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Abstract

We propose a novel approach for measuring the impact of climate change on long-horizon equity

risk and optimal portfolio choice. Our method combines historical data about the impact of

climate change on return dynamics with prior beliefs elicited from the temperature long-run

risk (LRR-T) model of Bansal, Kiku, and Ochoa (2019). Our Bayesian framework incorporates

this prior information to obtain more precise estimates of long-term climate risks than existing

methods that solely rely on historical data. Compared to the benchmark investor without

climate change, we document that the LRR-T Bayesian investor predicts higher equity premia

for all investment horizons, with per period variance increasing considerably over the horizon.

This results in relatively (high) low allocations to equities in the (short) long run. Investors

that optimize between portfolios that are vulnerable and non-vulnerable to climate change only

diversify in the long run.
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1 Introduction

A growing body of research examines how climate change affects socio-economic outcomes, ranging

from agricultural production and labor productivity to health and civil conflict.1 Colacito, Hoff-

mann, and Phan (2019) show that rising temperatures can reduce U.S. economic growth by up to

one-third over the next century. Climate change also affects financial markets. Hong, Li, and Xu

(2019) find lower earnings growth and stock returns for food companies in countries that experience

prolonged periods of drought. Bansal, Kiku, and Ochoa (2019) argue that temperature change is a

source of long-run economic risk that carries a significantly positive premium in equity markets.

Investors are increasingly aware that climate change can pose significant investment risks that

should be integrated in their portfolio strategies.2 Regulators also recognize that financial institu-

tions are exposed to environmental risk factors and encourage them to quantify these risks. For

instance, new European regulations (IORP II) require pension funds to include climate risk in their

own-risk assessment. However, despite their efforts, investors struggle to fully grasp the potential

impact of climate change on the value of their portfolio and are searching for approaches to quantify

these risks (see, e.g., the survey conducted by Krueger, Sautner, and Starks (2020)).

Existing work studies the impact of climate change on current asset prices. However, given the

long-term nature of climate change, long-horizon investors such as pension funds are more concerned

about its effects over longer holding periods. These long-term effects are difficult to measure due to

three key problems: parameter uncertainty, data unavailability, and peso problems. Estimating the

climate risk exposure of assets is challenging because of substantial uncertainty about the impact

of climate change on asset returns, because data availability for climate risk factors is limited, and

because currently available data samples may not include sufficient realizations of severe climate

change effects. Robert Stambaugh summarizes the uncertainty about the long-horizon impact of

climate change on asset prices by noting that when we “expand the horizon to the next several

1Dell, Jones, and Olken (2014) provide an overview of work on the economic impact of climate change. A more
recent overview of the climate finance literature is written by Giglio, Kelly, and Stroebel (2020).

2In his 2020 letter to CEOs available at www.blackrock.com/uk/individual/larry-fink-ceo-letter, Larry
Fink notes that “climate change is almost invariably the top issue that clients around the world raise with BlackRock.”
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decades, the possible effects of global warming range from negligible to catastrophic.”3

We address these issues by proposing a novel approach for measuring the impact of climate

change on long-horizon equity risk and return that supplements historical data with prior infor-

mation derived from economic theory. In particular, we set up a Vector Autoregression model

(VAR) to analyze the long-run dynamics of equity returns and include temperature levels as a

predictor in the VAR model to proxy for climate risk. Since the frequency and economic impact

of past climate-induced disasters may not be representative of their future impact in a scenario

of prolonged climate change, historical data may not be very informative about the impact of cli-

mate change on long-horizon returns. We therefore estimate the VAR parameters using a Bayesian

approach that combines historical data with theoretical prior beliefs about return dynamics.4

We elicit these beliefs from the temperature long-run risk (LRR-T) model of Bansal, Kiku,

and Ochoa (2019), in which rising temperatures influence asset prices by increasing the likelihood

of future climate disasters that lower economic growth. Because of investors’ concerns about the

implications of temperature increases for future growth, climate risk can be reflected in current

asset prices even though the impact of climate change in historical data is limited. By imposing a

structure on the relation between temperature levels and returns, the LRR-T model provides prior

information about the impact of climate change. Incorporating this information yields more precise

estimates of long-term climate risks than existing methods that solely rely on past data.

Our main results are as follows. First, we show that a Bayesian investor with LRR-T beliefs

perceives stock markets to be riskier over longer horizons because disasters induced by climate

change reduce mean reversion in returns. Intuitively, because in the LRR-T model temperature

change is persistent, climate-induced disasters tend to occur in clusters during high-temperature

periods, i.e., disasters are more likely to be followed by further negative shocks to consumption

and dividends than by positive shocks. As a result, the long-horizon predictive variance of returns

is higher for investors who form beliefs based on the LRR-T model than for investors with an

uninformative prior or with a prior based on a model that does not feature climate risk, such as the

3This quote is from https://www.nytimes.com/2009/03/29/your-money/stocks-and-bonds/29stra.html.
4As pointed out by Avramov, Cederburg, and Lucivjanska (2018), “Asset pricing theory could provide additional

guidance about important aspects of the return process for which the sample evidence is not particularly informative.”
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original LRR model of Bansal and Yaron (2004). Second, we find that the LRR-T Bayesian investor

expects higher equity risk premia. In the LRR-T model, disasters cause a persistent negative shock

to risk-free rates, but the negative impact on expected market returns is transitory because equity

prices rapidly adjust after a disaster strikes. Therefore, the inclusion of climate change in the model

increases the risk premium.

The impact of these results is clearly visible in the optimal allocation of an investor who allocates

wealth to the market portfolio and the risk-free asset. In the short-term, incorporating LRR-T prior

beliefs compared to the benchmark LRR beliefs results in higher allocations to the market because

of the increased expected risk premium. At longer horizons, equities become considerably riskier

for the LRR-T Bayesian investor, resulting in lower allocations to the market portfolio for horizons

longer than 25 quarters. These results are economically meaningful, with the long-term LRR-T

Bayesian investor allocating roughly 15 percentage points more in the risk-free asset at the longest

analyzed investment horizon of 100 quarters.

Finally, we show that climate change has significant impact in the cross-section. We construct

portfolios that are vulnerable and non-vulnerable to climate change by sorting stocks on their

exposure to historic temperatures. The LRR-T model prices climate risk, implying higher future

expected returns for the vulnerable portfolio. The model based on historical data predicts the

opposite. Next to this, all models forecast high correlations between short-term returns for the

vulnerable and non-vulnerable portfolios, implying that diversification only becomes relevant for

longer-term investments. Overall, when optimizing portfolios with vulnerable and non-vulnerable

assets, we find that short-term investors solely buy the portfolio with the highest perceived risk

adjusted return, which differs based on the investors’ beliefs. In the long run, diversification benefits

bring the LRR-T Bayesian investor to equal weights to the vulnerable and non-vulnerable portfolios.

Our work contributes to two strands of literature. First, we add to the growing body of literature

that studies how climate change affects asset prices. Existing work shows that carbon emissions

(Bolton and Kacperczyk (2020, 2021), Ilhan, Sautner, and Vilkov (2021), and Goergen, Andrea,

Nerlinger, Riordan, Rohleder, and Wilkens (2020)), temperature levels and increases (Balvers, Du,

and Zhao (2017), Barnett (2020), Addoum, Ng, and Ortiz-Bobea (2020, 2021), and Kumar, Xin,
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and Zhang (2019)), drought trends (Hong, Li, and Xu (2019)), and broader climate-related disasters

(Correa, He, Herpfer, and Lel (2021) and Huynh and Xia (2021)) all impact asset prices. Whereas

these papers focus on the short-term consequences of climate change, we study the implications

for long-horizon investors. There are also more and more papers on climate risk hedging portfolios

(among others, Andersson, Bolton, and Samama (2016), Engle, Giglio, Kelly, Lee, and Stroebel

(2020), and Pastor, Stambaugh, and Taylor (2021a,b)). We add to these by analyzing how portfolios

that are vulnerable and non-vulnerable to climate change combine in optimal portfolio choice.

Second, we extend the literature on long-horizon equity risk, a topic of which the importance

for investors was recently highlighted by Hasler, Khapko, and Marfè (2019). Climate change adds

to known determinants of long-run risk such as mean reversion (Barberis (2000)) and uncertainty

about future expected returns (Pastor and Stambaugh (2012)). Our paper builds on the approach

proposed by Avramov, Cederburg, and Lucivjanska (2018) to formulate prior beliefs about return

dynamics based on economic theory. We contribute to their work by incorporating climate change

as a new source of long-horizon risk and by studying its impact on optimal portfolio choice for long-

term investors. We show that climate change has a significant impact on the predictive distribution

of equity returns, increasing both the market risk premium and the long-horizon return variance.

The paper proceeds as follows. In Section 2 we introduce our approach for modeling long-

horizon equity returns and we discuss how we incorporate prior beliefs implied by the LRR-T model

in Section 3. Predictive VAR estimates, long-horizon risk and return forecasts and implications

of climate change for optimal portfolio choice are presented in Sections 4 and 5 for the market

portfolio, and the vulnerable and non-vulnerable portfolios, respectively. Section 6 concludes.

2 Long-horizon portfolio choice

Section 2.1 introduces the Bayesian predictive VAR model that we use to characterize the long-

horizon dynamics of equity returns. Section 2.2 explains the methodology used to forecast risk and

return with our VARs and the construction of optimal portfolios.
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2.1 Bayesian vector autoregression

We estimate a Vector Autoregression (VAR) model on quarterly data from 1947Q1 to 2019Q4 to

analyze the long-horizon dynamics of equity risk and returns, as is common in the strategic asset

allocation literature (e.g., Barberis (2000) and Pastor and Stambaugh (2012)). To capture climate

risk, we augment the model with a return predictor related to climate change through the inclusion

of the temperature anomaly in the model. Our VAR structure, therefore, incorporates information

about the impact of temperatures on asset prices. Specifically, the VAR is given as



rm,t+1

pt+1 − dt+1

rf,t+1

Tt+1


= a+B


pt − dt

rf,t

Tt

+ εt+1, εt+1 ∼ N(0,Σ), (1)

where rm,t+1 is the log market return, pt+1 − dt+1 is the log price-dividend ratio of the market

portfolio, rf,t+1 is the ex ante risk-free yield to maturity and Tt+1 is the temperature anomaly.5

The set of VAR parameters (a,B,Σ) can be split into parts as

a =

[
ar a

′
x

]′
, ax =

[
apd arf aT

]′
,

B =

 br
Bx

 , br =

[
br,pd br,rf br,T

]
, Bx =


bpd,pd bpd,rf bpd,T

brf,pd brf,rf brf,T

bT,pd bT,rf bT,T

 ,
(2)

and

Σ =

σ2r Σ′xr

Σxr Σx

 , Σxr =


σrpd

σrrf

σrT

 , Σx =


σ2pd σpdrf σpdT

σrfpd σ
2
rf σ

′
rfT

σTpd σTrf σ
2
T

 . (3)

5Since we assume that the Campbell and Shiller (1988) decomposition holds in our model, we do not include
dividend growth in this VAR specification. The VAR coefficients related to dividend growth can be computed directly
from the coefficient estimates for the market return and the price-dividend ratio, as is done in Avramov, Cederburg,
and Lucivjanska (2018). However, in our analysis, we do not study the VAR dynamics of dividend growth.
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This VAR structure is also applied to a second setting, in which we analyze the impact of temper-

atures on portfolio choice for portfolios that are vulnerable and non-vulnerable to climate change.

For that setting, we estimate the same model, but replace the market returns rm by the returns of

these portfolios, rv and rnv.

We estimate the parameters of the VAR using a Bayesian approach that complements historical

data with prior information derived from economic theory. Specifically, we impose a structure on the

relation between the temperature anomaly and economic and dividend growth by specifying prior

beliefs based on the LRR-T model from Bansal, Kiku, and Ochoa (2019). Our Bayesian approach to

incorporating climate risk into portfolio choice has several important advantages. First, it allows for

the accommodation of different investor beliefs about the pricing of climate risk in equity markets.

We quantify the effect of these prior beliefs on the perceived riskiness of stock markets over different

holding periods and on optimal portfolio choice for long-term investors. We consider three prior

investor beliefs. First, the agnostic investor has no prior views about the impact of climate change

on equity return dynamics and, therefore, lets the data speak. This is equivalent to a frequentist

approach for estimating the VAR model that ignores prior information and gives full weight to the

return dynamics implied by historical data.6 Second, the climate risk believer is convinced that

climate change affects equity returns in the way implied by the temperature long-run risk model.

This dogmatic investor therefore assigns full weight to the model-based prior beliefs. Historical

data are not taken into account by this investor. Third, the Bayesian investor has faith in her prior

beliefs derived from theory, but is aware that these beliefs may be inaccurate and updates them

based on observed data. She assigns equal weights to the prior and the data. Our approach easily

extends to different beliefs. For example, one could analyze a climate risk denier that fixes the

coefficient from market returns on the temperature anomaly in the VAR model to a value of zero.

Second, the Bayesian approach allows us to assess the impact of uncertainty about the financial

impact of climate change on optimal portfolio choice. We explicitly incorporate uncertainty in

portfolio optimization by integrating over the posterior distribution of parameters in the return-

forecasting (VAR) model to form a predictive distribution for returns. In contrast, traditional

6Technically, we estimate the posterior VAR for this investor on historical data with an uninformative multivariate
Jeffreys prior.
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frequentist methods treat the point estimates of the model parameters as known, thereby completely

ignoring estimation risk. To quantify the effect of parameter uncertainty, we compare the portfolios

formed based on the Bayesian predictive distributions with and without parameter uncertainty.

We derive the implications of the LRR-T model for return dynamics by applying the framework

of Avramov, Cederburg, and Lucivjanska (2018). The LRR-T model does not present an analytical

solution to the VAR from Equation (1). Therefore, we simulate data from our asset pricing model

and estimate the VAR on the simulated data. We simulate 250,000 samples based on the processes

in Equations (7)-(10), combined with the calibration from Table 1 below. Each simulated sample

matches our historical data sample of 292 quarters from 1947Q1 to 2019Q4. We compute the levels,

variances and correlations of the variables in the VAR model as implied by the LRR-T model as

the mean of the VAR estimations for these 250,000 samples.

Our Bayesian investors combines the parameter estimates from the VAR model estimated using

historical data on stock market returns, price-dividend ratios, risk-free rates, and the temperature

anomaly, with the VAR parameters implied by the simulations from the LRR-T model. For the

Bayesian investor, we give the same weight to the historical data and prior information. To achieve

this, we set the misspecification of the model-implied prior of the VAR parameters to match the

misspecification in the historical data, by scaling the prior density to the number of observations

in our sample (N). This is visible in the posterior distributions presented in Appendix A.3. The

LRR-T model and its implications and calibration are discussed in more detail in Sections 3.1 to

3.5.

2.2 Long-horizon analysis

For our long-horizon analyses, we forecast returns 100 quarters ahead from the Bayesian VAR

from Equation (1). When we account for parameter uncertainty, we draw coefficients from the

model posterior in Appendix A.3 and use these draws for each forecast path. Without parameter

uncertainty forecasts are made from the mean of 250,000 draws from the VAR posterior.
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2.2.1 Exogenous temperature forecasts

To ensure that the differences in investor beliefs are based on different prior views about how

temperatures impact asset prices, we use the same exogenous temperature forecast paths for each

investor (agnostic, dogmatic, Bayesian).7 Effectively, we disregard information about how the finan-

cial state variables in our VAR model impact climate change, focusing solely on how temperatures

affect financials. Because of this setup, the heterogeneity in our results is not driven by the uncer-

tainty in forecasts of future temperature levels, but by how temperatures affect financial outcomes

differently in our models. We forecast out-of-sample temperatures with an auto-regressive model

with one lag and no intercept, starting from the average temperature anomaly over the past five

years and increasing to 2 degrees Celsius by the end of our forecast period, 100 quarters ahead. We

have chosen to increase the temperature forecast to 2 degrees to match goals from, among others,

the UN Paris Climate Agreement.

2.2.2 Long-horizon risk and returns

We draw posterior observations from the predictive VAR from Equation (1) from the posterior

VAR distribution in Appendix A.3 with direct sampling until we have 250,000 draws for each

model. Conditional on each of these draws of the VAR parameters (a,B,Σ) and the recent level of

the state variables xt we compute the variance of forecasted cumulative log returns for the market

and the (non-)vulnerable portfolios, ri,t,t+k (ri,t,t+k = ri,t+1+· · ·+ri,t+k), for horizons k = 1, . . . , 100

quarters. Avramov, Cederburg, and Lucivjanska (2018) show that the overall conditional variance

7When we forecast temperature paths from the VARs of these investors, the mean forecasted temperatures are
given in Figure 8 in Online Appendix B.2. Unlike our exogenous temperature forecasts, these results are not aligned
with common beliefs about future climate change.
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of the long-horizon return forecast equals

Var(ri,t,t+k | Dt)

= E[kσ2i | Dt]︸ ︷︷ ︸
i.i.d. uncertainty

+E

k−1∑
j=1

2bi(1−Bx)−1(I −Bj
i )Σxi | Dt


︸ ︷︷ ︸

mean reversion

+ E

k−1∑
j=1

(bi(1−Bx)−1(I −Bj
x))Σx(bi(1−Bx)−1(I −Bj

x))′ | Dt


︸ ︷︷ ︸

uncertainty about future expected returns

+ Var
[
kai + bi(I −Bx)−1

(
(kI − (I −Bx)−1(I −Bk

x))ax + (I −Bk
x)xt

)
| Dt

]
︸ ︷︷ ︸

estimation risk

,

(4)

where Dt = (a,B,Σ, xt). We set xt =

[
pt − dt rf,t Tt

]′
to the average value of the state variables

in the last five years. For the theoretical prior, there is no observed state variable to forecast from,

which is why we use the population moments for the price-dividend ratio and the risk-free return.

Our Bayesian investor forecasts from the average of the theoretical moments and the historical data.

The temperature anomaly is always forecasted from the recently observed level in the historical

data, because we use the same exogenous temperature process for all models.

There are four components in the conditional long-term return variance. First, the i.i.d. un-

certainty is the constant per-period variance. Second, mean reversion causes long-horizon variance

to decrease, because short-term losses (gains) are offset by longer-term gains (losses) when returns

revert to their ex-ante expectation. This component is why Siegel (2008) argues that equities are

less risky for long-horizon investors. The third component is uncertainty about future expected

returns. The idea of this component is that predictors in the VAR model are time-varying, and un-

certainty about the level of future predictors will increase our predictive variance. In our case, this

includes uncertainty about the level of the future temperature anomaly. The final term, estimation

risk, is the variance of the predictive expected return based on the Bayesian framework in which

parameters are uncertain. We study the changes to the variance over the horizon by analyzing the

variance ratio V Rk,i =
Var(ri,t,t+k|Dt)
kVar(ri,t,t+1|Dt) and its underlying components.
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Next to risk, we study long-horizon returns and risk premia implied by our VAR models. For

this, we forecast returns on the risky and the risk-free assets from 250,000 draws of the VAR

parameters. For each draw of the VAR parameters, we make returns for horizons k = 1, . . . , 100

quarters and take the mean of these return paths as expected future return.

2.2.3 Portfolio choice

We compute the optimal allocation to the risky portfolios and the risk-free asset for a buy-and-hold

long-only investor. Optimal portfolios for various investment horizons k are constructed by maxi-

mizing expected power utility with respect to the predictive distribution of future stock returns.8

Formally, the investor maximizes expected utility at time t+ k conditional on the estimated VAR

parameters (a,B,Σ)

max
wt,t+k

Et[U(Wt+k)|(a,B,Σ)], (5)

where end-of-period wealth of our buy-and-hold investor is Wt+k = wt,t+kRt,t+k, with wt,t+k the

vector of optimal portfolio weights to the available assets and Rt,t+k the cumulative return on these

assets. Power utility is given as U(Wt+k) =
W 1−A
t+k

1−A , in which A = 5 is the risk aversion level. We

compare two investors, one who invests in the market portfolio and the risk-free asset, and one who

combines portfolios that are vulnerable or non-vulnerable to temperatures with the risk-free asset.

We use the numerical methodology described in Online Appendix B.1 to solve the optimal weights

for investment horizon k from 1 to 100 quarters. In a nutshell, we use a grid search over possible

investment weights to compute the weights that give the highest average utility over 250,000 draws

of future returns forecasted from the estimated VAR parameters until horizon k. As Hoevenaars,

Molenaar, Schotman, and Steenkamp (2014), we explicitly account for reinvestment risk in the

risk-free asset and, therefore, allow for correlated returns between the risk-free asset and risky

assets.

8Power utility is often assumed in related work, e.g. Pastor and Stambaugh (2012), Diris (2014), Hoevenaars,
Molenaar, Schotman, and Steenkamp (2014), and Johannes, Korteweg, and Polson (2014).
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3 Incorporating theoretical prior information

Section 3.1 outlines the LRR-T model that is used to form prior beliefs about the impact of climate

change on financial market variables. Section 3.2 describes the data including the construction of

vulnerable and non-vulnerable portfolios and Section 3.3 discusses the calibration of the LRR-T

model. The implied risk premia based on this calibration are discussion in Section 3.4. Finally,

Section 3.5 illustrates the implications from the LRR-T model and the simulation approach used

to derive the model-implied prior beliefs for the VAR parameters.

3.1 The temperature long-run risk model

Theoretical beliefs about our VAR parameters are based on an adjusted version of the LRR-T

model of Bansal, Kiku, and Ochoa (2019). The LRR-T model imposes a structure on the relation

between the temperature anomaly and financial market variables such as stock market returns and

price-dividend ratios. The representative investor with Epstein and Zin (1989) recursive preferences

optimizes lifetime utility

Ut =

[
(1− δ)C

1−γ
θ

t + δ(Et[U
1−γ
t+1 ])

1
θ

] θ
1−γ

, (6)

with Ct aggregate consumption at time t, δ ∈ (0, 1) the investor time preference, γ the coefficient

of risk aversion, θ = 1−γ
1− 1

ψ

, and ψ the elasticity of intertemporal substitution (IES). The log of

aggregate consumption growth (∆ct+1 = log(Ct+1/Ct)) and log dividend growth of the portfolio i9

(∆dt+1,i = log(Dt+1,i/Dt,i)) follow

∆ct+1 = µc + σtηt+1 +Xt+1,

∆dt+1,i = µd + πdσtηt+1 + φiXt+1 + ϕdσtut+1,

σ2t+1 = σ̄2 + ν(σ2t − σ̄2) + σwwt+1,

ηt+1, ut+1, wt+1 ∼ Ni.i.d.(0, 1),

(7)

9Portfolio i is the market or the portfolio (non-)vulnerable to temperature innovations, i = m, v, nv.
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with mutually independent shocks ηt+1, ut+1, and wt+1 scaled by time-varying volatility σt. Xt+1 is

the adverse economic impact of temperature-driven disasters on consumption and dividend growth,

based on a disaster process Nt with Poisson distributed increments as

Xt+1 = ρXt + d∆Nt+1,

∆Nt+1 ∼ Poisson(λt = ∆t(λ0 + λ1Tt)),

(8)

where ρ < 1 is the persistence of economic disaster impact, d < 0 is the initial disaster-related

growth shock to consumption and dividends and Tt is the temperature level, in turn based on the

atmospheric carbon concentration εt as

Tt+1 = χεt+1,

εt+1 = νεεt + µε + Θ(µc + σtηt+1) + σζζt+1,

ζt+1 ∼ Ni.i.d.(0, 1).

(9)

This structure allows for a feedback loop between consumption growth and the atmospheric carbon

concentration, by including µc and ηt+1 in the process for the latter. We assume that the log of the

wealth-consumption ratio zt and the log of the price-dividend ratio of portfolio i, zt,i, are given as

zt(,i) = A0(,i) +A1(,i)Tt +A2(,i)Xt +A3(,i)σ
2
t . (10)

Portfolios differ in the exposure of future dividend growth on disaster impact Xt+1, through the

portfolio-specific parameter φi in Equation (7), which is higher for portfolios more vulnerable to

temperatures. The analytical solution of the price-dividend and wealth-consumption ratios, using

the Campbell and Shiller (1988) decomposition, is presented in Appendix A.1. We discuss the

adjustments made to the LRR-T model of Bansal, Kiku, and Ochoa (2019) in Appendix A.2.

Next to the LRR-T model, we also analyze the impact of the normal long-run risk (LRR)

structure on equity risk, return, and portfolio choice. For this, we use the LRR specification from

Bansal, Kiku, and Yaron (2012), calibrated to match our sample. Our Bayesian investor that

includes LRR prior beliefs forms the benchmark for our LRR-T Bayesian investor, highlighting the
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impact of climate change on long-horizon outcomes.

3.2 Data

Market returns, dividend growth, and price-dividend ratios are from the Irrational Exuberance

dataset available on Robert Shiller’s website.10 As a proxy for market returns we use the monthly

real log returns including dividends on the S&P 500 index. Dividend growth is the log difference

of the monthly real dividends on the market portfolio. The log price-dividend ratio is the log

difference between the real S&P 500 price and the corresponding monthly real dividend.

Monthly ex ante real risk-free returns are constructed following Beeler and Campbell (2012).

We use the seasonally unadjusted consumer price index (CPI) from the Bureau of Labor Statistics

to construct quarterly and yearly inflation as the log difference between the CPI levels at the end

of the current period and the end of the previous period. To construct ex post real risk-free yields

we subtract the quarterly log inflation from the log CRSP Treasuries three month risk-free yields.

Ex ante risk-free rates are the predicted value from the regression of ex post real risk-free yields on

an intercept, nominal risk-free yields and the annual log inflation divided by four.

We obtain average monthly land-based U.S. temperature anomalies from the nClimDiv dataset

of the National Oceanic and Atmospheric Administration (NOAA).11 We transform these anomalies

to degrees Celsius, as in Bansal, Kiku, and Ochoa (2019).

Consumption data is from National Income and Product Accounts (NIPA). Quarterly per capita

real consumption growth is the seasonally-adjusted aggregate nominal consumption expenditures

on nondurables and services (NIPA Table 2.3.5), adjusted with the price deflator series from NIPA

Table 2.3.4 and divided by population (from NIPA Table 2.1).

We construct portfolios that are vulnerable or non-vulnerable to temperatures. For this, we use

log real monthly returns of all stocks in CRSP excluding penny stocks (defined as stocks with price

below $5 at quarter end). The construction of these portfolios is discussed in Section 5.

10http://www.econ.yale.edu/~shiller/data.htm.
11Temperature anomalies are the monthly average temperatures minus the average temperature in that same

month for our base period 1901-1946. This base period is chosen to end just before our sample, to avoid look-ahead
bias.
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The sample period is 1947-2019.12 All variables are monthly and time-aggregated to quarterly

using the methods from Bansal, Kiku, and Yaron (2016), except for consumption growth. Con-

sumption growth is quarterly and available from 1947Q2, because monthly consumption data is

unavailable in the early years of our sample.

3.3 Model calibrations

We calibrate the LRR-T model with the calibration parameters given in Table 1. In our calibration,

the temperature anomaly is zero in expectation at the start of our simulated sample, with a long-

term temperature expectation that is one degree Celsius higher. This scenario is chosen because

it closely matches our historical data, where we observe an increase in the temperature anomaly

roughly from zero to one degree Celsius.13 Next to temperatures, we calibrate the LRR-T model to

match economic growth and financial moments for our sample 1947Q1-2019Q4. Second, we allow

for portfolio-specific impact of climate change by adjusting the dividend growth loading on climate

disasters φi to increase or decrease vulnerability towards climate change. Specifically, we include

the market portfolio in the baseline calibration and use φv and φnv for the vulnerable and non-

vulnerable portfolios, respectively. Our benchmark is based on a second informative prior, from

the LRR model of Bansal, Kiku, and Yaron (2012) that does not feature climate risk.14

[Table 1 about here.]

[Table 2 about here.]

The first and second moments of observed economic growth, price-dividend ratios and returns

in the data are compared with the implications from the LRR(-T) model calibrations in Table 2.

The moments from the LRR(-T) models are the average moments of 250,000 simulations of 936

12Our starting date follows Barnett (2020) and balances the need for a longer sample to make more accurate
long-term return forecasts with the fact that data from periods preceding the general awareness of climate change is
likely uninformative about the impact of climate change on long-horizon equity risk.

13In our sample, the temperature anomaly is 0.1 in 1948 and 1.2 in 2019. Alternative sources of temperature
anomalies show more smoothed versions that are closer to the 0-1 we use in our calibration.

14We use a different sample and re-calibrate several parameters in the Bansal, Kiku, and Yaron (2012) model to
match the observed data moments of our sample period (1947-2019) better. Specifically, our calibration deviates from
the original by setting ρ = 0.981, µd = 0.0021, φ = 2.0, π = 2.0, and ϕ = 5.0. Avramov, Cederburg, and Lucivjanska
(2018) also elicit prior beliefs from this version of the LRR model.
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months from the model, time-aggregated to match the 73 years of our sample after a burn-in period

of 60 months. The LRR-T model fits the data well in most aspects, similar to the original LRR

model. There are two main moments the model does not match the data. First, as is commonly

observed with LRR models, the price-dividend ratio level and variance is too low. For example,

Bansal, Kiku, and Yaron (2012) report expected price-dividend ratios 9% below the data estimate

in their LRR population moments, comparable to our results. Second, the expected temperature

anomaly is higher in the LRR-T simulations than observed in our sample. This is driven by the

concave increase in the LRR-T autoregressive structure for the temperature level, while historical

temperature increases are more linear. Therefore, the temperature level in the early years of our

LRR-T simulations is higher than in the corresponding decades in the data.

3.4 Model implied risk premia

With the calibrations for the LRR(-T) models, the theoretical market risk premium for the LRR

and LRR-T models can be decomposed. The market risk premium in the LRR-T model equals

lnEt[Rm,t+1]− rf,t = −Covt(mt+1 − Et[mt+1], rm,t+1 − Et[rm,t+1])

= ληβm,ησ
2
t + λζβm,ζσ

2
ζ + λwβm,wσ

2
w + λXβm,X(λ0∆t+ λ1∆tTt),

(11)

with the derivation and analytical solutions for lambdas and betas given in Appendix A.1.

There are four components of the market risk premium. The first term, related to shocks ηt,

is the growth premium, as it is directly related to shock to consumption growth. The second

component is the temperature premium, related to the uncertainty in the temperature process that

impacts the future expected disaster-occurrence. Note that this term is related to the uncertainty in

the temperature process, not to the actual temperature level. Therefore, even when the temperature

anomaly is forecasted to decrease, this premium will remain stable as a reward for the risk of future

changes in the number of expected disasters. Third, we have a volatility risk premium that affects

the time-varying volatility of shocks to consumption growth. Finally, the last component is the

disaster premium, which is based on the variance of the current disaster process, that is in turn a

function of the temperature anomaly. Because of this final component, higher temperature levels
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increase the market risk premium directly. The growth, temperature, and disaster premia are

introduced in Bansal, Kiku, and Ochoa (2019). The volatility risk premium is common in LRR

models when time-varying standard deviation is included, but not a component in the original

LRR-T model.

Comparing the LRR and LRR-T risk premia, we see a similar structure, but the focus clearly

changes to a climate related risk premium in the latter model. In the LRR model from Bansal,

Kiku, and Yaron (2012), there are three components of the risk premium: short-run risk, long-

term growth risk, and volatility risk. The first component has the same structure in the LRR and

LRR-T models, and corresponds to the growth premium discussed above. The long-term growth

risk is related to the exposure to shocks in the persistent component of the LRR model, and as

such comparable with the disaster premium in the LRR-T model. Finally, volatility risk impacts

the risk premium in two ways in the normal LRR model: by introducing (short-term) noise in

the direct shock to consumption growth η, and by affecting the size of the shock to the persistent

component. The first aspects of the volatility risk corresponds to the same component of the LRR-

T risk premium. The second aspect is comparable to the LRR-T temperature premium, which is

based on the noise in the temperature anomaly, a measure for the future expected disaster shock

impact.

Based on our calibrations, we find that our LRR model implies that 17% of our risk premium

is driven by short-term risk, 32% by long-term growth risk, and 51% by long-run volatility risk.

In the LRR-T model, 8% of the risk premium is driven by the growth premium, 63% by the

temperature premium and 29% by the disaster premium. The volatility risk premium has negligible

impact on the risk premium, since it only adds noise to the short-term consumption growth shocks.

However, it is useful to have time-varying volatility in the model to better match the second

moment of the market return in our LRR-T calibration. There are two main takeaways from

this decomposition. First, the LRR-T risk premia are driven by components that are, in their

structure, similar and comparable to what the LRR model implies. Second, temperature levels

and climate-related disasters are a very important part of the financial implications of the LRR-T

model.
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3.5 Model simulations

To illustrate how temperatures impact financial performance in the LRR-T model we show a single

simulation from our calibrated model in Figure 1. In this simulation we see that temperatures

increase over the sample (in line with the calibrated trend), with quite some variance in the tem-

perature process as is observed in the historical data. In expectation, temperature anomalies start

at 0 and increase to 1, but we observe both much higher and lower temperature anomalies in the

simulation, with a coincidental low temperature anomaly at the end of our simulated sample. With

increases in temperatures, the expected occurrence of future disasters that affect future consump-

tion and dividend growth rates is increased. Price-dividend ratios and risk-free rates respond to

these expected future adverse events with immediately decreases that are mostly visible in the

price-dividend ratio. Climate disasters start occurring after roughly 250 months in this simulation,

most clearly visible in the risk-free rate.15 These disasters have an immediate and persistent impact

on risk-free rates and price-dividend ratios. For risk-free rates, persistent impact is caused by the

slow response of the wealth-consumption ratio to disasters. The stability of the wealth-consumption

ratio, especially in a long-run risk setting, is also documented by Lustig, VanNieuwerburgh, and

Verdelhan (2013). In market returns, we do not observe persistent impact of disasters, as decreas-

ing prices keep future market returns relatively stable. There is, however, significant transitory

impact from climate disasters on market returns, as the most negative market returns observed in

our simulation are caused by disasters. Overall, the market risk premium increases after disaster

occurrence, because risk-free returns are persistently lower while the market rebounds quickly after

the initial transitory shock.

[Figure 1 about here.]

The population moments from 250,000 simulations of the baseline LRR-T model imply the

VAR structure shown in Table 6 in Online Appendix B.2. In this estimation, all coefficients

are significant by construction, since we base the VAR in this table on the population moments

15We note that, in this simulation, we observe disasters relatively late by coincidence - in expectation we would
observe roughly one disaster each every 100 months. Overall, there are 10 disasters in this simulation, which is what
we would expect.
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from the model without allowing for misspecification. First, relations between market returns and

financial state variables are as expected. Increases in price-dividend ratios decrease expected market

returns and increases in risk-free rates increase expected market returns. This VAR structure differs

from previous literature by the inclusion of the temperature anomaly as a predictive variable.

Temperature levels have a strong negative impact on next period expected market returns. The

coefficient from market returns on the temperature anomaly is economically large: a temperature

anomaly of 1 degree Celsius implies that quarterly expected market returns are decreased by 0.61%,

or 2.4% annually. A one standard deviation shock to the temperature anomaly decreases quarterly

expected market returns by 0.51%, or 2% annually. This initial impact on market returns is partly

offset in long-horizon forecasts, because the temperature increase also decreases price-dividend

ratios, but that effect is smaller. The temperature anomaly is highly persistent, which is implied

by the LRR-T model because we calibrate a positive trend in the temperature levels. Overall, this

VAR shows that the LRR-T model indeed imposes a structure on the impact of temperature levels

on equity risk and return.

4 Empirical results: market portfolio

Thus far we have examined the effect of climate change on financial markets through the lens of the

LRR-T model. We now discuss how these theoretical implications affect the empirical estimates of

a Bayesian investor that combines the market portfolio with a risk-free asset. Section 4.1 presents

predictive regression estimates for our investors with different prior beliefs based on the LRR-T

model, as well as a benchmark investor who forms prior beliefs from the LRR model without climate

change. Sections 4.2 and 4.3 discuss the implications of these estimates for long-horizon risk and

return of these VAR models. Section 4.4 combines these results in the optimal portfolio choice of

our investors.

4.1 Predictive regressions

We estimate the quarterly predictive VAR from Equation (1) on the sample from 1947Q1 to 2019Q4

for four investor types. The first three investor types are the agnostic (data-based) investor, the
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dogmatic (climate risk believer) investor, and the Bayesian LRR-T investor discussed in Section

2.1. Finally, we analyze a benchmark Bayesian LRR investor that forms prior beliefs based on the

LRR model without climate change. Table 3 shows the posterior mean of 250,000 draws of the

VAR coefficients for these investor types, along with their posterior t-statistics.

In panel A of Table 3, we show the posterior VAR for the agnostic investor, based on historical

data with the temperature anomaly as a state variable. From the coefficient estimates we observe

that price-dividend ratios have negative forecasting power on market returns, while increases in

risk-free yields imply higher market returns, as expected. We observe statistically insignificant

coefficient estimates on the temperature anomaly. This could be a result of large uncertainty about

the impact of climate change on financial markets, because of parameter uncertainty or unavail-

ability of sufficient disasters in historical data. This uncertainty is one of the key reasons to take

prior beliefs into account in a Bayesian setting, which helps estimation precision. On the other

hand, the coefficient estimates on the temperature anomaly are economically very meaningful. A

one standard deviation shock to the temperature anomaly implies a 0.74% change in the forecasted

quarterly market return, or almost 3% annually. Based on forecasts for future temperature anoma-

lies of up to two degrees Celsius, impact of temperatures on market returns would be even larger,

especially in long-horizon forecasts. Other than market returns, financials are not strongly affected

by temperatures in the data. The temperature process itself is included for completeness but not

used for forecasts, where an exogenous temperature process is used, as discussed in Section 2.2.1.

The opposite perspective is a dogmatic investor that bases her beliefs about the VAR model

completely on the LRR-T prior. Panel B of Table 3 reports the posterior VAR for this climate

risk believer. The VAR coefficients are almost identical to the population estimates for the VAR

parameters reported in Table 6. As before, we observe a negative loading from market returns

on the temperature anomaly. In the LRR-T model, increasing temperatures decrease the price-

dividend ratio, increasing market returns. However, this effect is offset by the realisation of large

negative returns around climate disasters, which occur more often with high temperature levels.

In our simulations, the second effect is stronger. The difference with the population estimates

are in the decreased statistical significance of the results. We introduce model misspecification in
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these estimates to match the information in the prior beliefs to the historical data sample from

1947Q1 to 2019Q4, as described in Section 2.1. Because of the noise in the agnostic VAR based

on historical data, this results in large uncertainty in the VAR of the dogmatic investor as well.

However, we still observe economically meaningful negative impact from increased temperatures

on financial outcomes.

Comparing panels A and B, it is clear that historical data and economic theory have opposing

implications about the impact of climate change on financial performance, which makes it useful

to include both views in a Bayesian analysis. A key difference between the agnostic and dogmatic

investors is that the former does not show a relation between both the price-dividend ratio and

risk-free returns and the temperature anomaly, while this relation is reasonably strong for the latter.

This is driven by the impact of climate disasters on risk-free returns in the LRR-T model. In that

model, disasters result in additional savings, decreasing risk-free returns.

Panel C of Table 3 reports the posterior VAR for the Bayesian investor that gives equal weights

to implications from historical data (panel A) and the baseline LRR-T prior (panel B). As expected,

the posterior coefficients and correlations of this VAR are generally in between the reported values

in panel A and panel B. Since panels A and B present opposite results, the Bayesian investor

has a relatively small loading on the temperature anomaly, which is visible in the small absolute

posterior coefficients. This small coefficient does have significant impact on predictive distributions

of market returns, especially for long-horizons. Small changes in the predictive VAR parameters

become increasingly important after several quarterly forecasts. Next to this, combining historical

data with LRR-T simulated data increases the precision of the parameter estimates, which decreases

the long-horizon variance of return forecasts.

Finally, panel D of Table 3 is the benchmark Bayesian LRR investor, that combines implications

from historical data with the Bansal, Kiku, and Yaron (2012) LRR prior. As expected, the general

structure of the VAR is very similar to Panel C, the only real difference is the fact that the

temperature anomaly is not included in the model. Therefore, comparing the forecasts from this

investor with the implications from the Bayesian LRR-T investor really highlights the impact of the

temperature anomaly on our models, instead of other differences in the LRR and LRR-T models.
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[Table 3 about here.]

4.2 Long-horizon risk

We now use the 250,000 draws of the VAR coefficients around their posterior mean in Table 3 to

forecast long-horizon variance of market returns. For this, we combine draws of the coefficients with

the exogenous temperature process discussed in Section 2.2.1 in the long-horizon variance formula

from Equation (4) to forecast variance ratios for horizons up to 100 quarters. In Figure 2, the per

period variance by horizon is given for the agnostic (data-based), dogmatic (LRR-T based), and

Bayesian LRR and LRR-T investors (combining data with model based priors).

Within a few quarters, the variance ratios quickly diverge. In the data, we find strong mean re-

version, which is also documented by, among others, Barberis (2000) and Siegel (2008). Intuitively,

current low (high) returns are offset by future high (low) returns, because of predictability in re-

turns in the data combined with negative correlation between current and future returns. Therefore,

variance ratios quickly decrease when the horizon gets longer. As opposed to earlier work, the large

coefficient from market returns on the temperature anomaly increases the uncertainty about future

expected returns for the agnostic investor, as the future temperature level is highly uncertain. At

the longest horizon of our forecasts, the decrease in the additional mean reversion combined with

the continuously increasing uncertainty about future expected returns increases the variance ratio

again, as compared to horizons between 50 and 75 quarters. Overall, the variance ratios over the

horizon of our agnostic investor is similar to the results in Avramov, Cederburg, and Lucivjanska

(2018), but increased predictability in our setting from including the temperature anomaly in our

model increases both mean reversion and uncertainty about future expected returns.

At first sight on the overall variance ratios, the benchmark LRR Bayesian investor seems to

be close to the data-based agnostic investor. However, the underlying components driving long-

horizon variance for these two investors are very different. The key difference is that the data

implies stronger predictability from the price-dividend ratio, which increases both mean reversion

and uncertainty about future expected return compared to the Bayesian LRR investor.

The dogmatic investor with its LRR-T prior shows very high long-horizon variance ratios, with
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per period market volatility predicted up to 2.75 times higher than the one-quarter ahead forecast.

There are two key drivers of the difference with the agnostic investor. First, mean reversion

is weaker. Intuitively, mean reversion decreases because current low returns caused by climate-

induced disasters are followed by future low returns caused by even more disasters. This effect is

driven by the fact that disasters in the LRR-T simulations occur in clusters, in periods with high

temperature levels. Therefore, the negative correlation between current and future returns that is

needed for mean reversion is much weaker than in the data. Second, estimation risk has increased

significantly, because the disasters in the LRR-T simulations increase the uncertainty around the

parameter estimates.

Influenced by the LRR-T prior, the LRR-T Bayesian investor has relatively high variance ratios,

monotonically increasing with the investment horizon. At the longest horizon of 100 quarters, the

variance ratio of the LRR-T Bayesian investor is twice as large as that of the benchmark LRR

Bayesian and the agnostic investors. The underlying components of the variance ratio are between

what is implied by the data and the prior beliefs, except for the uncertainty about future expected

returns. Lower uncertainty is driven by the relatively small coefficient from market returns on

the temperature anomaly for the Bayesian investor, a logical result from the opposite signs of

corresponding coefficient for the agnostic and dogmatic investors. Even though the coefficient on

the temperature anomaly is smaller for the LRR-T Bayesian investor, the inclusion of temperatures

in the model is sufficient to increase uncertainty about future expected returns compared to the

benchmark LRR investor.

[Figure 2 about here.]

For our asset allocation decision, the riskiness of the short-term bond returns is also relevant to

consider. We assume that our short-term bond is risk-free in the sense that there is no credit risk.

However, over longer horizons, reinvestment risk affects investments that are risk-free in the short

run. The variance of the risk-free return relative to the risk of the market return is presented in

Figure 9 in Online Appendix B.2. For all models, risk-free returns have more variance with longer

horizons, as reinvestment risk increases with the horizon. Both the data and the LRR-T based

models imply similar relative riskiness between risk-free and market returns. The Bayesian LRR
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investor forecasts less reinvestment risk for the risk-free asset. This observation aligns with the

calibration moments in Table 2, where LRR based risk-free return simulations are less volatile than

in the data and the LRR-T model.

Overall, including climate change through LRR-T prior beliefs results in higher predictive long

horizon risk for the LRR-T Bayesian investor investing the market portfolio. This effect is large,

with long-run variances up to twice as high as as the benchmark LRR Bayesian investor. Next to

market returns, the LRR-T Bayesian investor also predicts more reinvestment risk in the risk-free

asset.

4.3 Long-horizon returns

Predictive returns also differ significantly for the four different investors and by horizon. Figure

3 shows the average forecast of risk-free returns, market returns and market risk premium from

250,000 simulated return paths. Each return path is forecasted from a draw of the VAR poste-

rior distribution for each investor type to account for parameter uncertainty, combined with the

exogenous temperature process discussed in Section 2.2.1.

The risk-free return forecasts are initially all very similar and close to zero, in line with the

current observed short-term T-bill rate. With forecasts over the horizon, we see opposite trends

for the agnostic and dogmatic investors. Forecasts from the data push long-term risk-free returns

towards the historical average, which is higher than the current risk-free rate levels. In the LRR-T

model, however, future temperature increases decrease the risk-free rate. This reflects the negative

impact that climate disasters have on the risk-free returns in the LRR-T simulations. Disasters

persistently affect future consumption and dividend growth and agents save to offset this, increasing

the demand for the risk-free asset, decreasing its return. Since the risk-free rate is very persistent

and temperatures keep increasing in our forecasts, the dogmatic investor predicts decreasing risk-

free returns over our horizon. We note that this decrease is not set to continue indefinitely if one

extends the horizon, since risk-free rates are not 100% persistent and climate models generally do

not forecast unbounded temperature increases. The LRR-T Bayesian investor forecasts risk-free

returns in between the data and the LRR-T model. Without temperature increases in the model,
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the benchmark LRR Bayesian investor forecasts risk-free returns similar to the agnostic investor.

The predictive market returns reported in Figure 3 are very similar for the agnostic and LRR

Bayesian investors, both increasing by horizon. The agnostic investor has positive VAR coefficients

from market returns on the temperature anomaly and the risk-free returns, as visible in panel A

of Table 3. The increase in predictive market returns over the horizon is, therefore, driven by

the increase in predictive risk-free returns and the increasing temperature levels in the exogenous

temperature process. For the LRR Bayesian investor, temperatures are not included in the model.

However, a similar horizon pattern for predictive market returns is driven by a larger loading on

the increasing risk-free returns, as visible in panel D of the same table.

The most surprising of the return forecasts is the quick increase in the short-term market returns

expected by the dogmatic investor. This is a direct result of the implementation of an exogenous

temperature process, where the starting value of our out-of-sample temperature anomaly is the

recently observed level in the data. This temperature level is higher than in the LRR-T simulated

data used by the dogmatic investor, which is why there is a jump in the temperature levels from

the in-sample estimation to the out-of-sample forecasts. This initial jump in our forecasts quickly

decreases the price-dividend ratio, resulting in a sharp increase in expected market returns. We

do not feel that this is a realistic forecast and, therefore, do not conclude anything from the first

ten quarters of the LRR-T prior forecasts.16 At longer horizons, increasing temperatures combined

with decreasing risk-free returns drive expected market returns down. This corresponds well to

the observed negative disaster-related returns in the LRR-T simulations, as presented in Figure 1

above.

The market returns predicted by the LRR-T Bayesian investor are stable over the horizon, as

increased temperatures balance the negative impact from decreases in the risk-free returns. In other

words, the direct impact from the forecasted temperature increase on market returns is offset by

its indirect impact on market return through the risk-free asset.

All four models imply that the market risk premium increases with the investment horizon,

16One could argue that this result implies that the exogenous temperature process should not be the same for all
our models. However, we believe that it is more important to keep future temperature processes similar to compare
the differences in the implications of climate change between the models than to make these short-term market return
forecasts more stable.
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although the underlying mechanism differs. The agnostic investor forecasts increasing market

returns with the horizon, mainly driven by decreasing price-dividend ratios towards the historical

average and increasing temperatures. The LRR Bayesian benchmark investor shows similar risk

premium forecasts, at a lower level because of slightly higher risk-free returns. For the dogmatic

and LRR-T Bayesian investors, decreasing risk-free rates are an important aspect of the increasing

risk premium over the horizon. While the horizon effects for the market risk premium are similar

for all models, the risk premia are at different levels.

[Figure 3 about here.]

Finally, we discuss the correlations of the returns on the risk-free asset and the market portfolio.

Figure 10 in Online Appendix B.2 documents that, for all our investors, these returns start relatively

uncorrelated and increase over the horizon. This increased correlation is mainly driven by the

positive coefficient from market returns on lagged risk-free returns in the VAR models of Table 3.

Overall, the LRR-T Bayesian investor predicts higher market risk premia over all investment

horizons than the agnostic and LRR Bayesian investors. This effect is driven by predictive risk-free

returns that decrease over the horizon, combined with relatively high short-term market return

predictions.

4.4 Portfolio choice

We have now documented two key results. First, the LRR-T Bayesian investor predicts significantly

higher long-horizon riskiness of the market portfolio than our benchmark LRR Bayesian investor,

because of the uncertainty in the temperature anomaly forecast and increased estimation risk.

Second, including beliefs from the LRR-T model results in higher predictive market risk premia,

because forecasted climate-related decreases in consumption growth negatively affect long-horizon

risk-free returns. Next to these key results, the LRR-T model implies relatively more reinvestment

risk and higher correlations between market and risk-free returns than in the data. These results

each have implications for portfolio choice, as we discuss in this section.

We analyze a long-only investor that can invest in the market portfolio and a risk-free asset

with reinvestment risk. The top panel of Figure 4 shows the optimal allocation to equities for
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the agnostic, dogmatic, and Bayesian investors. The optimal weight in equities increases quickly

with the investment horizon for the agnostic investor, because there is very strong mean reversion

in the related predictive VAR. At the longest horizon market returns become riskier again and

predictive risk-free returns become higher, which brings the optimal weight to the market portfolios

down. The dogmatic investor initially sees a quick increase in the optimal allocation to the market

portfolio driven by the sharp increase in the market risk premium, a consequence of our exogenous

temperature process. Over the horizon, the dogmatic investor keeps allocating less and less to the

market because the perceived long-horizon risk of the market portfolio increases quickly.

As expected, the allocation to the market portfolio of the LRR-T Bayesian investor is in between

the allocations of the agnostic and dogmatic investors. Comparing the LRR-T and LRR Bayesian

investors, we find that the inclusion of the temperature anomaly in the model has economically

meaningful impact on optimal portfolios, which changes over the horizon. The investor with LRR-T

prior beliefs has higher weights to equities than the LRR Bayesian investor for horizons of up to

roughly 25 quarters, with the opposite result for longer investments horizons. This is mainly driven

by the two key results discussed above: the inclusion of climate change in the model implies higher

market risk premia for all horizons, but risk increases considerably over the horizon. Therefore,

the allocation is initially higher, but becomes lower when the increased risk outweighs the higher

market risk premium. Especially in the long run, these differences are economically meaningful:

the optimal weights to equities are roughly 20% lower for the LRR-T Bayesian investor that invests

for 100 quarters, compared to the benchmark LRR Bayesian investor.

The riskiness of the market portfolio and the risk-free asset are affected very differently by

parameter uncertainty. In Hoevenaars, Molenaar, Schotman, and Steenkamp (2014), parameter

uncertainty does not have significant impact on portfolio choice, but with the inclusion of the

temperature anomaly in our model we find higher estimation risk for equities. Reinvestment risk

of risk-free returns is, on the other hand, mainly driven by uncertainty about future expected

returns, because of the loadings from risk-free returns on the temperature anomaly. Therefore, when

parameter uncertainty is accounted for, equity returns become considerably more risky, relative to

risk-free returns. The longer the investment horizon, the more important the inclusion of parameter
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uncertainty becomes for our portfolio choice. In the bottom panel of Figure 4, we therefore observe

similar weights to the market portfolio for short horizons with and without parameter uncertainty,

but significantly lower allocations to equities in the long run. The differences between the allocations

of the different investors are similar to before, with the same key results driving the allocation over

the horizon.

[Figure 4 about here.]

5 Empirical results: (non-)vulnerable portfolios

We have now analyzed the implications of taking the temperature anomaly into account for investors

that combine the risk-free asset with the market portfolio. In this section, we extend our setting

to allow for cross-sectional differences in long-horizon portfolio choice. Specifically, we now analyze

investors that include portfolios that are either vulnerable or non-vulnerable to temperatures in

their investment universe, instead of the market portfolio.

We construct portfolios that are vulnerable or non-vulnerable to temperatures based on a sort

of contemporaneous exposure from stock returns on the temperature anomaly, building on the work

of Barnett (2020). We run a five-year rolling window regression (with at least 2.5 years of available

data) of the log real monthly returns of all stocks in CRSP excluding penny stocks (defined as stocks

with price below $5 at quarter end) on the temperature anomaly and log real market returns. We

then sort the stocks on their exposure to the temperature anomaly and take the top (bottom)

quintiles as the (non-)vulnerable portfolios. We take value weighted returns of the stocks within

these portfolios in the quarter after our regression as the quarterly return of our vulnerable and

non-vulnerable portfolios.

Table 4 reports the summary statistics of these portfolios. Throughout our sample, the non-

vulnerable portfolio has given slightly higher returns, but at the cost of higher standard deviation

and kurtosis. The historical risk adjusted returns are very similar.

[Table 4 about here.]
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The rest of this section is structured as follows. First, we discuss the predictive regressions for

the vulnerable and non-vulnerable portfolio returns in Section 5.1. The implications from these

models on long-horizon risk, return and portfolio choice is discussed in Sections 5.2 and 5.3.

5.1 Predictive regressions

Table 5 shows the predictive regressions for the vulnerable and non-vulnerable portfolio returns,

the state variables in the model have the same structure as in Table 3. The agnostic investor in

panel A has similar predictive regressions for the vulnerable and non-vulnerable portfolios, with

a small difference in the temperature coefficient between the two. As constructed, non-vulnerable

portfolio returns increase have a higher loading on the temperature anomaly than vulnerable port-

folio returns. The difference between the two initially seems small, but with temperature anomalies

between 1 and 2 degrees Celsius this results in 0.16% to 0.32% higher quarterly returns for the

non-vulnerable portfolio purely based on the temperature anomaly.

Panel B of Table 5 reports the predictive regression for the dogmatic investor. As for the

market portfolio, both equity portfolios have negative loadings on the temperature anomaly, with

more impact on the vulnerable than on the non-vulnerable portfolio. In this setting, however, there

are also considerable differences in the loadings on the intercept, price-dividend ratio and the risk-

free rate. The higher loading from the vulnerable portfolio on these components is driven by the

fact that climate-disasters hit the vulnerable portfolio harder, which drives additional correlation

with both the risk-free rate and the price-dividend ratio.

Combining historical data and LRR-T prior beliefs results in the LRR-T Bayesian regression

in panel C of Table 5. In this setting, the temperature anomaly has less impact on equity returns,

because of the opposite signs on the prior and the data. Surprisingly, the Bayesian investor has

a higher coefficient from the vulnerable returns on the temperature anomaly than from the non-

vulnerable portfolio returns, which is not the case in the prior and the data. The difference in the

loadings on the temperature anomaly remains economically meaningful.

[Table 5 about here.]
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5.2 Long-horizon risk and return

The predictive regressions from Table 5 forecast the variance ratios for the (non-)vulnerable portfo-

lios as presented in the top panels of Figure 5. Comparing these results to the predictive variances

of the market portfolio from Figure 2, we observe several differences. Most importantly, the ag-

nostic investor predicts higher long-horizon variance ratios for our sorted portfolios than for the

market portfolio. We find that these high variance ratios are mainly driven by slightly decreased

predictability, which decreases mean reversion and to a lesser extend uncertainty of future expected

return. Second, the estimation risk of the agnostic investor has increased significantly.17 The dog-

matic and LRR-T Bayesian investors predict similar variance ratios for the market portfolio and

our sorted portfolios. The vulnerable portfolio shows slightly more mean reversion than the non-

vulnerable portfolio, decreasing the overall variance ratio. In addition to these variance ratios that

document variances of the sorted portfolios over the horizon, Figure 13 in Online Appendix B.2

documents how the vulnerable and non-vulnerable portfolios compare in their relative variance. We

find that the agnostic and LRR-T Bayesian investor initially perceive the non-vulnerable portfolio

as riskier, with the opposite result for the dogmatic investor.

The forecasted risk premia for the (non-) vulnerable portfolios are given in the bottom panels

of Figure 5. The dogmatic investor predicts risk premia for the non-vulnerable portfolio that

are roughly 0.30% per quarter higher than that of the vulnerable portfolio, which aligns well

with the difference in the temperature anomaly coefficients in panel A of Table 5. The dogmatic

investor predicts significantly higher risk premia for the vulnerable portfolio. In the LRR-T model,

persistent temperature risk is priced, which implies that in-sample, the vulnerable portfolio also had

significantly higher risk premia. It is not unexpected that this is also the case in the out-of-sample

forecasts. Finally, the LRR-T Bayesian investor also forecasts higher returns for the vulnerable

portfolio, but these are considerably closer to those of the non-vulnerable portfolio.

[Figure 5 about here.]

Next to risk and return, we consider the predictive correlations between the vulnerable and

17The decomposition of the variance ratios and its underlying components is found in Figures 11 and 12 in Online
Appendix B.2 for the vulnerable and non-vulnerable portfolios, respectively.
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non-vulnerable portfolios, as well as the risk-free asset. These are presented in Figure 6. We

find that over the horizon, the vulnerable and non-vulnerable portfolio returns are less correlated

with eachother, especially for the agnostic investor. Therefore, with longer investment horizons,

there are more diversification benefits between the two risky portfolios. Second, both the dogmatic

and Bayesian investors show high long-horizon correlations between the equity portfolios and the

risk-free asset, whereas the agnostic investor perceives these as uncorrelated over all horizons.

Mechanically, this is driven by the differences in the loadings from the sorted portfolios on the

lagged risk-free returns in the predictive regressions.

[Figure 6 about here.]

5.3 Portfolio choice

Figure 7 shows the optimal allocations for an investor that combines the vulnerable and non-

vulnerable sorted portfolios with the risk-free asset. First, we find that the allocation to the

risk-free asset is similar to when we combine the risk-free rate with the market portfolio in Figure

4. This is reasonable, given that the loading to equities and the risk-free asset should not be affected

too much by the sorting of our portfolios. Together, the vulnerable and non-vulnerable portfolio

are still a well-diversified equity portfolio.

Within equities, the agnostic and dogmatic investors present opposite results for the allocation

towards the vulnerable and the non-vulnerable portfolios. The agnostic investor generally invests in

the non-vulnerable portfolio, because it has higher returns, and buys into the vulnerable portfolio

over longer horizons for diversification, when correlations decrease. The dogmatic investor predicts

significantly higher returns for the vulnerable portfolio, as is reflected in the allocation. Only at

the longest horizons it starts allocating capital towards the non-vulnerable portfolio, because of

the increased riskiness of the vulnerable portfolio as documented in Figure 13 in Online Appendix

B.2. The dogmatic investor does not combine the two equity portfolios as there is no incentive to

diversify with high correlation for all horizons. Finally, the Bayesian investor initially focuses on

the vulnerable portfolio, but adds the non-vulnerable portfolio because of diversification benefits

at longer horizons, and invests roughly half in each equity portfolio in the long run.
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[Figure 7 about here.]

6 Conclusion

We propose a novel approach for measuring the impact of climate change on long-term equity

risk and optimal portfolio choice. We characterize the long-horizon dynamics of equity returns by

specifying a VAR model that includes the temperature anomaly as a predictor. Because historical

data may not be very informative about the impact of climate change on future stock market

returns, we estimate the parameters of the VAR using a Bayesian approach that complements

historical data with prior information derived from economic theory. Specifically, we elicit prior

beliefs from the temperature long-run risk (LRR-T) model of Bansal, Kiku, and Ochoa (2019). Our

framework allows for different prior beliefs about the impact of temperature levels on future equity

returns. In addition, it explicitly incorporates uncertainty about the impact of climate change in

the portfolio optimization.

We document three key findings. First, compared to a benchmark investor with LRR prior

beliefs, an investor that takes LRR-T beliefs into account perceives stock markets to be riskier over

longer horizons because disasters induced by climate change reduce mean reversion in returns while

estimation risk increases. Mean reversion decreases because climate disasters tend to cluster in

periods with relatively high temperature levels. In other words, current disasters with an adverse

impact on market returns are often quickly followed by new disasters, increasing the correlation

between current and future returns. Second, the LRR-T Bayesian investor expects the market

risk premium to increase after a climate disaster occurs. In particular, whereas disasters cause

a persistent negative shock to risk-free rates, the negative impact on expected market returns is

transitory because prices rapidly adjust after a disaster strikes. Therefore, the market risk premium

for this investor is higher than that implied by the data and the benchmark Bayesian investor with

LRR prior beliefs.

Combined, these first two findings imply that the optimal investor that takes climate change

into account through LRR-T prior beliefs buys more equities than the benchmark investor in the

short term, because of higher expected market risk premia. For long-term investments, however,
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increasing temperatures increase the riskiness of the market portfolio, resulting in a larger allocation

to the risk-free asset. These differences in the optimal portfolio choice are economically meaningful,

with the LRR-T Bayesian investor investing roughly 15 percentage points less in the market than

the benchmark LRR Bayesian investor in the long run.

Third, we show that LRR-T prior beliefs have significant impact on investors that assess port-

folios vulnerable and non-vulnerable to climate change. In the LRR-T prior, investors are fairly

compensated for climate risk, making the vulnerable portfolio the most attractive investment. in-

vestors who forecasts solely from historical data expect the non-vulnerable portfolio to outperform

and allocate capital to the vulnerable portfolio for diversification purposes. The Bayesian investor

initially focuses on the vulnerable portfolio, but invests roughly the same amount in each portfolio

in the long run, when the vulnerable and non-vulnerable portfolios becomes less correlated.

Overall, we believe that our paper offers a few important high-level insights into the possible

implications of climate change for optimal portfolio allocation by long-term investors such as pension

funds and insurance companies. First, we provide a concrete approach to deal with the widely

shared concern that using historical data to study portfolio allocation has significant limitations in

light of the uncertain long-term effects of climate change not present in the data. Our approach

allows investors to combine data with insights from theoretical models and is flexible in the sense

that investors can examine the impact of different prior beliefs by varying the weights they place

on the data versus the theoretical model. Second, our analysis puts forward three key parameters

that investors should consider when studying the impact of climate change on portfolio allocation.

In particular, climate change may affect the equity premium, the degree of equity risk over different

horizons, as well as the correlations between different asset classes.
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A Appendix

A.1 Solution to the temperature long-run risk model

The intertemporal marginal rate of substitution (IMRS) equals

mt+1 = θ log δ − θ

ψ
∆ct+1 + (θ − 1)rt+1,c, (12)

where θ = 1−γ
1− 1

ψ

.

A.1.1 The wealth-consumption ratio

We use the Euler equation,

Et[exp(mt+1 + rt+1,c)] = 1, (13)

to solve the wealth-consumption ratio zt from Equation (10), filling in the IMRS from Equation

(12) and the Campbell-Shiller decomposition for the return on the consumption asset, rt+1,c =

κ0 + ∆ct+1 + κ1zt+1 − zt. We find

mt+1 + rt+1,c = θ log δ + θκ0 + θ(κ1 − 1)A0 + (1− γ + θκ1A1χΘ)µc + θκ1A1χµε

+ (1− γ + θκ1A1χΘ)σtηt+1 + θκ1A1χσζζt+1 + θ(κ1ν − 1)A3σ
2
t

+ θκ1(1− ν)A3σ̄
2 + θκ1A3σwwt+1 + ((1− γ)ρ+ θ(κ1ρ− 1)A2)Xt

+ (1− γ + θκ1A2)d∆Nt+1 + θ(κ1νε − 1)A1Tt.

(14)

With the expectation

Et[mt+1 + rt+1,c] = θ log δ + θκ0 + θ(κ1 − 1)A0 + (1− γ + θκ1A1χΘ)µc + θκ1A1χµε

+ θ(κ1ν − 1)A3σ
2
t + θκ1(1− ν)A3σ̄

2 + ((1− γ)ρ+ θ(κ1ρ− 1)A2)Xt

+ (1− γ + θκ1A2)dλ0∆t+ ((1− γ + θκ1A2)dλ1∆t+ θ(κ1νε − 1)A1)Tt

(15)
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and variance

Vart(mt+1 + rt+1,c) = (1− γ + θκ1A1χΘ)2σ2t + (θκ1A1χ)2σ2ζ + (θκ1A3)
2σ2w

+ (1− γ + θκ1A2)
2d2λ0∆t+ (1− γ + θκ1A2)

2d2λ1∆tTt.

(16)

We now go back to the Euler equation from (13) and take logs and use Jensen’s inequality to find

the solution to the price-consumption ratio from Equation (10):

θ(1− κ1ν)A3 = 0.5(1− γ + θκ1A1χΘ)2,

θ(1− κ1ρ)A2 = (1− γ)ρ,

θ(1− κ1νε)A1 = (1− γ + θκ1A2)d

(
1 +

(1− γ + θκ1A2)d

2

)
λ1∆t,

(1− κ1)A0 = log δ + κ0 +

(
1− 1

ψ
+ κ1A1χΘ

)
µc + κ1A1χµε

+ κ1(1− ν)A3σ̄
2 + 0.5θ((κ1A1χ)2σ2ζ + (κ1A3)

2σ2w)

+

(
1− 1

ψ
+ κ1A2

)
d

(
1 +

(1− γ + θκ1A2)d

2

)
∆tλ0.

(17)

A.1.2 The risk-free rate

Again, we use the Euler equation to solve the risk-free rate. We start from the IMRS of Equation

(12) and fill in

mt+1 = θ log δ + (θ − 1)κ0 + (θ − 1)(κ1 − 1)A0 + ((θ − 1)κ1A1χΘ− γ)µc + (θ − 1)κ1A1χµε

+ (θ − 1)κ1A3(1− ν)σ̄2 + (θ − 1)κ1A1χσζζt+1 + (θ − 1)κ1A3σwwt+1

+ ((θ − 1)κ1A1χΘ− γ)σtηt+1 + (θ − 1)(κ1ν − 1)A3σ
2
t

+ ((θ − 1)(κ1ρ− 1)A2 − γρ)Xt + ((θ − 1)κ1A2 − γ)d∆Nt+1 + (θ − 1)(κ1νε − 1)A1Tt.

(18)
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We then have expectation

Et[mt+1 + rf,t] = rf,t + θ log δ + (θ − 1)κ0 + (θ − 1)(κ1 − 1)A0 + ((θ − 1)κ1A1χΘ− γ)µc

+ (θ − 1)κ1A1χµε + (θ − 1)κ1A3(1− ν)σ̄2 + (θ − 1)(κ1ν − 1)A3σ
2
t

+ ((θ − 1)(κ1ρ− 1)A2 − γρ)Xt + ((θ − 1)κ1A2 − γ)dλ0∆t

+ (((θ − 1)κ1A2 − γ)dλ1∆t+ (θ − 1)(κ1νε − 1)A1)Tt,

(19)

and variance

Vart(mt+1 + rf,t) = ((θ − 1)κ1A1χ)2σ2ζ + ((θ − 1)κ1A3)
2σ2w + ((θ − 1)κ1A1χΘ− γ)2σ2t

+ ((θ − 1)κ1A2 − γ)2d2λ0∆t+ ((θ − 1)κ1A2 − γ)2d2λ1∆tTt.

(20)

With the Euler equation, logs, and Jensen’s inequality we find

0 = Et[mt+1 + rf,t] + 0.5Vart(mt+1 + rf,t)

⇔ rf,t = rf − ((θ − 1)(κ1ρ− 1)A2 − γρ)Xt

−
(

((θ − 1)κ1A2 − γ)d

(
1 +

((θ − 1)κ1A2 − γ)d

2

)
λ1∆t+ (θ − 1)(κ1νε − 1)A1

)
Tt

− ((θ − 1)(κ1ν − 1)A3 + 0.5((θ − 1)κ1A1χΘ− γ)2)σ2t ,

rf = −θ log δ + γµc − (θ − 1)(κ0 + (κ1 − 1)A0 + κ1A1χΘµc)

− (θ − 1)(κ1A1χµε + κ1A3(1− ν)σ̄2)

− 0.5[((θ − 1)κ1A1χ)2σ2ζ + ((θ − 1)κ1A3)
2σ2w]

− ((θ − 1)κ1A2 − γ)d

(
1 +

((θ − 1)κ1A2 − γ)d

2

)
∆tλ0.

(21)
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A.1.3 The price-dividend ratio

We similarly solve the price-dividend ratio of portfolio i, zt,i from Equation (10). The Campbell-

Shiller decomposition for the returns of portfolio i gives us

rt+1,i = κ0,i + ∆dt+1,i + κ1,izt+1,i − zt,i

= κ0,i + µd + (κ1,i − 1)A0,i + κ1,iA1,iχµε + κ1,iA1,iχΘµc

+ κ1,iA3,i(1− ν)σ̄2 + ϕdσtut+1 + (πd + κ1,iA1,iχΘ)σtηt+1 + κ1,iA1,iχσζζt+1

+ κ1,iA3,iσwwt+1 + (κ1,iνε − 1)A1,iTt + (φiρ+ (κ1,iρ− 1)A2,i)Xt

+ (φi + κ1,iA2,i)d∆Nt+1 +A3,i(κ1,iν − 1)σ2t

(22)

Combining this with the IMRS from Equation (18) we find the expectation

Et[mt+1 + rt+1,i] = θ log δ + (θ − 1)κ0 + κ0,i + (θ − 1)(κ1 − 1)A0 + (κ1,i − 1)A0,i + µd

+ (((θ − 1)κ1A1 + κ1,iA1,i)χΘ− γ)µc + ((θ − 1)κ1A1 + κ1,iA1,i)χµε

+ ((θ − 1)κ1A3 + κ1,iA3,i)(1− ν)σ̄2

+ ((θ − 1)(κ1ν − 1)A3 + (κ1,iν − 1)A3,i)σ
2
t

+ ((θ − 1)(κ1ρ− 1)A2 + (κ1,iρ− 1)A2,i + φiρ− γρ)Xt

+ [(θ − 1)(κ1νε − 1)A1 + (κ1,iνε − 1)A1,i

+ ((θ − 1)κ1A2 + κ1,iA2,i + φi − γ)dλ1∆t]Tt

+ ((θ − 1)κ1A2 + κ1,iA2,i + φi − γ)dλ0∆t,

(23)

and variance

Vart(mt+1 + rt+1,i) = ((θ − 1)κ1A3 + κ1,iA3,i)
2σ2w

+ ((θ − 1)κ1A1 + κ1,iA1,i)
2χ2σ2ζ

+ ϕ2
dσ

2
t + (((θ − 1)κ1A1 + κ1,iA1,i)χΘ + πd − γ)2σ2t

+ ((θ − 1)κ1A2 + κ1,iA2,i + φi − γ)2d2λ0∆t

+ ((θ − 1)κ1A2 + κ1,iA2,i + φi − γ)2d2λ1∆tTt.

(24)
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Which we fill in in the Euler equation and take logs to find

0 = logEt[exp(mt+1 + rt+1,i)] = Et[(mt+1 + rt+1,i)] + 0.5Vart(mt+1 + rt+1,i)

= θ log δ + (θ − 1)κ0 + κ0,i + (θ − 1)(κ1 − 1)A0 + (κ1,i − 1)A0,i + µd

+ (((θ − 1)κ1A1 + κ1,iA1,i)χΘ− γ)µc + ((θ − 1)κ1A1 + κ1,iA1,i)χµε

+ CN (1 + 0.5CN )λ0∆t+ ((θ − 1)κ1A3 + κ1,iA3,i)(1− ν)σ̄2

+ 0.5(((θ − 1)κ1A3 + κ1,iA3,i)
2σ2w + ((θ − 1)κ1A1 + κ1,iA1,i)

2χ2σ2ζ )

+ [(θ − 1)(κ1ν − 1)A3 + (κ1,iν − 1)A3,i

+ 0.5ϕ2
d + 0.5(((θ − 1)κ1A1 + κ1,iA1,i)χΘ + πd − γ)2]σ2t

+ ((θ − 1)(κ1ρ− 1)A2 + (κ1,iρ− 1)A2,i + φiρ− γρ)Xt

+ ((θ − 1)(κ1νε − 1)A1 + (κ1,iνε − 1)A1,i + CN (1 + 0.5CN )λ1∆t)Tt,

CN = ((θ − 1)κ1A2 + κ1,iA2,i + φi − γ)d.

(25)

We set all terms in front of Tt, Xt and σ2t to zero to solve for zt,i:

(1− κ1,iν)A3,i = 0.5(((θ − 1)κ1A1 + κ1,iA1,i)χΘ + πd − γ)2

+ 0.5ϕ2
d + (θ − 1)(κ1ν − 1)A3,

(1− κ1,iρ)A2,i = (θ − 1)(κ1ρ− 1)A2 + φiρ− γρ,

(1− κ1,iνε)A1,i = (θ − 1)(κ1νε − 1)A1 + CN (1 + 0.5CN )λ1∆t,

(1− κ1,i)A0,i = θ log δ + (θ − 1)κ0 + κ0,i + (θ − 1)(κ1 − 1)A0 + µd

+ (((θ − 1)κ1A1 + κ1,iA1,i)χΘ− γ)µc + ((θ − 1)κ1A1 + κ1,iA1,i)χµε

+ CN (1 + 0.5CN )λ0∆t+ ((θ − 1)κ1A3 + κ1,iA3,i)(1− ν)σ̄2

+ 0.5(((θ − 1)κ1A3 + κ1,iA3,i)
2σ2w + ((θ − 1)κ1A1 + κ1,iA1,i)

2χ2σ2ζ ),

CN = ((θ − 1)κ1A2 + κ1,iA2,i + φi − γ)d.

(26)
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A.1.4 The equity risk premium

As discussed by Bansal and Yaron (2004), the risk premium of any asset is based on the covariance

between the unexpected returns and innovations in the SDF mt+1 as

lnEt[Ri,t+1]− rf,t = Et[ri,t+1 − rf,t] + 0.5Vart(ri,t+1) = −Covt(mt+1 −Et[mt+1], ri,t+1 −Et[ri,t+1]).

(27)

The innovation in the SDF based on Equation (12) equals

mt+1 − Et[mt+1] = −λησtηt+1 − λζσζζt+1 − λwσwwt+1 − λX(∆Nt+1 − (λ0∆t+ λ1∆tTt)), (28)

where

λη = γ + (1− θ)κ1A1χΘ,

λζ = (1− θ)κ1A1χ,

λw = (1− θ)κ1A3,

λX = (γ + (1− θ)κ1A2)d.

(29)

Based on Equation (22), the innovation in the return of portfolio i is given by

ri,t+1 − Et[ri,t+1] = ϕdσtut+1 + (πd + κ1,iA1,iχΘ)σtηt+1 + κ1,iA1,iχσζζt+1

+ κ1,iA3,iσwwt+1 + (φi + κ1,iA2,i)d(∆Nt+1 − (λ0∆t+ λ1∆tTt))

(30)

This brings us to the conditional risk premium of asset i:

lnEt[Ri,t+1]− rf,t = −Covt(mt+1 − Et[mt+1], ri,t+1 − Et[ri,t+1])

= ληβi,ησ
2
t + λζβi,ζσ

2
ζ + λwβi,wσ

2
w + λXβi,X(λ0∆t+ λ1∆tTt),

(31)
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where lambdas are given in Equation (29) and betas are

βi,η = πd + κ1,iA1,iχΘ,

βi,ζ = κ1,iA1,iχ,

βi,w = κ1,iA3,i,

βi,X = (φi + κ1,iA2,i)d.

(32)

A.1.5 Solving the fixed-point problem

The approximation constants κ0(,i) and κ1(,i) are defined as

κ0(,i) = log(1 + exp(z̄(i)))− κ1(,i)z̄(i),

κ1(,i) =
exp(z̄(i))

1 + exp(z̄(i))
,

(33)

where z̄(i) is the mean of the wealth-consumption ratio zt or price-dividend ratio of portfolio i,

zt,i. We solve the mean of these ratios by numerically (through iteration) solving the fixed point

problem

z̄(i) = A0(,i) +A1(,i)T̄t +A2(,i)X̄t +A3(,i)σ̄
2
t

= A0(,i) +A1(,i)

(
1

n
E0

[
n∑
t=1

Tt

])
+A2(,i)

(
1

n
E0

[
n∑
t=1

Xt

])
+A3(,i)σ̄t

2,
(34)

where the expected averages T̄t and X̄t over the sample from period t = 1 to t = n are given as

1

n
E0

[
n∑
t=1

Tt

]
=

(
T0
n
− χ(µε + Θµc)

n(1− νε)

)(
νε − νn+1

ε

1− νε

)
+
χ(µε + Θµc)

1− νε
,

1

n
E0

[
n∑
t=1

Xt

]
=

1

n

(
−X0 +

n∑
t=0

E0[Xt]

)

=
X0

n

(
ρ− ρn+1

1− ρ

)
+

1

n

(
d∆tλ0
1− ρ

+
d∆tλ1
1− ρ

χ(µε + Θµc)

1− νε

)(
n− ρ− ρn+1

1− ρ

)

+
1

nνε

 d∆tλ1

1−
(
ρ
νε

)
(T0 − χ(µε + Θµc)

1− νε

)(
1− νn+1

ε

1− νε
− 1− ρn+1

1− ρ

)
.

(35)
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The sample used in our regressions starts in 1947Q1 and runs until 2019Q4, 292 observations of

quarterly data. In our simulations, we construct a similar sample. We simulate n = 939 months

of data, resulting in a sample of 292 quarters after we drop the first five years of our simulation

as burn-in and the last three months because of a lead in the risk-free yields. We calibrate the

model to set the expected starting temperature in our simulations to zero, i.e. E0[T60] = 0, based

on our burn-in of 60 months. The risk-free yields are led by one period, since the assumed absence

of credit risk implies that the risk-free return realized at the end of quarter Qi is already observed

in Qi−1.

A.2 Adjustments to the LRR-T model

The LRR-T model presented in Section 3.1 deviates from the LRR-T model of Bansal, Kiku, and

Ochoa (2019) in several ways.

First, in Equation (7), the dividend growth process allows for different loadings on the different

shocks in the model and we let volatility vary over time. Both adjustments increase the flexibility

of the model and are generally implemented in recent versions of LRR model (among others,

in Bansal, Kiku, and Yaron (2012)). We allow for portfolio-specific disasters impact through a

portfolio-specific φi.

Second, in Equation (8), we include a persistence ρ < 1 of the economic impact of disasters X,

instead of ρ = 1. We believe that it is reasonable that climate-related disasters have a persistent

impact on consumption and dividend growth, but that impact should not be indefinite. In the

same equation, we let the increments of the disaster process (∆N) be Poisson distributed, instead

of the whole process N . With this adjustment, we make the current disaster intensity dependent

on recent temperature levels, instead of on the historical path of temperature growth.

Third, in Equation (9), the atmospheric carbon concentration includes a separate trend µε.

This trend is used to generate the different climate scenarios in our analysis.

Finally, in Equation (10), we assume that the log wealth-consumption ratio zt and the log price-

dividend ratio zt,m also depend on the economic disaster impact Xt and time-varying variance σ2t .

The inclusion of σ2t follows the inclusion of time-varying volatility in Equation (7). We believe
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that the the inclusion of economic disaster impact Xt in the processes for zt and zt,m is intuitively

reasonable. When temperatures increase, zt and zt,m should decrease as prices decrease to adjust

for expected future disasters. Without sufficient precautionary savings, these ratios should also be

affected when disasters occur, because these disasters should have significant cashflow impact.

A.3 Posterior VAR distributions

We follow Avramov, Cederburg, and Lucivjanska (2018) and estimate the VAR model in Equation

(1) as 

rm,t+1

pt+1 − dt+1

rf,t

Tt+1


= C ′



1

pt − pd

rf,t−1

Tt


+ εt+1, εt+1 ∼ N(0,Σ). (36)

where C is the VAR coefficients matrix and Σ is the variance-covariance matrix of the residuals. As

shown in the Appendix of Avramov, Cederburg, and Lucivjanska (2018), the posterior distribution

of the VAR parameters with the model-based prior conditional on the observed data for periods

1, . . . , t, Dt, and the asset pricing model parameters ΘM is given by

Σ | Dt,ΘM ∼ IW ((ωM + ωD)N Σ̂(ΘM ), (ωM + ωD)N − 4),

C | Σ, Dt,ΘM ∼ N(Ĉ(ΘM ),Σ⊗ (ωMNΓ∗xx + ωDX
′X)−1),

(37)

in which

Σ̂(ΘM ) =
1

(ωM + ωD)N
[(ωMNΓ∗yy + ωDY

′Y )

− (ωMNΓ∗xy + ωDY
′X)(ωMNΓ∗xx + ωDX

′X)−1(ωMNΓ∗xy + ωDX
′Y )],

Ĉ(ΘM ) = (ωMNΓ∗xx + ωDX
′X)−1(ωMNΓ∗xy + ωDX

′Y ),

(38)

N is the number of observations in our sample (292 quarters), and Γ∗xx, Γ∗xy, and Γ∗yy are the

population moments from the asset pricing models in Section 3.1, conditional on the model pa-

rameters ΘM , as introduced in the Appendix of Avramov, Cederburg, and Lucivjanska (2018).
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Finally, ωM
ωM+ωD

and ωD
ωM+ωD

are the weight given to the model-based prior and the historical data,

respectively. For the Bayesian investor, we set equal weights to the informative prior and histor-

ical data by setting ωM = ωD = 1. For the agnostic investor we specify ωM = 0 and ωD = 1,

and Equation (37) then equals the posterior of the analysis on historical data with a multivariate

Jeffreys uninformative prior. For the climate change believer we specify ωM = 1 and ωD = 0, and

Equation (37) then equals the prior distribution solely based on an asset pricing model.
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B Online Appendix

B.1 Numerical optimal asset allocation

We numerically solve the optimal asset allocation for our buy-and-hold long-only investor following

the methodology from, among others, Barberis (2000). This appendix explains our methodology.

We closely follow a similar explanation in the appendix from Diris (2014) in this section.

Sampling from the predictive distribution

We sample N = 250, 000 paths of length K = 100 quarters from the predictive distribution of the

asset returns and state variables in our VAR model. We repeat the following two steps N times:

1. For k in 1, . . . ,K, Sample the returns and state variables in period k conditional on the

posterior mean VAR parameters (a,B,Σ) and the predictor variable values in k−1. We start

forecasting from the last observed value of our predictor variables in the data at period k = 1.

2. Re-sample the asset returns and predictor variables in period k when we draw a quarterly

return for the risk-free asset below −10%. This step is needed to avoid minus infinity utility,

as an investor can never go bankrupt as long as it invests in the risk-free asset with this

restriction. In practice, re-sampling is hardly ever required.

Calculation of buy-and-hold portfolio

Based on the N return forecasts from above we now follow the steps below to compute the optimal

investment portfolio.

1. Make a grid of portfolio weights. We invest long only, i.e. weights are between zero and one,

and use steps of 0.01 for our grid search. Then, for each weight in the grid:

2. Take a set of weights and calculate realized utility for each simulated path.

3. Approximate expected utility with the mean of these N realized utilities.

46



For each horizon k = 1, . . . ,K, we choose the optimal vector of weights as the one that results in

the largest expected utility from 3.

B.2 Extra output

[Table 6 about here.]

[Figure 8 about here.]

[Figure 9 about here.]

[Figure 10 about here.]

[Figure 11 about here.]

[Figure 12 about here.]

[Figure 13 about here.]
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Table 1: Calibration parameters for the temperature long-run risk model

Preferences δ γ ψ
0.998 5 1.5

Consumption µc ρ d σ̄ ν σw
0.0052 0.99 −0.004166 0.0072 0.999 0.0000028

Dividend µd πd φm φv φnv ϕd
0.0062 2.0 1.1 1.35 0.85 5.0

Climate νe ε0 µe Θ σζ χ λ0 λ1
0.9971 −1 0.0095 1 0.5 0.2 0.075 0.075

This table shows the calibration parameters for the temperature long-run risk model from Equations (7) to
(10), based on a monthly decision interval. This calibration matches historically observed climate change,
with the temperature anomaly increasing from 0 to 1 degrees Celsius in expectation in our simulations. φm,
φv and φnv are the parameters for the different growth processes of the market portfolio and the portfolios
vulnerable and non-vulnerable to temperature innovations, respectively.

Table 2: Quarterly calibration moments for the (temperature) long-run risk models

Data LRR LRR-T

E(rm) 1.81 1.78 1.71
σ(rm) 7.25 8.01 8.20
E(rf ) 0.13 0.20 0.17
σ(rf ) 0.47 0.28 0.62
E(p− d) 4.89 4.45 4.42
σ(p− d) 0.44 0.16 0.23

E(∆c) 0.47 0.45 0.45
σ(∆c) 0.49 1.14 1.43
E(∆d) 0.66 0.64 0.62
σ(∆d) 1.94 5.83 5.92

E(T ) 0.33 0.64
σ(T ) 0.83 0.83

This table reports the first and second moments of market returns, ex-ante risk-free yields, price-dividend
ratios, consumption and dividend growth, and the temperature anomaly. Returns and growth rates are in
percentages and all moments except for the temperature anomaly are in logs. The first column reports the
historical moments from monthly data time-aggregated to quarterly values from 1947Q1 to 2019Q4, for all
series except for consumption growth. For consumption growth, these moments are based on quarterly data
from 1947Q2 to 2019Q4. The columns on the right show the population moments from 250,000 simulations
from the LRR(-T) models, each simulation matching the 1947Q1-2019Q4 sample.
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TABLES 49

Table 3: VAR parameter estimates for the agnostic, dogmatic and Bayesian investors

Panel A: Data (uninformative prior) - Agnostic

Intercept pt − dt rf,t Tt

rm,t+1 14.28 -2.63 80.55 0.89
(2.76) (-2.46) (0.87) (1.58)

pt+1 − dt+1 0.10 0.98 1.37 0.01
(1.79) (89.10) (1.44) (1.22)

rf,t+1 0.19 -0.03 88.56 0.01
(1.54) (-1.36) (40.83) (0.50)

Tt+1 -2.48 0.57 -11.36 0.19
(-4.65) (5.13) (-1.18) (3.23)

Panel B: LRR-T prior - Dogmatic

Intercept pt − dt rf,t Tt

rm,t+1 32.05 -6.87 273.50 -0.61
(1.18) (-1.14) (2.29) (-0.49)

pt+1 − dt+1 0.93 0.79 3.31 -0.04
(4.86) (18.78) (3.93) (-4.09)

rf,t+1 0.36 -0.08 99.05 -0.03
(0.90) (-0.88) (56.52) (-1.48)

Tt+1 0.42 -0.09 0.97 0.98
(0.92) (-0.90) (0.47) (46.25)

Panel C: Data with LRR-T prior - Bayesian

Intercept pt − dt rf,t Tt

rm,t+1 7.11 -1.23 155.94 0.33
(1.90) (-1.54) (2.75) (0.90)

pt+1 − dt+1 0.05 0.99 0.76 0.00
(1.58) (141.86) (1.53) (0.71)

rf,t+1 -0.01 0.01 95.37 -0.02
(-0.16) (0.38) (87.39) (-2.34)

Tt+1 0.74 -0.12 -20.65 0.70
(2.44) (-1.87) (-4.43) (23.90)

Panel D: Data with LRR prior - Bayesian

Intercept pt − dt rf,t

rm,t+1 8.22 -1.43 148.17
(2.26) (-1.82) (1.84)

pt+1 − dt+1 0.05 0.99 1.22
(1.75) (146.40) (1.75)

rf,t+1 0.04 0.00 91.30
(0.57) (-0.30) (64.61)

This table shows the posterior means of the parameter estimates of VAR from Equation (1). Posterior
t-stats are reported below the coefficients. Panel A reports the VAR for the agnostic investor, based on
uninformative priors. Panel B reports the VAR for the dogmatic climate risk believer, based on the LRR-T
prior. Panel C reports the VAR for the LRR-T Bayesian investor that combines data with the baseline
LRR-T prior. Panel D is the benchmark LRR Bayesian investor. The regressions are based on a quarterly
sample from 1947Q1 to 2019Q4. Returns are in log percentages, the price-dividend ratio is in logs and the
temperature anomaly is in degrees Celsius.
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Table 4: Descriptive statistics of the quarterly returns on the vulnerable and non-
vulnerable portfolios.

Portfolio Mean StDev Min Max Skew Kurt Sharpe Corr
Non-Vul 1.96 10.32 -36.20 34.15 -0.72 4.83 0.18 0.84
Vul 1.67 8.94 -28.85 21.51 -0.78 3.93 0.17

This table shows summary statistics of the vulnerable and non-vulnerable quarterly returns from 1947Q1 to
2019Q4. Returns are in log percentages.

Table 5: Predictive regressions for (non-)vulnerable portfolio returns

Panel A: Data (uninformative prior) - Agnostic

Intercept pt − dt rf,t Tt

rv,t+1 15.28 -2.84 37.29 0.65
(2.44) (-2.19) (0.33) (0.94)

rnv,t+1 15.97 -2.92 12.53 0.81
(2.20) (-1.95) (0.10) (1.01)

Panel B: LRR-T prior - Dogmatic

Intercept pt − dt rf,t Tt

rv,t+1 41.09 -8.84 326.90 -0.75
(1.47) (-1.42) (2.64) (-0.58)

rnv,t+1 21.07 -4.51 208.80 -0.46
(0.83) (-0.80) (1.85) (-0.40)

Panel C: Data with LRR-T prior - Bayesian

Intercept pt − dt rf,t Tt

rv,t+1 9.88 -1.81 159.25 0.28
(2.38) (-2.04) (2.47) (0.68)

rnv,t+1 4.94 -0.76 105.70 0.04
(1.13) (-0.82) (1.57) (0.08)

This table shows the posterior means of the parameter estimates of the predictive regression from the returns
of the vulnerable and non-vulnerable portfolios on the lagged price-dividend ratio, risk-free return and
temperature anomaly. Posterior t-stats are reported below the coefficients. Panel A reports the coefficient
estimates for the agnostic investor, based on uninformative priors. Panel B reports the coefficient estimates
for the dogmatic climate risk believer, based on the LRR-T prior. Panel C reports the coefficient estimates
for the LRR-T Bayesian investor that combines data with the LRR-T prior. The regressions are based on a
quarterly sample from 1947Q1 to 2019Q4. Returns are in log percentages, the price-dividend ratio is in logs
and the temperature anomaly is in degrees Celsius.



Table 6: Population estimates for VAR parameters from the temperature long-run
risk model

Intercept pt − dt rf,t Tt

rm,t+1 32.07 -6.87 273.55 -0.61
pt+1 − dt+1 0.93 0.79 3.32 -0.04
rf,t+1 0.36 -0.08 99.04 -0.03
Tt+1 0.43 -0.09 1.01 0.98

This table shows the model coefficients of the VAR from Equation (1) estimated on a very large set of
250,000 simulations from the LRR-T model. The model is estimated on a quarterly time interval and each
simulation matches the 1947Q1-2019Q4 sample period. Returns are in log percentages, the price-dividend
ratio is in logs and the temperature anomaly is in degrees Celsius.
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Figure 1: A single simulation from the LRR-T model.
This figure shows the simulated market returns, price-dividend ratios, risk-free returns and temperature
anomaly from the calibration of the LRR-T model in Table 1. We simulate 876 months after a burn-in of
five years, to match our 1947-2019 historical data sample. Returns are in log percentages, the price-dividend
ratio is in logs and the temperature anomaly is in degrees Celsius.
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FIGURES 53
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Figure 2: Predictive variance ratios of the market portfolio and its components by horizon.
This figure shows the predictive variance ratio of the market portfolio (top left) and the underlying compo-
nents related to mean reversion (top right), uncertainty about future expected returns (bottom left), and
estimation risk (bottom right). Separate variance ratios forecasts for the agnostic (data), dogmatic (LRR-T
prior), LRR-T Bayesian, and LRR Bayesian investors are reported based on forecasts from the VARs in
panels A to D of Table 3, respectively. These forecasts are made with the Exogenous temperature process
from Section 2.2.1. The investment horizons runs from 1 to 100 quarters.
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Figure 3: Predictive returns and risk premia.
This figure shows the average forecasted returns on the risk-free asset (top left), the market portfolio (top
right), and the related market risk premium (bottom left). Separate return forecasts for the agnostic (data),
dogmatic (LRR-T prior), LRR-T Bayesian, and LRR Bayesian investors are reported based on 250,000
forecasts from the VARs in panels A to D of Table 3, respectively. These forecasts are made with the
Exogenous temperature process from Section 2.2.1. The investment horizons runs from 1 to 100 quarters.
Returns are in log percentages.
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Figure 4: Optimal weight to equities by horizon.
This figure shows the optimal weight to market portfolio for a buy-and-hold investor with risk aversion
parameter A=5, based on predictive returns and variances from the VAR models in Table 3 for the agnostic
(data), dogmatic (LRR-T prior), LRR-T Bayesian, and LRR Bayesian investors. We optimize the weight to
equities with the risk-free asset as alternative investment for investment horizons from 1 to 100 quarters. We
do (not) take parameter uncertainty into account in the (top) bottom panel. Short-selling is not allowed.
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Figure 5: Predictive variance ratios and risk premia for the vulnerable and non-vulnerable
portfolios.
This figure shows the predictive variance ratio of the (non-)vulnerable portfolio in the top (left) right panels.
The bottom (left) right panels show the risk premia of these portfolios in log percentages per quarter.
Separate risk premium and variance ratio forecasts for the agnostic (data), dogmatic (LRR-T prior), and
LRR-T Bayesian investors are reported based on forecasts from the regressions in panels A to C of Tables 3
and 5, respectively. These forecasts are made with the Exogenous temperature process from Section 2.2.1.
The investment horizons runs from 1 to 100 quarters.
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Figure 6: Predictive correlations for returns of the vulnerable and non-vulnerable portfolios.
This figure shows the correlations between the 250,000 forecasted cumulative return paths for the vulnerable,
non-vulnerable and risk-free portfolios. Separate correlation forecasts for the agnostic (data), dogmatic
(LRR-T prior), and LRR-T Bayesian investors are reported based on forecasts from the regressions in panels
A to C of Table 3 for the risk-free return and Table 5 for the (non-)vulnerable returns. These forecasts are
made with the Exogenous temperature process from Section 2.2.1. The horizons runs from 1 to 100 quarters.
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Figure 7: Portfolio choice with vulnerable and non-vulnerable portfolios by horizon.
This figure shows the optimal weight to (non-)vulnerable portfolio in the (top) bottom left panel and to
the risk-free asset in the top right panel. Optimal portfolios are determined for a buy-and-hold investor
with risk aversion parameter A=5, based on predictive returns and variances from the regression models
in Tables 3 and 5 for the agnostic (data), dogmatic (LRR-T prior), and LRR-T Bayesian investors. The
investor allocates capital between the vulnerable and non-vulnerable portfolios and the risk-free asset for
investment horizons from 1 to 100 quarters. Parameter uncertainty is taken into account and short-selling
is not allowed.
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Figure 8: VAR forecasted temperature anomalies.
This figure shows the temperature anomaly forecasts from the agnostic (data), dogmatic (LRR-T prior), and
LRR-T Bayesian investors based on forecasts from the VARs from Panel A to C of Table 3. The temperature
anomaly is in degrees Celsius. The horizons runs from 1 to 100 quarters.
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Figure 9: Relative variance of the returns of the risk-free asset and the market portfolio.
This figure shows the predictive variance of the returns of the risk-free asset (including roll-over risk) divided
by the variance of the returns of the market portfolio. Separate variance forecasts for the agnostic (data),
dogmatic (LRR-T prior), LRR-T Bayesian, and LRR Bayesian investors are reported based on forecasts
from the predictive regressions in panels A to D of Table 3, respectively. These forecasts are made with the
Exogenous temperature process from Section 2.2.1. The investment horizons runs from 1 to 100 quarters.
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Figure 10: Predictive correlations for returns of the risk-free asset and the market portfolio.
This figure shows the correlations between the 250,000 forecasted cumulative return paths for the risk-free
asset and the market portfolio. Separate correlation forecasts for the agnostic (data), dogmatic (LRR-T
prior), LRR-T Bayesian, and LRR Bayesian investors are reported based on forecasts from the regressions
in panels A to D of Table 3. These forecasts are made with the Exogenous temperature process from Section
2.2.1. The horizons runs from 1 to 100 quarters.
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Figure 11: Predictive variance ratios of the vulnerable portfolio.
This figure shows the predictive variance ratio of the vulnerable portfolio (top left) and the underlying
components related to mean reversion (top right), uncertainty about future expected returns (bottom left),
and estimation risk (bottom right). Separate variance ratios forecasts for the agnostic (data), dogmatic (LRR-
T prior), and LRR-T Bayesian investors are reported based on forecasts from the predictive regressions in
panels A to C of Table 5, respectively. These forecasts are made with the Exogenous temperature process
from Section 2.2.1. The investment horizons runs from 1 to 100 quarters.
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Figure 12: Predictive variance ratios of the non-vulnerable portfolio.
This figure shows the predictive variance ratio of the non-vulnerable portfolio (top left) and the underlying
components related to mean reversion (top right), uncertainty about future expected returns (bottom left),
and estimation risk (bottom right). Separate variance ratios forecasts for the agnostic (data), dogmatic (LRR-
T prior), and LRR-T Bayesian investors are reported based on forecasts from the predictive regressions in
panels A to C of Table 5, respectively. These forecasts are made with the Exogenous temperature process
from Section 2.2.1. The investment horizons runs from 1 to 100 quarters.
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Figure 13: Relative variance of the returns of the non-vulnerable and vulnerable portfolios.
This figure shows the predictive variance of the returns of the non-vulnerable portfolio divided by the variance
of the returns of the vulnerable portfolio. Separate variance forecasts for the agnostic (data), dogmatic (LRR-
T prior), and LRR-T Bayesian investors are reported based on forecasts from the predictive regressions in
panels A to C of Table 5, respectively. These forecasts are made with the Exogenous temperature process
from Section 2.2.1. The investment horizons runs from 1 to 100 quarters.
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