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Abstract

Climate risk, the risk generated during the process of climate change, now becomes a
global issue that affects multiple regions and countries. As a result, climate risk in one region
could transfer to another region. In this paper, we study the climate risk spillover through
the channel of financial markets. We propose a new method to capture the climate risk.
Then, we study the climate risk spillover through testing pair-wise Granger Causality in risk
and through constructing the connectedness network in six major markets. We find that
Europe and the US are the main climate risk transmitters, and China and Japan are the
main receivers of the climate risk. It takes around three weeks for climate risk to be fairly
transmitted and around 30% of local climate risk shocks comes from outside. When there are
large-scale climate events, the US and Europe are the main sources of risk transmission. A
higher climate sentiment leads to a higher level of risk transmission. We also find that when
the economic activities are low, the level of climate risk transmission is also low.
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1 Introduction
Climate risk, or the climate change risk, can be categorized into two types: physical risk and
transition risk. The physical risk is the direct damage caused by the climate change, for example,
the damage to the local economy due to a strong hurricane; and the transition risk is the impact on
companies due to a possible transition to a green economy (e.g., government carbon taxes). One
crucial property of the climate risk is that it can “transmit” across boarders. That is, through
socioeconomic connections among countries, local climate change events could have impacts to
other regions. And such impact is not trivial. A report studying the climate change impact
for UK reached a conclusion that cross-border climate change impacts on trade, investment and
food systems are larger than domestic impacts (PwC, 2013). In addition, national assessments of
cross-border climate change impacts have been made in a number of countries within the EU and
also for the whole EU region.1 In the most recent Intergovernmental Panel on Climate Change
(IPCC) report, the transmission nature of climate risk has been further emphasized.2

If climate risk can transmit across borders and have considerable impacts, then an important
part of measuring the climate risk impact is to measure how and to which extent it could transfer
across borders. The “transmit nature” of climate risk also poses additional challenges for regulators
to properly evaluate the impact of climate change on local economy. As for the financial markets,
the spillover of climate risk from other regions also means another source of risk. That is, for
banks and investors whose assets have high exposure to climate risk, they not only have to evaluate
domestic climate impacts but also foreign impacts in order to manage the climate risk. For this
purpose, various recent studies try to provide a discussion how we we should measure climate risk
spillovers (Li et al., 2021, Carter et al., 2021, West et al., 2021, Benzie et al., 2019 and Challinor
et al., 2018). Benzie et al. (2019) summarize four possible pathways through which climate risk can
spillover across borders: Finance, People, Trade, Biophysical.3 However, none of these studies are
able to provide a method to quantify the climate risk spillover, that is, to measure extent to which
the climate risk can transmit across borders.

One possible difficulty is that the climate risk is hard to measure because of the complex
interactions and uncertainties in the Earth and human systems (Diaz and Moore, 2017). However,
recent empirical studies find that climate risk is now being priced and realized in the financial
market (Giglio et al., 2021 and Engle et al., 2020), which gives us some hinds on how to capture
the climate risk. The theory is that, long-run physical or transition risk is gradually realized over
time as climate events, and such climate events is captured by two indicators. The first indicator is
climate change news – climate events are reported in climate change news. The other indicator is

1For example, Netherlands, Germany, Norway, Switzerland, Finland, etc., as summrized by Benzie et al. (2019)
and Carter et al. (2021). West et al. (2021) study the cross-border climate change impact for the whole Europe

2In the report, they conclude that the observed climate risk are “complex risks result from multiple climate
hazards occurring concurrently, and from multiple risks interacting, compounding overall risk and resulting in risks
transmitting through interconnected systems and across regions”.

3The biophysical pathway can be cross-border ecosystems (e.g. floods or droughts upstream in a river basin); the
trade pathway are consisted of international markets; the finance pathway means the flow of public and private
capital; the people pathway means the movement of people across borders.
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similar: while climate events is reflected as the arrival of climate news, it can also be reflected in the
investor’s climate sentiment. The climate sentiment is a concept similar to market sentiment, and it
measures the investors optimistic or pessimistic beliefs about climate change that are not based on
the facts at hand (Santi, 2022 and Baker and Wurgler, 2006). Then, changes in the two indicators
are captured in the financial market. For example, investors who receive information from climate
change news will update their beliefs; then, they will adjust their holdings, which would then cause
asset prices to move. In sum, long-term climate risks are realized as climate events, which then
are reflected in climate news or changes of climate sentiments, and are finally reflected the asset price.

If the climate risk is being priced and realized in the financial market, then we can form a
portfolio that follows the climate risk (as done by Engle et al., 2020). To form such portfolios, we can
either construct a portfolio that follows the climate news arrivals, or that captures the changes in
the climate sentiment. On way documented by the literature is to use the return difference between
portfolios with high environmental performance and low environmental performance. For example,
Pastor et al. (2021) show that the return difference between green (with higher environmental
performance) and brown stocks interacts with changing investor environmental concern. Engle
et al. (2020) show that the return difference between green and brown stocks explains large part of
the climate changes news innovation. If a portfolio follows closely to changes in the climate risk,
then changes in the portfolio return can serve as a proxy for the climate risk. And once we get the
proxy for the climate risk, we can study the climate risk spillover by studying how such proxy of
climate risk in different markets interacts with each other.

Leaning on previous findings, this paper studies the climate risk spillover in a quantitative
manner: to measure how much and to which extent the climate risk can transmit across borders
through the financial markets. For this purpose, we first construct the climate risk hedge portfolio,
a portfolio that is supposed to follow the climate risk, the return difference between portfolios
with high environmental performance and low environmental performance. Specifically, we use
the return difference high-emission and low-emission companies and calculate it using the two-sort
method of Fama and French (1993). We then proxy the climate risk as changes in such long-short
portfolio. Once we have the proxy for climate risk, we measure the climate spillover by studying
how such proxy in different markets interacts with each other.

We study the level of interaction for two scenarios: when there are extreme positive climate
shocks and extreme negative shocks. For this purpose, we first check the pair-wise Granger causality
in risk, propose by Hong et al. (2009), between two markets. We further construct the connectedness
network at 5% and 95% quantiles to study the level of the climate risk spillover among financial
markets, for which we apply the Quantile VAR model (Chavleishviliy and Manganelli, 2021 and
Montes-Rojas, 2019), the VAR model at different quantiles, and the connectedness table proposed
by Diebold and Yilmaz (2014). We study six major markets globally: the United States, China
(including Hong Kong), Europe (including UK), Canada, Australia and Japan. Though these
methods, we try to answer the following question: to which extent an observed local climate risk
shock is consisted of foreign climate risk shock?
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In line with Bolton and Kacperczyk (2022), we find that the climate risk is being priced in
the six markets, with each market having different levels of prices. Also, the trends are similar
among different markets: when there are global-level climate events such as the signing of Paris
Agreement, every market responds similarly. After getting the proxy, we study the pair-wise risk
spillover among the six markets. We study two scenarios: when there are extreme positive climate
risk shocks and extreme negative climate risk shocks. We find that the climate risk spillover among
countries depends on the type of climate risk shock (positive or negative) as well as the country. In
general, we find that Japan is the most segregated market and the US is the market that receives
and gives the highest level the climate risk. The level of climate risk spillover is the highest around
the event of Paris Agreement and the outbreak of COVID.

We then put the six market in a network to study the level of climate risk spillover. We find
that it takes around three weeks for climate risk to be fairly transmitted. On average, around 30%
of the local climate risk comes from outside within five weeks. The level of spillover is higher for
negative climate risk shocks than for positive climate risk shocks. Europe, US and Canada are
the main climate risk transmitters, and China and Japan are the main receivers of the climate
risk. However, the role could change across time. For example, the US changed from net risk
transmitters (during the Paris Agreement period) to net receivers (after the period). It is thus
important to understand the cause of climate risk shock and the characteristics of corresponding
markets before analyzing the climate risk spillover.

We also study the determinants of the climate risk spillover. When financial markets are more
connected, climate risk can transfer more easily. A higher level of trading activities will facilitate
the transmission of climate risk, especially during the pre-COVID period. In addition, we show
that a higher global climate sentiment means that the level of risk spillover is also higher.

The contribution of our paper is three-fold. First, we provide a new method to quantify and
proxy the climate risk in the market. The method can be used by investors to calculate the
climate risk exposure of their portfolios. For regulators, such proxy of climate risk could be used
in economic models to formulate climate-change-related policies. Second, we quantify the risk
spillover by building a connectedness network, which can offer a reference to future researches on
how to measure the climate risk spillover. Third, we provide empirical evidence to the current lit-
erature on how and to which extent the climate risk is transmitted through financial markets globally.

The paper is organized as follows. We first provide a discussion in Section 2 to show how we
capture the climate risk and how we measure the risk spillover. We then describe in Section 3 the
data we use. In Section 4 we present the discussion of the climate risk in different markets. Section
5 and 6 shows how and to which extent the climate risk is transmitted across markets. We deepen
our discussion in Section 7 by investigating the determinants of the climate risk spillover. We give
the conclusion in Section 8.
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2 Methodology

2.1 Capturing Climate Risk
Long-term climate risks are realized as climate events and these climate events are reported in
climate news, news whose theme is about climate change (disasters, regulations, etc.). Investors
who see the news may change their climate sentiments (i.e., the investor’s optimistic or pessimistic
beliefs about climate change). Then, either the arrival of climate news or changes in climate
sentiments are evidenced in the literature to be reflected as changes in asset prices in the financial
market. Thus, a portfolio/asset whose return follows the arrival of climate news or changes in
climate sentiments can be used as a proxy for climate risk. In recent empirical literature, one
type of portfolio is found to be associated with both climate news and climate sentiments: the
return difference between companies with high environmental performance and low environmental
performance, defined as,

RE
t ≡ RHighE

t −RLowE
t , (2.1)

where RHighE
t is the return of a portfolio that consists of companies with high environmental score

(high-E) and RHighE
t is the return of a portfolio that consists of companies with low environmental

score (low-E).4 Engle et al. (2020) run a regression between climate change news indices and RE
t .5

They find that RE
t can explain a large part of the news index. Similarly, Pastor et al. (2021) run a

regression between RE
t and an index that measures the climate sentiment, and they show that RE

t

can be explained by the climate sentiment. In a similar vein, Choi et al. (2020) show that when
the local temperature is abnormally high, people revise their beliefs about climate change and
in the financial market, stocks of high-emission firms (and thus low environmental performance)
under-perform firms with low emissions. Santi (2022) shows that stocks of high-emission firms
under-perform low-emission ones when investor climate sentiment increases.

We will apply similar long-short portfolio in our paper to capture the climate risk. In construct-
ing RE

t , the environmental score is used to group companies into high-E and low-E (to calculate
RHighE
t and RLowE

t ), which can be problematic. One issue is that while there are many data
providers in the market offering the rating, the correlation among them is quite low, and thus the
score suffers from measurement error (Berg et al., 2021). As a result, a change of data provider
could possibly result in a change of the RE

t . Thus, instead of using the environmental score to
construct the RE

t , we use the carbon emission of each company, which is more objective than
the environmental score. Although the carbon emission can not represent the whole picture of a
company’s environmental performance that affects the climate change, the main driver of climate

4The environmental score is a credit-rating-like score that measures the environmental performance of a company
(i.e., if a company’s business model is environmental friendly), usually based on a matrix of indicators. A high
Environmental score means high environmental performance, for which we call companies with high environmental
scores high-E companies.

5The climate change news index, for example the WSJ Climate Change News Index, is an keyword-based news
index that measures the amount of climate change news in a given time. A higher index value usually means the
during the period there are many reports about the climate change, indicating the happening of climate change
events.
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change is the greenhouse effect due to greenhouse gas emission, and carbon emission is the major
greenhouse gas.6 The high level of CO2 concentration in the atmosphere is believed to be largely
responsible for human-induced climatic change (Rehan and Nehdi, 2005).

In concrete, we capture the climate risk by following steps. We first construct the long-short
portfolio as:

RC
t ≡ RLowEms

t −RHighEms
t , (2.2)

where RLowEms
t is the return of low-emission portfolios and RHighEms

t is the return of high-emission
portfolios.

Because climate events are reflected as changes in the long-short portfolio, we then estimate the
AR (1) process for the return of the long-short portfolio:

RC
t = α + βRC

t−1 + ut. (2.3)

Finally, we capture the climate risk as the innovation (ut) of the above AR(1) model as:

CRiskt ≡ ût = RC
t − α̂− β̂RC

t−1. (2.4)

We use the innovation of the AR(1) process to emphasis the “unexpected” part of the changes,
because investors update their beliefs only when the information is unexpected. In Eq. (2.2), we
try to capture the information of climate sentiment/climate change news using the return difference
between two portfolios with different levels of carbon emission. Then, we use the unexpected
change of the long-short portfolio as a representation of climate risk. We provide in Appendix B
a detailed description of the process we use to construct the portfolio, which follows closely the
two-sort process of Fama and French (1993).

It is worth discussing the interpretation of CRiskt before moving on. Climate events (extreme
weather, climate-change-related regulations, etc.) are one type of shocks, and such shocks may
generate changes in the climate sentiment or are reflected in climate change news, which would
then cause investors to update their climate change beliefs, and then a change in the return of the
long-short portfolio. In other words, climate-related events could trigger investor actions and finally
changes the value of the portfolio. In short, CRiskt is the realization of climate change shocks in
the financial market.

CRiskt should be close to zero in normal times. Then, when climate change events happen, we
can observe changes in the the long-short portfolio (be it positive or negative). When there are
positive changes (CRiskt > 0), it means that there are positive shocks from climate events that
pushes an increase in the demand for low-emission companies, for example, the signing of Paris

6https://ec.europa.eu/clima/climate-change/causes-climate-change_en
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Agreement or a large-scale extreme weather. When there are negative changes (CRiskt < 0), it
means a shock that causes high-emission companies to outperform low-emission one, which could
be the result of a reduction of carbon tax or a relief of global warming.

After getting the numerical measure of CRiskt as a proxy for the climate risk, we study the
climate risk spillover by looking at two situations: when CRiskt is extremely high (when CRiskt
is at its 95% quantile) and extremely low (when CRiskt is at its 5% quantile). We study the
extreme changes of the long-short portfolio for two reasons. First, small changes of the portfolio
RC
t could be due to normal market fluctuations but not necessarily climate events. Second, from a

risk management perspective, what worries investors and regulators most is the climate risk that
may cause huge fluctuations in the market and in their asset value.

2.2 Granger Causality in Risk
We first apply the Greager causality analysis to study the relationship of CRiskt in different markets.
To study the relationship at different quantiles, we apply the test of Granger causality in risk
proposed by Hong et al. (2009), which is an extension of the Granger causality proposed by Granger
(1969). The interpretation is that, if two markets have Granger causality in risk relationship, then
the occurrence of a large risk in one market can help predict the occurrence of the large risk in
another market. Put it in our case: if the climate risk (CRiskt) of the US Granger-causes the
climate risk in China at 95%, it means that when there are large shocks from climate events in the
US, such that CRiskt in the US becomes very large (changes to its 95% quantile), it contributes to
the future case where CRiskt in China becomes very large (change to 95%). Since the extreme
change of the long-short portfolio can have two directions: upside and downside, we consider two
types of Granger causality in risk: down-to-down and up-to-up. We don’t consider in this paper
the situation of down-to-up and up-to-down because international evidence show that investors in
different markets react similarly to the climate risk (Bolton and Kacperczyk, 2022). Thus, it is less
likely that a negative extreme shock in one market would turn into a positive extreme shock in
other market.

Following Hong et al. (2009) and the discussion in Du and He (2015), we first define the quantile
of two time series {Yi,t}Tt=1 , i = 1, 2 series as

Prob
[
Yi,t ≤ qτi,t | Ft−1

]
= τ,

where Ft−1 denotes the information set until t − 1 and τ is the probability level and qτi,t is the
conditional quantile at time t for series Yi,t. In our case, τ = 5%. Then we define the two types of
risk hit series {Zi,t}Tt=1 , i = 1, 2 as

ZDown
i,t =

1 if Yi,t<qτi,t
0 else

,
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ZUp
i,t =

1 if Yi,t>q1−τ
i,t

0 else
.

Then, the null and alternative hypotheses are (taking the down-to-down for example)

H0 : E
[
ZDown

1,t | IDown
1,t−1

]
= E

[
ZDown

1,t | IDown
1,t−1 , I

Down
2,t−1

]
, (2.5)

H1 : E
[
ZDown

1,t | IDown
1,t−1

]
6= E

[
ZDown

1,t | IDown
1,t−1 , I

Down
2,t−1

]
, (2.6)

where IDown
i,t−1 , i = 1, 2 is the information set for series Yi,t at time t − 1. Therefore, if the null

hypothesis is rejected and we accept the alternative, it means that when Y2 changes below the
quantile level qα2,t, it has significant impact to the probability of a future occurrence of a hit in Y1,t,
and we say that Y2,t Granger-causes Y1,t in the quantile α.

To calculate test statistics, we calculate the sample cross-correlation between the two hit
series{Z1,t}Tt=1 and{Z2,t}Tt=1 as:

ρ̂(j) = Ĉ(j)
Ŝ1Ŝ2

where Ŝi =
√
τ̂i(1− τ̂i) (the hit series Ẑi,t follows an i.i.d. Bernoulli (τ̂i) distribution, with

τ̂i = 1
T

∑T
t=1 Ẑi,t), j is the lag order, with j = {1, 2, ..., T − 1} and sample cross-covariance Ĉ(j) is

calculated as:

Ĉ(j) = 1
T

T∑
t=1+j

(
Ẑ1,t − τ̂1

) (
Ẑ2,t−j − τ̂2

)
.

Thus, the test statistic of one-way Granger causality in risk from Y2,t to Y1,t is

Q1(M) =
T
∑T−1
j=1 k

(
j
M

)2
ρ̂(j)2 − C1,T (M)

D1,T (M)1/2
D−→ N(0, 1), (2.7)

with C1,T (M) ≡ ∑T−1
j=1 (1− j

T
)k2( j

M
)

D1,T (M) ≡ 2∑T−1
j=1 (1− j

T
)
(
1− (j+1)

T

)
k4( j

M
)

,

where M is the maximum lag order that we consider for the analysis of risk spillover, with
M = cT v, c > 0, 0 < v < 1

2 . If M = 5, it means we are testing if the risk spillover from Y2,t to Y1,t
is statistically significant within five lags. Since we do not know at which lag the climate risk will
transfer across markets, we will discuss in the empirical analysis part the Granger causality in risk
under different lag orders.
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k(x) is a suitable kernel function, which in our case is the Daniell kernel k(x) = sin(πx)
πx

, because
Hong et al. (2009) show that Daniell kernel maximizes the asymptotic power of Q1(M). If Q1(M) is
larger than some critical value given a certain confidence level (for example, 1.65 at 95%, one-sided),
then we say that Y2,t Granger-causes Y1,t at the given quantile.

To estimate the hit series (Ẑi,t), we need to estimate the conditional quantile series qτi,t. We use
the method proposed by Engle and Manganelli (2004) called conditional auto-regressive value at
risk (CAViaR), where the quantile is estimated by directly modeling the distribution of the quantile
without distributional assumptions. We are going to use the Symmetric CAViaR, with the setting
as:

qτt = β0 + β1q
τ
t−1 + β2 | CRiskt−1 |,

where the initial value qτ0 is given by the historical quantile of the whole sample period; CRiskt is
the climate risk series in the previous section.

2.3 Risk Spillover Measure
The Granger causality in risk analysis only shows if climate risk transmits across two markets.
However, with only the Granger causality in risk analysis, it is hard to show the level (how much)
of risk spillover. To do so, we apply the framework of quantile vector autoregressive (Quantile
VAR) model. The Quantile VAR model is similar to the VAR model except that every equation in
the system is quantile regression. The model can be used to evaluate the interaction of quantiles of
endogenous variables in the system. Then, based on the model, we conduct the simulation-based
generalized variance decomposition proposed by Lanne and Nyberg (2016) and finally construct
the risk spillover table based on the connectedness network of Diebold and Yilmaz (2014). The
connectedness network should tell the the level of climate risk spillover.

2.3.1 Quantile VAR Model (QVAR)

We refer to the discussion in Su (2020) and Chen et al. (2022) to apply the quantile VAR model.
The basic element of the QVAR model is quntile regression. The quantile regression explains the
τth quantile a time series (Yt) given the vector of explanatory variables Xt :

F−1(τ, Yt|covariates) = Xtβ(τ), (2.8)
where F−1(Yt) is the probability distribution function of the random variable. β(τ) is estimated
conducting the following minimization.

β(τ) = argmin
β(τ)

T∑
t=1

(τ − 1{Yt<Xtβ(τ)}) |Yt −Xtβ(τ)| .

The M -order quantile VAR process of n-variable is as follows:
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Yt = c(τ) +
M∑
i=1

Bi(τ)Yt−i + εt(τ), t = 1, ..., T, (2.9)

with

Q(τ, Yt) = c(τ) +
M∑
i=1

Bi(τ)Yt−i,

where Yt is the K-vector of endogenous time series; τ is the level of quantile and in our case,
τ = 5%&95%; K is the number of variables. c(τ) is the K-vector of intercepts at quantile τ .
Bi(τ) for i = 1, ...,M is the lagged coefficients for quantile τ . Each equation in the quantile VAR
system is estimated under quantile regression in Eq.(2.8) (i.e., Bi(τ) comes from the quantile
regression estimation). εt(τ) is the vector of residual terms, with Q(τ, εt(τ) | Yt−1, ..., Yt−M) = 0.
The stationary condition of the QVAR model is similar to the VAR in the mean.7

2.3.2 Quantile General Forecast Error Variance Decomposition (QGFEVD)

Based on the QVAR model, we apply a the Quantile GFEVD based on the GFEVD proposed by
Lanne and Nyberg (2016):

λij(H) =
∑H−1
h=0

[
QGIY (H, ε∗j,t(τ),Ft−1)i

]2
∑H−1
h=0

∑n
j=1

[
QGIY (H, ε∗j,t(τ),Ft−1)i

]2 , (2.10)

where QGIY (H, ε∗j,t(τ),Ft−1) is the Quantile Impulse Response Function (QIRF), defined as:

QGIY (H, ε∗j,t(τ),Ft−1) ≡ Q
(
τ, Yt+H | ε∗j,t(τ) = εj,t(τ) + δj,Ft−1

)
−Q (τ, Yt+H | Ft−1) . (2.11)

Q(τ, Yt+H | ε∗j,t(τ) = εj,t(τ) + δj,Ft−1) is the conditional quantile of Yt+H given a shock δj at
time t. Q(τ, Yt+H | Ft−1) is the conditional quantile without the shock. Therefore, the above
definition of QIRF means that, given the K-variable QVAR system of (2.9), we give a shock to the
residual of variable j (εj,t(τ)) at time t and check how the quantile of Yt changes H periods after.8
QGIY (H, δj,Ft−1) is thus a (K × 1) vector that shows the response of the K-variable QVAR system
to a variable specific shock of j in H periods. Accordingly, QGIY (H, δj,Ft−1)i (with subscript
i) is the ith element of the vector, and measures the response of variable i to the shock j inH periods.

In addition, if we choose the shock (δj) from the history of quantile residuals ε(τ), then
a shock at time t to Yt means that Yt changes to its τth quantile (i.e.,δj = −εm(τ)⇒Y ∗j,t =
c(τ) +∑M

i=1 Bi(τ)Yt−i + εt(τ)− εm(τ) = Yj,t− εm(τ)=Qm(τ, Yj,t)). Note that ε(τ) is usually positive
for τ < 50% and negative for τ > 50%. Then, the QIRF has an economic interpretation in our case:

7See proposition 1 of Chavleishviliy and Manganelli (2021).
8The definition of QIRF is still under discussion in the literature, see, for example, Chavleishviliy and Manganelli

(2021), Montes-Rojas (2019), Han et al. (2019) and White et al. (2015). The key here is to define it properly to
answer our research question. The definition in our paper refers partly to Montes-Rojas (2019).
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at time t, when there are large shocks from climate events, such that climate risk in the market j
become very large/small (changes to its τth quantile), how and to which extent it could contribute
to the extreme climate risk of other markets H periods after. Therefore, QIRF provides additional
information to the Granger causality test in risk by showing how much the climate risk is spilled
over among different markets.

Given the definition of QIRF, the numerator of QGFEVD in Eq. (2.10) measures the aggregate
cumulative (from h = 0 to H − 1) response of variable i to shock j, and the denominator is the
cumulative response of variable i to all shocks (i.e., we give shock to every variable). Therefore,
λij(H) shows the percentage response of variable i to shock j and by construction, Σn

j=1λij(H) = 1.

One thing worth mentioning is that the quantile residual (εt(τ)) is different from the error in
the mean (εt). In Koop et al. (1996) and Pesaran and Shin (1998)’s work, the generalized impulse
response function is based on the the error in the mean (εt):

GIY (H, δj,Ft−1) = E(Yt+H | εjt = δj,Ft−1)− E(Yt+H | Ft−1)
= AHE(εt | εjt = δj) = AHΣejσ−1

jj δj
,

where AH is the MA representation coefficient of a VAR model; εt is assumed to follow multi-variant
normal distribution, such that E(εt | εjt = δj) has an analytical solution: E(εt | εjt = δj) = Σejσ−1

jj δj .
In comparison, the only restriction put on the εt(τ) is Qτ (εt(τ) | Yt−1, ..., Yt−p) = 0. Therefore,
unless we make further distributional assumptions about the quantile error εt(τ), we may not be able
to get an explicit function of QGIY (H, ε∗j,t(τ),Ft−1), which means that a simulation-based method
is needed. We provide in Appendix C on how we use simulation-based method to calculate the QIRF.

After getting the forecast error decomposition, we apply the connectedness framework of Diebold
and Yilmaz (2014) and calculate directional spillover form variable j to variable i as:

Σn
j=1λ̃ij(H), j 6= i.

And the directional spillover form variables i to other variable j is measured as:

Σn
i=1λ̃ij(H), i 6= j.

Given these directional spillover, net volatility spillovers from market i to all markets j can be
calculated as the difference between gross volatility shocks transmitted to and gross volatility shocks
received from all other markets:

S(H) = Σn
i=1λ̃ij(H)− Σn

j=1λ̃ij(H), i 6= j. (2.12)
Finally, we check the total spillover index as:

TS = 1
n

n∑
i,j=1

λ̃ij(H), i 6= j. (2.13)
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3 Data

3.1 Company Data
Six major markets are included in our sample: the United States, China (including Hong Kong),
Europe (including UK), Canada, Australia and Japan. The weekly return for each company will be
used and is calculated in a logarithm manner as Ri,t = Ln( Pi,t

Pi,t−1
) for each company i and time t in

each market. In total, we have 443 weekly return observations from 2013/01/07 to 2021/06/28. We
do not include the time period in earlier years because there were not many companies disclosing
their sustainability information. In addition, the climate sentiment is a phenomenon that appear in
only recent years (Giglio et al., 2021). In the US, we have 1920 companies in the sample; in China,
we have 464 companies; Japan, 420 companies; Canada, 293 companies; Australia, 310 companies
and for Europe, we have 1310 companies.

3.2 Carbon Emission
The Ekion Datastream Database will be used in our analysis. We study the global market and
download the month-end carbon emission measure for companies with available data from 2012/12
to 2021/05 (103 months of data in total). Appendix A shows the data and the corresponding code
we use in Eikon’s database.

In concrete, we use the “Estimated CO2 Equivalents Emission Total”, which shows the total CO2
and CO2 equivalents emission in tonnes in one year at a company-level, which include both direct
(scope 1) and indirect (scope 2) emissions. The data comes from either company’s self-disclosure in
the annual report, or from the carbon emission model developed by Eikon, which follows the green
house gas emission protocol.9 To account for the size effect, we also download the month-end value
of market value for each company, and we calculate the emission to market value (MV) as:

Cm,i = CO2m,i
MVm,i

, (3.1)

where CO2m,i is the month-end value of carbon emission of that year for company i. Note that
CO2m,i is updated annually but not necessarily at the beginning of each year (due to different
fiscal years of each company), and for this reason we download the month-end value of the carbon
emission for each company. The data will be used in calculating the long-short portfolio.

4 Climate Risk in Different Markets

4.1 Climate Risk Statistics
Table 1 shows the statistics of climate risk time series for each market. From Panel A, we can see
that Canada has the highest level of standard deviations, followed by Australia. Europe and the

9https://www.refinitiv.com/content/dam/marketing/en_us/documents/fact-sheets/esg-carbon-data-estimate-
models-fact-sheet.pdf
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US have the lowest standard deviation. Panel B shows the correlation among different climate risk
time series. The correlation among the US, Europe and Canada is high, indicating that there could
be some common factors that drive the co-movement among these markets.

[Insert Table 1 Here ]

Figure 1 shows the graphs of the climate risk time series. We observe that climate risk in
different markets have similar trends over the years: when major climate events happen, we
see huge positive/negative values of the climate risk series, which implies that the climate risk
series could reflect the climate change news. In normal times when there are no major climate
events, for example form mid-2017 to mid-2019, the climate risk series have small fluctuations.
This observation supports our choice of studying the climate risk spillover through extreme values
of CRiski,t (5% and 95%) – major climate events are closely associated with large values of CRiski,t.

Apart from having similar trends, there are two major differences among climate risk series in
different markets. The first is that, upon the arrival of a global climate change event, different
markets respond with different strengths. For example, after the 2014 UN climate summit, we
observe a sharp positive value in Canada (Panel B of Figure 1) but a moderate positive value in
EU and US; and the positive value observed in China and Japan are quite small. One possible
explanation is that investors in different markets may have different criteria/tastes for climate
change, such that the same climate change events could trigger different levels of reactions. The
second difference is that during periods where there are no global-wide events (2018 – 2019), the
climate risk in different markets are different. This could be due to that climate events in different
markets are different.

An interesting observation is that, when the COVID-19 crisis (an event that is not related to
climate change) happened, there were also huge positive values observed (e.g., Panel B, Canada,
the green line). This could be explained by that during the crisis, investor’s preference over green
assets strengthened and there are sudden fund inflow into low-emission companies. Dong et al.
(2019) explain such phenomenon as “flight to quality” effect: during crisis periods, investors change
from low sustainability performance stocks to high sustainability performance stocks. This points
to a fact: while investor’s climate sentiment could be an indicator of climate-change-related events,
it is also affected by other factors like crisis.

[Insert Figure 1 Here ]

5 Pair-wise Climate Risk Spillover
In this section, we present the results of Granger causality in risk at τ = 5% and 95% (the
down-to-down and up-to-up scenarios). We present the results with the lag from one to ten weeks
(M = [1, 10]). We first show the results using the data for the whole sample period. Then, since in
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Figure 1 we find that the climate risk times also reflect non-climate-change-related events such as
COVID-19 crisis, we provide a rolling window analysis, with a windows size of 150 weeks and a
step size of four.

5.1 Climate Risk Spillover in the Whole Period
Table 2 presents the p-value of Granger causality test. Only p < 10% will be marked with color
and a deeper color means a smaller value and thus a stronger causality relationship. We do observe
climate risk spillovers among different markets. In Panel A, a large positive climate risk shock
in Australia can transfer to the US, Japan and Europe one week after. Shocks in China can
transmit to Japan and have lasting effects even after ten weeks. Panel B shows the Granger
causality in risk at τ = 5%. Negative extreme shocks in the US have a significant predictive
power for negative extreme shocks in the Europe, Japan and Australia two weeks later. And
the effect could last for at multiple weeks (with significant results even when M equals eight or
nine). The most segregated market is Japan: large positive climate risk shocks in Japan do not
spillover to other markets, and negative shocks have short impact to Canada, Europe and China.
The second most segregated market is Australia. In comparison, negative climate risk shocks
in the US can spill over to all other markets, and have lasting effects to Japan, Australia and Europe.

It takes different periods for climate risks to spill over across different markets. For example, a
positive climate risk shock in the US takes four weeks to transfer to China, and in the situation of
China to the US, it takes only one week to for the climate risk to transmit across borders. This
implies that investors in different markets absorb and update their beliefs with different speed. In
most cases, the climate risk can spillover within five weeks.

The climate risk spillover is asymmetric. For example, Australia Granger causes the US at
τ = 95% but not at τ = 5%; in the meantime, the US Granger causes Australia at τ = 5% but
not at τ = 95%. This could be explained by that negative and positive shocks due to climate
change events are generated under different economic situations/conditions, and thus have different
channels of risk spillover across markets.

[Insert Table 2 Here ]

5.2 Climate Risk Spillover across Time
Since in Table 2, most pairs of countries have climate risk spillover within five lags, we here present
the rolling window results within M = 5. That is, for each pair in each window, we run Granger
causality in risk test from M = 1 to M = 5 to get five p-values, and then we present the minimum
p-value of the five tests. We provide in Figure 2 and Figure 3 the result of the test at τ = 95%
and τ = 5% respectively. In Panel B of each figure, we see that the climate risk spillover among
different markets are detected mainly in two periods: periods around the Paris Agreement (2015 –
2016) and periods after the COVID (2020). During both periods, the climate risk were high as
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shown in Panel B of Figure 1. Accordingly, the risk spillover found in the whole sample analysis
does not apply to all windows. For example, at τ = 95%, China and the US have risk spillover only
during the Paris Agreement period but not the COVID period. In comparison, the risk spillover
from US to Japan happens only during the COVID period.

Such complicated risk spillover relationship among different markets implies that the climate
risk spillover is event-specific. Though global events like Paris Agreements and COVID crisis all
generate positive shocks (as shown in Panel B of Figure 1), the channel of risk spillover can also be
different. In addition, the climate risk spillover depends on the type of market, because given the
same source of risk shock, the risk spillover is different among different pairs markets.

[Insert Figure 2 – 3 Here ]

6 Measuring the Climate Risk Spillover
We have examined the pair-wise risk spillover relationship using the Granger causality in risk test
for both positive and negative extreme shocks. A further question would be to which extent the
climate risk can spillover within a global network. For this purpose, we present in this section the
spillover index constructed using the network of six markets.

In the previous section, we show that it takes time for the climate risk to spillover across
markets, and most pair of countries can have risk spillover within five lags. Therefore, in this
section, we compare the risk spillover network from one lag to five lags (M = [1, 5]). To see how
climate risk spillover change overtime, we also present the result under the rolling window approach,
with window size of 150 weeks and a step size of four weeks.

6.1 Static Spillover
We present the estimation results in Table 3 – 4. It is worth discussing what our spillover index is
really capturing before moving on. Mathematically speaking, the total directional spillover index
(the “From”/“To” column in those panels) measures to which extent the observed local climate
shock is contributed by historical foreign climate shocks; the total spillover index (the bottom-right
element) is the average of the elements in the “From” column and it measures the average spillover
level in the network. Elements in the “Net” are calculated as “To” minus “From”, and are the
“netted” risk spillover level after considering both how much shocks received and how much shocks
gave.

Economically speaking, though there is no definite framework about the pathways of climate
risk spillover in the literature, possible pathways of climate risk spillover can be summarized into
five categorizes: Finance, People, Trade, Biophysical and Geopolitical (Benzie et al., 2019 and
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Hildén et al., 2016).10 Although we measure the climate risk spillover through financial markets,
because the climate risk time series can capture both physical and transitional risk (though only
partly), the spillover index is a comprehensive indicator that can measure the level of risk spillover
through all the above five pathways. We give an example of climate risk transmission through the
pathway of international trade: a severe drought in the US is expected to reduce the production of
soybean by 40% in this year (climate risk in the US, direct losses), which is captured by the climate
risk time series in the US as a large positive shock. Since US is one of the major soybean producer,
the reduction of the production causes the price of soybean in the commodity market to go up by
30%. Because China is the main importer of soybean, food industry in China is expected to suffer
huge increase in the production cost and then huge losses in the future. Such negative perspective
is captured by investors in China and then a positive shock in the climate risk time series in China
(Climate risk in the US transmitted to China). From the example, we can see that the climate risk
transmission through international trade pathway can also be captured by the financial-market-
based spillover index. In this example, the level of risk spillover is captured by cell (2,1) in each panel.

Table 3 shows the climate risk spillover at τ = 95% (when there is a large positive shock). At a
lag of three, Japan and Australia are the most segregated markets, with around 70% of the risk
come from themselves. The situation for Australia changes a little at the lag of five, where there
are large portion of risk spilled over from the US. This confirms the pair-wise results in Table 2.
Europe is the main contributors of the risk spillover (with the highest value in the “To” row) at all
lags. We provide in the last panel (the bottom-right panel) the average of the previous five panels.
The main markets receiving the spillover are China and the US (with negative net spillover index).
On average, around 30% – 40% of climate risk in each market is from outside (the “From” column).

Table 4 shows the climate risk spillover at τ = 5%, the extreme negative shock situation. The
total level is higher than the 95% level: on average, around 40% – 45% of the climate risk in each
market is transferred from outside (bottom-right panel, ’From’ column). Compared to the 95%
situation, Europe remains the largest net risk transmitter among all markets. the US changes from
risk receiver to risk transmitter. The total level of climate risk spillover at τ = 5% is also higher
than at τ = 95%. One thing worth noting is that in both tables, as the lag M increase from one
to three, the total spillover index (the bottom-right term, in bold term) increased drastically: at
τ = 95%, the total spillover index increased from 16.97% to 38.64% and at τ = 5%, from 21.95% to
42.32%. After the lag of three, the speed of increase slows down. This implies that it takes around
three weeks for the climate risk to be fairly transmitted.

[Insert Table 3 - 4 Here ]

10Benzie et al. (2019) raised the first four pathways: the biophysical pathway can be cross-border ecosystems (e.g.
floods or droughts upstream in a river basin); the trade pathway are consisted of international markets; the finance
pathway means the flow of public and private capital; the people pathway means the movement of people across
borders. Hildén et al. (2016) add the Geopolitical pathways, which means climate-related changes to international
relations and strategies.
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6.2 Dynamic Spillover
We provide in Figure 4 and 5 the net spillover, from- and to-spillover for each market, with window
size of 150 weeks and a step size of four weeks. Considering the number of samples in each
window (150) and based on the previous analysis, we set the lag to be three. Panel A of each
table shows the total spillover index. We see that when there is major events (Paris Agreements)
or crisis (COVID-19 crisis), the total level of spillover increased, at both τ = 5% and τ = 95%.
At the 5% situation, the level of spillover is higher in during the COVID crisis period. Panel
B of both tables shows from- and to-spillover for each market. At both 5% and 95% situations,
during periods around the Paris Agreement, the US, Canada and Europe are the main climate risk
contributors. In the meantime, Japan, China and Australia are the main risk receivers. The role of
risk transmitter/receiver can change over time. For example, during periods without global climate
changes events (2017 – 2019), US is the net receiver and Europe is the net contributor. This could
be explained by that during different periods, the source of climate risk shocks are different.

[Insert Figure 4 – 5 Here ]

7 Determinants of Climate Risk Spillover
After studying how and to which extent the climate risk transmits among global markets, a further
important question is what determines the climate risk spillover. Based on the discussion in Section
6.1, in this section, we study the relationship between our climate risk spillover measure and three
types of pathways: Finance, Trade and Geopolitical.

7.1 The Model
We conduct the following time-series regression to explain the spillover among different markets
(with robust error):

TSτt = δ0 + δ1V IXt + δ2TS
MKT
t

δ3r
oil
t + δ44Exportt + δ5GPRt + δ6∆EPUt + δ7CCt + ut

, (7.1)

where TSτt is the total spillover index (Eq. 2.13) under the rolling window at level τ , with τ = 5%
and 95%. The setting to calculate TSτt is the same as the previous section, with window size of 150
weeks, a lag of three and step size of four. In total, we have 74 monthly observations of TSτt . We
choose six explanatory variables that represent the three pathways:

1. Finance Pathway:
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• The equity market volatility index in the US (V IXUS
t ) and Europe (V IXEUR

t ): The
volatility index is the estimation of 30-day implied volatility of the S&P 500 index in
the US (created by CBOE), and the 30-day implied volatility of the EURO STOXX 50
(created by Eurex). A high value of the volatility index means large overall uncertainty
in the corresponding financial market. We choose the US and Europe because in previous
section we show that the two markets are the main risk transmitters.

• The market connectedness (TSMKT
t ): TSMKT

t measures to which extent different financial
markets are connected to each other. To calculate TSMKT

t , we first construct value-
weighted market portfolios using all companies in the sample and then calculate the
TSMKT

t using the forecast error decomposition of Pesaran and Shin (1998).

2. Trade Pathway:

• The oil price return (roilt ): The price comes from the West Texas Intermediate (WTI)
crude oil price index. An increase of the oil price means that the economic activities are
limited and possibly lower level of risk transmission.

• World merchandise export volume indices (4Exportt): the Exportt measures the total
export volume globally. We take the first difference to make it stationary. The data
is from the World Trade Organization, with quarterly frequency. Since the regression
is estimated at a monthly frequency, for Exportt, the monthly value is equal to the
quarterly value it belongs to.11

3. Geopolitical Pathway:

• The geopolitical risk index (GPRt): The geopolitical risk index (GPR) is created by
Caldara and Iacoviello (2022). It goes up when there is high geopolitical risk. High
geopolitical risk could mean lower investment and employment and larger downside risks.

• The change of Global Economic Policy Uncertainty (∆EPUt): The Economic Policy
Uncertainty (EPU) is created by Davis (2016) to measure the policy and economic
uncertainty. The index goes up during crisis periods (i.e. during crisis periods, ∆EPUt >
0).

Finally, we use the average of climate sentiment index of the six markets (CCt). The climate
sentiment index is the Google Trends index for the keyword of “climate change” and “global
warming”, and is calculated based on the amount of searches in a given period for a given region.
The level of CCt measures the total level of investor’s attention towards climate change. A high
global attention could mean that there could some world-wide climate change events and thus a
possible high level of climate risk.

11https://stats.wto.org/
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7.2 Results
We present in Table 5 the regression results for the whole period and in Table 6 the results before
the COVID crisis. The coefficients of VIX US are negative under both τ = 5% and 95%, which
implies that high market uncertainty in the US lead to less climate risk spillover. The coefficient
of the market connectedness (TSMKT

t ) is positive – this is to some degree reasonable because if
financial markets are more connected, it would be easier for climate risk to transfer through the
channel of financial markets.

The coefficient for the oil price rOilt is insignificant in most cases. In comparison, the impact
from the export is positive and significant during the pre-COVID period, which implies that a
higher level of trading activities among countries will facilitate the spillover of climate risk. When
we include the sample from the COVID, the coefficient becomes smaller and insignificant, which
means that during the COVID period, trading may not be the main pathway for the climate risk
transmission.

For the geopolitical risk index (GPRt), the coefficient is significant and positive for τ = 95% and
is negative for τ = 5%, which implies higher uncertainly in the economic environment means higher
levels of spillover for positive climate risk shock and lower levels of spillover for negative climate
risk shock. During the COVID period, the size of coefficient becomes larger at both τ = 95% and
5%. Similar observation applies to coefficients of Global Economic Policy Uncertainty (∆EPUt)
(becoming more negative during the COVID period, though not significant), which means that the
economic uncertainly plays a bigger role during the crisis period. Finally, the coefficient for the
global climate sentiment is positive under both τ = 95% and 5%, which implies that during periods
when there are climate change events that have global impacts, the level of climate risk spillover is
also higher.

[Insert Table 5 – 6 Here ]

8 Conclusion
Climate change is a global phenomenon, which means that climate events in one place may transmit
to other places due to the socioeconomic connection among countries in the world. If climate
risk can transmit across borders, it will affect investors and companies who have high exposure
to the climate risk. Since long-term climate risk is realized in the financial market as the arrival
of climate news or changes in the climate sentiment, we study the climate risk spillover through
financial markets. In concrete, we first construct a long-short portfolio using the return difference
between low-emission companies and high-emission companies to capture the climate risk, and
proxy the climate risk as the changes in the long-short portfolio. Then, we measure the climate
risk spillover by studying the interaction of the proxy of climate risk among six markets: the
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United States, China (including Hong Kong), Europe (including UK), Canada, Australia and Japan.

We provide international evidence that the climate risk is being priced in the six markets
differently. The two markets with highest level of climate risk being priced are Australia and
Canada. We observe similar trends of climate risk in different markets: when there are global-level
climate events such as the signing of Paris Agreement or the outbreak of COVID, every market
responds similarly.

We first study the pair-wise risk spillover among the six markets. We study two scenarios: when
there are extreme positive climate risk shock and extreme negative climate risk shock. We evidence
the climate risk spillover through the channel of financial markets and find that the climate risk
spillover pattern among countries depends on the type of climate risk shock (positive or negative) as
well as the market itself. In general, we find that Japan is the most segregated market, and the level of
climate risk spillover is the highest around the event of Paris Agreement and the outbreak of COVID.

When we treat the six market as a whole in a network, we find that it takes around three weeks
for climate risk to be fairly transferred. When there is a extreme positive shock in one market,
around 30% will be transferred within five weeks. The level of transmission is higher for negative
climate risk shock than for positive climate risk shock. Europe and the US are the main climate
risk transmitters, and China and Japan are the main receivers of the climate risk. However, the
role could change across time. For example, the US changed from net risk transmitters (during the
Paris Agreement period) to net receivers (after the period). A plausible explanation is that during
different periods, climate risk shocks can happen in different markets.

We then investigate the determinants of the climate risk spillover. In concrete, we examined
three types of pathways that could possibly affect climate risk spillover: Finance, Trade and
Geopolitical. When financial markets are more connected, climate risk can transfer more easily. A
higher level of trading activities will facilitate the transmission of climate risk, especially during
the pre-COVID period. The geopolitical uncertainty has increased impacts to the climate risk
spillover during the COVID period. In addition, we show that the climate sentiment (measured
by the Google Trends index) plays a role in affecting the climate risk spillover – higher climate
sentiment means that the level of risk spillover is also higher.

In our paper, we study the climate risk spillover through linear models. However, it is possible
that the climate risk spillover is non-linear, on which future studies could focus. That being said,
our study still contribute to the literature by provide scholars with a method to capture the climate
risk and to measure the climate risk spillover.
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A Data Code
Table 7 presents the data code and data scope we use in Eikon’s database.

[Insert Table 7 Here ]

B Procedure to Construct the Long-short Portfolio
We construct the long-short portfolio under the two-sort strategies proposed by Fama and French
(1993), with the following procedure:

• Company Selection: for every month m, companies that have enough carbon emission data
from the last period (month m− 1) will be included in the factor construction process. We
also follow Amihud (2002) and the literature to exclude penny companies – companies whose
price is below USD 5 at the time of formation in the US market. We check our sample of
the US market and find that companies with a price below USD 5 take up around 5% of
the total stocks. Therefore, since we are studying the global market, to align the standard
across markets, we drop out companies with a price lower than the 5% quantile at the time
of formation in each market.

• Independent Sort: we sort companies according to the month-end market value of month
m − 1. All are labeled into two groups: B(ig) and S(mall). The cut-off line is the median
(50%) of all companies. Then, we sort again according to the CO2 emission. We set 30%/70%
as the cut-off, and label the companies into three groups: H(igh) Emission, M(edium) E,
L(ow) Emission. The result of the sort is a 2× 3 label group.

24



– Portfolio Construction: We construct value-weighted portfolios within each label group,
and get the long-short portfolio as

RC
t = 0.5× (LB + LS)− 0.5× (HB +HS) (B.1)

That is, we calculate the long-short portfolio as the return difference between low-emission
companies and high-emission companies. For each month, we sort once and get a time
series of one month. For example, at 2014/06, we sort and construct value-weighted
portfolios using information from 2014/05. Then, the return of value-weighted portfolios
from 2015/06 to 2016/05 will be used to construct the long-short portfolio.

C Using Simulation-based Method to Calculate the QIRF
In this section, we provide a discussion of how we use simulation-based method to calculate the
QIRF. The process is similar to Koop et al. (1996) and Lanne and Nyberg (2016). The goal is to
simulate the following quantile impulse response:

QGIY
(
H, ε∗j,t(τ),Ft−1

)
= Q

(
τ, Yt+H | ε∗j,t(τ) = εj,t(τ) + δj,Ft−1

)
−Q (τ, Yt+H | Ft−1) .

In the above function, we aim to calculate the response of a variable specific shock. The shock size
is δj, which is predetermined. The following process applies to calculate the response to a given
shock δj:

1. Given the sample data, we estimate the model (2.9) and calculate the residuals ε̂t(τ) (a matrix
of (K × T )).

2. We assume a constant covariance matrix for the residuals, and calculate the empirical
covariance matrix Ω̂(τ) for ε̂t(τ). We then convert the correlated residuals into uncorrelated
by multiplying the inverse of a Cholesky factorization of the estimated covariance matrix:
ξ̂t(τ) = P−1ε̂t(τ), where Ω̂(τ) = PP

′ .

3. Draw M times randomly from ξ̂t(τ) (in our case, we set M to be 1,000). For every draw m
(m = 1, 2, ...,M):

(a) We get a matrix of ξ(m)(τ) = (K × (H + 1)) (i.e. for every draw m, we take (H + 1)
vectors, with replacement, from the sample). Then, we recover the independent residual
to dependent residuals: ε(m)(τ) = Pξ(m)(τ).

(b) Based on the model (2.9), we use ε
(m)
t (τ) and Yt−1 to calculate the realization of

Y
(m)
t+H(Ft−1).

(c) Based on the model (2.9), we set ε∗t (τ) = ε(m)(τ)(1) +


0
δj
...
0

, where ε(m)(τ)(1) equals
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to the first column of ε(m)
t (τ) and


0
δj
...
0

 is a (K × 1) vector with only jth value to

be non-zero. We then use ε∗t (τ), ε(m)(τ)(2:H+1) and Yt−1 to calculate the realization of
Y

(m)
t+H

(
ε∗j,t(τ) = εj,t(τ) + δj,Ft−1

)
.

4. After getting the M realizations, we calculate the empirical quantile of the simulated
Y

(m)
t+H(Ft−1) and Y (m)

t+H(ε∗j,t(τ),Ft−1)
Q̂
(
τ, Yt+H | ε∗j,t(τ) = εj,t(τ) + δj,Ft−1

)
= qτ

({
Y

(m)
t+H(ε∗j,t(τ) = εj,t(τ) + δj,Ft−1)

}M
m=1

)
Q̂ (τ, Yt+H | Ft−1) = qτ

({
Y

(m)
t+H(Ft−1)

}M
m=1

)
(C.1)

5. Finally, the variable-specific impulse response is

ˆQGIY
(
H, ε∗j,t(τ),Ft−1

)
= Q̂

(
τ, Yt+H | ε∗j,t(τ) = εj,t(τ) + δj,Ft−1

)
− Q̂ (τ, Yt+H | Ft−1)

We apply the above process to each variable from j = 1, ..., K to calculate the QIRFs. Then, the
simulated ˆQGIY

(
H, ε∗j,t(τ),Ft−1

)
is put into Eq. (2.10), demonstrated as below, to calculate the

QGFEVD:

λ̂ij(H) =
∑H−1
h=0

[
ˆQGIY

(
H, ε∗j,t(τ),Ft−1

)
i

]2
∑H−1
h=0

∑n
j=1

[
ˆQGIY

(
H, ε∗j,t(τ),Ft−1

)
i

]2 .
We repeat the above process for N times and get the average of λ̂ij(H) as our final QGFEVD.

C.1 Effectiveness of the Simulation Method
To test the effectiveness of our simulation method, we compare it with the analytical result of
Pesaran and Shin (1998). For this purpose, we first generate two time series data from a preset
two-variable VAR(1) model (with 443 observations ):y1,t = 0.5 + 0.5y1,t−1 − 0.2y2,t−1 + ε1,t

y2,t = 1− 0.3y1,t−1 + 0.6y2,t−1 + ε2,t
,

where ε1,t and ε1,t follows I.I.D normal distribution, with zero mean and a covariance matrix of

Σ =
[

0.4 0.01
0.01 0.4

]
. In the work of Pesaran and Shin (1998) the impulse response function is given

by
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GIY
(
H, ε∗j,t(τ) = δj,Ft−1

)
= E

(
Yt+H | ε∗j,t(τ),Ft−1

)
− E (Yt+H | Ft−1)

= AHE
(
εt | ε∗j,t(τ)

)
= AHΣejσ−1

jj δj
,

where AH is the coefficient of the VAR model; ej is a selection matrix; σjj is the jth diagonal item
of the covariance matrix Σ; H is the forecast period. If we set δj = √σjj, then the GIRF becomes

GIY
(
H, ε∗j,t(τ) = √σjj,Ft−1

)
= AHΣσ−

1
2

jj ej , (C.2)

which measures the effect of one standard error shock to the jth equation at time t on expected
values of Y at time t+H.

If the simulation-based QIRF works well, then given the same size of shock (i.e., δj = √σjj),
the QIRF under τ = 50% should have similar result as the analytical function of Eq. (C.2). Table
8 shows the GFEVD under Eq. (C.2) and the simulation-based QIRF. As can be seen, the results
under the two methods are quite similar. The slight difference is because the coefficient estimated
under the 50% quantile regression is slightly different from the coefficient of the OLS estimation.

[Insert Table 8 Here ]
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Figure 1: Graphs of Climate Risk Series (CRiski,t) in Each Market
Panel A: Weekly climate risk time series

Panel B: Cumulative value of climate risk series

Note: Panel A shows the weekly time series of climate risk in each market. Panel B shows the cumulative value of
climate risk time series for different markets, which is calculated as:

∑T

t=1
CRiski,t. In each graph, we plot major

climate change events that happened during our sample period.
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Figure 2: Granger Causality in Risk under Rolling Window at τ = 95%
Panel A: Granger Causality at τ = 95% across time

Panel B: Number of pairs with p-value smaller than 10%

Note: The graph shows the p-value of Granger causality test at τ = 95% under the rolling window method, with
window size of 150 weeks and a step size of four weeks. For each pair in each window, we run Granger Causality
in risk form M = 1 to M = 5 to get five test statistics, and then we present the minimum p-value of the five
test statistics. “US-CN” means the test of if the US Granger-causes China; “CN-US” means the test of if China
Granger-causes the US, and so on. Only p < 10% will be marked with color and p < 10% means there is Granger
causality relationship. A deeper color means a smaller p-value. Panel B shows the number of pairs with significant
Granger Causality test statistics in each window.
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Figure 3: Granger Causality in Risk under Rolling Window at τ = 5%
Panel A: Granger Causality at τ = 5% across time

Panel B: Number of pairs with p-value smaller than 10%

Note: The graph shows the p-value of Granger causality test at τ = 5%, with window size of 150 weeks and a step
size of four weeks. For each pair in each window, we run Granger Causality in risk form M = 1 to M = 5 to get five
test statistics, and then we present the minimum p-value of the five test statistics. “US-CN” means the test of if the
US Granger-causes China; “CN-US” means the test of if China Granger-causes the US, and so on. Only p < 10% will
be marked with color and p < 10% means there is Granger causality relationship. A deeper color means a smaller
p-value. Panel B shows the number of pairs with significant Granger Causality test statistics in each window.31



Figure 4: Dynamic Spillover at τ = 95%
Panel A: Total spillover over time

Panel B: Net spillover for each market

US Europe China

Australia Japan Canada

Note: The graph shows the dynamic spillover at τ = 95% under rolling-window method, with window size of 150
weeks and a step size of one week (74 windows in total). Panel A shows the total spillover index of Eq. (2.13); Panel
B shows the spillover index (Eq. 2.12) of each market. The red line is the total “From” and black like is “To”. The
distance between the two lines is the net spillover. We colored the area with red to denote a negative net spillover (
From > To, the net receiver) and gray to denote a positive net spillover (To > From, the net giver). A positive
value in the net spillover means the market is giving out impact and a negative value means the market is receiving
impact from other markets. 32



Figure 5: Dynamic Spillover at τ = 5%
Panel A: Total spillover over time

Panel B: Net spillover for each market

US Europe China

Australia Japan Canada

Note: The graph shows the dynamic spillover at τ = 95% under rolling-window method, with window size of
150 weeks and a step size of four weeks. Panel A shows the total spillover index of Eq. (2.13); Panel B shows the
spillover index (Eq. 2.12) of each market. The red line is the total “From” and black like is “To”. The distance
between the two lines is the net spillover. We colored the area with red to denote a negative net spillover ( From >
To, the net receiver) and gray to denote a positive net spillover (To > From, the net giver). A positive value in the
net spillover means the market is giving out impact and a negative value means the market is receiving impact from
other markets. 33



Tables

Table 1: Climate Risk Statistics for Each Market
Panel A: Climate risk statistics in each market
Factor stat. US CN JP CAN AUS EU

Mean 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Std. 1.16% 1.46% 1.28% 2.37% 2.05% 1.06%

Max. 4.92% 5.64% 6.38% 18.21% 9.22% 4.02%

Min. -5.44% -7.86% -5.69% -8.86% -7.51% -4.68%
Panel B: Correlation among climate risk series of different markets

US CN JP CAN AUS EU

US 1

CN 0.16 1

JP 0.26 0.17 1

CAN 0.55 0.10 0.23 1

AUS 0.23 0.15 0.08 0.28 1

EU 0.59 0.17 0.31 0.59 0.37 1
Note: Panel A shows the statistics of the climate risk time series in each market (from 2013/01/07 to 2021/06/28,
443 weekly obs.). Panel B shows the correlation among climate risk time series in different markets, all with 1%
significance level.
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Table 2: Granger Causality in Risk for Whole Period
Panel A: Granger causality in risk at 95% (the up-to-up situation)

Panel B: Granger causality in risk at 5% (the down-to-down situation)

Note: The table shows the p-value of the Granger Causality test. “US-CN” means the test of if the US Granger-
causes China; “CN-US” means the test of if China Granger-causes the US, and so on. Only p < 10% will be marked
with color and p < 10% means there is significant Granger causality relationship. A deeper color means a smaller
p-value and thus a stronger causality relationship.
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Table 3: Static Spillover among Different Markets (τ = 95%)
M = 1 US CN JP CAN AUS EU From

US 81.19 0.12 0.04 15.20 2.86 0.59 18.81

CN 0.23 76.55 0.12 6.88 0.51 15.72 23.45

JP 2.11 0.73 86.35 2.25 2.81 5.75 13.65

CAN 9.99 0.06 0.18 86.71 3.02 0.03 13.29

AUS 11.35 1.30 0.04 0.99 85.52 0.80 14.48

EU 3.13 1.77 0.49 11.87 0.89 81.84 18.16

To 26.81 3.97 0.88 37.19 10.09 22.88 16.97

Net 8.01 -19.48 -12.77 23.90 -4.39 4.72

M = 2 US CN JP CAN AUS EU From

US 55.66 2.72 4.54 11.34 5.04 20.70 44.34

CN 1.11 76.46 2.84 8.34 0.86 10.39 23.54

JP 5.41 5.23 73.72 4.39 8.45 2.80 26.28

CAN 8.56 0.34 1.07 77.82 4.43 7.77 22.18

AUS 9.96 5.39 1.03 1.55 77.56 4.51 22.44

EU 0.99 1.05 3.00 9.84 11.49 73.63 26.37

To 26.03 14.73 12.49 35.46 30.27 46.16 27.52

Net -18.31 -8.81 -13.79 13.28 7.83 19.79

M = 3 US CN JP CAN AUS EU From

US 52.94 5.01 10.62 11.62 2.59 17.23 47.06

CN 5.47 58.36 4.69 10.61 4.52 16.35 41.64

JP 9.22 6.93 66.02 8.10 2.71 7.03 33.98

CAN 13.12 3.71 2.68 57.53 3.95 19.01 42.47

AUS 8.69 3.00 5.21 2.62 71.13 9.34 28.87

EU 11.75 1.65 7.60 12.28 4.54 62.18 37.82

To 48.25 20.31 30.79 45.23 18.31 68.97 38.64

Net 1.18 -21.34 -3.19 2.75 -10.56 31.14

M = 4 US CN JP CAN AUS EU From

US 52.80 4.64 17.89 8.74 2.96 12.98 47.20

CN 5.03 62.65 3.41 7.10 8.30 13.51 37.35

JP 3.68 3.65 60.08 5.36 6.77 20.47 39.92

CAN 11.62 5.05 10.86 54.25 3.37 14.85 45.75

AUS 10.08 2.93 5.54 3.63 69.53 8.29 30.47

EU 3.14 3.85 11.34 12.78 5.70 63.19 36.81

To 33.54 20.13 49.03 37.62 27.09 70.09 39.58

Net -13.66 -17.22 9.11 -8.13 -3.39 33.29

M = 5 US CN JP CAN AUS EU From

US 41.64 7.92 17.45 9.37 5.05 18.57 58.36

CN 4.26 57.48 5.72 6.55 9.06 16.93 42.52

JP 4.68 5.88 61.84 9.53 4.24 13.83 38.16

CAN 5.89 4.26 12.39 63.88 6.42 7.16 36.12

AUS 18.29 3.97 7.90 8.75 54.47 6.62 45.53

EU 7.04 5.45 13.46 10.98 5.73 57.33 42.67

To 40.16 27.47 56.93 45.19 30.51 63.10 43.89

Net -18.21 -15.05 18.77 9.07 -15.02 20.44

Average US CN JP CAN AUS EU From

US 56.85 4.08 10.11 11.25 3.70 14.01 43.15

CN 3.22 66.30 3.36 7.90 4.65 14.58 33.70

JP 5.02 4.48 69.60 5.93 4.99 9.97 30.40

CAN 9.83 2.69 5.44 68.04 4.24 9.76 31.96

AUS 11.67 3.32 3.95 3.51 71.64 5.91 28.36

EU 5.21 2.75 7.18 11.55 5.67 67.64 32.36

To 34.96 17.32 30.03 40.14 23.26 54.24 33.32

Net -8.20 -16.38 -0.37 8.18 -5.10 21.88

Note: The table shows the spillover network under τ = 95%. Each panel shows the network with a certain lag. The
column named “From” shows total directional spillover from all other markets to market i, whereas the row named
“To” shows total directional spillover to all other markets from market j. The row “Net” shows the total net pairwise
directional spillover (to minus from). The bottom-right element (bold one) is the total spillover, which measures the
total level of spillover of the net work. The last panel (bottom-right) is the average of the first five panels.36



Table 4: Static Spillover among Different Markets (τ = 5%)
M = 1 US CN JP CAN AUS EU From

US 86.56 1.20 7.33 0.37 0.40 4.14 13.44

CN 1.85 75.46 13.97 1.33 1.51 5.88 24.54

JP 1.11 0.16 77.59 2.96 1.28 16.89 22.41

CAN 18.91 0.07 3.23 72.69 3.15 1.95 27.31

AUS 5.53 5.64 1.34 2.41 77.84 7.24 22.16

EU 8.46 0.06 2.96 5.23 5.13 78.15 21.85

To 35.87 7.13 28.84 12.30 11.46 36.11 21.95

Net 22.43 -17.41 6.43 -15.00 -10.69 14.25

M = 2 US CN JP CAN AUS EU From

US 70.16 4.69 4.72 7.84 3.42 9.16 29.84

CN 28.43 53.85 2.03 13.23 0.22 2.25 46.15

JP 4.69 8.29 61.95 4.26 7.28 13.53 38.05

CAN 16.53 8.38 1.75 57.62 1.90 13.82 42.38

AUS 16.75 8.35 1.82 11.26 55.62 6.21 44.38

EU 15.82 6.03 1.25 2.46 6.55 67.88 32.12

To 82.22 35.75 11.58 39.04 19.37 44.97 38.82

Net 52.38 -10.40 -26.48 -3.34 -25.02 12.85

M = 3 US CN JP CAN AUS EU From

US 57.20 11.89 11.29 7.45 2.78 9.39 42.80

CN 14.08 60.14 12.45 5.57 3.60 4.15 39.86

JP 7.35 7.23 60.92 1.86 5.36 17.28 39.08

CAN 9.25 14.08 9.14 55.88 2.77 8.87 44.12

AUS 9.36 9.06 4.54 8.98 51.70 16.36 48.30

EU 8.75 12.28 3.18 2.93 12.62 60.24 39.76

To 48.79 54.54 40.61 26.80 27.13 56.06 42.32

Net 5.99 14.68 1.53 -17.32 -21.17 16.30

M = 4 US CN JP CAN AUS EU From

US 50.87 5.49 6.20 3.39 10.00 24.05 49.13

CN 18.47 52.81 9.32 7.65 6.20 5.54 47.19

JP 7.81 8.66 54.59 4.47 7.04 17.43 45.41

CAN 11.46 11.64 8.37 51.67 3.38 13.48 48.33

AUS 11.10 8.22 6.58 7.80 52.61 13.69 47.39

EU 17.03 8.26 5.12 2.40 15.01 52.16 47.84

To 65.88 42.26 35.60 25.72 41.64 74.20 47.55

Net 16.75 -4.93 -9.81 -22.61 -5.75 26.36

M = 5 US CN JP CAN AUS EU From

US 36.71 5.27 12.50 13.86 6.28 25.39 63.29

CN 15.38 44.22 9.99 15.96 9.93 4.51 55.78

JP 8.09 7.55 57.24 10.47 5.16 11.50 42.76

CAN 10.56 13.40 14.58 42.46 5.55 13.46 57.54

AUS 16.07 12.55 3.75 4.50 51.37 11.77 48.63

EU 10.40 13.82 8.92 10.19 11.00 45.67 54.33

To 60.50 52.59 49.74 54.98 37.92 66.62 53.72

Net -2.79 -3.19 6.97 -2.57 -10.71 12.29

Average US CN JP CAN AUS EU From

US 60.30 5.71 8.41 6.58 4.58 14.43 39.70

CN 15.65 57.29 9.55 8.75 4.29 4.47 42.71

JP 5.81 6.38 62.46 4.81 5.22 15.33 37.54

CAN 13.34 9.51 7.41 56.06 3.35 10.32 43.94

AUS 11.76 8.76 3.61 6.99 57.83 11.05 42.17

EU 12.09 8.09 4.29 4.64 10.06 60.82 39.18

To 58.65 38.45 33.27 31.77 27.50 55.59 40.87

Net 18.95 -4.25 -4.27 -12.17 -14.67 16.41

Note: The table shows the spillover network under τ = 5%. Each panel shows the network with a certain lag. The
column named “From” shows total directional spillover from all other markets to market i, whereas the row named
“To” shows total directional spillover to all other markets from market j. The row “Net” shows the total net pairwise
directional spillover (to minus from). The bottom-right element (bold one) is the total spillover, which measures the
total level of spillover of the net work. The last panel (bottom-right) is the average of the first five panels.37



Table 5: Regression Results for Spillover Index (Whole Period)
Dep. var. = TS95%

t TS5%
t

(1) (2) (3) (4)

V IXEUR
t

0.0215 -0.1587**

(0.19) (-2.24)

V IXUS
t

-0.2599* -0.2237***

(-1.89) (-3.71)

TSMKT
t

0.3343 1.1821** 1.8460*** 2.0653***

(0.63) (2.31) (4.17) (4.65)

rOil
t

14.7369 6.2488 1.1995 -2.8383

(1.91) (0.63) (0.24) (-0.62)

4Exportt
0.0396 -0.1117 0.2036*** 0.1588**

(0.40) (-1.33) (2.65) (2.27)

GPRt

0.1186*** 0.0907*** -0.0160 -0.0315

(3.30) (2.60) (-0.70) (-1.44)

∆EPUt

0.0113 0.0189 -0.0272** -0.0253**

(0.40) (0.71) (-2.27) (-2.07)

CCt

0.2555*** 0.2898*** 0.1153** 0.0919**

(3.45) (4.73) (2.15) (1.99)

Constant 24.29 -20.53 -44.88 -55.38

Observations 74 74 74 74

Adjusted R-squared 0.21 0.27 0.46 0.52

VIF 1.49 1.49 1.49 1.49
Note: The table shows the time series regression results for model (7.1). In total, there are 74 weekly observations
from 2015/11/16 to 2021/06/21. We report in the parenthesis the t-statistics. The “VIF” row is the average variance
inflation factor of all explanatory variables and a VIF smaller than 10 means low level of multicollinearity. All
explanatory variables are stationary under the Dick-Fuller test.
* Statistical significance at the 10% level.
** Statistical significance at the 5% level.
*** Statistical significance at the 1% level.
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Table 6: Regression Results for Spillover Index (before COVID)
Dep. var. = TS95%

t TS5%
t

(1) (2) (3) (4)

V IXEUR
t

0.2953*** 0.0524

(2.90) (0.19)

V IXUS
t

-0.2253 -0.2068*

(-1.17) (-1.89)

TSMKT
t

1.5293* 1.5473** 0.9416 0.9054**

(1.89) (1.98) (0.63) (2.31)

rOil
t

24.7151* 15.9209 11.2543* 6.1804

(1.78) (0.94) (1.91) (0.63)

4Exportt
2.0951*** 1.8439*** 0.8723 0.6913

(6.02) (4.65) (0.40) (-1.33)

GPRt

0.0201 0.0287 -0.0201*** -0.0176***

(0.82) (1.17) (3.30) (2.60)

∆EPUt

0.0026 0.0056 -0.0094 -0.0078

(0.09) (0.21) (0.40) (0.71)

CCt

0.1730*** 0.2737*** 0.0600*** 0.0919***

(2.95) (4.81) (3.45) (4.73)

Constant -41.8109 -37.3925 7.47287 12.8197

Observations 55 55 55 55

Adjusted R-squared 0.52 0.49 0.19 0.23

VIF 1.23 1.23 1.23 1.23
Note: The table shows the time series regression results for model (7.1), with samples before the COVID. In total,
there are 74 observations from 2015/11/16 to 2021/06/28. We report in the parenthesis the t-statistics. The “VIF”
row is the average variance inflation factor of all explanatory variables. All explanatory variables are stationary
under the Dick-Fuller test.
* Statistical significance at the 10% level.
** Statistical significance at the 5% level.
*** Statistical significance at the 1% level.
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Table 7: Data Description and Code
Name Frequency Period Code
Price Weekly 2013/01/07 - 2021/6/28 P

V IXEUR Weekly 2013/01/07 - 2021/6/28 .V2TX
Oil Price Weekly 2013/01/07 - 2021/6/28 OILWTIN

Market Value Monthly, month-end 2012/12/31 - 2021/6/30 MV
Total Emission Monthly, month-end 2013/05/31 - 2020/12/31 ENERDP123
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Table 8: IRFs under Two Methods
Panel A: The GIRF under Pesaran and Shin (1998)

H y1→y1 y1→y2 y2→y1 y2→y2

1 99.37 0.63 0.63 99.37

2 97.22 2.78 6.53 93.47

3 94.51 5.49 12.38 87.62

4 92.52 7.48 16.22 83.78

5 91.20 8.80 18.59 81.41

6 90.34 9.66 20.07 79.93

7 89.79 10.21 21.00 79.00

8 89.43 10.57 21.60 78.40

9 89.18 10.82 21.99 78.01

10 89.03 10.97 22.25 77.75
Panel B: The simulation-based QIRF with τ = 50%

H y1→y1 y1→y2 y2→y1 y2→y2

1 100.00 0.00 0.00 100.00

2 96.09 3.91 7.39 92.61

3 92.51 7.49 13.30 86.70

4 90.13 9.87 16.90 83.10

5 88.63 11.37 19.04 80.96

6 87.68 12.32 20.34 79.66

7 87.09 12.91 21.14 78.86

8 86.70 13.30 21.65 78.35

9 86.46 13.54 21.98 78.02

10 86.29 13.71 22.19 77.81
Note: The table shows the GFEVD with different types of IRFs and with the same size of shock δj = √σjj . Panel
A shows the results under Pesaran and Shin (1998) and panel B shows the QIRF with τ = 50%. y1→y2 means we
give a shock to y1 and see the response of y2 in different periods.
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