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Abstract

The systemic implications on carbon-intensive equity prices of the disruptive

technological progress from decarbonising the global energy system are com-

pounded by the geopolitical nature of both the global oil market and transition

risk. We show empirically that climate change news affects oil and gas stock

return volatilities at the global scale. But not all geoclimatic shocks are alike.

Climate change news increases global uncertainty around carbon-intensive equi-

ties and it amplifies the effects of oil volatility shocks when the news is bad. The

geoclimatic impact on the global oil and gas equity market has changed over

time and is reflected by increasing geoclimatic volatility. Moreover, the impact

of climate change news differs across topics and themes.

1 Introduction

In chemistry, patina is defined as a thin greenish layer that naturally forms on the

surface of brownish metals such as copper or bronze by oxidation when exposed to air.

Patina can also be produced artificially as by acids for protection. Is the ’financial

patina’ from decarbonising the global energy system to greening the global economy

likely to be forced by climate policies, carbon prices and litigation, or by market forces

as investors price in climate change risks? There is growing pressure to divest from

so-called brown assets and activities, which are carbon-intensive, and make green in-

vestments. Pledges to build a green economy are surging in the climate agenda of not
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only governments but also large companies and hedge fund firms everywhere. Coun-

tries with net zero targets now represent 61% of the global greenhouse gas emissions,

68% of the global gross domestic product and 56% of the world’s population (Black et

al., 2021).

Human influence is unequivocal in causing climate change (IPCC, 2021). Anthro-

pogenic climate change is due to burning fossil fuels and the consequent release of

greenhouse gases. Excessive emissions of carbon dioxide, the most tracked carbon

compound, have caused a greenhouse effect which has been accelerating global warm-

ing. Brown assets are carbon-intensive and primarily associated with fossil fuels such

as coal, oil and natural gas, which are intrinsically high in carbon. Green assets are as-

sociated with cleaner energy and so are low in carbon. To reduce the carbon footprint

and mitigate the global effects of climate change, the transition process for greening

the global economic system is under way. Given current technology, a shift away from

fossil fuels is however going to take decades.

Global carbon dioxide emissions have increased dramatically around the world

during the last few decades and are projected to increase in the coming years. Countries

such as China, the US, the EU member countries, India and Russia together account

for 2/3 of the global carbon dioxide emissions. Given current technology, a transition

towards low-carbon economies requires a shift away from fossil-fuel energy. However,

countries are still highly dependent on fossil fuels to produce energy. According to the

Statistical Review of World Energy (BP, 2020), the distribution of the primary energy

consumption by fuel type around the world indicates that, on average, 84% of primary

energy is produced by means of fossil fuels (oil, coal and natural gas) and only 16%

by non-fossil fuels (hydroelectricity, renewable energy, and nuclear energy). Coal is by

far the worst polluter among fossil fuels and yet, in countries such as China and India,

more than 50% of their primary energy consumption comes from coal. The effectiveness

of changes in investment decisions also depends on expectations about climate policies

around the world. The systemic implications of disruptive technological progress on

the prices of carbon-intensive assets are thus compounded by the geopolitical nature

of not only the global oil market, but also transition risk.

The exposure of the financial sector to climate change is usually defined as either

physical or transition risk. Even though there are attempts to analyze these risks

separately, they are strongly related. The exposure posed by more frequent and severe

climate-related disasters, i.e., physical risk, is likely to increase awareness and concern

about climate change. Moreover, although some regions or countries are not directly

exposed to physical risk, they can be indirectly affected by others that are particularly

vulnerable through international relations. Hence, physical risk is likely to spill over
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and change expectations about policy responses, especially about carbon prices. It

can thus amplify the uncertainty about the timing and speed of adjustment towards

a low-carbon economy: physical risk potentially increases transition risk.

The literature on climate change and finance focuses on the pricing of climate

change risks, in particular, on how stock returns reflect investor concerns about climate

change. Bolton and Kacperczyk (forthcoming) provide a cross-country analysis of the

effects of corporate carbon emissions and a country’s transition risk on stock returns. A

company’s carbon premium seems to be related to not only its level of emissions (long-

run exposure to transition risk) but also changes in its level of emissions (short-run

exposure to transition risk). Moreover, the carbon premium tends to be higher (lower)

in countries with a higher share of brown (green) sectors (even though it does not seem

to reflect physical risk). Studies of the impact of climate change on financial markets

also include the analysis of value at risk associated with climate shocks (Dietz et al.,

2016) in which financial losses are aggregated and derived top-down from estimated

output losses due to climate change. Climate stress-tests of the financial system show

the inter-linkages among financial institutions may amplify both positive and negative

shocks (Battiston et al., 2017).

From a cross-country analysis of the impact of climate-related disasters on ag-

gregate stock market indexes from 68 developed and emerging countries since 1980,

International Monetary Fund (2020) found no significant effect of climate change phys-

ical risk on equity valuations. Even though financial losses can be massive and vary

widely, they conclude that the reaction of equity prices to large climatic disasters is

relatively modest. Other country characteristics, such as a higher rate of insurance

penetration and a greater sovereign financial strength, seem to explain this low impact

and so improve financial stability. Yet, the authors argued that equity investors may

not be paying sufficient attention to climate variables. Interestingly, the same study

shows that investors in long-term sovereign bonds demanded a premium from countries

with high climate risk meaning that investors do appear to be pricing climate change

physical risks when making long-term investment decisions.

This seems consistent with Bolton and Kacperczyk (forthcoming) whose findings

indicate that stock returns do not reflect physical risks. Because no significantly differ-

ent carbon premium is found for stocks from countries more exposed to physical risk

but it is found for countries associated with higher transition risk, these results suggest

that physical risk is not positively correlated with transition risk, which appears to

be relatively more salient to investors. Possible explanations include the term struc-

ture of climate change risks, where physical risk seems to be heavily discounted by

investors because of its long-term nature, whereas transition risk tends to materialize
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in a shorter horizon. Griffin et al. (2019) provides evidence that physical risk is being

(under) priced by equity investors in the US by matching climate-related events to in-

dividual firms. This result suggests physical risk may be local-specific and its financial

market effects mostly concentrated in the area affected whereas transition risk can be

expected to have wider (global) effects given it is geopolitical by nature. The results

also indicate that equity returns seem to respond negatively where the magnitude of

the response appears to vary with the cost and duration of the climate-related events.

Underpricing is more evident, and the increase in equity market volatility is more

pronounced, for costlier and longer-duration events.

If media-aware and sophisticated investors are pricing transition risk, one should

expect all the prices of carbon-intensive assets to be responsive to geoclimatic news.

If climate change news is geopolitical, it should affect a very wide range of carbon-

intensive asset prices at the same time. To measure the co-movements of volatilities

of carbon-intensive asset returns at the global scale, we apply the geopolitical volatil-

ity model introduced by Engle and Campos-Martins (2020). When innovations to

volatilities are correlated across assets, common volatility shocks to the idiosyncratic

volatilities can be identified. Economic, political or epidemiological events impact

volatilities and move financial markets globally. Geopolitical volatility is thus inter-

preted as a measure of the magnitude of global volatility shocks and is intended to

capture geopolitical risk due to its broad impact on many assets, asset classes and

countries. Volatility shocks arising from climate change are identified as an additional

determinant of the volatility of the global carbon-intensive equity market. The vari-

ation driven by climate change news of the oil and gas geopolitical volatility is called

geoclimatic volatility.

The geopolitical volatility model is applied to the daily share prices of oil and gas

companies from different countries but all traded on the New York Stock Exchange

(NYSE) to assure synchronicity of observations. Oil and gas geopolitical volatility

peaks during the COVID-19 pandemic, after the 9/11 terrorist attack, Black Monday

in 1987, and during the global financial crisis in 2008. But many announcements by

the Organization of the Petroleum Exporting Countries (OPEC) or the drone attack

to the Saudi Aramco production facilities in 2019 show up as extreme geopolitical

events driving changes in the global oil and gas equity market as well. Whereas the

first set of geopolitical events are more likely to come from the oil demand side, the

second are categorized as being driven by oil supply shocks.

As a proxy for climate change risk, we use the monthly climate change news index

of Engle et al. (2020) and the daily media climate change concerns index of Ardia et al.

(2020). Each index is a time-series that captures news about climate risk, constructed
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by applying text mining to the content of United States newspapers. The innovations

to each of these indexes reveal that not all geoclimatic shocks are alike. Climate change

geopolitical news is inducing global volatility co-movements of a wide range of carbon-

intensive equities. Overall, climate change generic news drives geoclimatic volatility as

it seems to affect oil and gas stock return volatilities at the global scale. However, the

effect on the oil and gas geopolitical volatility is adverse only when the news is bad,

an effect which has become stronger over time. Bad news about climate change seems

to increasingly create global uncertainty around carbon-intensive asset returns and to

amplify the effects of oil price shocks. Moreover, the impact on geoclimatic volatility

differs across climate change topics.

The paper is organized as follows. In section 2, the geopolitical volatility model

is presented and the estimation procedure is briefly described. The results from the

empirical application of the geopolitical volatility model to oil and gas stocks, including

a detailed analysis of the major geopolitical events affecting this global market over

time, are shown in this section as well. Subsequently, in section 3, we develop the

strategy addressed to identify the volatility shocks driven by climate change news

which can affect the oil and gas geopolitical volatility. Section 4 links the geopolitical

volatility shocks to oil and gas stock returns with the volatility shocks to climate

change innovations using regression analysis. In section 5, the policy implications are

discussed. Finally, section 6 concludes the paper.

2 Modeling carbon-intensive geopolitical volatility

It is a stylized fact that financial volatilities co-move. This is not surprising when asset

returns respond to the same factors. Interestingly, whatever factors are extracted from

the returns, idiosyncratic volatilities still co-move (Herskovic et al., 2016). When many

assets, markets and countries respond to the same news at the same time, shocks to

volatilities are correlated. Engle and Campos-Martins (2020) associate these volatility

shocks to geopolitical events due to their very wide impact. To measure geopolitical

volatility, they propose a new model of idiosyncratic volatility co-movements based on

a multiplicative volatility factor decomposition of the volatility standardized residuals.

Consider the (N × 1) vector of carbon-intensive equity returns rt = (r1t, . . . , rNt)
′

given by

f t = w′t−1rt (1)

rt = rf + Bf t + diag
{√

ht

}
et,
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where w ≡ (w1, . . . , wN)′ are weights, B is an (N ×p) matrix of risk exposures, f t is a

(p×1) vector of factors, ht ≡ (h1, . . . , hN)′ contains idiosyncratic conditional variances

and et ≡ (e1, . . . , eN)′ the idiosyncrasies.

Assuming factors are sufficient to reduce the contemporaneous correlations to zero,

this implies

Et−1(ete
′
t) = I. (2)

Assumption (2) does not mean that residuals are independent in the cross-section, it

simply means they are uncorrelated. The fundamental observation in this model is

that, even though the standardized residuals are orthogonal with unit variance, their

squares (or absolute values) may be correlated in the cross-section.

Since volatility is well known to be predictable, the co-movement of volatilities

is most likely caused by the correlation between shocks to those volatilities (which

are unpredictable). Engle and Campos-Martins (2020) provide strong evidence that

the squared standardized returns net of factors are positively correlated. Define a

volatility shock as the proportional difference between the squared idiosyncrasy and

its expectation,

φi,t ≡ e(i,t)
2 − 1 =

(ri,t − rf − β′if t)
2 − hi,t

hi,t
, (3)

For each asset, the realized squared e is on some days bigger than one and on other days

smaller than one. If many carbon-intensive equities around the world have squared e

bigger than one at the same time, this can be interpreted as a global volatility shock

which we will associate to volatility shocks arising from geoclimatic news.

Let xt, t = 1, . . . , T , denote the global or geopolitical carbon-intensive volatility

factor, a positive scalar (latent) random variable with mean 1 and variance υ which is

independent of εt = (ε1t, . . . , εNt)
′. The factor loadings are denoted by si, i = 1, . . . , N

and interpreted as parameters (fixed effects). The standardized residuals are then

assumed to have the multiplicative decomposition

eit =
√
git(si, xt)εit, (4)

where git(si, xt) is non-negative for every t ∈ [1, T ] with E[git(si, xt)] = 1 which satisfies

E[e2it] = 1 for every i. Each of the heterogeneous carbon-intensive volatility factors is

specified as

git(si, xt) ≡ sixt + 1− si, (5)

xt > 0, t = 1, . . . , T , and 0 ≤ si ≤ 1, i = 1, . . . , N . Recall that Et−1[ete
′
t] = I.
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But (4) implies the variance-covariance matrix of the squared standardized residuals

Et−1[e
2
t (e

2
t )
′] = Ψ. Testing for geopolitical volatility is carried out using the empirical

counterpart of Ψ and by checking whether it is diagonal or not. For further details,

we refer to Engle and Campos-Martins (2020).

Because the data generating process is multiplicative between two sets of unknowns

xt, t = 1, . . . , T and si, i = 1, . . . , N , we estimate each conditional on the other. The

first order conditions for both s and x give the following heteroskedasticity relation-

ships:

Time-Series: ei,t =
√
si(x̂t − 1) + 1εit for i = 1, . . . , N, (6)

Cross-Section: ei,t =
√
ŝi(xt − 1) + 1εit for t = 1, . . . , T,

where the cross-sectional regression allows us to estimate the unobserved value of

xt, t = 1, . . . , T (using some initial values for the factor loadings) and then the time-

series regression maximizes the likelihood function conditional on the estimated latent

variable to obtain estimates for si, i = 1, . . . , N . There is thus an estimator for each

si, i = 1, . . . , N given x̂t, t = 1, . . . , T using time-series and another estimator for

each xt, t = 1, . . . , T given estimated ŝi, i = 1, . . . , N for each cross-section. To gain

efficiency, we iterate the estimation of the time-series and cross-section regressions

until convergence. At that point, both first order conditions are satisfied and a joint

maximum can be achieved.

2.1 The oil and gas global volatility shocks

Carbon-intensive volatility co-movements at the global scale can be driven by shocks

arising from fossil fuel demand (e.g. global financial crises, China slowdown, COVID-

19 pandemic, carbon prices) or supply (e.g. OPEC announcements, crude oil price

shocks). To analyze to what extent climate change news affects the global carbon-

intensive equity market1, we first model the geopolitical shocks to the volatilities of

global oil and gas stocks returns from which we disentangle the geoclimatic volatility

shocks constructed from climate change news indexes.

The daily closing prices of shares from 25 major oil and gas companies around

the world are extracted from the data platform Datastream. They are all traded in

the NYSE so we are guaranteed to have synchronous observations when measuring

the volatility co-movements. The sample period goes from January 12, 1983 until

January 29, 2021. This is an unbalanced panel (equities were launched on different

1For a discussion on the climate-policy relevant sectors in the economy we refer to Battiston et al.
(2017).
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Figure 1: Cross-sectional mean of oil and gas residuals from factor models.

dates) with a minimum of eight observations per day. To remove any stochastic trend,

we convert prices into log-returns. Our modeling framework starts by estimating a

factor model with GARCH errors for each carbon-intensive asset. Extreme positive

(negative) returns are truncated to ±10% to avoid problems in the estimation of the

GARCH models. For modeling the time dependence observed in the first moment of

the data, a first-order autoregressive (AR) component is added to the pricing factor

models. The choice of the order of the AR model is supported by Ljung-Box AR(1)

tests. To account for common factors affecting the series of returns, we assume a

Fama and French three factor model. We also include the excess returns on the

West Texas Intermediate (WTI) 1-month future price as a covariate. To model the

heteroskedasticity behaviour of the series, a first order GARCH model is assumed for

the errors. The choice of a GARCH(1,1) model is supported by Ljung-Box ARCH(1)

tests, which seems sufficient to capture the heteroskedastic behavior of each series.

The oil and gas cross-sectional mean excess returns is depicted in Figure 1 and

the estimated oil and gas cross-sectional mean volatility in black in Figure 2. For

comparison, the estimated volatility of the excess returns of the WTI crude oil future

and the Energy Select Sector Fund (XLE) are also shown in (2a) and of the S&P

500 index in (2b). The XLE reflects the exposure to mostly oil, gas and consumable

fuel companies in the US. The global oil and gas geopolitical shocks will be compared

to those affecting this XLE because, even though they share some constituents, they

are not the same. The WTI crude oil future is much more volatile than the oil &

gas cross-sectional mean volatility, which in turn is more volatile than the other two.

Nevertheless, all volatilities depicted tend to co-move over time, especially in periods of

higher uncertainty, namely the global financial crisis, the oil price plunge of 2014-2016

and the COVID-19 pandemic.

Even after extracting the pricing factors (Fama and French and the WTI excess

returns), idiosyncratic volatilities are still correlated. Their cross-sectional mean cor-
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Figure 2: Cross-sectional mean of oil and gas idiosyncratic volatilities (black). For
comparison, the volatility of the 1-month WTI crude oil future and of the SPDR
energy sector ETF are also shown in the upper panel and of the S&P 500 index in the
bottom panel.
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relation is 0.583 and their first principal component accounts around 65% of their total

variance. The correlation between the oil and gas cross-sectional mean volatility and

that of the WTI oil future is 0.554, of the energy sector XLE is 0.913, and of the S&P

500 index is 0.643. Even though highly correlated, they do not perfectly match the

variation captured in the global oil and gas equity market. The correlation between

the cross-sectional mean of the oil and gas volatility shocks and those to the WTI

future is only 0.188, to the energy sector XLE is 0.648, and to the S&P 500 index is

0.099.

Having estimated the series of residuals and volatilities, we compute the vector of

standardized residuals êt, t = 1, . . . , T . To help estimate the carbon-intensive geopo-

litical volatility, we add the oil and gas cross-sectional mean standardized residuals to

the sample such that N = 26. We will denote this series by O&G. It is straightforward

to test for geovolatility using the sample covariance matrix of ê2. We assume an equi-

correlated alternative (all factor loadings are equal to one) and use the test statistic

proposed by Engle and Campos-Martins (2020) under the null hypothesis that the

cross-sectional mean correlation of ê2 is zero against the one sided alternative that it

is positive. The test statistic follows in distribution a standard normal under the null.

In practice, we test H0 : ρ̄e2 = 0 against the one-sided H0 : ρ̄e2 > 0. The empirical

average correlation ρ̄e2 = 0.096. For this sample, the test statistic is ξ = 141.3 and

p−value = 0.000. The hypothesis that the cross-sectional mean correlation of the

squared standardized residuals is zero is thus strongly rejected. This result provides

evidence that the squared standardized residuals are correlated and so we proceed to

the estimation of the oil and gas geopolitical volatility factor in order to capture global

shocks driving co-movements of their volatilities.

We shall briefly describe the iterative estimation of the oil and gas volatility fac-

tor and corresponding factor loadings. As the starting values for the estimation of

xt, t = 1, . . . , T , record the factor loadings on the first principal component of e2.

This is not necessary as the algorithm converges to the same optimal solution when

we choose other initial values. Take the estimated standardized residuals as observ-

able and iterate the estimation of the cross-sectional and time-series regressions (6)

until convergence. In each iteration, impose the normalization xt/(1/T )
∑T

t=1 xt and∑N
i=1 s

2
i = 1 after estimating, respectively, the cross-section and the time-series re-

gression. For this empirical sample, 15 iterations were performed until the algorithm

converged. The oil and gas geopolitical volatility denoted by
√
x, will for the remain-

ing of the paper, be denoted by O&G GEOVOL to make the interpretation of results

more intuitive.

The most extreme common oil and gas volatility shocks captured by the estimated
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squared GEOVOL and denoted by O&G ˆGEOVOL2
t are summarized in Table 1. For

comparison, the returns on the same day are shown for the cross-section average of oil

and gas stocks (r̄O&G
t ), the S&P 500 index (rSPXt ), the crude oil 1-month future (rWTI

t ),

and the energy sector fund (rXLE
t ). Several dates are easily recognized as being the

days when major events happened affecting global financial markets, including oil and

gas. Many extreme shocks coincide with large negative returns but we also observe

large volatility shocks for some positive returns. The extreme values observed in the

global oil and gas geopolitical volatility are strongly correlated with large WTI or XLE

returns (or both) and also with the SPX returns.

Geopolitical events that are likely to reflect oil supply shocks involve announce-

ments from OPEC such as on November 28, 2014, when Saudi Arabia blocked its

output cut, crashing oil prices and driving shares of oil and gas companies around

the world to follow suit; oil spills such as on April 29th, 2010 when the magnitude of

the Deepwater Horizon disaster that had occurred a week earlier finally sank in with

investors; or even attacks to oil facilities like the one on September 16, 2019 when the

drone attack to the Saudi Aramco production facilities caused its biggest disruption

ever. These are different from other geopolitical shocks, such as economic or financial,

political elections, climate policy changes or terrorist attacks that are rather likely

to reflect changes in oil demand primarily. Recently, these include pandemics (many

events during the COVID-19 pandemic such as the day after the US relief package

was signed on March 20, 2020, which also ended the worst weekly performance for all

three major US stock indexes, namely Dow, S&P 500 and Nasdaq Composite, since

October 2008), financial crashes and crises (such as the global financial crisis of 2008-

2009), military (the day on which the NYSE opened after the 9/11 terrorist attacks

on September 17, 2001) and political (the day after the UK European Union mem-

bership referendum with its decision in favor of the Brexit on June 23, 2016, on the

days after US presidential elections in 2016 and 2020, and during trade wars). All

these events appear to have caused large returns across all the indexes showing up in

the geopolitical volatility as some of the biggest common shocks affecting the global

oil and gas equity market. The monthly means of the estimated global oil and gas

volatility (averaged oil and gas geovolatility) are plotted in Figure 3, where some of

these major events are labeled.

The empirical variances and covariances of the squared standardized residuals are

not equal across oil and gas equities. This reflects the fact that different equities

have different loadings on the geopolitical volatility factor. The loading captures the

proportion of O&G GEOVOL that affects an asset’s volatility. The estimated O&G

GEOVOL loadings are presented in Table 2 in descending order. The impact of O&G
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Table 1: The largest estimated global shocks and the values of the returns on the same
day. r̄t denotes the cross-sectional mean oil and gas return, rSPXt the return of the S&P
500 index, rWTI

t the return ofthe crude oil 1-month future, and rXLE
t the returns of the

SPDR energy sector ETF.

O&G

t ˆGEOVOL2
t r̄O&G

t rSPXt rWTI
t rXLE

t

2020-03-20 42.915 1.525 −4.433 −11.724 0.971
2014-11-28 35.934 −7.705 −0.255 −10.726 −6.640
1987-10-20 28.158 4.216 5.195 0.101
1993-09-29 26.473 3.333 −0.308 −0.167
1985-12-09 25.085 −4.270 0.619 −4.338
2008-07-16 23.811 −1.395 2.475 −3.029 −2.608
2000-03-07 23.642 5.584 −2.597 5.883 6.673
1995-04-20 23.505 2.187 0.073 −6.732
2020-03-23 22.859 −1.910 −2.973 −9.683 −9.272
1998-09-04 22.729 3.667 −0.856 −0.684
2000-10-13 22.576 −3.295 3.284 −3.096 −3.900
1992-05-26 22.018 4.024 −0.632 4.943
1993-06-11 21.264 −3.188 0.421 −1.413
2020-03-17 21.229 −0.486 5.823 −6.291 0.681
1984-10-17 21.084 −4.373 −0.389 −2.653
2019-04-12 21.024 0.962 0.659 0.486 0.267
1985-07-05 19.748 −0.351 0.557 0.000
2020-11-09 19.430 12.616 1.163 8.179 13.344
2010-04-29 18.930 0.323 1.286 2.316 0.115
2001-01-03 18.542 −2.572 4.888 2.896 −3.101
1985-12-10 17.288 −3.497 0.069 −1.170
1983-03-31 16.997 3.833 −0.281 0.000
2016-11-30 16.627 5.877 −0.266 8.900 4.958
2001-09-17 16.400 −1.619 −5.047 4.251 −2.065
1986-01-27 16.370 1.989 0.464 7.226
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Figure 3: The (monthly averaged) oil and gas geopolitical volatility index.

GEOVOL is heterogeneous across equities. These companies have different exposures

to climate change risks and, more importantly, have shown different sustainability

strategies in their budget plans. An important implication of this difference is that

it makes possible to hedge against geopolitical risk by buying equities with largest

loadings and selling the ones with smaller loadings. For more details on portfolio

optimality in the presence of geopolitical volatility, we refer to Engle and Campos-

Martins (2020).

Table 2: The estimated oil and gas geopolitical volatility factor loadings.

ŝi

O&G 0.329
RDS 0.241
BP 0.228
CVX 0.228
COP 0.226
APC 0.223
OXY 0.216
EOG 0.214
SLB 0.212
HAL 0.209
XOM 0.208
SU 0.204
DVN 0.202

ŝi

EQNR 0.199
TOT 0.198
CNQ 0.185
E 0.180
PTR 0.171
KMI 0.162
REPYY 0.159
CEO 0.153
SNP 0.151
EC 0.151
PSX 0.105
PBR 0.091
EPD 0.084

As a measure of the goodness of the fit, we re-run the test for common volatility

shocks on the standardized residuals, now standardized by O&G GEOVOL. The null

hypothesis is re-defined to H02 : ρ̄e2/ĝ = 0, where g contains the heterogeneous volatil-

ity factors git ≡ git(si, xt) defined in (5), i = 1, . . . , N . The empirical ρ̄e2/x̂ = −0.004,

the test statistic is −0.522 and the p−value = 0.699. This failure to reject the null

of no correlation in the square standardized residuals e2/ĝ, supports the multiplica-
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tive decomposition of the standardized residuals and the ability of O&G GEOVOL to

capture the common shocks driving changes in the global oil and gas equity market.

3 Measuring climate change volatility shocks

Two main transmission channels of climate change risk to financial markets are usually

pointed out in the literature. These are referred to as physical and transition risks.

Climate change can adversely impact capital stock, economic activities and markets

directly as more frequent and severe climate-related disasters occur and are predicted

for the upcoming years. The social, economic and political impact of physical risk is

mostly country-specific, but it has potential systemic implications. A country that

is less vulnerable to climate-related events can still have a great indirect exposure

to physical risk through international relations with countries that are particularly

vulnerable. Financial stability is however most likely to be affected by climate change

indirectly through increasing transition risk. As the uncertainty about the timing

and the speed of adjustment towards green economies increases, so does transition

risk. The systemic implications that climate change poses to financial markets are

thus most likely to come from transition risk and carbon-intensive sectors. Transition

risk includes the impact on carbon-intensive asset prices of policy changes towards

carbon pricing, legislation like the UK’s Climate Change Act of 2008 and disruptive

technological progress.

The main goal of this paper is to analyze to what extent climate change risk is

affecting financial market volatilities. We are particularly interested in the exposure

of financial markets to transition risk arising from the likelihood of economies going

low-carbon. In this setting, carbon-intensive equities are expected to be particularly

affected. So far we have been focused on the prices of oil and gas companies. Because

all prices should be responsive to climate change risk, even though with different

magnitudes, we take a measure that captures the magnitude of unexpected volatility

shocks common to a wide range of oil and gas prices at the same time. We then

consider climate change news as a determinant of common volatility shocks to oil

and gas stock prices as climate policies are presumably affecting the value of equity

holdings in the fossil sector (Leaton, 2012).

In assessing the economic impact of climate change, research has relied on rising

mean temperature levels. Diebold and Rudebusch (2019) go a step further and propose

a novel range-based measure of daily temperature volatility. The new measure of

temperature volatility is called the diurnal temperature range and is defined as the

difference between the daily maximum and minimum temperatures at a given location.
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However, when assessing how climate change is affecting financial markets through

transitional risk, it is difficult to think that shocks to temperature volatility will impact

the volatilities of many asset returns around the world.

To measure the impact of climate change empirically, we start by using the monthly

climate change news index of Engle et al. (2020). By applying textual analysis to the

daily Wall Street Journal (WSJ), the climate change news generic index measures the

fraction of its text content dedicated to the topic of climate change. The climate change

vocabulary is defined as a set of representative words from relevant texts published by

governments and research organizations. To construct the index, a score is assigned

to each edition of the WSJ based on the relevance of its climate change content. For

instance, a low score is attributed to a particular edition if it has terms that appear

in most editions on other days as well. The low score is thus intended to reflect

the less informative WSJ content on that particular day. A high score, on the other

hand, reflects a text content on a given day with representative terms that appear

infrequently overall but frequently in that day’s newspaper edition. The index is then

computed as the cosine similarity between the scores and each edition of the WSJ.

The index ranges between zero - no words on the WSJ match the climate change

vocabulary - and unity - if text content of the WSJ shows the same terms in the same

proportion as the authoritative texts used to construct the vocabulary. This monthly

index is available between 1984/01 and 2017/06. To distinguish between positive news

and bad news, a different version of the index is provided. Using sentiment analysis,

bad (or negative) news about climate change can be identified and a climate change

bad news index is constructed for the period between 2008/06 and 2017/06. Both

indexes, general and bad news, are plotted in Figure 4.

Supported by the Ljung-Box AR(1) and ARCH(1) test results, we estimate an

AR(1) model with GARCH(1,1) errors for each climate change news index. The inno-

vations and estimated volatilities are depicted, respectively, (a)-(b) and (c)-(d) panels

of Figure 5 for general then bad news indexes.

To compute the climate change volatility shocks, we start by modeling the climate

change news index, generally denoted by CCt, t = 1, . . . , T , as an AR(1) process. A

climate change volatility shock is then defined as

e2CC,t − 1 =
(CCt − µCC − βCCCCt−1)

2 − hCC,t

hCC,t

, (7)

where µCC is the intercept in the mean equation, βCC is the coefficient of the first-order

autoregressive term, and hCC,t is the variance of the residuals from the mean equation

of the climate change news index. The climate change volatility shock represents the
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Figure 4: The monthly climate change generic and bad news index (multiplied by
1000) of Engle et al. (2020). Both indexes are available at http://pages.stern.nyu.
edu/~jstroebe/Data/EGLKS_data.xlsx.
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proportional difference between the squared innovations in the climate change news

index and its expectation. The realized squared innovations are on some days bigger

than one and on other days smaller than one. If oil and gas equities have squared

innovations bigger than one at the same time, this can be interpreted as a common

volatility shock which can be generally associated with geopolitical news. If it coincides

with relevant climate change news, then the geopolitical risk on that day is regarded

as climate change risk.

The same strategy to identify volatility shocks is applied to the other determinants

of O&G GEOVOL considered below.

4 Disentangling geoclimatic volatility

Common volatility shocks to the global oil and gas equity market come from different

sources. Smales (2021) studied the impact of geopolitical events on oil and stock mar-

kets and found that geopolitical risk drives oil price and stock market volatility. In

particular, an increase in geopolitical risk is associated with higher volatility in both

markets. This is an important result to assessing the systemic nature of geopolitical

risk. However, the direction of these effects is not clear. As a proxy for geopolitical

risk, Smales (2021) uses the geopolitical risk index of Caldara and Iacoviello (2019).

This index measures the monthly ratio of the number of articles related to geopo-

litical tensions to the total number of articles in eleven newspapers published in the

US, the United Kingdom and Canada. By applying text mining, the index seems bi-

ased towards the words selected, which include explicit mentions of geopolitical risk,

military-related and nuclear tensions, war and terrorist threats. This makes the index

presumably a better indicator of military risk. It might be the case that by using

a broader measure of geopolitical risk, such as geopolitical volatility, results are re-

versed. Shocks to the global oil market such as those arising from price or trade wars

drive geopolitical risk (rather than the other way round) as this market is by nature

geopolitical.

To control for other relevant shocks affecting the oil and gas geopolitical volatility,

we consider volatility shocks to the 1) 1-month future West Texas Intermediate crude

oil price (denoted by WTI), 2) Standard & Poor’s Depositary Receipts (SPDR) S&P

500 exchange traded fund (SPY), and 3) all country world index (ACWI). The WTI is

a global benchmark index likely to reflect three types of volatility shocks, namely sup-

ply shocks, shocks to the global demand for all industrial commodities, and demand

shocks specific to the global crude oil market (Kilian, 2009). The latter is interpreted

as the precautionary demand that arises almost instantaneously with market concerns
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regarding future oil supplies. In practice, expectations about future oil supply change

in response to exogenous political shocks reflected in shifts in the conditional variance

- rather than the conditional mean - of oil supply shortfalls and consequent increase

in the real price of oil. Kilian (2009) shows that demand shocks, in particular precau-

tionary demand shocks, are the main drivers of the global oil market price as opposed

to the common wisdom favoring oil supply shocks. The volatility shocks arising from

the global oil market are interpreted as either oil supply volatility shocks as they are

likely to reflect OPEC decisions regarding oil production as found in section 3 or oil

precautionary demand volatility shocks. The SPY index is intended to track the S&P

500 index, which comprises 500 large- and mid-cap US stocks and is one of the main

benchmarks of the US equity market. Given all carbon-intensive equities are traded in

the NYSE and the relevance of the US in the global financial system, the SPY is used

here to capture US equity market shocks as well as indicate the financial health and

stability of the US economy. The ACWI is a global equity index designed to measure

the global equity-market performance, including stocks from developed and emerging

markets. This index is indented to capture global equity market shocks. Even though

they both measure global volatility shocks, the ACWI and the geopolitical volatility

of country equity ETFs, the reason why we choose to use the ACWI rather than the

country GEOVOL index of Engle and Campos-Martins (2020) has to do with reverse

causality. Some of the geopolitical shocks affecting the oil and gas global equity mar-

ket are the same as the ones affecting the global country equity market, as measured

by GEOVOL. We find however no evidence for reverse causality between O&G GEO-

VOL and the ACWI volatility shocks. It may also be argued that oil price shocks are

likely to affect the US and the global equity markets as well. Finally, precautionary

demand volatility shocks may also reflect concerns about future oil shortfalls due to

tighter climate policies regarding carbon-intensive activities. Disentangling the source

of common shocks to the global oil and gas equity market may thus be challenging.

To analyze to what extent climate change news affects the volatility of the global

oil and gas equity market, we define and compute climate change volatility shocks as in

(3). In Table 3, we present the estimation results for the multiple linear regressions of

the oil and gas geopolitical volatility (O&G GEOVOL) on two climate change indica-

tors, namely the volatility shocks arising from climate change generic news (CC+
m) and

climate change bad news (CC−m), and the three other variables controlling for volatility

shocks arising from the global oil market (WTI), the US equity market (SPY), and the

global equity market (ACWI). Because the climate change news indexes are monthly,

we compute monthly averages for all other variables. The sample size for the bad

news index is limited to the period between 2008/06 until 2017/06 so the sample is
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shortened accordingly. The good news is that from 2008/06 the oil and gas panel is

balanced (with no missing values).

Table 3: Geoclimatic volatility: the effects of volatility shocks to the climate change
generic (CC+

m) and bad (CC−m) news index on oil and gas geopolitical volatility, O&G
GEOVOL. Volatility shocks to the SPDR S&P 500 ETF (SPYm), the 1-month WTI
crude oil future (WTIm) and the all country world index ETF (ACWIm) are included
as control variables. For comparison, results are also shown for the energy sector fund
(XLEm).

O&G GEOVOLm

(1) (2) (3) XLEm

CC+
m

CC−m

WTIm

SPYm

ACWIm

WTIm × CC+
m

SPYm × CC+
m

ACWIm × CC+
m

WTIm × CC−m

SPYm × CC−m

ACWIm × CC−m

O&G GEOVOLm−1

Observations
Adj. R2

σ̂
F Statistic

−0.031∗∗

(0.016)
0.046∗

(0.024)

0.509∗∗∗

(0.104)
0.179

(0.152)
0.212∗

(0.123)

0.191∗∗

(0.078)

107
0.325
0.467

9.578∗∗∗

−0.039
(0.024)
0.041

(0.025)

0.485∗∗∗

(0.124)
0.219

(0.156)
0.207

(0.137)

−0.054
(0.124)
0.089

(0.094)
−0.019
(0.092)

0.195∗∗

(0.079)

107
0.316
0.470

6.500∗∗∗

−0.037∗∗

(0.017)
−0.023
(0.034)

0.409∗∗∗

(0.104)
0.258∗

(0.148)
0.216∗

(0.119)

0.111∗∗∗

(0.042)
−0.054
(0.092)
−0.250∗∗∗

(0.093)

0.141∗

(0.076)

107
0.385
0.445

8.434∗∗∗

−0.005
(0.010)
−0.002
(0.014)

0.329∗∗∗

(0.064)
0.234∗∗

(0.093)
−0.025
(0.076)

108
0.250
0.289

8.212∗∗∗

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

The Ljung-Box AR(1) test statistic for the model without the lagged dependent
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variable is 5.769 (0.016). Thus, to model the time dependence in the data we add a

first-order auto-regressive component to every regression.

According to the estimation results for the baseline regression (1), volatility shocks

to the climate change generic and bad index have, respectively, negative and positive

effects on the global oil and gas equity market volatility. By including both indexes

in the analysis, we aim to distinguish the effects of each on O&G GEOVOL. Notwith-

standing the evidence that climate change generic news affects O&G GEOVOL, bad

news tends to rather create adverse and larger (in magnitude) effects. Interestingly,

when only the generic news index is included in the regression, no statistically sig-

nificant effect is found. This may be due to the fact that good and bad news affect

O&G GEOVOL in opposite directions, which presumably cancel out. Only when both

indexes are included, are we able to disentangle the significant effects of good and bad

news.

The positive coefficient associated with the bad news index (0.046) indicates that

unexpected volatility shocks driven by bad news about climate change are associated

with relativity large oil and gas geopolitical volatility. When arising from a climate

change generic news, a relatively smaller decrease in the global oil and gas equity

market volatility is estimated (−0.031). The negative sign does not mean oil and

gas equity return volatilities are decreasing, it means they are changing less in either

direction. By including the bad news index, we hope that the generic news index is

able to mostly capture the effect of positive news about climate change. This seems

to be supported by the negative sign of the estimated coefficient for CC+. Good news

about climate change makes investors feel more confident about the future of oil and

gas leading to less uncertainty and smaller oil and gas unexpected volatility shocks.

Bad news about climate change is more likely to cause major changes in the oil and

gas equity returns as it creates more uncertainty regarding the viability of investments

in carbon-intensive assets and activities. This follows the literature on the asymmetric

effects of good and bad news on volatility. It is well known that negative shocks to

stock prices produce more volatility than positive shocks. Similarly, the magnitude

of the effect of climate change volatility shocks on the volatilities of oil and gas stock

returns is greater when the news is bad compared to a generic news.

Overall, shocks to any of the control determinants seem to make the global oil

and gas equity market move. In other words, the volatility of global oil market, the

US equity market, and the global equity market and that of the global oil and gas

equity market all move together. We find however robust evidence that shocks to the

global oil market are also affecting the global oil and gas equity market, as measure by

O&G GEOVOL. Some of the largest oil and gas geopolitical volatility shocks coincide
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with days when OPEC announced its decisions regarding oil production, decisions that

have frequently been different from what markets were expecting or hoping for. Hence,

supply-based oil volatility shocks tend to drive large unexpected changes in the global

oil and gas equity market volatility. The US and the global equity markets also affect

O&G GEOVOL meaning that higher economic uncertainty, locally and globally, is

reflected in higher demand-based uncertainty around oil an gas equities. Considering

that the volatility is higher and volatility shocks are larger during periods of economic

crisis (when output is falling), it may be argued that O&G GEOVOL is, in general,

counter-cyclical.

In order to analyze if the impact of these control determinants changes when there

is simultaneously climate change news, we also include interaction terms between them

and CC+ in (2) and CC− in (3). It is interesting to observe that climate change bad

news amplifies the effects of oil volatility shocks. As an example, take the drone attack

to the Saudi Aramco oil facilities in Saudi Arabia on November 30, 2016. The disrup-

tion in oil production had an immediate impact on oil prices around the world and the

effects on the stock prices of major oil companies followed suit. Now suppose that on

the same day devastating wildfires hit Australia raising concerns about climate change

both in terms of physical and transition risks, and about the future of oil and gas.

This climate change bad news thus amplifies the positive effect of the oil volatility

shock on O&G GEOVOL. Regarding the equity markets, it seems that a volatility

shock to the global equity market attenuates (−0.250) the effect of simultaneous cli-

mate change bad news. This may be due to the fact that global equity market shocks

are still relatively more relevant than climate change. Global markets (and investors)

appear to react more to political and economic news, which are inherently short-term

compared to climate change, still seen by many as a long-term problem. Thus, when

the news moving global markets is on climate change, it is not surprising that the

effect is relatively smaller.

Given the similarities between the companies included in the energy sector fund

XLE and those used to estimate O&G GEOVOL, we regress the volatility shocks

to the XLE on the same determinants as in (1). The results are shown in the last

column of table 3. We find no evidence that climate change news affects the energy

sector, where only the WTI seems to explain XLE volatility movements. Climate

change news seems to have an impact and be material (rather than fake) only when it

affects oil and gas companies around the world (and not just those in the US). From

the historical denial and skepticism about climate change to the withdrawal from the

Paris agreement during the administration of President Donald Trump, this result is

hardly surprising.
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There is no evidence that global oil market volatility is driven by climate change

news. A linear regression of the WTI volatility shocks on CC+ and CC− shows no

statistically significant effects, even when controlling for the other determinants. In-

vestors appear to be pricing climate change risks in oil and gas companies rather than

the commodities themselves. This is also likely to be reflecting the fact that demand

for oil is quite inelastic. Climate change generic news does seem to affect both US and

global equity markets. These results are not shown to save space.

To check the robustness of results to the presence of outliers and shifts, we allow for

richer structures of O&G GEOVOL. By applying the indicator saturation approach

introduced by Hendry (1999), we are able to detect structural changes and outliers

in O&G GEOVOL. Time-varying coefficients will later be allowed such that the geo-

climatic volatility is also allowed to be more flexible over time. Impulse and step

indicators are dummy variables which assume value 1 from time t (inclusive) and zero

otherwise. By applying both impulse and step indicator saturation (Hendry et al.,

2008), we are able to detect, respectively, outliers and shifts in the mean of O&G

GEOVOL. All regressions with indicator saturation have been estimated using the

R package gets (Pretis et al., 2018). The monthly impulse and step indicators intro-

duced as regressors are not reported to save space. On average, oil and gas geopolitical

volatility appears to have increased over time. The statistically significant indicators,

for instance, in regression (4) are IISm=10/2008, IISm=04/2010 and SISm=10/2008. But oth-

ers impulse indicators have also been selected in other regressions such as IISm=10/2014,

IISm=01/2016 or IISm=11/2016. Notice that some of the biggest oil and gas geopoliti-

cal events are identified as outliers, meaning IIS captures what determinants do not.

Hence, including impulse and step indicator saturation seems to improve the empir-

ical results as shown in table 4. Oil and gas geopolitical volatility spikes and shifts

appear to be only introducing noise in the geoclimatic volatility. It is now revealed

that climate change generic news can have an adverse effect on O&G GEOVOL if at

the same time markets face an unexpected volatility shock arising from the US equity

market. The coefficient capturing this effect is positive, statistically significant and

equal to 0.130.
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Table 4: Estimation results when impulse (IIS) and step (SIS) indicator saturation is
applied (not shown).

(4) (5) (6)

CC+
m

CC−m

WTIm

SPYm

ACWIm

WTIm × CC+
m

SPYm × CC+
m

ACWIm × CC+
m

WTIm × CC−m

SPYm × CC−m

ACWIm × CC−m

O&G GEOVOLm−1

Observations
Adj. R2

σ̂
F Statistic

−0.020
(0.013)
0.036∗

(0.019)

0.406∗∗∗

(0.085)
0.047

(0.159)
0.245∗∗

(0.104)

0.098
(0.062)

107
0.601
0.360

15.518∗∗∗

−0.041∗∗

(0.018)
0.035∗

(0.019)

0.336∗∗∗

(0.095)
0.179

(0.159)
0.245∗∗

(0.109)

−0.116
(0.097)
0.130∗

(0.072)
−0.010
(0.071)

0.120∗

(0.060)

107
0.625
0.349

12.790∗∗∗

−0.038∗∗∗

(0.014)
−0.034
(0.027)

0.324∗∗∗

(0.085)
0.068

(0.155)
0.249∗∗

(0.100)

0.118∗∗∗

(0.033)
−0.003
(0.073)
−0.316∗∗∗

(0.076)

0.062
(0.062)

107
0.620
0.352

13.353∗∗∗

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Finally, results are also consistent when neither the WTI 1-month oil future is

included as an additional regressor in the Fama and French three factor models nor the

cross-sectional mean of oil and gas standardized residuals is included in the estimation

of O&G GEOVOL. These results are not shown to save space.

It is commonly thought that climate change is inducing structural changes in the

financial system (Network for Greening the Financial System, 2019). To allow for time-

varying effects on the global oil and gas equity market volatility meaning, for instance,

24



a more flexible geoclimatic volatility structure over time, we apply the multiplicative

saturation approach of Ericsson (2012). The idea is to interact CC+ and CC− with

impulse and step indicators. To keep the model parsimonious and given structural

changes due to climate change are unlikely to occur at a high frequency, we construct

yearly step indicators. These are dummy variables which assume value 1 at or after year

y and zero otherwise. To select the relevant dummies, a general to specific approach is

applied such that we start with a fairly general unrestricted model with all indicators

included and then narrowed down until we get to the final restricted model where only

the statistical significant indicators are included. These results are presented in table

5. Notice that the selected monthly IIS and SIS are not reported to save space.

The most important result from this multiplicative indicator saturation approach

to geoclimatic volatility is that its time-varying structure is revealed not only for

the global oil and gas equity market but also for the US energy sector XLE, which

previously showed no impact of climate change news. Results using impulses or steps

tell a similar story as steps can be interpreted as combinations of impulses. Hence we

opt for only reporting results when yearly steps and their interactions with CC− are

included. The results support the existence of an adverse effect of climate change bad

news on O&G GEOVOL. Moreover, they provide evidence that this effect has changed

in magnitude over time. In particular, the year 2016 is marked by a large increase in

the geoclimatic volatility of the global oil and gas equity market. Interestingly, this

increase is also observed for the US energy sector (there is no evidence for an adverse

effect of climate change bad news on the XLE volatility only until 2016). The year

2016 was a remarkable year in terms of political and climate policy events. The Paris

Agreement was signed on April 22, 2016 and became effective on November 4, 2016.

The same year, the UK European Union membership referendum surprisingly was in

favor of Brexit on June 23 raised widespread concerns about their future climate and

environmental policy, and Donald Trump was unexpectedly elected as US President

on November 9, who regarded climate change as fake news and promised to withdraw

the US from the international climate accord.

The effect of climate change generic news appears to be very stable over time as

neither the yearly IIS nor the SIS indicators are statistically significant. For that

reason, the results are not reported.
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Table 5: Estimation results when step indicator saturation (SIS) is applied (not
shown), and SISy>x

m , taking value 1 for month m in year x and following years, in-
teracted with the climate change bad news CC−m are included (only the statistically
significant are shown).

O&G GEOVOLm XLEm

WTIm

SPYm

ACWIm

CC+
m

CC−m

CC−m×SISy>2016
m

CC−m×SISy>2017
m

O&G GEOVOLm−1

Observations
Adj. R2

σ̂
F Statistic

0.312∗∗∗

(0.083)
0.069

(0.149)
0.265∗∗∗

(0.098)

−0.024∗∗

(0.012)
0.033∗

(0.018)

0.496∗∗∗

(0.138)
−0.478∗∗∗

(0.179)

0.143∗∗

(0.060)

107
0.652
0.336

15.180∗∗∗

0.210∗∗∗

(0.054)
0.055

(0.094)
0.079

(0.064)

0.003
(0.008)
−0.012
(0.011)

0.377∗∗∗

(0.086)
−0.267∗∗

(0.114)

108
0.539
0.223

12.374∗∗∗

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Investors in carbon-intensive activities seem to be pricing climate change risks.

Using world’s major oil and gas stock prices, our empirical evidence shows that the

global oil and gas equity market is reacting to climate change news, especially when the

news is bad. The impact has become larger over time and is amplified by oil shocks.

In order to analyze if the impact of climate change news on oil and gas geopolitical

volatility changes across different climate change frequencies and topics, we use another

index to construct the climate change volatility shocks. The Media Climate Change

Concerns (MCCC) index of Ardia et al. (2020) and intended to measure unexpected

increases in climate change concerns. It is a daily index constructed by applying

text mining to climate change-related news published by major US newspapers. The

selected high-reaching (daily circulation of more than 500,000) newspapers are (i) The

Wall Street Journal, (ii) The New York Times, (iii) The Washington Post, (iv) The

Los Angeles Times, (v) The Chicago Tribune, (vi) USA Today, (vii) New York Daily
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News, and (viii) The New York Post. The MCCC index is available from January 2,

2003 until June 29, 2018.
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Figure 6: The daily MCCC index (gray) and 20-day rolling window average
(black). The index is available at https://www.dropbox.com/s/way43an9xntvqwn/

Sentometrics_US_Media_Climate_Change_Index.csv?dl=1.

In order to compare the climate change daily volatility shocks to the oil and gas

geopolitical volatility over time, we compute a 20-day rolling window average from the

daily point estimates. This averaged series is plotted in figure 7.
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Figure 7: The daily oil and gas geopolitical volatility points (gray) and its 20-day
rolling window average (black).

We start by computing the first difference of the MCCC index to remove stochastic

trends. There is strong evidence for time dependence in both first and second moments

according to, respectively, the AR and ARCH tests results. Similarly to Ardia et al.

(2020), using this index as an additional factor in the oil and gas pricing factor models,

we find no evidence that it affects the global oil and gas equity returns.

Volatility shocks to the MCCC index do affect the oil and gas volatilities around

the world and ultimately the oil and gas geopolitical volatility as shown in table 6.

Daily geoclimatic volatility has important implications in terms of the term structure of
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climate change risk, as transition risk seems to materialize in relatively shorter horizons

(Bolton and Kacperczyk, forthcoming). Evidence for daily geoclimatic volatility is

supported by the positive and statistically significant coefficient associate to MCCCt.

Interestingly, climate change risk seems to materialize only when there is no volatility

shock to the global oil market. Even though climate change bad news seemed to

amplify the adverse effect of oil shocks, in shorter horizons climate change concerns

appear to be relatively irrelevant to risk managers compared to the global oil market

risk. This result is consistent with common wisdom that investors still incorrectly view

the implications of climate change to be relevant only in the long run and so are more

focused on returns than sustainability.

There is no evidence of time dependence in the first or second moment of the

residuals from all regressions. To save space, the results from the AR(2) and ARCH(2)

tests are not reported.

Table 6: Geoclimatic volatility: the effects of volatility shocks to the media climate
change concerns index MCCCt on oil and gas geopolitical volatility, O&G GEOVOL.

(1) (2) (3) (4) (5)

MCCCt

WTIt

SPYt

ACWIt

WTIt × MCCCt

SPYt × MCCCt

ACWIt × MCCCt

O&G GEOVOLt−1

O&G GEOVOLt−2

Observations
Adj. R2

σ̂
F Statistic

0.042∗∗

(0.018)

0.189∗∗∗

(0.016)
0.054∗∗∗

(0.021)
0.086∗∗∗

(0.016)

0.062∗∗∗

(0.016)
0.058∗∗∗

(0.016)

3,899
0.061
1.868

43.291∗∗∗

0.048∗∗∗

(0.018)

0.184∗∗∗

(0.016)
0.055∗∗∗

(0.021)
0.086∗∗∗

(0.016)

−0.030∗∗∗

(0.010)

0.062∗∗∗

(0.016)
0.057∗∗∗

(0.016)

3,899
0.063
1.866

38.506∗∗∗

0.039∗∗

(0.018)

0.190∗∗∗

(0.016)
0.052∗∗

(0.021)
0.086∗∗∗

(0.016)

−0.011
(0.016)

0.062∗∗∗

(0.016)
0.057∗∗∗

(0.016)

3,899
0.061
1.868

37.163∗∗∗

0.042∗∗

(0.018)

0.190∗∗∗

(0.016)
0.054∗∗∗

(0.021)
0.084∗∗∗

(0.016)

−0.015
(0.010)

0.061∗∗∗

(0.016)
0.058∗∗∗

(0.016)

3,899
0.061
1.867

37.414∗∗∗

0.048∗∗∗

(0.018)

0.184∗∗∗

(0.016)
0.055∗∗∗

(0.021)
0.084∗∗∗

(0.016)

−0.031∗∗∗

(0.010)
0.0001
(0.016)
−0.016
(0.010)

0.061∗∗∗

(0.016)
0.057∗∗∗

(0.016)

3,899
0.063
1.866

30.214∗∗∗

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Our evidence showed that investors have become more concerned over time about

oil and gas companies exposing them to climate-related financial losses. By applying

yearly impulse and step indicator to the MCCC index, in Table 7 we observe again an

increase in the impact of the MCCC index on O&G GEOVOL over time. In particular,

it increases in 2004 and then it further increases in 2010. Geoclimatic volatility seems

to be gaining more importance as climate change concerns and awareness drive the

global oil and gas equity market volatility over time. Our empirical results thus support

both monthly and daily geoclimatic volatility.
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Table 7: Estimation results when impulse (IIS) and step (SIS) indicator saturation is
applied, and IISy=x

t , taking value 1 for month m in year x, interacted with MCCCt are
included (only the statistically significant are shown).

(6) (7)

WTIt

SPYt

ACWIt

MCCCt

MCCCt×IIS2004

MCCCt×IIS2010

IIS2008

SIS2008

SIS2009

SIS2014

O&G GEOVOLt−1

O&G GEOVOLt−2

Observations
Adj. R2

σ̂
F Statistic

0.189∗∗∗

(0.015)
0.050∗∗

(0.021)
0.086∗∗∗

(0.016)

0.167∗∗∗

(0.057)
0.211∗∗

(0.087)

0.603∗∗∗

(0.118)

0.055∗∗∗

(0.016)
0.050∗∗∗

(0.016)

3,899
0.069
1.860

37.093∗∗∗

0.187∗∗∗

(0.015)
0.050∗∗

(0.021)
0.086∗∗∗

(0.016)

0.042∗∗

(0.017)

0.606∗∗∗

(0.118)
−0.741∗∗∗

(0.130)
0.162∗∗

(0.077)

0.053∗∗∗

(0.016)
0.049∗∗∗

(0.016)

3,899
0.068
1.861

32.738∗∗∗

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Aggregating news by topics and themes provides a more comprehensive analysis of

the impact of different news on the global oil and gas equity market. In particular,

stock prices of oil and gas companies around the world seem to be more volatile

following news on the agricultural impact of climate change as shown by regression

(8) in table 8. The effect of news involving livestock, topic 20 shown in table 9, on

the oil and gas geopolitical volatility is particularly pronounced. Similar effects are

thus to be expected if the geoclimatic volatility approach is applied to agri-business
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assets as increased attention and pressure have been raised due to climate-damaging

agricultural practices2. Climate change news relating to financial and regulation or

public impact has a positive effect on oil and gas geopolitical volatility as well. News

on disasters appears to rather decrease oil and gas geopolitical volatility. This may be

due to the fact that news on a particular disaster has mostly local effects (International

Monetary Fund, 2020) and so unlikely to have a global impact (unless they become

too frequent, widespread and increase transition risk).

Finally, the ten words with the highest probability for the statistically significant

topics shown in table 8 are the following:

Financial & Regulation

topic40 project, technology, plant, cost, coal, carbon dioxide, power plant,

facility, scale, carbon.

topic31 oil, tax, fuel, price, carbon tax, production, taxis, cost, ethanol,

revenue.

Environmental Impact

topic1 ship, drilling, oil, sea, fishing, shipping, coast, boat, shell, explo-

ration.

Agricultural Impact

topic4 drought, region, river, rain, desert, lake, dam, rainfall, water supply,

mountain.

topic20 food, animal, meat, cow, cattle, farm, ski, resort, beef, diet.

For more details and other topics, we refer to Ardia et al. (2020).

5 Discussion of policy implications

As time for an orderly transition to low-carbon economies runs out, the likelihood of

extreme and global climate-related shocks to carbon-intensive asset prices rises and

so does the likelihood of massive unexpected losses. It is well known that oil global

shocks impact the real economy with effects across all sectors of activity and countries

around the world. Financial markets are however not prepared to cope with such

2Using stock prices of the largest US meat processing company, the American Tyson Foods, climate
change bad news has an adverse effect on the volatility of the Tyson Foods stock returns, and climate
change generic news appears to exacerbate the effects of volatility shocks to the US stock market.
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Table 8: The effects of MCCC on GEOVOL by theme. MCCC themes were computed
as the average of the topics included in each theme following the classification proposed
by Ardia et al. (2020).

(8) × WTI × SPY × ACWI

WTIt

SPYt

ACWIt

Financial & Regulationt×

Agreement & Summitt×

Public Impactt×

Researcht×

Disastert×

Environmental Impactt×

Agricultural Impactt×

O&G GEOVOLt−1

O&G GEOVOLt−2

Observations
Adjusted R2

σ̂
F Statistic

0.190∗∗∗

(0.016)
0.055∗∗∗

(0.021)
0.086∗∗∗

(0.016)

0.032∗

(0.016)
−0.008
(0.015)
0.014

(0.021)
−0.0003
(0.007)
−0.025∗

(0.014)
−0.014
(0.013)
0.038∗∗∗

(0.011)

0.061∗∗∗

(0.016)
0.059∗∗∗

(0.016)

3,899
0.064
1.865

23.058∗∗∗

0.189∗∗∗

(0.016)
0.057∗∗∗

(0.021)
0.086∗∗∗

(0.016)

−0.011
(0.012)
−0.008
(0.012)
0.003

(0.014)
−0.020∗

(0.011)
−0.015
(0.010)
0.014∗

(0.008)
−0.003
(0.009)

0.060∗∗∗

(0.016)
0.059∗∗∗

(0.016)

3,899
0.067
1.862

15.730∗∗∗

0.190∗∗∗

(0.016)
0.047∗∗

(0.021)
0.088∗∗∗

(0.016)

−0.028
(0.020)
−0.002
(0.017)
−0.018
(0.023)
0.015∗

(0.008)
0.0002
(0.015)
0.006

(0.011)
−0.003
(0.013)

0.062∗∗∗

(0.016)
0.058∗∗∗

(0.016)

3,899
0.064
1.865

15.030∗∗∗

0.193∗∗∗

(0.016)
0.055∗∗∗

(0.021)
0.086∗∗∗

(0.016)

−0.008
(0.010)
0.011

(0.009)
−0.030∗∗

(0.014)
0.006

(0.008)
0.005

(0.011)
0.004

(0.005)
−0.001
(0.008)

0.061∗∗∗

(0.016)
0.059∗∗∗

(0.016)

3,899
0.063
1.865

14.914∗∗∗

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table 9: The effects of the MCCC index on the oil and gas geopolitical volatility by
theme. MCCC themes were computed as the average of the topics included in each
theme following the classification proposed by Ardia et al. (2020).

WTIt

SPYt

ACWIt

Topic1t

Topic4t

Topic20t

Topic31t

Topic40t

O&G GEOVOLt−1

O&G GEOVOLt−2

Observations
Adjusted R2

σ̂
F Statistic

0.192∗∗∗

(0.016)
0.055∗∗∗

(0.021)
0.089∗∗∗

(0.016)

−0.014∗

(0.008)
0.018∗

(0.010)
0.017∗∗∗

(0.006)
0.015∗∗

(0.006)
0.018∗

(0.010)

0.061∗∗∗

(0.016)
0.058∗∗∗

(0.016)

3,899
0.064
1.865

6.919∗∗∗

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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shocks where both carbon-intensive and low-carbon assets are affected by aggregate

demand shocks. The uncertainty around future demand for fossil fuels due to climate

change and, more recently, exacerbated by the COVID-19 pandemic (when for the

first time in history, oil futures were trading at negative prices showing how global

shocks can have unprecedented effects on oil prices) is extremely high. Uncertain

is also the future oil supply given the recent price wars (e.g., between Saudi Arabia

and Russia). By their political power, wealth, and expertise, fossil fuel companies

should be proactive in the transition process towards low-carbon economies. Because

the current incentives (mostly moral) to shareholders are not enough, governments in

countries highly dependent on fossil fuels must pressure them to produce greener and

better by applying carbon taxes, taking legal action and financing green activities in

order to make them more competitive while greening their financial systems.

Some challenges may hinder the transition process and once again policy action

will be crucial. Country data shows that it is possible to reduce CO2 emissions and

experience economic growth. But history has also shown that CO2 emissions tend

to rise after economic or financial crises. Moreover, oil prices have been remarkably

low and oil companies are among the highest dividend payers meaning transition to

clean energies will be even more challenging as non-fossil fuels become relatively less

competitive. As demand for oil starts showing signs of stagnation in some developed

countries, there is a need to regulate oil companies from shifting to developing countries

such as India and China and investing in oil exploration and production capacity.

Because emissions are likely to grow elsewhere, especially in developing countries,

it may be desirable to identify international relations, trade and financial contracts

between firms in low and high carbon economies.

Virtually all assets are exposed to transition risk with different magnitudes mean-

ing some assets are more responsive than others. Thus, assets with bigger volatility

factor loadings are expected to be the more exposed to climate change risk because

the more uncertain investors are regarding the profitability of their investments, and

the more volatility shocks can be attributed to climate-related common innovations.

Because volatilities are correlated, a common shock will sharply increase the volatility

of a portfolio. Although it is not possible in this framework to predict when such a

shock will occur (even though we can evaluate future climate scenarios), it is possible

to form portfolios with reduced impact. This important feature of the geopolitical

volatility model leads to a new criterion for portfolio optimality, intended to reduce

the exposure to this type of risk; see Engle and Campos-Martins (2020). Hence, if the

loadings on assets differ, it is possible to reduce (but not eliminate) this risk. A stable

portfolio should be relatively insensitive to geoclimatic volatility and would prevent
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market turmoil during the transition process. As the probability of a disordered tran-

sition increases, uncertainty is likely to drive global carbon-intensive equity market

volatility and pose increased risks to financial stability. Investors are already pricing

climate change risks but to what extent are companies or firms reacting and chang-

ing accordingly? Information about the exposure of companies to common, global or

geoclimate related risks is scarce. To promote more informed investing, lending, and

insurance underwriting decisions, organizations across all sectors are recommended

to disclose climate-related financial information (Task Force on Climate-related Fi-

nancial Disclosures, 2017). But interpreting and drawing comparisons out of such

non-harmonized information is difficult. The geoclimate volatility approach gives in-

sight on which companies matter and how policymakers should pressure them and take

action. As a policy instrument, governments and central banks can take positions on

the geoclimate volatility index and help investors to diversify their portfolios during

the transition process. At the global scale, it improves responses to tackle climate

change as agreed by the Paris agreement. The role of the financial system in man-

aging climate-related risks and mobilizing capital for low-risk investments is crucial

(Network for Greening the Financial System, 2019). Our contribution to identifying

the high and low risk assets, designing financial regulations and guiding capital flows

can help.

Given most large companies are publicly traded, results can then be extended to

virtually all companies in a country by matching the ones that run similar business

activities using standard industrial classification. Matching allows us to identify com-

panies at different levels of climate change risk, to assess potential financial losses, to

analyze the structure of vulnerable employment, and to define the scale of adjustment

towards a resilient financial and economic systems in the pandemic and net-zero era.

This allows us to define the scale of adjustment that will need to be undertaken to build

and maintain a resilient financial system in the future. It would also help in targeting

the financial and non-financial organizations with public debt or equity more exposed

to climate risk and focusing efforts in implementing recommendations listed in Task

Force on Climate-related Financial Disclosures (2017). This includes asset managers

and asset owners, public- and private-sector pension plans, endowments, and founda-

tions. The results can give insight about the structure of vulnerable labor and on how

to design readjustment policies to help employees at risk entering the changing labor

market.

Investing in activities that are not viable in a low-carbon economy makes investors

less resilient to climate change risks and more exposed to financial losses. Missed

sustainable activities due to the reluctance arising from the lack of information on
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the exposure to climate-related risks, which would otherwise be profitable, create em-

ployment and generate income are also likely in a low-carbon transition scenario. It

is important to properly and efficiently identify entities at different levels of risk, to

consider climate risks in governance and to run scenario analyses to explore the fi-

nancial risks posed by climate change, including the resilience of the current business

models of the largest banks, insurers and the financial system. Models of common

volatility shocks in conjunction with climate and environmental information can be

used to assess the vulnerability or resilience of the financial system as well as study

the predictability of such shocks and how they might propagate both across assets and

over time. Our results provide an important contribution to achieve resilient financial

sectors to climate-related risks.

6 Conclusion

Climate change risk, in particular transition risk, is as a source of geopolitical risk.

Geoclimatic news is expected to impact the volatilities of a wide range of carbon-

intensive equities. From a sample of stock prices from the world’s major oil and gas

companies, we apply a model of geopolitical volatility to capture global shocks to those

volatilities arising from climate change, the global oil market, the US and the global

equity markets.

Climate change geopolitical news is inducing global oil and gas equity market

volatility. But not all geoclimatic shocks are alike. Overall, geoclimatic volatility

has increased over time and differs across time frequencies, climate change sentiment

(negative news has an adverse effect compared to positive news) and concerns (by

topics and themes). Climate change news drives shocks to the global carbon-intensive

equity volatility but not to the global oil market. It seems investors are pricing climate

change risk in oil companies rather than the commodity.

Major funds are reluctant to divest from fossil fuels, arguing that by holding those

shares they are in a better position to influence managers, to pressure companies to

improve and to make sure they stay on track. The empirical evidence seems clear

that investors are pricing in climate change risks. However, as long as climate-related

financial information is not properly disclosed, it will be difficult to assess the risk of

holding those shares. The approach we propose here can help to identify and target

companies with debt or equity more exposed to climate risk during the process of

decarbonising the global energy system.
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A List of carbon-intensive equities

Table 10: The world’s major fossil fuel companies included in the estimation of carbon-
intensive geopolitical volatility. These stocks are all traded in the NYSE.

Company Country
XOM Exxon Mobil United States
RDS Royal Dutch Shell The Netherlands

United Kingdom
CVX Chevron United States
TOT Total France
BP BP United Kingdom
PTR PetroChina China
SNP China Petroleum & Chemical Corp. China
SLB Schlumberger France
EPD Enterprise Products United States
E Eni Italy
COP ConocoPhillips United States
EQNR Equinor Norway
EOG EOG Resources United States
PBR Petrobras Brazil
CEO China National Offshore Oil Corp. China
SU Suncor Energy Canada
OXY Occidental Petroleum United States
KMI Kinder Morgan United States
PSX Phillips 66 United States
HAL Halliburton United States
CNQ Canadian Natural Resources Canada
APC Anadarko Petroleum∗ United States
REPYY Repsol Spain
DVN Devon Energy United States
EC Ecopetrol Colombia

∗Acquired by Occidental Petroleum in 2019.

40



B Summary statistics

Table 11: Summary statistics of oil and gas stock returns. Results from the tests
of time-independence (see Jarque and Bera (1980)) in the first moment and second
moment denoted, respectively, as AR(1) and ARCH(1), are also shown. Rob. Kr. and
Rob. Sk. represent, respectively, the robust kurtosis and robust skewness (see Kim
and White (2004)).

CVX DVN E EC EOG

Min. −10 −10 −10 −10 −10
Mean 0.022 0.005 0.032 0.044 0.013
Max. 10 10 10 10 10
S.D. 2.236 1.692 2.368 2.484 1.969
Rob. Kr 0.256 0.161 0.102 0.161 0.147
Rob. Sk 0.031 0.017 −0.015 0.017 0.042
AR(1) 3.308 33.400 0.087 6.746 0.666
p−value 0.069 0.000 0.768 0.009 0.414
ARCH(1) 193.939 360.807 85.575 82.367 380.222
p−value 0.000 0.000 0.000 0.000 0.000

EPD EQNR HAL KMI OXY

Min. −10 −10 −10 −10 −10
Mean 0.013 −0.004 0.002 −0.015 0.030
Max. 10 10 10 10 10
S.D. 1.613 2.545 1.860 2.460 2.370
Rob. Kr 0.137 0.222 0.131 0.190 0.117
Rob. Sk 0.040 0.018 −0.017 0.002 0.037
AR(1) 0.578 1.978 0.034 19.403 0.232
p−value 0.447 0.160 0.854 0.000 0.630
ARCH(1) 255.600 453.623 151.127 275.096 192.139
p−value 0.000 0.000 0.000 0.000 0.000

PBR PSX PTR RDS REPYY

Min. −10 −10 −10 −10 −10
Mean 0.018 0.021 0.005 −0.025 0.000
Max. 10 10 10 10 10
S.D. 1.716 2.176 2.484 1.855 2.019
Rob .Kr 0.254 0.134 0.147 0.261 0.157
Rob. Sk −0.018 0.025 0.020 −0.004 0.035
AR(1) 5.709 0.837 10.921 0.117 1.267
p−value 0.017 0.360 0.001 0.732 0.260
ARCH(1) 393.875 121.329 373.105 434.295 436.300
p−value 0.000 0.000 0.000 0.000 0.000
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Table 10: Continued from previous page.

PBR PSX PTR RDS REPYY

Min. −10 −10 −10 −10 −10
Mean 0.026 0.030 0.005 0.011 −0.002
Max. 10 10 10 10 10
S.D. 3.098 2.017 2.213 1.599 1.930
Rob. Kr 0.140 0.271 0.157 0.182 0.169
Rob. Sk −0.016 −0.071 0.021 0.009 0.038
AR(1) 5.271 0.765 0.378 4.327 4.302
p−value 0.022 0.382 0.539 0.038 0.038
ARCH(1) 315.547 95.340 154.356 898.501 325.131
p−value 0.000 0.000 0.000 0.000 0.000

SLB SNP SU TOT XOM

Min. −10 −10 −10 −10 −10
Mean 0.001 0.012 0.035 0.012 0.013
Max. 10 10 10 10 10
S.D. 2.157 2.335 2.205 1.777 1.510
Rob. Kr 0.125 0.177 0.271 0.106 0.102
Rob. Sk −0.005 −0.017 0.037 0.042 0.048
AR(1) 0.261 6.484 5.532 4.694 0.499
p−value 0.609 0.011 0.019 0.030 0.480
ARCH(1) 337.858 233.194 247.009 526.754 322.265
p−value 0.000 0.000 0.000 0.000 0.000
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