framework, these issues are of particular interest as Section 2.4 shows.
In particular, the descriptive measures in Table 1 illustrate that CDS changes tend to be
interspersed by occasional influential outliers making its distribution too heavy-tailed to be
able to maintain the normality assumption. Even from a simplified structural perspective,
a QR model would be the natural model choice, whereas a simple mean regression model
would insufficiently describe the imposed causal dependence structure. Imposing the seminal
Merton model Pires et al. (2015) show that the effect of volatility on the credit spread (i.e.
the derivative of the spread with respect to volatility) is not constant but rather nonlinearly
increases with the spread level.
Although theoretical postulations and empirical findings necessitate quantile regression mod-
els, their usage in the credit risk literature is scarce. Pires et al. (2015) examine CDS deter-
minants using a pooled quantile regression approach and show that the effects of fundamental
drivers differ across the conditional distribution. In a similar fashion, but only using a limited
sample of 22 global systemically important banks (G-SIBs), Koutmos (2019) is able to back
up the observed quantile heterogeneity and outlines consequences for risk management of
G-SIBs. Recently, Barth et al. (2021) show that ESG ratings exhibit a U-shaped effect on
the conditional distribution of logarithmized CDS spreads. Still, all but the last study lack
any investigation of a linkage between credit risk and climate risk. Additionally, no study
has yet examined any possibly persistent quantile heterogeneity in the term structure of CDS
spreads.
To account for the presence of asymmetric patterns characterizing systemic tail-comovements
in the data, we implement a quantile-regression estimator for panel data with fixed effects.
Quantile regression models allow us to account for unobserved heterogeneity and heteroge-
neous covariates effects. The availability of panel data allows us to include fixed effects to
control for firm-specific unobserved effects.
Formally, let yi,t be the response of firm i at time t and xi,t the m-dimensional covariate
vector where i = 1, . . . , N and t = 1, . . . , T . For some fixed quantile level τ ∈ (0, 1) we
consider the panel quantile regression model

Qyi,t (τ |xi,t) = ατ,i + x′i,tβτ + εi,t,

where Qyi,t denotes the τ -th conditional quantile of yi,t given xi,t and ατ,i are the firm-
specific fixed effects parameters. We implement the two-stage quantile-regression model for
panel data with fixed effects developed in Canay (2011) and further extended by Zhang et al.
(2019) to estimate the parameter vector βτ .15 In a first stage, we run firm-specific quantile

15Initially introduced to model different effects across subgroups Zhang et al. (2019) propose a cluster-
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regressions to estimate the fixed effects αt,i

(
α̃τ,i, β̃τ,i

)
= argmin

a∈Aτ ,b∈Θτ

1

T

T∑
t=1

ρτ
(
yi,t − a− x′i,tb

)
,

where Aτ ∈ R,Θτ ∈ Rm and ρτ (u) = u
(
τ − 1{u<0}

)
denotes the quantile loss function. In

the second stage, we estimate

β̂τ = argmin
b∈Θτ

1

NT

N∑
i=1

T∑
t=1

ρτ
{
yi,t − x′i,tb− α̃τ,i

}
.

Quantile regression allows us to unfold different effects across the conditional distribution of
the response. We test the robustness and persistence of our results with respect to quantile
heterogeneity by employing the testing setup developed by Koenker and Bassett (1982).
Specifically, for some fixed βj = (βj(τ1), . . . , βj(τK))′ we test the null

H0 : βj(τ1) = βj(τ2) = . . . = βj(τK)

against the alternative

H1 : βj(τk) 6= βj(τl), k 6= l

for at least one k, l = 1, . . . , K.

based FE estimator for the group-specific slopes. Imposing the homogeneous slope assumption results in the
Canay (2011) estimator but with quantile-specific fixed effects.
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4 Empirical results
This section presents our empirical findings. We first present an analysis of the relationship
between the transition risk factor (TR) and the changes in CDS spreads at the daily level
(Section 4.1). This is followed by a sector analysis (Section 4.2) that allows us to explore
how sectors are differently exposed to the costs and opportunities associated with a low-
carbon transition. Finally, we explore short-term and long-term exposure to transition risk
by examining the relationship between TR and the slope of the CDS spreads (Section 4.3).

4.1 Base Quantile Regression

In this subsection, we study the interaction between TR and the conditional quantiles of the
CDS spread. Following prior literature on CDS spread and CDS spread changes (Galil et al.,
2014), we include the most influential firm– and market-specific variables and examine the
differential exposure to transition risk using a panel quantile regression model as follows:

Q∆CDSi,t (τ |xi,t) = ατ,i + βτ,1ri,t + βτ,2∆σi,t + βτ,3∆MRIi,t + βτ,4∆TRt + εi,t,

where, for each firm i = 1, . . . , N and time t = 1, . . . , T, we consider firm-specific variables
(stock return ri,t and volatility ∆σi,t), a common factor (market condition ∆MRIi,t), and
our TR factor designed to systematically measure the time-changing differential exposure of
firms to transition risk. The slopes of the regressors are estimated at nine different quantiles
τ ∈ {0.1, . . . , 0.9} using the same set of explanatory variables for each quantile. For τ ∈
{0.1, . . . , 0.4}, CDS spreads decline as general credit-worthiness increases; these correspond
to a downward moving CDS regime. For τ ∈ {0.6, . . . , 0.9}, CDS spreads increase as general
credit-worthiness declines; these correspond to a upward moving CDS regime. Crucially,
the quantile regression procedure yields a series of quantile coefficients, one for each sample
quantile. In this way, we can examine the relevance of each control variable across the
conditional distribution of CDS spread changes. It may be the case that the exposure to
certain firm– and market-specific factors varies depending on the CDS regime, moving from
tail to tail of the conditional distribution of CDS spreads.

Table 3 reports the estimated coefficients at different quantiles for CDS contracts with 1
year maturity – the shortest under investigation (the remainder of Table 3 will be discussed
later). First, we observe that CDS spreads decrease with the firm-specific stock return, as
predicted by theoretical structural models (Merton, 1974) and as observed in a number of
empirical studies that use both CDS spreads (Pires et al., 2015) and changes in CDS spreads
(Galil et al., 2014; Koutmos, 2019). An increase in the stock return would increase the firm’s
credit-worthiness, decrease the probability of default and decrease the CDS spread. All the
estimated coefficients have the expected sign across all deciles and maturities: improved
credit-worthiness has a negative impact on CDS spread changes. Unsurprisingly, the longer
the maturity of the CDS contract, the larger the effect. Moreover, the effect is significantly
larger in the tails of the conditional distribution: when the stock return increases, the like-
lihood of a sizable decline in the probability of default is significantly larger and the firm’s
credit-worthiness improves. Crucially, in other words, the effect is more pronounced when
downward and upward CDS movements are larger, confirming the observations in Koutmos
(2019).
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Second, we consider firm-specific volatility and recall that, theoretically, higher volatility of a
firm’s assets, resulting from more asset value uncertainty, should lead to higher credit spreads
(Merton (1974)). We observe that firm-specific volatility has a significant effect on the change
of the CDS spread. Consistent with Koutmos (2019), firm-specific volatility is negatively
related to CDS spread changes during CDS downward moving regimes, and positively related
to CDS spread changes during CDS upward moving regimes. In between these two regimes,
the sign and significance of the effect is unclear. Our findings are consistent with those of
Koutmos (2019) and shed further light on the mixed empirical observations documented by
Collin-Dufresne et al. (2001).

Third, market-wide conditions have a significant effect on CDS spreads (Galil et al., 2014).
Deterioration of general market conditions, measured as an increased median CDS spread, de-
creases firms’ credit-worthiness overall, increasing the probability of default and, ultimately,
increasing the CDS spread. As global market conditions deteriorate, CDS spreads rise and
vice versa. The positive effect holds regardless of the predominant CDS regime. Crucially,
the effect is more pronounced in the tails of the conditional distribution. Worsening of mar-
ket conditions can result in a sizable surge of default probabilities, affecting the extreme
quantiles considerably more.

While these results confirm the importance of firm-specific and market-wide measures across
the different quantiles – estimated coefficients are all statistically significant at the 1% level
(except for the mid quantile) – we provide evidence of the differential exposure to transition
risk. We uncover that, after controlling for those variables largely recognised to be the key
drivers of CDS spread changes, there is a statistically significant positive relationship between
the CDS spread changes and our aggregate transition risk factor TRt. Moreover, we observe
that this relationship varies depending on whether the CDS regime is downward or upward
moving. The wider the distributional distance between CDS spreads of green and brown
firms, which may indicate a higher aggregate exposure to transition risk, the stronger the
positive effect on the CDS spread changes. In particular, when CDS spreads are declining
(lower quantiles, CDS regime is downward moving), the relevance of the differential exposure
to transition risk as a determinant of the change in CDS spreads is stronger. This effect is
even stronger when CDS spreads are rising (higher quantiles, CDS regime is upward moving).
In fact, a distinct U-shaped pattern of the estimated coefficients corresponding to ∆TRt is
clearly observable.16

We re-estimate our baseline quantile regression separately for each maturity in our sample.
The remainder of Table 3 presents the results for 3, 5, 10, and 30 years. The effect of differ-
ential exposure to transition risk is positive and significant for all maturities, i.e. transition
risk is a determinant of CDS spread changes in both the short and long term. The coefficient
estimates are larger for longer time horizons. The effects along the whole term structure
reflect a market perception that the stringency of climate policies will continuously increase.
A natural question is to test whether a differential exposure to transition risk has affected
the slope of the CDS term structure. A positively sloped term structure would reflect the

16The observed heterogeneous effects across the conditional distribution are also confirmed by our test
as the null of quantile homogeneity is strictly rejected. The same applies to all other control variables
encountered before.
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1 2 3 4 5 6 7 8 9
1Y

StockReturn −77.8667∗∗∗ −28.7282∗∗∗ −4.7073∗∗∗ −0.2515∗∗∗ −0.0081 −1.0397∗∗∗ −10.3351∗∗∗ −50.3998∗∗∗ −120.2097∗∗∗

(2.0966) (0.8671) (0.1511) (0.0583) (0.0572) (0.0781) (0.4009) (1.5887) (3.1353)
∆Volatility −383.8992∗∗∗ −82.4284∗∗∗ −7.8621∗∗∗ −0.0897 0.0112 6.6536∗∗∗ 62.3390∗∗∗ 297.8237∗∗∗ 771.5064∗∗∗

(20.4115) (7.1953) (1.2020) (0.2964) (0.2842) (1.1643) (5.9341) (19.5851) (33.0199)
∆MRI 213.8703∗∗∗ 81.9464∗∗∗ 24.1946∗∗∗ 3.1982∗∗∗ 0.1390 11.1063∗∗∗ 51.9108∗∗∗ 185.5530∗∗∗ 543.3282∗∗∗

(8.9985) (3.9686) (1.2642) (0.2785) (0.0980) (0.6983) (3.1070) (9.5383) (23.3328)
∆TR 3.3301∗∗∗ 1.1343∗∗∗ 0.4691∗∗∗ 0.0403∗ 0.0015 0.1836∗∗∗ 1.0579∗∗∗ 3.6947∗∗∗ 10.7681∗∗∗

(0.2980) (0.1423) (0.0472) (0.0185) (0.0154) (0.0434) (0.1496) (0.3875) (0.8702)
3Y

StockReturn −200.6220∗∗∗ −80.4492∗∗∗ −43.0059∗∗∗ −23.2803∗∗∗ −11.2240∗∗∗ −27.6472∗∗∗ −59.7740∗∗∗ −117.7203∗∗∗ −256.8858∗∗∗

(4.6838) (1.7321) (1.0971) (0.7117) (0.4417) (0.8535) (1.6552) (2.8540) (8.3892)
∆Volatility −995.5050∗∗∗ −272.9501∗∗∗ −80.3410∗∗∗ −15.2242∗∗ 8.0143∗ 95.1413∗∗∗ 290.2423∗∗∗ 752.5315∗∗∗ 1727.8946∗∗∗

(45.4348) (15.3765) (12.6305) (5.4431) (3.2819) (11.4248) (23.4699) (48.6497) (96.6924)
∆MRI 212.3026∗∗∗ 113.2395∗∗∗ 63.9492∗∗∗ 42.3359∗∗∗ 28.1994∗∗∗ 61.9483∗∗∗ 121.0830∗∗∗ 253.5052∗∗∗ 528.3487∗∗∗

(9.5211) (7.0739) (4.1762) (3.1481) (2.5020) (4.5798) (7.4438) (5.7514) (28.5385)
∆TR 26.6506∗∗∗ 10.3812∗∗∗ 5.4084∗∗∗ 3.9675∗∗∗ 2.8656∗∗∗ 4.3764∗∗∗ 6.7973∗∗∗ 14.2563∗∗∗ 39.0028∗∗∗

(1.1171) (0.5385) (0.3159) (0.2552) (0.1770) (0.2904) (0.4290) (0.8320) (1.8135)
5Y

StockReturn −355.2438∗∗∗ −140.6091∗∗∗ −75.7607∗∗∗ −45.8840∗∗∗ −25.3300∗∗∗ −48.7290∗∗∗ −92.7075∗∗∗ −182.8949∗∗∗ −403.1630∗∗∗

(8.5740) (3.2825) (1.7964) (1.2416) (0.8177) (1.3117) (2.4275) (5.6077) (13.6711)
∆Volatility −1826.4503∗∗∗ −523.6525∗∗∗ −146.3518∗∗∗ −28.3305∗∗∗ 7.1387· 151.8717∗∗∗ 420.2838∗∗∗ 1136.3432∗∗∗ 2859.0976∗∗∗

(90.7766) (37.4063) (22.7494) (5.0402) (4.2862) (18.2599) (32.3036) (80.1294) (162.5240)
∆MRI 150.8786∗∗∗ 86.3638∗∗∗ 51.8349∗∗∗ 34.9969∗∗∗ 22.5276∗∗∗ 43.1855∗∗∗ 76.3632∗∗∗ 158.5290∗∗∗ 328.4251∗∗∗

(7.2925) (5.0340) (3.4653) (3.0360) (2.0383) (3.6374) (4.7859) (9.7565) (19.1394)
∆TR 47.3913∗∗∗ 20.0024∗∗∗ 11.2499∗∗∗ 8.2239∗∗∗ 5.8891∗∗∗ 9.2364∗∗∗ 14.6667∗∗∗ 29.0845∗∗∗ 72.8638∗∗∗

(1.2198) (0.8859) (0.5587) (0.4363) (0.3489) (0.5111) (0.6503) (1.3993) (2.9928)
10Y

StockReturn −497.0528∗∗∗ −201.9507∗∗∗ −109.5394∗∗∗ −58.5909∗∗∗ −30.4912∗∗∗ −58.3667∗∗∗ −112.0067∗∗∗ −228.2433∗∗∗ −514.5085∗∗∗

(9.8527) (4.3751) (2.5590) (1.5923) (1.0765) (1.6076) (2.9952) (5.6277) (11.9493)
∆Volatility −2466.6126∗∗∗ −780.4818∗∗∗ −230.2062∗∗∗ −41.5673∗∗∗ 9.8961 182.6342∗∗∗ 508.4070∗∗∗ 1356.0210∗∗∗ 3448.3206∗∗∗

(109.6947) (49.5282) (32.5410) (8.6324) (7.6550) (22.3968) (39.6835) (75.3623) (177.2165)
∆MRI 120.7161∗∗∗ 74.4651∗∗∗ 42.1123∗∗∗ 26.4601∗∗∗ 17.4573∗∗∗ 30.8234∗∗∗ 56.2227∗∗∗ 106.2174∗∗∗ 218.4690∗∗∗

(5.4608) (4.4859) (3.0728) (2.2064) (1.8821) (2.5880) (3.8852) (6.1670) (5.2686)
∆TR 66.0931∗∗∗ 28.5337∗∗∗ 15.9232∗∗∗ 10.5595∗∗∗ 7.4816∗∗∗ 10.5191∗∗∗ 17.7432∗∗∗ 35.8642∗∗∗ 86.3224∗∗∗

(1.8518) (1.1404) (0.7152) (0.5457) (0.4191) (0.5455) (0.8010) (1.3949) (2.2625)
30Y

StockReturn −710.9749∗∗∗ −332.0532∗∗∗ −187.8650∗∗∗ −105.8961∗∗∗ −59.1224∗∗∗ −93.6610∗∗∗ −179.6712∗∗∗ −339.0502∗∗∗ −743.8622∗∗∗

(12.9007) (6.7215) (4.2290) (2.9453) (2.0837) (2.7404) (4.1941) (6.5733) (13.3931)
∆Volatility −3070.7754∗∗∗ −1217.7995∗∗∗ −413.4754∗∗∗ −97.4337∗∗ 16.7978 290.3628∗∗∗ 782.9947∗∗∗ 1873.2682∗∗∗ 4467.0704∗∗∗

(130.3765) (78.2794) (63.5055) (31.3885) (13.3321) (33.3304) (56.8785) (103.6950) (182.7203)
∆MRI 134.8539∗∗∗ 83.1097∗∗∗ 50.1343∗∗∗ 32.9615∗∗∗ 22.5911∗∗∗ 34.9083∗∗∗ 64.6953∗∗∗ 123.2491∗∗∗ 250.4052∗∗∗

(4.9072) (4.7235) (3.8873) (2.9152) (2.4312) (3.0034) (4.7311) (4.0402) (9.1136)
∆TR 91.7982∗∗∗ 45.0262∗∗∗ 26.7046∗∗∗ 17.3466∗∗∗ 12.7633∗∗∗ 15.2563∗∗∗ 24.7256∗∗∗ 46.3135∗∗∗ 111.4154∗∗∗

(2.5030) (1.5861) (1.1257) (0.8804) (0.6752) (0.7781) (1.0529) (1.5403) (2.9271)
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ·p < 0.1

Table 3: This table presents estimates of the base panel quantile regression model for 1-year (top), 3-year (upper center), 5-year
(center), 10-year (lower center) and 30-year (bottom) CDS spread changes. The sample comprises of data from 212 US firms from
2013/01/01 to 2018/12/31 in daily frequency. All variables in the model are in first-differences due to present nonstationarity.
Estimates and standard errors (in brackets) are reported for all nine deciles. All estimates are scaled by factor 1e04.

intuition that a longer time scale naturally increases the possibility of a decline in a firm’s
credit quality – there is greater uncertainty over longer periods of time; this can result in
higher costs of default protection and CDS spreads. Later, we examine this relationship
between changes in the slope-adjusted transition risk factor TRSlopet and the changes in the
slope of the CDS term structure.

4.2 Sector Analysis

The previous section provides evidence of a differential valuation of firms’ exposure to tran-
sition risk as the global economy transitions away from carbon-intensive productions. As
discussed in the first two sections, de-carbonising the economy will involve large-scale struc-
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tural change, with some sectors having to rapidly expand their production and contribute to
de-carbonisation goals, with others having to entirely transform their technological basis or,
alternatively, shrink and potentially disappear.A growing body of empirical literature iden-
tifies this last category as comprising activities directly related to the production of energy
and emission-intensive goods, especially steel and cement (Dietz et al., 2020). An inability
to adapt will impact these industries’ cash flows, compromising their ability to service their
debt and thereby influencing their credit quality (Caldecott, 2018; Monasterolo, 2020). Fun-
damentally, this empirical literature concludes that a company’s exposure to transition risk
is proportional to the size of its emissions. The more carbon intensive the industry, the larger
the exposure to transition risk (Bolton and Kacperczyk, 2020).

To empirically validate these findings and develop a more nuanced picture of differential
intra-sectoral exposure explained in the previous section, we re-estimate our baseline quantile
regression regrouping the firms using the 10-sector classification by Thomson Reuters (TRBC
2012). To the baseline quantile regression, we add sector dummies and interaction terms with
our TR:

Q∆CDSmi,t (τ |xi,t) = ατ,i + βτ,1ri,t + βτ,2∆σi,t + βτ,3∆MRImi,t + βτ,4∆TRm
t

+
14∑
j=5

βτ,jSectori +
23∑

k=15

βτ,kSectori∆TRm
t + εi,t,

where Sectori indicates firm i’s TRBC classification.

1 2 3 4 5 6 7 8 9
5Y

BM×∆TR 296.3713∗∗∗ 86.1295∗∗∗ 22.5244∗∗∗ 13.2128∗∗∗ 10.0142∗∗∗ 13.0525∗∗∗ 25.6751∗∗∗ 74.9132∗∗∗ 308.5004∗∗∗

(34.4290) (14.7408) (4.4383) (3.1616) (2.2277) (3.2058) (4.0767) (11.2383) (34.3729)
CCGS×∆TR 78.3146· 214.8122∗∗∗ 99.6617∗∗∗ 44.9110∗∗∗ 22.3662∗∗∗ 43.8118∗∗∗ 87.4322∗∗∗ 237.2771∗∗∗ 220.9659∗∗∗

(42.0801) (45.4554) (15.3500) (9.3411) (5.9507) (10.7235) (18.9944) (35.3475) (42.8142)
Energy×∆TR 896.2981∗∗∗ 464.5722∗∗∗ 157.0239∗∗∗ 71.9618∗∗∗ 33.5666∗∗∗ 89.3563∗∗ 227.2308∗∗∗ 733.8103∗∗∗ 1301.0794∗∗∗

(130.2447) (118.5336) (37.7601) (17.8769) (10.0390) (27.6224) (66.9018) (150.0129) (152.9782)
Financials×∆TR −244.6612∗∗∗ −72.5697∗∗∗ −16.8078∗∗∗ −9.6947∗∗ −7.5044∗∗∗ −9.1834∗∗ −18.2772∗∗∗ −47.3987∗∗∗ −196.3186∗∗∗

(34.5175) (14.7762) (4.5149) (3.2150) (2.2765) (3.2589) (4.1987) (11.3940) (34.5125)
Healthcare×∆TR −251.2124∗∗∗ −74.9027∗∗∗ −14.9613∗∗ −5.8844· −4.6802· −5.2286 −14.1684∗∗ −45.6027∗∗∗ −194.7909∗∗∗

(34.7011) (14.8829) (4.6226) (3.4079) (2.4388) (3.4538) (4.4151) (11.5708) (35.4839)
Industrials×∆TR −276.0960∗∗∗ −74.0124∗∗∗ −16.4938∗∗∗ −7.3279∗ −5.4558∗ −7.6108∗ −18.2589∗∗∗ −58.3785∗∗∗ −262.1432∗∗∗

(34.5055) (14.8952) (4.5641) (3.3043) (2.3839) (3.3359) (4.2877) (11.4320) (34.5994)
NCGS×∆TR −283.8560∗∗∗ −78.9079∗∗∗ −16.7699∗∗∗ −8.6049∗∗ −5.9541∗ −6.8983∗ −15.9640∗∗∗ −52.5699∗∗∗ −251.8377∗∗∗

(34.5183) (14.8710) (4.5781) (3.2689) (2.3342) (3.3973) (4.3202) (11.4549) (34.6048)
Technology×∆TR −188.2395∗∗∗ −45.1036∗∗ −7.7651 −0.9304 0.4462 −0.3937 −7.0529 −24.1821· −152.8365∗∗∗

(37.7395) (15.8164) (5.1407) (3.9331) (2.5963) (3.9429) (5.3321) (13.1122) (37.8205)
Tel. Services×∆TR −288.1630∗∗∗ −85.2712∗∗∗ −18.6779∗∗∗ −8.2096∗ −6.8998∗∗ −7.2034∗ −16.5504∗∗∗ −56.1483∗∗∗ −244.9540∗∗∗

(34.5166) (14.8766) (4.7257) (3.4676) (2.5799) (3.5881) (4.5148) (11.5737) (34.9823)
Utilities×∆TR −281.1555∗∗∗ −83.3536∗∗∗ −20.9145∗∗∗ −12.0331∗∗∗ −9.3479∗∗∗ −11.7667∗∗∗ −24.4555∗∗∗ −65.9776∗∗∗ −272.7884∗∗∗

(34.7015) (14.8178) (4.5267) (3.2360) (2.2769) (3.2756) (4.1389) (11.3618) (34.5676)
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ·p < 0.1

Table 4: This table presents the estimates of the interaction terms of the sector panel quantile regression for 5-year CDS spreads.
The sample comprises of data from 212 US firms from 2013/01/01 to 2018/12/31 in daily frequency. All variables in the model
are in first-differences due to present nonstationarity. Estimates and standard errors (in brackets) are reported for all nine
deciles. All estimates are scaled by factor 1e04.

Consistent with the argument that there is a strong relationship between transition risk expo-
sure and total emissions, Table 4 shows that the coefficients on the interaction term between
the sector and ∆TRt is positive and significant at the 1% level for Energy, Basic Materials and
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CCGS, and it is negative and significant at the 1% level for most of the remaining sectors in
our analysis. These results indicate that a wider distance between the CDS spreads of green
and brown firms has a larger effect. A wider distance equally indicates (i) a decline of credit-
worthiness of firms in carbon-intensive sectors and (ii) a rise of credit-worthiness of firms in
less carbon-intensive sectors. These findings support the observations in recent literature:
transition risk impacts firms’ valuation differently, depending on their sector. Therefore, a
growing difference in transition risk exposure could translate into higher credit risk for firms
in carbon-intensive sectors like fossil fuels (Energy), construction materials (Basic Materi-
als), and automobile and auto parts (CCGS). Conversely, businesses in sectors like industrial
and commercial services (Industrials), technology equipment (Technology), and electric util-
ities (Utilities) are seen as capable of providing the innovation and technologies necessary
to facilitate a low-carbon transformation. Moreover, and consistent with the findings in the
previous section, the effect of a change in exposure to transition risk on the CDS spread
changes is stronger during periods of extreme downward and upward movements in the CDS
market. Table 4 reports coefficient estimates for CDS with 5 years maturity. Results do not
qualitatively change when considering 1 year and 30 years maturities, as reported in Table 6
in Appendix C.
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4.3 Term Structure

Our previous results provide empirical evidence of different repricing of CDS reflecting how
individual firms and sectors may transition at different times. In this section, we empirically
examine the different speed at which transition to a low-carbon economy occurs by examining
the effect of transition risk on the term structure of CDS spreads. Specifically, we examine
how a change in the expected temporal materialization of transition risk affects the term
structure of a firm’s credit risk. To that end, we adopt the empirical strategy proposed in
Han and Zhou (2015). Accordingly, we construct the term structures of ∆MRIi,t and ∆TRt

and re-examine our baseline quantile regression by including the risk-free interest rate ∆IRt

and the risk-free yield curve Termt:

Q∆CDSSlopemni,t (τ |xi,t) = ατ,i + βτ,1∆σi,t + βτ,2∆MRISlopemni,t + βτ,3∆IRt + βτ,4∆IR2
t

+ βτ,5∆Termt + +βτ,6∆TRSlopemnt + εi,t.

The slope of the CDS spread is defined as the difference between the m-year and n-year
CDS spread of firm i at day t. Analytically, we define CDSSlopem,ni,t = CDSmi,t − CDSni,t
with (m > n). The slope of the CDS spread is not stationary and, again, we consider the
first-difference of this time series defined as ∆CDSSlopem,ni,t = CDSSlopem,ni,t −CDSSlopem,ni,t−1.
We consider two slopes: the five-year minus one-year CDS term structure slope (5Y-1Y)
and the thirty-year minus five-year CDS term structure slope (30Y-5Y). Table 5 reports the
estimated results. Qualitatively, the sign of the coefficient estimates are largely aligned with
Han and Zhou (2015). In particular, the slope of the CDS spread term structure decreases
with interest rates, but increases with the level and slope of the Treasury yield curve. Table
7 in Appendix C reports the estimation results. We omit the examination of the IR, ∆σi,
∆MRISlopei, and ∆Term control variables and concentrate our discussion on the effect of
the change of the TR slope. To fix ideas, we recall that a positively sloped term structure
reflects the intuition that the longer the maturity, the higher the uncertainty and, possibly,
the higher the probability of default: this can result in higher costs of default protection
and CDS spreads. We find that a steeper TR slope, reflecting that exposure to transition
risk becomes comparatively more relevant for the longer term than the shorter term, has a
positive effect on a firm’s individual CDS slope in both 5Y-1Y and 30Y-5Y cases. In other
words, differential exposure to transition risk increases with time and accelerates the decline
in brown credit quality. Crucially, the coefficient estimate of the 5Y-1Y slope is larger than
for the 30Y-5Y. This result indicates that a wider difference reflects investors’ expectation
that a faster transformation of the entire economic structure is required to achieve substantial
emission reductions. A rapid acceleration of the transformation is likely to have significant
and relatively larger financial impacts in the near future and, consequently, a faster decline
in credit quality in the nearer- vs. longer-term.
The coefficient estimates are significant at the 1% level across all deciles except the mid
decile for the 5Y-1Y slope. However, for the 30Y-5Y slope also the remaining central deciles
are insignificant. This observation is consistent with the results in Kölbel et al. (2020) for
their long-term slope – no prevalent transition risk effect is observed for the long-term part
of the CDS spread curve. However, our 30Y-5Y results indicate that increasing exposure
to transition risk affects the slope of the CDS spread during periods of extreme downward
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1 2 3 4 5 6 7 8 9
5Y-1Y

∆TRSlope 34.8868∗∗∗ 13.4364∗∗∗ 5.8914∗∗∗ 0.4285∗∗∗ 0.0000 2.0750∗∗∗ 5.0405∗∗∗ 14.1183∗∗∗ 48.6431∗∗∗

(0.8998) (0.4345) (0.2823) (0.1091) (0.1021) (0.1942) (0.2464) (0.5052) (1.4807)
30Y-5Y

∆TRSlope 23.6919∗∗∗ 8.2953∗∗∗ 2.8684∗∗∗ 0.1960 −0.0000 −0.0000 −1.9395∗∗∗ −3.9765∗∗∗ 11.5876∗∗∗

(0.8272) (0.6208) (0.5207) (0.4578) (0.4709) (0.4533) (0.4726) (0.5063) (0.6545)
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, ·p < 0.1

Table 5: This table presents the results (only TR slope) of the panel quantile regression for 5Y-1Y (top) and 30Y-5Y (bottom)
CDS spread slopes. The sample comprises of data from 212 US firms from 2013/01/01 to 2018/12/31 in daily frequency. All
variables in the model are in first-differences due to present nonstationarity. Estimates and standard errors (in brackets) are
reported for all nine deciles. All estimates are scaled by factor 1e04.

and upward movements in the CDS market. It seems that during times of credit-related
financial distress, transition risk becomes more relevant for long-term risk estimations; the
effect is still smaller than for short-term risk, however, given that most financial implications
of transition risks will likely materialize within 5 years.

5 Conclusion
The transition to net zero will require an economic transformation extending in magnitude
to the Industrial and Digital Revolutions. This decarbonisation of the economy will have
substantial impacts on businesses, especially on firms that are unprepared to transition.
Ultimately, a firms’ ability to fulfill their financial obligations, and hence their creditwor-
thiness, could be severely affected. To test the link between transition risk and credit risk,
we first assess firms’ exposure to transition risk by constructing a transition risk factor – a
market-based measure of transition risk exposure – and examine how this risk affects firms’
creditworthiness. A panel quantile regression is used to analyse the differential exposure to
transition risk through changes in CDS spreads at varying maturities. Within our panel
quantile regression model we control for well-known drivers of CDS spreads and augment it
with our transition risk factor.
We show that the transition risk factor is a relevant determinant of CDS spread changes.
We first provide evidence of the relationship between the differential exposure to transition
risk and firms’ cost of default protection. This effect is particularly pronounced during times
of extreme credit events and is amplified for an upward moving credit risk regime. The
effects vary substantially across industries. Whereas classical carbon-intensive sectors (e.g.
Energy, Basic Materials) reveal a deteriorating effect as a result of an increased perception
of transition risk, other less carbon-intensive industries exhibit a risk mitigation effect. We
then examine how a change in the expected temporal materialization of transition risk affects
the term structure of a firm’s credit risk. We find that a steeper TR slope, reflecting that
exposure to transition risk becomes comparatively more relevant for the longer term than
the shorter term, has a positive effect on a firm’s individual CDS slope in the near and
further future. In other words, differential exposure to transition risk increases with time
and accelerates the decline in creditworthiness of brown sector firms.
Overall, our results show that markets perceive transition risk to have a significant impact on
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firms’ valuation. The relevance of differential exposure to transition risk as a determinant of
changes in CDS spreads is stronger when CDS spreads are increasing (upper quantiles, CDS
regime is upward moving). This speaks directly to the relevance of this work for the risk
management practices of institutional investors and regulators. Moreover, unresponsiveness
to the low-carbon transition may not only be financially detrimental for firms’ everyday
business, but may ultimately threaten their existence. This is especially true for firms in
carbon-intensive sectors. As such, our findings are relevant for investors and regulators and
illustrate the urgency for firms to manage a risk that will inevitably materialise in financial
terms.
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A Theoretical Considerations
As often in the context of credit risk we use the Merton model to gain qualitative insights.
We denote with V (t) the firm value, F the face value of outstanding debt, T the maturity of
the debt. For the dynamics of the firm value (under a suitable pricing measure) we assume

dV (t)

V (t)
= (r − δ)dt+ σdW (t), V (0) = V0 (1)

where σ is the firm value volatility, r the interest rate and 0 < δ < r a carbon tax rate.

We assume that the carbon tax rate δ is a random variable and smaller for green than for
brown firm. To be more precise we assume

δG ≤ δB ⇒ FB ≥ FG,

where FG,B are the corresponding cumulative distribution functions. Observe that we use
stochastic dominance of order 1 here.

For δ given Merton’s model implies for the corresponding (bond) spreads at time t = 0

s(δ) = − 1

T
log
{
V0e

−δTΦ(−d1) + Fe−rTΦ(d2)
}
, (2)

with Φ(·) the cumulative standard Normal distribution function, and

d1 =
log(V0/F ) + (r − δ + σ2/2)T

σ
√
T

, d2 = d1 − σ
√
T .

As expected the spreads are monotonic in the tax rate, that is δG ≤ δB implies sG ≤ sB. To
see this, observe that

∂s(δ)

∂δ
= − 1

T

−V0Te
−δTΦ(−d1)

V0e−δTΦ(−d1) + Fe−rTΦ(d2)
> 0.

Now as markets are uncertain about possible implications of transition risk they assess dif-
ferent distributions on tax rates on green and brown firms. However, it is clear that δG ≤ δB

hence FB ≥ FG.
To calculate the spreads under uncertainty, we simply have to integrate the spread formula
(A) with respect to the relevant distribution, so

sG =

∫ r

0

s(δ)dFG(δ) and sB =

∫ r

0

s(δ)dFB(δ).

By stochastic dominance (or simply observing that the arguments of the integrals are non-
negative and bounded, so that we can use dominated convergence) the relation of the spreads
obtains, i.e. sG ≤ sB.
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Using the Wasserstein metric of order 1 we can discuss the difference of the spreads. Recall
the first order Wasserstein distance between the CDFs F and G

W(F,G) =

∫ 1

0

∣∣F−1(u)−G−1(u)
∣∣ du.

In fact, we can use continuity of the integral operator to infer that

W (FB, FG) ↓ ⇒ sB − sG ↓ .

So periods where transition risk is assumed to be low (green and brown are treated similarly)
will reduce the spread difference.
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B Construction of Green/Brown Groups
Formally, let ESi,t and CRi,t be firm i’s emission intensity value and S&P credit rating, where
i = 1, . . . , N at time t and t = 1, . . . , T . Further, let ES(q)

t and CR(q)
t be the corresponding

q-quantile at time t for the emission intensity and credit rating, respectively. We assign each
firm to a specific group based on the ES and CR quantiles separately. Let Gmt,j be the set of
firms at time t where the value m lies within the jth quantile. Formally, we sort firms from
the least emission intensive to the most emission intensive into three buckets:

GESt,1 =
{
i | ESi,t ≤ ES(1/3)

t

}
GESt,2 =

{
i | ES(1/3)

t < ESi,t ≤ ES(2/3)
t

}
GESt,3 =

{
i | ESi,t > ES(2/3)

t

}
,

where 1 corresponds to low carbon intensity and 3 to high carbon intensity. Similarly, we
obtain three buckets for credit rating:

GCRt,1 =
{
i | CRi,t ≤ CR(1/3)

t

}
GCRt,2 =

{
i | CR(1/3)

t < CRi,t ≤ CR(2/3)
t

}
GCRt,3 =

{
i | CRi,t > CR(2/3)

t

}
,

where 1 corresponds to low credit rating and 3 high credit rating. By considering each
combination of these buckets, we obtain nine possible final groups:

Gt,jk = GESt,j ∩ GCRt,k for j = 1, 2, 3 and k = 1, 2, 3.

Using this notation, we define green firms and brown firms at time t as

Ggreent = {Gt,13,Gt,12} and Gbrownt = {Gt,31,Gt,32} ,

respectively.
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C Additional Tables

1 2 3 4 5 6 7 8 9
1Y

BM×∆TR 20.1966· 2.8875· 1.3514∗ 0.1641 0.0089 0.4794∗ 2.0663∗∗ 4.3518∗∗ 28.1363∗∗∗

(10.7210) (1.5735) (0.6889) (0.1468) (0.0507) (0.2017) (0.7470) (1.4450) (6.7642)
CCGS×∆TR 1.1575 14.1031∗∗ 3.1046∗ 0.4758∗ 0.0335 1.6780∗ 8.9908∗∗ 29.0996∗∗ 57.3277∗∗∗

(12.1344) (5.0056) (1.3001) (0.2232) (0.0891) (0.8200) (3.2208) (9.6317) (13.3088)
Energy×∆TR 105.4213∗∗ 18.5156∗ 1.8995 −0.1055 −0.0073 0.0787 6.0464· 50.1512∗ 225.2696∗∗∗

(36.5246) (8.0622) (1.5810) (0.1573) (0.0636) (0.3467) (3.5583) (22.9518) (21.4513)
Financials×∆TR −16.6318 −2.4700 −1.0313 −0.1318 −0.0074 −0.3720· −1.1770 0.6738 −0.7494

(10.8122) (1.5846) (0.7067) (0.1502) (0.0591) (0.2100) (0.7971) (1.5855) (7.2119)
Healthcare×∆TR −7.1626 −0.9168 −0.2334 −0.0246 −0.0046 0.0444 0.0078 2.2056 −10.4269

(11.1848) (1.7547) (0.8173) (0.1949) (0.0913) (0.2225) (0.9760) (2.5047) (7.6609)
Industrials×∆TR −18.7053· −2.2134 −0.8492 −0.1297 −0.0075 −0.3555 −1.3731 −3.2706· −26.3213∗∗∗

(10.7777) (1.6354) (0.7057) (0.1546) (0.0613) (0.2272) (0.8574) (1.7542) (6.8507)
NCGS×∆TR −24.9888∗ −3.1397· −1.0509 −0.1214 −0.0065 −0.1813 −0.8824 1.3135 −6.3272

(10.9082) (1.6559) (0.7480) (0.1692) (0.0947) (0.2516) (0.8263) (1.8020) (7.1363)
Technology×∆TR −11.2263 −1.9898 −0.9076 −0.1368 −0.0078 −0.3390 −1.5839· −2.9871∗ −25.7707∗∗∗

(11.4199) (1.8171) (0.7485) (0.1680) (0.0834) (0.2584) (0.8659) (1.4983) (7.3326)
Tel. Services×∆TR −27.0319∗ −2.7552 −0.9452 −0.1251 −0.0066 −0.2082 −1.4478· −2.7012 −29.7384∗∗∗

(11.1916) (1.9265) (0.8097) (0.1853) (0.1192) (0.3170) (0.8297) (2.6944) (6.8525)
Utilities×∆TR −17.3650 −2.2803 −1.3354· −0.1653 −0.0090 −0.4978∗ −1.9870∗∗ −3.8906∗∗ −28.2916∗∗∗

(11.4189) (1.7026) (0.6910) (0.1510) (0.0602) (0.2058) (0.7591) (1.5025) (6.7993)
30Y

BM×∆TR 493.1102∗∗∗ 165.1615∗∗∗ 69.5861∗∗∗ 43.8821∗∗∗ 35.7702∗∗∗ 42.8803∗∗∗ 59.7291∗∗∗ 157.9209∗∗∗ 507.0180∗∗∗

(34.6188) (19.2673) (8.5773) (6.4906) (5.3510) (6.4543) (5.8690) (21.3418) (32.3213)
CCGS×∆TR −72.2778· 117.4583∗∗∗ 67.1750∗∗∗ 20.1830· 6.6228 8.5310 56.5442∗∗∗ 143.1715∗∗∗ 16.9519

(40.7064) (25.1520) (18.1153) (10.4413) (7.7610) (9.4080) (14.2975) (30.3217) (44.6443)
Energy×∆TR 1012.4728∗∗∗ 517.1081∗∗∗ 259.6919∗∗∗ 121.3273∗∗∗ 62.7923∗∗ 105.4455∗∗∗ 254.6129∗∗∗ 718.1268∗∗∗ 1438.3439∗∗∗

(75.2721) (79.1840) (45.9991) (30.3344) (22.0348) (25.6158) (37.7695) (108.7933) (122.5092)
Financials×∆TR −418.9202∗∗∗ −132.8765∗∗∗ −54.2499∗∗∗ −32.8278∗∗∗ −28.4920∗∗∗ −33.5145∗∗∗ −45.0289∗∗∗ −122.0259∗∗∗ −387.0009∗∗∗

(34.8948) (19.4817) (8.7664) (6.6346) (5.5118) (6.6001) (6.1648) (21.5376) (32.6121)
Healthcare×∆TR −407.8372∗∗∗ −136.6285∗∗∗ −55.3385∗∗∗ −33.7661∗∗∗ −27.7498∗∗∗ −33.5629∗∗∗ −49.4466∗∗∗ −130.9695∗∗∗ −353.9568∗∗∗

(35.9717) (19.6784) (8.7910) (6.8129) (5.6390) (6.7787) (6.1674) (21.7842) (33.9804)
Industrials×∆TR −438.5259∗∗∗ −142.2247∗∗∗ −55.7986∗∗∗ −35.2354∗∗∗ −28.6406∗∗∗ −35.1578∗∗∗ −48.3869∗∗∗ −134.7475∗∗∗ −417.5142∗∗∗

(35.0120) (19.5413) (8.7638) (6.7411) (5.5732) (6.6665) (6.1013) (21.5151) (33.0725)
NCGS×∆TR −471.3364∗∗∗ −150.9174∗∗∗ −54.7047∗∗∗ −34.9447∗∗∗ −28.0048∗∗∗ −34.6392∗∗∗ −45.1642∗∗∗ −132.0258∗∗∗ −413.8281∗∗∗

(34.7312) (19.4038) (8.8067) (6.7125) (5.5790) (6.6646) (6.2563) (21.5018) (32.8019)
Technology×∆TR −374.8808∗∗∗ −108.7503∗∗∗ −39.2861∗∗∗ −24.3153∗∗ −21.1985∗∗∗ −27.7896∗∗∗ −31.9875∗∗∗ −90.3865∗∗∗ −320.9448∗∗∗

(36.3567) (20.3859) (9.9362) (7.5277) (5.8416) (6.9264) (7.8971) (22.8243) (35.3633)
Tel. Services×∆TR −466.3759∗∗∗ −133.7344∗∗∗ −47.7542∗∗∗ −24.7621∗∗ −23.9650∗∗∗ −27.3465∗∗∗ −44.7473∗∗∗ −126.8411∗∗∗ −450.0888∗∗∗

(35.8082) (20.3153) (9.7784) (7.6624) (6.4738) (7.4914) (7.0693) (21.8482) (33.8259)
Utilities×∆TR −445.4739∗∗∗ −150.9732∗∗∗ −63.4957∗∗∗ −41.3342∗∗∗ −34.1411∗∗∗ −41.2574∗∗∗ −56.3298∗∗∗ −146.4039∗∗∗ −468.6683∗∗∗

(35.1088) (19.4234) (8.7484) (6.5712) (5.4176) (6.5149) (6.0404) (21.4375) (32.8908)
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ·p < 0.1

Table 6: This table presents the estimates of the interaction terms of the sector panel quantile regression for 1-year (top) and
30-year (bottom) CDS spreads. The sample comprises of data from 212 US firms from 2013/01/01 to 2018/12/31 in daily
frequency. All variables in the model are in first-differences due to present nonstationarity. Estimates and standard errors (in
brackets) are reported for all nine deciles. All estimates are scaled by factor 1e04.
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1 2 3 4 5 6 7 8 9
5Y-1Y

∆Volatility −614.0469∗∗∗ −125.2807∗∗∗ −32.7578∗∗∗ −0.7311 0.0000 17.2388∗∗∗ 110.1421∗∗∗ 362.7548∗∗∗ 1446.9441∗∗∗

(26.8899) (9.9924) (4.2813) (0.9517) (0.8573) (3.6757) (10.3413) (23.4439) (63.4364)
∆MRISlope 58.7995∗∗∗ 24.9151∗∗∗ 7.7446∗∗∗ 0.6713∗ 0.0000 3.3673∗∗∗ 12.9884∗∗∗ 43.5195∗∗∗ 131.7257∗∗∗

(2.3020) (1.4591) (0.7711) (0.2712) (0.1407) (0.5025) (0.6417) (2.2922) (4.6833)
∆IR −12224.6922∗∗∗ −3848.0991∗∗∗ −1282.2749∗∗∗ −61.4182∗∗∗ −0.0001 −235.4486∗∗∗ −592.5380∗∗∗ −2050.2054∗∗∗ −12446.7595∗∗∗

(227.0861) (67.1086) (40.7497) (17.6123) (18.3324) (23.0523) (31.2944) (56.5826) (288.5556)
∆IR2 −116447.4666∗∗∗ −14404.2382∗∗∗ −3208.3339∗∗∗ −119.8934 0.0004 2933.5765∗∗∗ 5984.1498∗∗∗ 23235.4458∗∗∗ 273760.3631∗∗∗

(3032.1221) (427.6513) (184.2193) (79.6648) (82.1314) (131.4450) (191.5596) (504.7838) (6316.8031)
∆Term 7086.8412∗∗∗ 2885.4030∗∗∗ 991.0229∗∗∗ 45.1584∗ 0.0000 26.4392 8.4228 76.7190 486.4513∗∗∗

(122.8190) (60.7925) (39.3838) (18.8153) (19.5998) (23.0264) (29.3956) (46.6805) (104.7896)
∆TRSlope 34.8868∗∗∗ 13.4364∗∗∗ 5.8914∗∗∗ 0.4285∗∗∗ 0.0000 2.0750∗∗∗ 5.0405∗∗∗ 14.1183∗∗∗ 48.6431∗∗∗

(0.8998) (0.4345) (0.2823) (0.1091) (0.1021) (0.1942) (0.2464) (0.5052) (1.4807)
30Y-5Y

∆Volatility −685.4659∗∗∗ −235.8622∗∗∗ −90.4720∗∗∗ −11.3318∗ 0.0000 0.0000 93.2193∗∗∗ 318.7744∗∗∗ 922.9083∗∗∗

(32.1654) (17.9007) (11.7533) (5.7315) (2.7261) (2.6065) (14.3408) (22.9406) (40.4129)
∆MRISlope 72.2614∗∗∗ 24.1570∗∗∗ 7.0075∗∗∗ 1.0483∗ 0.0000 0.0000 4.3217∗∗∗ 16.7584∗∗∗ 55.2710∗∗∗

(1.4708) (0.9892) (0.6333) (0.4132) (0.3991) (0.3833) (0.5646) (0.7876) (1.3553)
∆IR −11889.7577∗∗∗ −2554.8879∗∗∗ −625.0650∗∗∗ 4.2739 0.0000 0.0000 836.5326∗∗∗ 1989.1155∗∗∗ 4548.4067∗∗∗

(142.1877) (73.1734) (58.5658) (52.5836) (53.1549) (51.1362) (56.4983) (66.2628) (94.2545)
∆IR2 −65272.7840∗∗∗ −15413.3019∗∗∗ −8935.2357∗∗∗ −2406.7712∗∗∗ −0.0000 0.0000 7244.5342∗∗∗ 14669.7023∗∗∗ 74003.8712∗∗∗

(880.5906) (421.8787) (346.7422) (264.5610) (273.2477) (263.6979) (395.4290) (468.2778) (1233.7671)
∆Term 11742.6209∗∗∗ 2859.2439∗∗∗ 868.8613∗∗∗ 62.1172 −0.0000 −0.0000 −713.7976∗∗∗ −2042.8712∗∗∗ −5960.8456∗∗∗

(144.8130) (78.9484) (63.3853) (56.6498) (57.4904) (55.3291) (59.6913) (70.0126) (102.9779)
∆TRSlope 23.6919∗∗∗ 8.2953∗∗∗ 2.8684∗∗∗ 0.1960 −0.0000 −0.0000 −1.9395∗∗∗ −3.9765∗∗∗ 11.5876∗∗∗

(0.8272) (0.6208) (0.5207) (0.4578) (0.4709) (0.4533) (0.4726) (0.5063) (0.6545)
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, ·p < 0.1

Table 7: This table presents results of the panel quantile regression for 5Y-1Y (top) and 30Y-5Y (bottom) CDS spread slopes.
The sample comprises of data from 212 US firms from 2013/01/01 to 2018/12/31 in daily frequency. All variables in the model
are in first-differences due to present nonstationarity. Estimates and standard errors (in brackets) are reported for all nine
deciles. All estimates are scaled by factor 1e04.
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D Constituents of Green/Brown Class
Table 8 displays all firms that were constituents of the green resp. brown class at some point
during our sample period from 2013 to 2018. In total, 57 and 70 firms entered the green
resp. brown class at least once. The majority of the green firms originates from the financial
sector with a share of 42% which represents nearly 60% of all financial firms in the sample.
In the brown class energy firms dominate with a share of 24% making up 85% of all energy
firms in the sample.

Sunrise Sunset
Torchmark Corporation, GATX Corporation, Emerson Electric Co.,
Bunge Limited Finance Corp., D.R. Horton Inc., Xerox Corporation,
Rogers Communications Inc., Assurant, Inc., Aon Corporation, Loews
Corporation, Humana Inc., International Business Machines Corpora-
tion, NIKE Inc., McKesson Corporation, Cardinal Health Inc., Cisco
Systems Inc., Anthem Holding Corp., Marsh & McLennan Companies
Inc., Oracle Corporation, Unum Group, UnitedHealth Group Incorpo-
rated, W. R. Berkley Corporation, CBS Corporation, American Interna-
tional Group Inc., Rockwell Automation Inc., American Express Com-
pany, Time Warner Cable Inc., Masco Corporation, Johnson & Johnson,
Agilent Technologies Inc., Citigroup Inc., Omnicom Group Inc., JPMor-
gan Chase & Co., Prudential Financial Inc., CNA Financial Corporation,
Morgan Stanley, Berkshire Hathaway Inc., MBIA Inc., Amgen Inc., BCE
Inc., The Thomson Corporation, Brunswick Corporation, Boston Scien-
tific Corporation, Time Warner Inc., Altria Group Inc., Capital One
Financial Corporation, Microsoft Corporation, AmerisourceBergen Cor-
poration, DIRECTV Holdings LLC, CA Inc., Allergan, Assured Guar,
Equity One, Fidelity Nat, Keycorp, Mack-Cali Realty LP, Genworth Fi-
nancial Inc.

Enbridge Inc., DTE Energy Company, GATX Corporation, YRC World-
wide Inc., Sempra Energy, Marathon Oil Corporation, MeadWestvaco
Corporation, Cytec Industries Inc., American Axle & Manufacturing
Inc., Apache Corporation, Spectra Energy Capital LLC, Pepco Holdings
Inc., Camden Property Trust, Con-way Inc., RPM International Inc.,
Olin Corporation, Anadarko Petroleum Corporation, Domtar Corpora-
tion, Highwoods Realty Limited Partnership, Diamond Offshore Drilling
Inc., UDR Inc., CenterPoint Energy Resources Corp., Murphy Oil Corpo-
ration, Ryder System Inc., FedEx Corporation, Worthington Industries
Inc., Hess Corporation, Molson Coors Brewing Company, Commercial
Metals Company, Delta Air Lines Inc., Textron Inc., CMS Energy Cor-
poration, NRG Energy Inc., Halliburton Company, EOG Resources Inc.,
Service Corporation International, Unisys Corporation, Rock-Tenn Com-
pany, Norfolk Southern Corporation, Cooper Tire & Rubber Company,
Sonoco Products Company, Mohawk Industries Inc., Enterprise Prod-
ucts Partners L.P., Supervalu Inc., TECO Energy Inc., EnCana Corpo-
ration, Talisman Energy Inc., Barrick Gold Corporation, Agrium Inc.,
Tyson Foods Inc., United States Steel Corporation, Republic Services
Inc., Chesapeake Energy Corporation, Weyerhaeuser Company, Alcoa
Inc., American Electric Power Company Inc., Time Warner Inc., Altria
Group Inc., Teck Resources Limited, YUM Brands Inc., CSX Corpo-
ration, Ball Corporation, Noble Energy, Transalta, American Axle &
Manufacturing Holdings Inc., Avis Budget Grp Inc, Barrick Gold Fin
Co, ENSCO, Husky Energy Inc., Bombardier Inc.

Table 8: This table displays all firms that were constituents of the sunrise resp. sunset class. at some point time (2013-2018).
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E Robustness Checks

E.1 Emission TR

To check the robustness of the TR and its effect on CDS spread changes, we additionally
provide a variant of the TR that solely depends on emission data and incorporate it in our
base model. Any credit data that possibly contains unrelated but influential information is
omitted. Concretely, we use the emission intensity to build up green and brown groups and
then proceed in the same manner to compute the TR. Table 9 reports the results of the base
model with the new TR for all maturities. Noticeably, we observe a decrease in the size of
the effects which may be caused by a less dynamic TR due to the annual frequency of the
emission data (changes in the composition of green and brown groups hence only happen
annually). Nevertheless, the observed effects remain significant.

E.2 Sector Dominance

Appendix D reveals the dominance of financial and energy firms in the green/brown class.
Although this composition is plausibly explained by the disparities in the emission intensity of
their respective business models, it raises the question whether the results are solely driven
by stereotyped high and low emitters. Additionally, each sector-wide CDS spread level is
heavily influenced by external factors (strict solvency regulations resp. commodity price
shocks) which possibly causes problems to attribute changes in the TR to a changing market
perception of transition risk. To investigate this issue, we rerun the base model for the 5-year
CDS spreads without the aforementioned sectors.17 In particular, we exclude both sectors –
individually and jointly – from our sample, build a new TR and conduct the same analysis
from Section 4.1.
The results are displayed in Table 10. In terms of the general direction and significance of
the TR no qualitative changes can be observed. Excluding energy firms slightly increases
the TR estimates for all deciles, whereas the size difference is negligible for the other two
analyses.

17The results for all other models and maturities resemble the displayed results and are available upon
request.
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1 2 3 4 5 6 7 8 9
1Y

StockReturn −78.6349∗∗∗ −29.0986∗∗∗ −4.7215∗∗∗ −0.2075∗∗∗ −0.0015 −0.8679∗∗∗ −10.3527∗∗∗ −50.9134∗∗∗ −121.4971∗∗∗

(2.1573) (0.8902) (0.1515) (0.0573) (0.0571) (0.0740) (0.4013) (1.5322) (3.1540)
∆Volatility −385.4458∗∗∗ −83.9065∗∗∗ −7.3975∗∗∗ −0.0357 0.0023 5.3303∗∗∗ 61.3330∗∗∗ 294.8198∗∗∗ 774.2842∗∗∗

(19.6956) (7.5879) (1.6616) (0.2893) (0.2841) (1.0945) (5.8543) (20.2492) (33.6705)
∆MRI 218.6282∗∗∗ 82.7464∗∗∗ 24.6021∗∗∗ 2.6038∗∗∗ 0.0222 10.1739∗∗∗ 52.6527∗∗∗ 187.2051∗∗∗ 546.1486∗∗∗

(9.2648) (4.1009) (1.3093) (0.2496) (0.0942) (0.6969) (3.1833) (8.9516) (22.4116)
∆TR 1.2099∗∗∗ 0.3934∗∗∗ 0.0506 0.0044 0.0000 0.0294 0.3684∗∗∗ 1.0421∗∗∗ 4.7487∗∗∗

(0.1439) (0.0861) (0.0315) (0.0215) (0.0207) (0.0241) (0.0797) (0.1391) (0.3864)
3Y

StockReturn −201.2797∗∗∗ −81.5489∗∗∗ −42.7498∗∗∗ −22.2156∗∗∗ −9.7969∗∗∗ −26.8104∗∗∗ −59.2221∗∗∗ −116.3933∗∗∗ −256.2204∗∗∗

(4.8361) (1.7459) (1.0754) (0.6862) (0.4019) (0.8284) (1.6135) (2.9041) (8.2260)
∆Volatility −973.2290∗∗∗ −275.3691∗∗∗ −76.7647∗∗∗ −12.9225∗∗ 7.8854∗ 92.1760∗∗∗ 283.8412∗∗∗ 740.7140∗∗∗ 1715.5433∗∗∗

(54.4676) (15.7549) (11.8999) (4.5695) (3.2097) (10.4608) (22.0371) (46.2116) (95.8932)
∆MRI 223.4540∗∗∗ 115.2765∗∗∗ 65.0755∗∗∗ 43.2412∗∗∗ 28.0993∗∗∗ 61.8873∗∗∗ 121.5114∗∗∗ 253.2455∗∗∗ 540.8681∗∗∗

(10.1375) (6.6473) (3.8513) (3.1241) (2.0480) (4.0400) (7.9063) (9.6684) (28.2627)
∆TR 3.5026∗∗∗ 1.6049∗∗∗ 0.9712∗∗∗ 0.8625∗∗∗ 0.6141∗∗ 1.4721∗∗∗ 2.2360∗∗∗ 4.0472∗∗∗ 13.3480∗∗∗

(0.4105) (0.3163) (0.2765) (0.2536) (0.2028) (0.2684) (0.3333) (0.4697) (1.0250)
5Y

StockReturn −357.2863∗∗∗ −140.7529∗∗∗ −74.9753∗∗∗ −44.0121∗∗∗ −22.9355∗∗∗ −46.7178∗∗∗ −91.2376∗∗∗ −182.3271∗∗∗ −397.5438∗∗∗

(8.7982) (3.3284) (1.7918) (1.1803) (0.7606) (1.2486) (2.3899) (5.4933) (13.2119)
∆Volatility −1825.7634∗∗∗ −519.3800∗∗∗ −137.6123∗∗∗ −26.2063∗∗∗ 7.3567· 142.3430∗∗∗ 410.7345∗∗∗ 1124.2258∗∗∗ 2791.8455∗∗∗

(91.3348) (37.1255) (21.7308) (4.6806) (4.0459) (17.1315) (33.5760) (78.7165) (167.8022)
∆MRI 156.0269∗∗∗ 87.1931∗∗∗ 53.0727∗∗∗ 34.6712∗∗∗ 21.9241∗∗∗ 41.0551∗∗∗ 76.3303∗∗∗ 159.3504∗∗∗ 336.9151∗∗∗

(7.2776) (5.0774) (3.6808) (2.9032) (1.9065) (3.2852) (5.2737) (9.8074) (17.7695)
∆TR 12.0499∗∗∗ 3.9511∗∗∗ 2.6887∗∗∗ 2.2364∗∗∗ 1.9850∗∗∗ 3.3947∗∗∗ 5.8891∗∗∗ 11.7439∗∗∗ 25.8426∗∗∗

(0.6834) (0.4088) (0.3323) (0.2815) (0.2636) (0.3578) (0.5162) (0.8446) (1.6207)
10Y

StockReturn −511.7342∗∗∗ −202.1691∗∗∗ −109.7679∗∗∗ −56.2683∗∗∗ −28.1080∗∗∗ −55.0749∗∗∗ −109.8447∗∗∗ −224.2027∗∗∗ −504.6410∗∗∗

(10.3465) (4.3511) (2.5758) (1.4967) (1.0062) (1.5066) (2.8991) (5.7295) (11.6211)
∆Volatility −2501.9932∗∗∗ −777.8220∗∗∗ −222.5463∗∗∗ −40.4656∗∗∗ 8.5644 163.6761∗∗∗ 496.6495∗∗∗ 1320.5554∗∗∗ 3347.7572∗∗∗

(111.9179) (51.5399) (28.9212) (9.1106) (6.2782) (19.9919) (39.1077) (87.1761) (171.6218)
∆MRI 125.0571∗∗∗ 77.2294∗∗∗ 44.3692∗∗∗ 25.7665∗∗∗ 17.1962∗∗∗ 29.7629∗∗∗ 55.4591∗∗∗ 109.4038∗∗∗ 218.5459∗∗∗

(5.3030) (3.6644) (3.4241) (1.7026) (1.8190) (2.4119) (3.8222) (6.4405) (4.5655)
∆TR 17.8905∗∗∗ 6.3845∗∗∗ 3.6832∗∗∗ 1.9443∗∗∗ 1.0401∗∗∗ 1.5713∗∗∗ 2.5845∗∗∗ 4.3526∗∗∗ 14.6479∗∗∗

(0.9365) (0.4951) (0.4277) (0.3551) (0.2990) (0.3479) (0.4179) (0.4611) (0.8296)
30Y

StockReturn −727.5989∗∗∗ −338.9551∗∗∗ −190.2333∗∗∗ −104.0037∗∗∗ −58.1794∗∗∗ −90.8957∗∗∗ −179.4912∗∗∗ −339.7287∗∗∗ −745.8244∗∗∗

(12.8206) (6.3792) (4.2171) (2.8528) (2.0115) (2.6366) (4.1554) (6.8571) (14.0949)
∆Volatility −3122.9152∗∗∗ −1225.8299∗∗∗ −398.0533∗∗∗ −91.0484∗∗ 19.5287 277.9716∗∗∗ 774.1661∗∗∗ 1866.1317∗∗∗ 4493.5010∗∗∗

(146.9456) (65.2986) (61.9531) (28.9503) (12.7241) (31.9738) (59.9988) (107.4355) (203.1130)
∆MRI 141.3800∗∗∗ 87.9735∗∗∗ 52.4345∗∗∗ 33.7068∗∗∗ 23.6606∗∗∗ 34.8476∗∗∗ 66.2135∗∗∗ 126.2169∗∗∗ 262.8045∗∗∗

(5.8791) (4.3078) (3.8018) (2.9259) (2.0923) (2.9090) (4.5851) (6.4007) (10.2788)
∆TR 33.0433∗∗∗ 12.6417∗∗∗ 7.1359∗∗∗ 4.2279∗∗∗ 2.6552∗∗∗ 3.5695∗∗∗ 5.8296∗∗∗ 9.4040∗∗∗ 26.4358∗∗∗

(1.8756) (1.0158) (0.8383) (0.6836) (0.5687) (0.6506) (0.7945) (0.9429) (1.8100)
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ·p < 0.1

Table 9: This table presents estimates of the base panel quantile regression model for 1-year (top), 3-year (upper center), 5-year
(center), 10-year (lower center) and 30-year (bottom) CDS spread changes. Within the construction of the TR we only use the
emission intensity to determine green and brown firms. The sample comprises of data from 212 US firms from 2013/01/01 to
2018/12/31 in daily frequency. All variables in the model are in first-differences due to present nonstationarity. Estimates and
standard errors (in brackets) are reported for all nine deciles. All estimates are scaled by factor 1e04.
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1 2 3 4 5 6 7 8 9
Without Energy

StockReturn −318.3846∗∗∗ −134.7608∗∗∗ −73.3882∗∗∗ −46.8185∗∗∗ −26.8962∗∗∗ −47.7951∗∗∗ −89.3057∗∗∗ −171.1303∗∗∗ −357.1531∗∗∗

(6.3127) (3.1699) (1.7414) (1.2421) (0.8690) (1.2796) (2.3596) (4.9347) (9.3950)
∆Volatility −1544.7218∗∗∗ −462.7689∗∗∗ −133.4980∗∗∗ −29.4406∗∗ 6.8278 148.3803∗∗∗ 396.4265∗∗∗ 1000.4144∗∗∗ 2377.1492∗∗∗

(41.9528) (40.0393) (21.4046) (9.4199) (5.7272) (17.7019) (35.3174) (73.5850) (102.9133)
∆MRI 137.2038∗∗∗ 84.3255∗∗∗ 50.1550∗∗∗ 33.7929∗∗∗ 21.4784∗∗∗ 37.9465∗∗∗ 65.1641∗∗∗ 136.6296∗∗∗ 275.6724∗∗∗

(6.8026) (5.1559) (3.5384) (3.0368) (2.2261) (3.2837) (3.9228) (7.8649) (14.9207)
∆TR 74.0000∗∗∗ 34.0141∗∗∗ 19.8147∗∗∗ 13.7549∗∗∗ 9.2401∗∗∗ 14.0423∗∗∗ 23.1596∗∗∗ 43.2705∗∗∗ 101.4573∗∗∗

(1.9663) (1.1435) (0.7183) (0.5914) (0.4875) (0.6031) (0.8526) (1.5406) (2.6883)
Without Financials

StockReturn −398.9466∗∗∗ −161.8197∗∗∗ −85.0447∗∗∗ −51.7266∗∗∗ −30.7017∗∗∗ −55.4944∗∗∗ −108.6112∗∗∗ −203.6243∗∗∗ −438.2321∗∗∗

(10.7253) (4.2596) (2.1438) (1.4934) (1.0686) (1.6423) (3.3229) (7.0623) (15.8496)
∆Volatility −1989.6412∗∗∗ −572.8673∗∗∗ −158.1265∗∗∗ −20.3962∗∗ 14.4489∗ 179.9208∗∗∗ 507.2120∗∗∗ 1278.4590∗∗∗ 3110.1396∗∗∗

(106.6702) (49.0849) (27.3550) (6.7753) (6.5449) (22.7720) (42.5930) (76.1881) (185.4286)
∆MRI 131.3963∗∗∗ 72.1861∗∗∗ 44.1407∗∗∗ 33.8418∗∗∗ 24.5597∗∗∗ 47.3229∗∗∗ 86.2996∗∗∗ 172.3643∗∗∗ 365.1154∗∗∗

(7.4531) (5.1004) (2.0241) (3.5455) (2.5958) (4.1775) (7.4977) (15.5485) (23.0904)
∆TR 48.3781∗∗∗ 21.0268∗∗∗ 12.4012∗∗∗ 8.5545∗∗∗ 6.7126∗∗∗ 10.0583∗∗∗ 16.5239∗∗∗ 32.5458∗∗∗ 68.7863∗∗∗

(2.0416) (1.0489) (0.7214) (0.5183) (0.3980) (0.5179) (0.9309) (1.7765) (3.2369)
Without Energy and Financials

StockReturn −350.0675∗∗∗ −160.9287∗∗∗ −89.1543∗∗∗ −54.8440∗∗∗ −33.7369∗∗∗ −56.8049∗∗∗ −105.3999∗∗∗ −190.9131∗∗∗ −388.7687∗∗∗

(9.9301) (4.4340) (2.4800) (1.6545) (1.2135) (1.7644) (3.3717) (6.7824) (13.3516)
∆Volatility −1623.1874∗∗∗ −530.9274∗∗∗ −155.3427∗∗∗ −21.7817∗∗∗ 8.2832 165.4198∗∗∗ 439.8435∗∗∗ 1107.9180∗∗∗ 2636.2589∗∗∗

(106.4166) (34.8379) (25.2732) (6.0312) (7.5828) (22.2445) (44.1204) (106.1445) (157.4550)
∆MRI 171.1927∗∗∗ 100.9850∗∗∗ 61.9731∗∗∗ 46.5311∗∗∗ 31.4699∗∗∗ 58.5291∗∗∗ 98.6639∗∗∗ 189.8934∗∗∗ 391.1620∗∗∗

(9.2523) (7.4892) (4.9600) (4.2194) (3.5837) (5.0943) (8.9288) (15.0593) (24.8974)
∆TR 44.3992∗∗∗ 21.5663∗∗∗ 13.7308∗∗∗ 9.3759∗∗∗ 6.8851∗∗∗ 10.4229∗∗∗ 16.7103∗∗∗ 30.2913∗∗∗ 62.4804∗∗∗

(1.6490) (0.9209) (0.6543) (0.5556) (0.4535) (0.5919) (0.7950) (1.3519) (2.5878)
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; ·p < 0.1

Table 10: This table presents results of the panel quantile regression for 5-year CDS spreads without energy firms (top), financial
firms (center) and firms from both sectors (bottom). The sample comprises of data from 2013/01/01 to 2018/12/31 in daily
frequency. All variables in the model are in first-differences due to present nonstationarity. Estimates and standard errors (in
brackets) are reported for all nine deciles. All estimates are scaled by factor 1e04.
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