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Abstract

We study the price cap impact on the commodity market dynamics by exploring price

and volatility transmission effects. Focusing on the recent EU-Russia gas market turmoil, we

run Filtered Historical Simulations and conditional Extreme Value Theory in a multivariate

setting, then controlling for market co-movements. By comparing no-price intervention

vs. Fixed- and Dynamic Price Cap scenarios, we show that (i) Fixed Price Cap leads to

a rapid and consistent dis-inflationary effect on nearly all the commodities, albeit at the

cost of high market volatility; (ii) Dynamic Price Cap while having a modest and gradual

price impact on a limited subset of commodities, it results in lower overall market volatility.

Our findings are particularly important as they suggest the use of Fixed Price Cap as

an extraordinary policy measure, while the Dynamic Price Cap offers a more sustainable,

long-term framework for reducing inefficiencies in the energy market.

1 Introduction

The price cap mechanism has come under the spotlight in the recent EU-Russia gas mar-

ket turmoil reigniting the debate on the best price mitigation measure, while maintaining

high domestic welfare. Much of the literature to date is concerned with industrial or-

ganization economics, specifically on how to reduce the monopolist’s market power and

increase domestic welfare when foreign monopolists operate within domestic markets.
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Just focusing on the EU-Russia gas market, Ehrhart et al. (2023) prove that price caps

Pareto-dominates the tariff, yielding higher domestic welfare and higher foreign monopoly

profits. This is in line with other studies confirming the price cap as the best policy mea-

sure compared to tariffs or subsidies (e.g., De Meza (1979); Tower (1983); Kowalczyk,

1994). Other studies explored the effectiveness of the price caps by comparing the equi-

librium points before and after the caps (e.g., Vossler et al. (2009); Reynolds and Rietzke

(2018)). Still others explored conditional dependence between stock markets, commodity

futures and prices in a univariate, multivariate, Value-at-Risk and portfolio optimization

contexts using ARMA, GARCH, Extreme Value Theory, and copulae (e.g., Hussain and Li

(2018), Marimoutou et al. (2009), Ohashi and Okimoto (2016), and Ghorbel and Trabelsi

(2014)).

Focusing on the recent EU-Russia gas market turmoil, we complement this litera-

ture by exploring the price and volatility transmission effects induced by the Fixed and

Dynamic price cap mechanisms.

Efficiently modeling commodity dynamics is particularly challenging due to the com-

plex interplay between product trading and supply-demand imbalances resulting from

economic conditions (Giot and Laurent (2003)). Moreover, the commodity market has

been increasingly characterized by a financialization process (Cheng and Xiong, 2014),

through which commodity derivatives and replicating financial securities became popular

assets within investment portfolios, with scant or no positions on the underlying physical

assets. As a result, commodity price dynamics have been extremely sensitive to financial

market dynamics, business cycles, political and climate risk factors, thereby exhibiting

large price fluctuations. The 2007-2008 Financial Crisis, when the Producer Price Index

of All Commodities exhibited a year-on-year increase of 17.36% on July 2008, followed

by a drop of 16.05% in July 2009 1, as well as the recent COVID-19 pandemic and the

Russian-Ukrainian conflict, highlight the fundamental importance to better inspect how

commodity prices move and comove over time, especially during extreme, systemic events,

and which are the most efficient price mitigation measures that policymakers could im-

plement.

In this study we explore the impacts of Fixed vs. Dynamic price cap mechanisms in the

1U.S. Bureau of Labor Statistics, Producer Price Index by Commodity: All Commodities [PPIACO],

retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/PPIACO,

November 10, 2022)
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European natural gas spot price on the other commodity prices and volatilities. Over the

period from January 2013 to October 2022, and using a 250-day forecasting time window

from November 2022 to August 2023, we analyze the interconnections between natural

gas and other commodities, also assessing the mitigation effects on price and volatility

over the short-term.

We employ a univariate time-series approach to model the conditional mean and

volatility of commodity returns, next using multivariate Filtered Historical Simulations

(FHS) and conditional Extreme Value Theory (EVT) with copulae to model the condi-

tional dependence structure between natural gas prices and other commodities. In doing

this, we capture inter-dependencies and forecast joint conditional distributions of com-

modity returns, in particular when extreme events materialize, thereby obtaining proba-

bilistic relationships between prices and volatilities without making explicit assumptions

on the underlying causal mechanisms.

We compare Fixed- with Dynamic-Price Cap Scenarios, both imposed on the Dutch

TTF gas price, and contrast with the no-price intervention baseline. The Fixed Price

Cap Scenario assumes a fixed price as the upper limit of TTF for the entire forecasting

window, while the Dynamic Price Cap Scenario imposes a limit on the volatility of the

gas price rather than the price level itself.

To assess how the Natural Gas Dutch TTF spot price dynamics, under Fixed or Dy-

namic Price Cap mechanisms, affects the prices and volatilities of other commodities, we

run numerical simulations under the three scenarios based on the conditional dependence

structure estimated via FHS and EVT.

Our findings reveal that Fixed Price Cap leads to a rapid and consistent dis-inflationary

effect on nearly all the commodities, albeit at the cost of high market volatility. On the

other hand, Dynamic Price Cap while having a modest and gradual price impact on a

limited subset of commodities, reflects on lower overall market volatility. These results

have important policy messages, as they suggest that Fixed Price Cap mechanism could

be planned as a extraordinary policy measure, to take in extreme crisis scenarios, while the

Dynamic Price Cap, having a long-term impact on volatility, could be used within a long-

run strategy to make more sustainable the energy market and to contain its inefficiencies.

This paper is organized as follows: Section 2 we introduce the Institutional Back-

ground. Section 3 describes the Gas Scenarios, while Section 4 introduces the Method-
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ology. Data description is in Section 5, and Results are in Section 6. Finally, Section 7

presents the conclusions.

2 Institutional Background

The Title Transfer Facility (TTF) is a virtual platform for natural gas in the Netherlands,

which serves as the main benchmark to define the price of gas. The TTF has gained global

attention after Russia cut gas deliveries to Europe following its invasion of Ukraine leading

gas prices to hit record levels. According to the European Commission, the TTF was ...

no longer an adequate reflection of market realities as it is unduly influenced by pipeline

infrastructure bottlenecks in North-Western Europe and therefore Russian manipulation

of natural gas supplies to the EU 2. The European Commission, recognizing the need for

intervention, then began to evaluate possible price cap mechanisms in the form of Fixed

vs. Dynamic Price Cap, with the end to mitigate and prevent potential distortions to

energy markets.

After several discussions about taming gas prices, EU countries agreed in December

2022 to trigger a price cap on TTF gas hub’s front-month contract when prices exceed 180

euros (191.11 USD) per megawatt hour for three days. Moreover, the TTF price must be

35 eur/mwh higher than a reference price based on existing liquefied natural gas (LNG)

price assessments for three days. Once the mechanism is activated, gas transactions above

the ”dynamic bidding limit” will not be allowed to take place. Such a limit is defined as

the reference price calculated on the basis of global LNG price indices, plus a maximum

of 35 euro/mwh. However, the agreement provides that if the reference price of LNG

is below 145 euros, the dynamic bidding limit will remain at the sum of 145 euros and

35 euros (to reach the threshold of 180) 3. The cap mechanism entered in force on 15

February 2023 and has been applied to TTF derivatives, which account for more than 90

percent of natural gas derivatives traded on regulated markets in the EU. At the time we

2European Commission, Questions and Answers on proposals to fight high energy prices and ensure

security of supply, https://ec.europa.eu/commission/presscorner/detail/en/qanda 22 6226, 18 October

2022, Strasbourg.
3Once activated, the dynamic bidding limit will apply for at least 20 working days. If the dynamic

bidding limit is below 180€/mwh for last three consecutive working days, it will be automatically deac-

tivated
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are writing this paper, the cap mechanism is designed to be temporary, applying until

January 2024.

3 Gas Price Scenarios

To explore price and volatility transmission effects induced by different policy interven-

tions, we consider three scenarios depending on the cap mechanism we impose on the

TTF gas price path: (i) the Baseline Scenario, (ii) the Fixed Price Cap Scenario, and (iii)

the Dynamic Price Cap Scenario.

To formalize our methodological approach we first introduce our econometric frame-

work, then presenting the model we use to inspect price and volatility impacts in a mul-

tivariate setting.

3.1 Econometric Framewok

We consider N commodities and assume that their prices are observed in T consecutive

(daily) realizations. For each i = 1, . . . , N and t = 1, . . . , T , we denote with P i
t the price

of commodity i at time t. We define the logarithmic return of commodity i at time t as

rit = ln
(
P i
t /P

i
t−1

)
and its conditional volatility as σi

t. Let {zit}
i=1,...,N
t=1,...,T be an iid sequence

of standardized innovations for commodity price i with E [zit] = 0 and V [zit] = 1.

To investigate the dynamics of commodities returns, we consider three conditional

models4:

1. the ARMA(1,1)-GARCH(1,1) (Bollerslev (1986)), which combines an autoregressive

moving average (ARMA) process for the mean with a generalized autoregressive

conditional heteroskedasticity (GARCH) process for the variance:

rt = ϕ0 + ϕ1rt−1 + θ1εt−1 + εt,

εt = σtzt, (1)

σ2
t = ω + α1ε

2
t−1 + β1σ

2
t−1.

As known, the ARMA(1,1) process has three parameters: ϕ0 represents the constant

mean of the return series, while ϕ1 and θ1 represent the autoregressive and moving

4To simplify the notation we consider a generic commodity i, and then we suppress the superscript

from the general notation (e.g., we write rt instead of rit).
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average coefficients, respectively. The condition |ϕ1| < 1 must hold for stationarity.

The GARCH(1,1) process has three parameters: ω > 0, α1 ≥ 0, and β1 ≥ 0, which

represent the constant, the weight of past squared innovations (ARCH component

coefficient), and the weight of past conditional variances (GARCH component co-

efficient), respectively. To preserve stationarity, we need to impose the condition

α1 + β1 < 1.

2. The ARMA(1,1)-EGARCH(1,1) (Nelson (1991)), which combines an ARMA process

for the mean with an exponential form for the variance equation to ensure non-

negative values. The model allows for asymmetric volatility responses to positive

and negative shocks by introducing a logarithmic transformation of the variance

process and an additional parameter capturing the impact of negative shocks:

rt = ϕ0 + ϕ1rt−1 + θ1εt−1 + εt,

εt = σtzt, (2)

ln(σ2
t ) = ω + α1 [|zt−1| − E [|zt−1|]] + β1 ln(σ

2
t−1) + ξ1zt−1.

This model has the same autoregressive and moving average parameters together

with the same constraints as the ARMA(1,1)-GARCH(1,1) model. The EGARCH(1,1)

process has four parameters: ω, α1, β1, and ξ1, which represent the constant, the

weight of past squared standardized innovations (ARCH component coefficient),

the weight of past conditional variances (GARCH component coefficient) on the

logarithmic scale, and the impact of past negative shocks (leverage component co-

efficient), respectively.

3. The ARMA(1,1)-GJR(1,1) (Glosten et al. (1993)), which is an extension of the

GARCH model that allows for an asymmetric response of the variance to positive

and negative shocks. It introduces an additional parameter capturing the impact of

negative shocks on the conditional variance:

rt = ϕ0 + ϕ1rt−1 + θ1εt−1 + εt, notag (3)

εt = σtzt, (4)

σ2
t = ω + α1ε

2
t−1 + β1σ

2
t−1,+γ1I{εt−1<0}ε

2
t−1.

As for the ARMA(1,1)-GARCH(1,1), this model has the same contraints as well as

the same autoregressive and moving average parameters. The GJR(1,1) process has
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four parameters: ω > 0, α1 ≥ 0, β1 ≥ 0, and γ1 ∈ R, which represent the constant,

the weight of past squared innovations (ARCH component coefficient), the weight of

past conditional variances (GARCH component coefficient), and the weight of past

squared, negative innovations (leverage component coefficient), respectively. The

condition α1 + γ1 ≥ 0 and α1 + β1 + γ1 < 1 ensures the model to be stationary.

3.2 Scenarios

The conditional models for commodities returns are used to inspect the price and volatility

dynamics in the three scenarios over a pre-specified forecasting time window. We consider

a forecasting time window of length H, and define P i
h be the predicted daily price of

commodity i = 1, . . . , N at time h = T +1, . . . , T +H; denoting by σi
h the predicted daily

conditional volatility of commodity i at time h, each scenario is formalized as described

below.

3.2.1 Baseline Scenario

The Baseline Scenario serves as a benchmark for comparison with the other two scenarios.

Here, no authority intervention or constraints are imposed on the predicted gas price. As

a result, gas price vary over time without restrictions, while maintaining in non-negative

territory5:

BS = {P TTF
h |P TTF

h ∈ [0,+∞]}h=T+1,...,T+H . (5)

In the Baseline Scenario BS, the univariate expected value and corresponding conditional

volatility of the returns for commodity i at time T are:ET [P i
h|BS] = ET [P i

h] ,

ET [σi
h|BS] = ET [σi

h] .

(6)

3.2.2 Fixed Price Cap Scenario

The Fixed Price Cap introduces an upper limit, denoted as P̄ TTF , on the daily TTF gas

price. This constraint ensures that the TTF gas price remains within the specified range

throughout the forecasting time horizon:

FS = {P TTF
h |P TTF

h ∈
[
0, P̄ TTF

]
}h=T+1,...,T+H . (7)

5In our study we do not consider negative commodity prices, being out of our scope.
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The Fixed Price Cap serves as a mechanism to control and limit the upward movement

of the gas price. The upper bound on (predicted) TTF price, then preventing poten-

tial excessive price spikes, is the first policy intervention option we consider. Being the

benchmark to define the price of gas, the TTF price plays a pivotal role also for other

commodities. Therefore, the constraint may impact the price of other commodities:

{P i
h|FS} ∀h = T + 1, . . . , T +H and i = 1, . . . , N (8)

and conditional volatilities:

{σi
h|FS} ∀h = T + 1, . . . , T +H and i = 1, . . . , N. (9)

3.2.3 Dynamic Price Cap Scenario

The Dynamic Price Cap aims to limit the volatility of the TTF gas price. In this scenario,

we propose restricting the conditional volatility of TTF. Based on historical estimates, we

define a stability criteria for its conditional volatility forecasts, based on the median, av-

erage, and maximum historical conditional volatility. The following rules on the predicted

conditional volatility apply for the Dynamic Price Cap:

1. the median forecasted TTF conditional volatility must not exceed the median his-

torical conditional volatility;

2. the average forecasted TTF conditional volatility must not exceed the mean histor-

ical conditional volatility;

3. the TTF volatility at any point in the forecasting time window must not exceed the

maximum historical conditional volatility.

Finally, the predicted TTF price should not exceed the maximum historical price at any

point in the forecasting time window.

Let q0.50(σ̂
TTF
t ), σ̂

TTF

t , max
t∈T

σ̂TTF
t , be the median, the average and the maximum value

of historical conditional volatility, respectively, and let max
t∈T

P TTF
t be the maximum price

8



of TTF gas. The Dynamic Price Cap Scenario can be defined as:

DS =


(P TTF

h , σTTF
h )|

q0.50(σ
TTF
h ) ≤ q0.50(σ̂

TTF
t )

σTTF
h ≤ σ̂

TTF

t

max
h∈H

σTTF
h ≤ max

t∈T
σ̂TTF
t

{P TTF
h }h∈H ∈

[
0,max

t∈T
P TTF
t

)


∀h = T + 1, . . . , T +H. (10)

In a sense, the term ”Dynamic Price Cap” is not self-explanatory, since the cap mechanism

acts through the volatility rather than the price directly. Formally, the dynamics of

commodity prices under this price rule are:

{P i
h|DS} ∀h = T + 1, . . . , T +H and i = 1, . . . , N (11)

and conditional volatilities:

{σi
h|DS} ∀h = T + 1, . . . , T +H and i = 1, . . . , N. (12)

3.2.4 Comparative Analysis

Having specified the processes for price and volatilities with (Fixed and Dynamic Price

Caps) and without (Baseline) the price cap mechanisms, we next examine the effects of

the different price dynamics on other commodity prices and volatilities under the three

scenarios. Formally: ET [P i
h|BS] ⪌ ET [P i

h|FS] ⪌ ET [P i
h|DS]

ET [σi
h|BS] ⪌ ET [σi

h|FS] ⪌ ET [σi
h|DS]

. (13)

By contrasting the two cap rules with the Baseline Scenario, we offer a ’what if analysis’

for commodity markets under different policy intervention options. Moreover, since we

focus on price and volatility impacts and transmissions, our study offer also important

insights for market practitioners in terms of possible investment and hedging decisions,

conditional on price cap mechanism.

4 Methodology

4.1 Model Estimation

We first estimate the conditional models parameters, as described in Section 3.1. The

parameters in the mean return equation, the equation for the conditional standard devia-
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tion, and the probability distribution for return innovations are jointly estimated through

Maximum Likelihood. To account for the heavier tails often observed in commodity price

data, we employ the Student-t to model innovation distribution. Specifically, we assume

that standardized residuals {zit}
i=1,...,N
t=1,...,T are iid following a Student-t distribution with ν

degrees of freedom. We preliminary checked the iid assumption by running standard di-

agnostic tests, specifically examining the standardized residuals and their squared values

for each time series and model.

4.2 Scenario Simulations

Having calibrated the parameters of the conditional models, we then generate joint fore-

casts for each commodity in the sample. We employ two simulation techniques, namely

the multivariate Filtered Historical Simulations (FHS) and the conditional Extreme Value

Theory (EVT) with copula models6. The FHS and EVT methods allow us to generate

B = 5000 joint forecasts (scenarios) over a forecasting horizon of H = 250 days. These

simulation methods incorporate observed market co-movements and estimated depen-

dence structure among commodity prices. In this way, we realize our Baseline Scenario,

which consists of the univariate forecasts for each commodity price and conditional volatil-

ity.

To provide predictions for TTF price and volatility, we define the Fixed and Dynamic

Price Cap scenarios as subsets of realizations of the Baseline Scenario:

FS = {b = 1, . . . , B|P TTF
hb ∈

[
0, P̄ TTF

]
}, (14)

and

DS =


b = 1, . . . , B|

q0.50(σ
TTF
hb ) ≤ q0.50(σ̂

TTF
t )

σTTF
hb ≤ σ̂

TTF

t

max
h∈H

σTTF
hb ≤ max

t∈T
σ̂TTF
t

{P TTF
hb }b∈Bh∈H ∈

[
0,max

t∈T
P TTF
t

)


(15)

where P TTF
hb is the predicted daily price of gas at time h in simulation scenario b. Similarly,

σTTF
hb is the predicted daily conditional volatility of gas at time h in simulation scenario

b.

6Detailed explanations of the Filtered Historical Simulations and conditional Extreme Value Theory

with copula models are in the Appendix.
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While EU countries agreed in December 2022 to trigger a price cap on TTF gas at

180 euros (191.11 USD)/mwh, we used P̄ TTF = 114.79 as the upper bound for the Fixed

Price Cap scenario. Indeed, before the decision, rumors have placed the Fixed Price

Cap between 105 USD/mwh and 115 USD/mwh, and market price decreased to 114.79

USD/mwh on 4 November 20227. In this way we explore the effects of a price cap more

restrictive and in line with the market expectations, which is line with our forecasting

exercise.

For the Dynamic Price Cap, we consider the years 2013–2019 as a reference TTF’s

stable volatility period, which excludes financial instability from the pandemic and the

Russian-Ukrainian conflict. As for the maximum historical price of the TTF gas, the ref-

erence value corresponds to 339.20 USD/mwh recorded on August 26, 2022, encompassing

the entire time series.

For each cap mechanism, we exclude joint multivariate simulation scenarios from the

set B if the predicted TTF price or volatility in any of those scenarios does not comply

with the selected cap. In other terms, if the gas price in a specific simulation scenario b∗

does not meet, for e.g., the requirements for the Fixed Price Cap rule, we exclude all the

realizations of that particular scenario b∗ for all commodities in the sample. This ensures

that the analysis includes only those simulation scenarios closed to the selected cap for

all commodities.

5 Data

The data used in this study comprises the following:

• Dutch TTF Gas Monthly Near-Term (NDEX USD/mwh) daily spot price obtained

from Intercontinental Exchange (ICE) and ICE Endex. The term ”Monthly” refers

to the delivery period8, which runs from 06:00 (CET) on the first day of the month

until 06:00 (CET) on the first day of the next month.

7It should be noticed that TTF and other commodities are USD-denominated , while the actual TTF

and European Gas Futures are EUR-denominated. Changes in the EUR/USD exchange rate are neglected

and are not within the scope of our work.
8The time series is daily, the term term ”Monthly” derives from the fact that: Intercontinental Ex-

change (ICE) EUR/mwh Contracts are for physical delivery through the transfer of rights in respect of

Natural Gas at the TTF Virtual Trading Point, operated by Gasunie Transport Services (GTS), the trans-

mission system operator in the Netherlands. Delivery is made equally each hour throughout the delivery
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• S&P GSCI single-commodity spot indices9 for the following commodities: Energy,

Petroleum, Grains, Gasoil, Aluminum, Nickel, Zinc, Brent Crude oil and Precious

Metals10.

The data come from FactSet over the period from 07/10/2013 to 04/11/2022 for a total

of T = 2288 observations per variable. We select commodities that were more sensitive

to the Russian-Ukrainian conflict, according to the reports realized by the World Bank

(Word Bank Special Focus, Pandemic, war, recession: Drivers of aluminum and copper

prices, Word Bank (2022b)11 and Word Bank Special Focus, The Impact of the War in

Ukraine on Commodity Markets, Word Bank (2022a)12).

Figure 4 (left panel) presents the normalized price paths to unity for each commod-

ity. Notably, the TTF Gas spot index experienced a substantial surge in both price and

volatility, beginning in the last quarter of 2021. Figure 4 (right panel) provides a de-

tailed analysis of the returns over time, revealing the presence of volatility clustering in

commodity returns, particularly during the periods surrounding the pandemic and the

Russian-Ukrainian conflict.

5.1 Summary Statistics

Table 1 presents the annualized summary statistics for commodity returns. In the first

sub-period (2013-2016), all commodities, except for Zinc, experienced on average neg-

ative returns. Among them, TTFGas exhibited the lowest overall minimum and the

highest overall maximum returns, indicating a potentially fat-tailed distribution. TTF-

Gas, Energy, and Petroleum were the most volatile commodities. Except for Nickel, all

commodities displayed right-skewed returns, with TTFGas having the highest positive

period from 06:00 (CET) on the first day of the month until 06:00 (CET) on the first day of the next

month., ICE Endex, Dutch TTF Gas Futures, https://www.theice.com/products/27996665/Dutch-TTF-

Gas-Futures, 11 November 2022.
9S&P Dow Jones Indices, https://www.spglobal.com/spdji/en/index-family/commodities/, 11

November 2022.
10For more details about the indices methodology see:

https://www.spglobal.com/spdji/en/documents/methodologies/methodology-sp-gsci.pdf.
11Word Bank, Commodity Markets, https://www.worldbank.org/en/research/commodity-markets, 11

November 2022
12Word Bank, Commodity Markets, https://www.worldbank.org/en/research/commodity-markets, 11

November 2022
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skewness. This suggests that the distribution of returns for TTFGas and other com-

modities had longer right tails with more extreme positive outliers. Furthermore, all

commodities exhibited elevated positive excess kurtosis, with TTFGas having the highest

value (9.6146).

In the second sub-period (2017-2019), all commodities, except for TTFGas and Zinc,

exhibited positive average daily returns. Similar to the first sub-period, TTFGas displayed

the lowest overall minimum and the highest overall maximum returns, then indicating a

persistent fat-tailed distribution. The volatility of the TTFGas is approximately double

the volatility of other commodities. The skewness of TTFGas was notably larger than

in the first sub-period, which is significantly greater than that of other commodities

(24.4606), confirming its right-skewed leptokurtic distribution. The high excess kurtosis

of TTFGas confirms this finding.

In the third sub-period (2020-2022), the commodity market faced the impact of both

the pandemic and the Russian-Ukrainian conflict. These events had contrasting effects

on commodity prices: the pandemic caused a demand shock, while the conflict led to

a supply shock. Energy-related commodities, in particular, witnessed an unprecedented

drop in demand during the pandemic, with West Texas Intermediate crude oil prices

reaching an all-time low of -37 USD/barrel. In contrast, energy-related commodities and

Nickel recorded the highest maximum daily returns, which could be attributed to supply

reductions caused by the Russian-Ukrainian conflict. Russia accounted for 15.2% of global

production of Nickel, which is used in the production of lithium-ion batteries. The sub-

period was characterized by high volatility for all commodities, with TTFGas displaying

the highest daily volatility, nearly twice the value of other commodities. All commodities

exhibited negative skewness, except for TTFGas and Nickel. The excess kurtosis of all

commodities was higher compared to the previous sub-period, indicating a higher degree

of fat-tailedness in their distribution due to an increase in the frequency and magnitude

of tail events.

The analysis of TTF gas returns reveals a significantly non-normal distribution, char-

acterized by positive skewness and high excess kurtosis. The behavior of TTFGas differs

significantly from other commodities, suggesting potential market inefficiencies and low

liquidity. The reason is because the natural gas market is characterized by a small num-

ber of price-setters and inelastic demand, particularly during colder months. European
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countries, which are largely dependent on natural gas imports, are price-takers and are

thus susceptible to geopolitical risks and price discrimination. These factors highlight the

importance of understanding the idiosyncrasies of the natural gas market and its potential

impacts on the economy as a whole.

5.2 Correlation Analysis

To preliminary inspect dependencies among commodity returns over the entire time period

we computed linear (Pearson) correlations and Kendall’s Tau; results are in in Table 2.

Linear correlations denote weak dependency between TTFGas returns and Gasoil

(20.18%), Energy (15.25%), Petroleum (14.41%), and Brent Crude (13.92%). On the

other hand, textitTTFGas returns appear strongly correlated with energy-related com-

modities (over 90%).

Energy-related commodities are known to be highly interdependent, resulting in strong

positive correlations among them. However, the correlation between the regional TTFGas

and global energy-related commodities may not be particularly high. This is likely due to

the global nature of the S&P GSCI indices compared to the regional impact of TTFGas

on global price movements.

Kendall’s Tau, which measures the discrepancy between the number of concordant and

discordant pairs, was also used to calculate the dependencies between TTFGas and other

commodities. The results show that TTFGas returns are weakly correlated with energy

commodities, with lower coefficients than those obtained with the Pearson correlation

coefficient. The index is 13.84% for Gasoil, 11.06% for Energy, 10.34% for Petroleum,

and 9.84% for Brent Crude. Lastly, the Spearman rank correlation coefficient, which

is a rank-based version of the Pearson coefficient, was used to calculate the correlations

between TTFGas and other energy commodities. Again, the results show that TTFGas is

weakly correlated with the other energy commodities: Gasoil (20.09%), Energy (16.22%),

Petroleum (15.14%), and Brent Crude (14.43%).

Figure 5 depicts the 250 days-rolling Pearson correlations between TTFGas returns

and other commodities returns. From 2014 to 2016, the correlations between European

natural gas and other commodities are within ±20%. The non-energy-related correlations

with European natural gas appear to be stable and rarely exceeding the ±10% boundaries

from 2014 to the end of 2019. The dynamics of correlations between energy-related
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commodities are more volatile over time and changes tend to occur in the same direction.

In 2020, the dynamics shrink, suggesting that the pandemic crisis reduced commodities

correlations with TTFGas, except for Petroleum. However, at the beginning of 2022,

all the dynamics peaked in the same direction and remained positive, albeit not at the

highest level, from that point until the end of the period.

6 Results

6.1 Model Estimates

The following sections present estimates for the conditional models, the GPD paremeters

fitted on the standardized resituals and estimates for the copulae dependence structure.

6.1.1 ARMA-GARCH Type Models

In Table 3 we report ARMA-GARCH-type models estimation. Results from conditional

mean estimates are as follows:

• intercepts for TTFGas and other commodities are not statisically significant, except

for ARMA(1,1)-GARCH(1,1) for Energy and Petroleum;

• for the ARMA(1,1)-GARCH(1,1) models, the AR and MA coefficients are statis-

tically significant for Energy, Petroleum, Grains, and Gasoil. In the case of the

ARMA(1,1)-EGARCH(1,1) only the MA coefficient is significant for TTFGas, the

AR and MA coefficients are statistically significant for Energy, Petroleum, Gasoil,

and Aluminum;

• AR and MA coefficients for ARMA(1,1)-GJR(1,1) are statistically significant for

Energy, Petroleum, Gasoil, Aluminum, Zinc, and Brent Crude.

Regarding conditional volatility estimates, main results are as follows:

• the intercept is close to zero and statistically significant for all commodities with

ARMA(1,1)-GARCH(1,1) model and ARMA(1,1)-GJR(1,1), except for Precious-

Metals in the ARMA(1,1)-GARCH(1,1) and ARMA(1,1)-GJR(1,1) models.

• with ARMA(1,1)-EGARCH(1,1), the intercept is negative and statistically signifi-

cant for all commodities;
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• ARCH and GARCH coefficients are statistically significant for all commodities and

all models;

• For the ARMA(1,1)-EGARCH1(1,1) the leverage term is negative and statistically

significant for Energy, Petroleum, Gasoil and Brent Crude; instead, for Aluminum

and Precious Metals.the parameter is positive (and statistically significant);

• For the ARMA(1,1)-GJR(1,1), the leverage term is statistically significant and neg-

ative for Energy, Aluminum and Precious Metals, Petroleum, Gasoil and Brent

Crude.

As a whole, these results provide evidence on model estimates’ robustness. Coefficients

are indeed statistically significant and almost consistent in terms of sign and magnitude

moving from ARMA(1,1)-GARCH(1,1) to ARMA(1,1)-EGARCH(1,1) and ARMA(1,1)-

GJR(1,1). Single commodities denote different leverage effects both in magnitude and

direction, then implying greater influence on future volatility with positive and negative

correlations between returns and volatility for some commodities, while for other such

effect seems silent; this is the case for TTFGas, Grains, Nickel and Zinc.

6.1.2 Generalized Pareto Distribution Parameters

Table 4 reports tGPD parameter estimates for left and right tail of the standardized

residuals distribution. The portion of tail data Tu/T we process in our analysis is selected

through an automated threshold selection procedure. The threshold selection is indeed

a critical issue in the framework of EVT, and for this reason we propose a procedure

which selects the lowest threshold based on the best fit of the tail data as described in

the Appendix. This approach offers a good balance between bias and variation. Indeed, a

too low threshold leads to violate the asymptotic basis of the model (bias). On the other

hand, a threshold being too high results on few tail data thus increasing the variance of

the estimators

The Table denotes substantial variability of the portion of tail data across different

commodities, which implies different thickness of tails which in turns reflects on varying

probability of extreme events in the return disributions.

Conditional models have no substantial impact on tail data, as the value of Tu/T is

basically the same across different conditional models, both for the left and right tails.
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In more detail, textitAluminum, Grains, and TTFGas exhibit thicker left tails, as indi-

cated by a higher percentage of observations lying in the left tail, then implying a higher

likelihood of extreme negative returns. On the other hand, Gasoil, Brent Crude, and

Energy show thicker right tails (lower percentage of observations lying in the right tail),

suggesting higher probability of extreme positive returns.

The shape parameter or tail index, ξ, in the GPD plays a crucial role in understanding

the tail behavior of the distribution. For ξ < 0, the parameter indicates a bounded

distribution with no heavy tails. This suggests that extreme events are less likely to

occur, and the distribution follows a more ”close-to-normal” pattern. On the other hand,

when 0 < ξ < 1, the parameter indicates heavy tails distribution: extreme events are

more likely to occur relative to a normal distribution, and the tail of the distribution

decays relatively slowly. Finally, for ξ > 1, the distribution exhibits extremely heavy tails

with very high probability of extreme events, and the tail of the distribution decays very

slowly, also being able not to decrease at all.

An in depth analysis of Table 4 reveals interesting insights regarding the left tail be-

havior of different commodities. Notably, the left tail index for TTFGas, Grains, and

industrial metals is negative, suggesting a bounded distribution with no heavy tails.

In the case of Gasoil, the left tail index is negative for ARMA(1,1)-GARCH(1,1) and

ARMA(1,1)-EGARCH,(1,1), while left tail index is close to 0 for ARMA(1,1)-GJR(1,1),

thereby suggesting some sensitivity of left tail behavior of Gasoil to the conditional model

under study. On the other hand, both Energy and Brent Crude exhibit higher left tail

indices compared to other commodities. Among all the commodities analyzed, the right

tail indices of TTFGas, Nickel, and Zinc are the only ones that exhibit positive values.

Notably, both TTFGas and Nickel denote large values for the tail index, indicating the

presence of heavy tails in their distributions. The substantial right tail indices observed

for TTFGas and Nickel suggest that extreme positive price movements are more likely to

occur in these commodities compared to others.

6.1.3 Dependence Structure

Table 5 reports estimates of t copula parameters giving information on dependency struc-

ture between different commodities. The results indicate that TTFGas returns are weakly

dependent with Gasoil (21.67%), Energy (17.97%), Petroleum (17.29%), and Brent Crude
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(17.05%). More specifically, some important insights result:

• The estimated dependencies for most commodity pairs are consistent across differ-

ent conditional models., then proving robustness of the approch in measuring the

dependence structure.

• TTFGas, Energy, Petroleum, and Brent Crude consistently exhibit high positive

correlations (approximately 98%), thereby suggesting common exposure to market

and macroeconomic factors.

• Some commodity exhibit relatively weaker positive correlations (around 18%). For

instance, Grains and Precious Metals show weaker positive correlations across the

different conditional models.

• Interestingly, for some commodities the correlation estimates are negative then sug-

gesting potential for commodity diversification portfolio strategy.This is the case for

Precious Metals and TTFGas (–4.22%).

6.2 Baseline Scenario

Tables 6 - 16 and Figures 6 - 15 present the simulation results. In the Baseline Scenario,

there is no authority intervention that influences the TTFGas price. The first two plots

of Figure 6 show the forecasted price of the Baseline Scenario for European natural gas.

The top dotted line, representing the 95th percentile, is characterized by an exponential

shape. The price forecasts from the ARMA(1,1)-EGARCH(1,1) model convey a lower

95th percentile than the other two conditional approaches. Differences between FHS and

EVT seems to be negligible. Table 6 displays the predicted compounded TTFGas return

over 1, 3, 6, 9, and 12 months. As before, FHS and EVT forecasts are not significantly

different: after one month, the TTFGas price is expected to grow, on average, by 3.83%

(FHS) and by 3.47% (EVT). After 12 months, the average growth of TTFGas prices is

expected to be 30.62% (FHS) and 31.87% (EVT).

Energy-related commodity prices are expected to decrease at a constant marginal rate,

as indicated by the average percentage changes after three months: Energy (-1.77% for

FHS and –1.95% for EVT), Petroleum (-1.89% for FHS and –2.08% for EVT), Gasoil (-

2.28% for FHS and –2.35% for EVT), and Brent crude oil (-1.94% for FHS and –2.09% for
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EVT). These trends are depicted in the first row of Figures 7, 8, 10, and 14. Conversely,

forecasts for Grains, Metals, and Precious Metals indicate an expected price increase,

albeit less pronounced than the increase in European natural gas price.

Average conditional models descriptive statistics for estimated and predicted con-

ditional daily volatility are presented in Table 16. The average estimated conditional

volatility for TTFGas over the period 2013 – 2022 is 3.39%, while the average volatility

is 4.99% for FHS and 4.95% for EVT. This is the largest increase in expected volatility.

However, for other commodities, the average and median predicted volatility are generally

higher but close to their historical estimates. For example, the historical average condi-

tional volatility for Grains is 1.26%, while the average forecasted volatility is 1.30% (for

both FHS and EVT). Therefore, in the Baseline Scenario, the overall commodity market

volatility is expected to slightly increase, and except for TTFGas, differences between es-

timated average volatility and expected average daily volatility quite low (under 10 basis

points).

6.3 Fixed Price Cap

Figure 6 (plots of the third and fourth rows) presents a clear visual representation of

how the Fixed Price Cap scenario affects forecasts of TTFGas prices from the conditional

models. In both the FHS and EVT cases, the forecasts for the prices remain consistently

below the cap, indicating a significant impact of the cap on TTF market dynamics. The

impact on TTFGas conditional volatility forecasts is also sizeble, with the upper 95%

bound being significantly lower compared to the Baseline Scenario. This reduction in

volatility is consistent with a straight Fixed Price Cap, which leads to an initial spike in

volatility then stabilizing as the market adjusts to the new constraints.

In Table 6 we report descriptive statistics for compounded returns of expected TTF-

Gas. The data show an expected significant drop of –40.96% (FHS) and –40.27% (EVT)

after one month, with further reductions over the remaining months of the forecasting

window; the largest price decreases are expected to occur within six months. These find-

ings suggest that the imposition of a Fixed Price Cap have significant, and definitive

impacts on TTFGas market dynamics.

Fixed Price Cap on the TTFGas market results in higher energy-related commod-

ity price reductions relative to Baseline Scenario. The average compounded percentage
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changes predicted after three months are –4.47% (FHS) and –5.27% (EVT) for Energy,

–4.55% (FHS) and –5.39% (EVT) for Petroleum, –7.53% (FHS) and –7.29% (EVT) for

Gasoil, which is the highest impact, and –4.65% (FHS) and –5.51% (EVT) for Brent crude

oil. Table 9 highlights an interesting pattern for predicted Grains price changes, as the

increase is significantly lower than in the Baseline Scenario for FHS and higher for EVT.

This difference is the most substantial observed among all commodities. The predicted

one-month-ahead average Grains return changes from positive in the Baseline Scenario

to negative. A similar change in sign occurs for Nickel and Zinc, while the increase in the

average expected return for Precious Metals appears to be slightly more pronounced.

Note in Table 16 that the expected daily conditional volatility for TTFGas returns

which is lower than the Baseline Scenario, but higher than its historical estimate over the

2013 – 2022 period (3.64% for both FHS and EVT versus 3.39%). On the other hand,

the average daily volatility forecasts for all other commodities are higher than observed

for Baseline Scenario, except for Grains which has no difference in volatility: this is the

effect from a sudden and substantial price reduction imposed on the European natural

gas. The same picture arises from comparing expected with historical volatilies, both for

FHS and EVT.

6.4 Dynamic Price Cap

Figure 6 depicts the expected TTFGas prices and conditional volatilities under the Dy-

namic Price Cap scenario. Unlike what oserved for Fixed Price Cap, the impact of the

Dynamic Price Cap is less pronounced, albeit still visible.

The predicted price of gas is not as low as in the case of the Fixed Price Cap, but

it does not attain the same level as the Ibbotson Cone in the Baseline Scenario. From

January 2023 onwards, the upper bounds of gas prices appear to be around 200 USD/mwh.

The conditional volatility forecasts for TTFGas in the Dynamic Price Cap scenario are

consistently lower than both the Baseline Scenario and the Fixed Price Cap scenario

and even lower than its historical estimate. Specifically, the expected daily conditional

volatilities are 2.69% (FHS) and 2.70% (EVT) compared to the historical estimate of

3.39%. This is a reasonable value since the average historical volatility over the 2013 –

2022 period includes the extreme values of the last two years, while the rule imposed on

gas prices takes into account volatility over the 2013 – 2019 period.
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Table 6 presents descriptive statistics for the compounded returns in the Dynamic

Price Cap scenario. The table shows that TTFGas prices are expected to decrease by

–2.80% (FHS) and –3.53% (EVT) after one month. Similar to the Fixed Price Cap

scenario, the largest marginal decreases in gas prices are expected within six months.

Overall, the Dynamic Price Cap scenario appears to have a milder effect on gas prices

and volatility compared to the Fixed Price Cap scenario.

The Dynamic Price Cap mechanism has a relatively smaller impact on the reduction

of energy-related commodity prices compared to the Fixed Price Cap, but higher than the

Baseline. Specifically, after three months, the average percentage changes in compounded

returns are –2.44% (FHS) and –2.62% (EVT) for Energy, –2.58% (FHS) and –2.75%

(EVT) for Petroleum, –4.03% (FHS) and –3.90% (EVT) for Gasoil, and –2.67% (FHS)

and –2.70% (EVT) for Brent crude oil. The impact on Grains prices is not significantly

different from the Baseline Scenario and exhibits contrasting predictions between the two

approaches, possibly due to a lack of direct dependence between Grains and TTFGas

prices. The expected compound returns for industrial metals are generally lower than the

Baseline Scenario but higher trelative to the Fixed Price Cap scenario; Precious Metals

prices are expected to increase, particularly in the EVT scenario.

A more detailed analysis of Table 16 reveals that the reduction in expected condi-

tional volatility is the main effect of the Dynamic Price Cap scenario. Although the

dis-inflationary impact on commodity returns is smaller compared to the Fixed Price

Cap scenario, it is fully compensated by the reduction in expected conditional volatility.

Moreover, expected conditional volatility in the Dynamic Price Cap scenario is consis-

tently lower for all commodities in the sample compared to both the Fixed Price Cap and

Baseline Scenarios. The differences from historical estimates are mostly negligible, except

for Gasoil and Zinc, and of course TTFGas.

Overall, these results suggest that the Dynamic Price Cap approach can provide a

better balance between price volatility abatement and volatility spillover mitigation rel-

ative to both the Fixed Price Cap mechanism and the option to refrain from any policy

intervention (Baseline Scenario).
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6.5 Discussion

The effects of gas price cap mechanisms prove that the imposition of price restrictions

significantly affects the dynamics of other commodities with different magnitudes. Energy-

related commodities are the most sensitive to regulatory price intervention. Assuming

no-price intervention, a price reduction for Energy in order of –0.52% (FHS) and –0.58%

(EVT) over one-month time horizon, corresponds to higher mitigation effects on price

dynamics when considering price cap mechnisms: under the Fixed Price Cap our estimates

are between –2.28% (FHS) and –3.05% (EVT), while under the Dynamic Price Cap,

between –0.80% (FHS) and –0.87% (EVT).

On the other hand, an expected Grains price increase between 1.06% (FHS) and

1.02% (EVT) after three months (under the Baseline Scenario) corresponds to a much

lower growth with Fixed Price Cap, between 0.12% (FHS) and 1.22% (EVT), while under

the Dynamic Price Cap, the increase is expected between 0.64% (FHS) and 0.98% (EVT).

EVT estimates appear to be more reliable, as historical data suggest that Grains prices

were not influenced by gas prices until recently, when extreme values were observed for

both commodities.

Similar behavior is with Zinc, where the effect of price regulation on other industrial

metals results in lower marginal increases. The predicted returns of industrial metals

appear to be more sensitive to the Fixed Price Cap than the Dynamic Price Cap, while

the latter assesses the impact of price regulation on volatility.

Interestingly, Precious Metals do not appear to be affected by the price rule, with

slight increases in their prices under both the Fixed and Dynamic Price Cap scenarios.

Their volatility remains approximately constant between different scenarios and does not

seem to be influenced by regulatory intervention.

7 Conclusions

In this paper, we study the short-term effects of a regulatory intervention on the Euro-

pean natural gas spot price on the commodity market using multivariate FHS and EVT

methods. We focus on Fixed and Dynamic Price Cap scenario in a retrospective empir-

ical exercise over the period 2013–2022, using the time window November 2022–August

2023 for a simulation excercise in a ”what-if” analysis spirit. Using price data for TTF-

22



Gas, (Energy, Petroleum, Grains, Gasoil, Aluminum, Nickel, Zinc, Brent Crude oil, and

Precious Metals), our main results are as follows:

• With no-price cap mechanism (Baseline Scenario), the European Gas price would

has been expected to increase, while most of energy-related commodity prices would

come down. The exceptions are industrial and Precious Metals together with Grains

prices, all expected to increase. Furthermore, the overall commodity market volatil-

ity would exhibit a slightly increase, greater than the corresponding historical esti-

mates;

• Fixed Price Cap is expected to exert a price mitigation effects mainly over the

first three months. The energy-related commodity prices are expected to decrease

at higher rates compared to the Baseline Scenario, and the effect on Grains is

ambiguous. The industrial metals are expected to increase at lower rates, and

Precious Metals increase at a slightly higher rate. The overall commodity market

volatility is expected to increase significantly more than the Baseline Scenario and

its historical estimates;

• Dynamic Price Cap mechanism exert a price mitigation too, but lower than the

Fixed Price Cap. The effect on Grains remains ambiguous, and industrial metals

are expected to increase at equal or slightly lower rates than the Baseline Scenario.

Precious Metals, however, seem unaffected by the Dynamic Price Cap. The major

impact is on commodity market volatility, which is expected to be approximately

constant with respect of its historical estimates and therefore lower than both the

Baseline and the Fixed Price Cap scenarios.

Overall, our results suggest that the Dynamic Price Cap could contribute to maintain

market volatility under control over the long-run, then acting as a market stability policy

measure. The Fixed Price Cap, having an immediate and consistent dis-inflationary effect

on most of the commodities, may act as extraordinary and urgent measure to introduce

only in the short-term with the objective to control price spikes, since its side effect is

on high market volatility. This price vs. volatility conflicting objective problem open the

door to a complex and challenging policy dilemma when extreme price spikes occur, as

the main problem is to better combine Dynamic with Fixed Price Cap in terms of when

and for how long the intervention mechanism should be used.
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Bücher, A. and Zhou, C. (2018). A horse racing between the block maxima method and

the peak-over-threshold approach. arXiv preprint arXiv:1807.00282.

Cantelli, F. (1933a). Considerazioni sulla legge uniforme dei grandi numeri e sulla gen-

eralizzazione di un fondamentale teorema del sig. Paul Levy. Giorn. Ist. Ital. Attuari,

4(3):327–50.

Cantelli, F. P. (1933b). Sulla determinazione empirica delle leggi di probabilita. Giorn.

Ist. Ital. Attuari, 4(421-424).

Cheng, I.-H. and Xiong, W. (2014). Financialization of commodity markets. Annu. Rev.

Financ. Econ., 6(1):419–441.

Cherubini, U., Luciano, E., and Vecchiato, W. (2004). Copula methods in finance. John

Wiley & Sons.

Choulakian, V. and Stephens, M. A. (2001). Goodness-of-fit tests for the generalized

pareto distribution. Technometrics, 43(4):478–484.

Christoffersen, P. (2011). Elements of financial risk management. Academic press.

24



De Meza, D. (1979). Commercial policy towards multinational monopolies—reservations

on katrak. Oxford Economic Papers, 31(2):334–337.

Demarta, S. and McNeil, A. J. (2005). The t copula and related copulas. International

statistical review, 73(1):111–129.

Ehrhart, K.-M., Schlecht, I., Schmitz, J., and Wang, R. (2023). Comparison of price caps

and tariffs to counter a foreign monopoly. Economics Letters, 227:111128.
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A Filtered Historical Simulations

Barone-Adesi et al. (1999) and Barone-Adesi et al. (2000) introduced FHS, a simula-

tion approach that combines historical and Monte Carlo techniques to forecast daily log

returns. It utilizes statistical bootstrap with replacement to simulate future standard-

ized residuals without assuming their distribution. FHS models filtered returns instead

of raw returns and preserves observed co-movements between entities in a multivariate

extension. A key advantage is the ability to compound daily returns for forecasts over

extended horizons.

Let rit represents the daily return of commodity i = 1, . . . , N at time t = 1, . . . , T ,

where T denotes the time series sample size. Assume the returns dynamics are driven by

the following equation:

rit = µi
t + σi

tz
i
t (16)

where µi
t is the daily conditional mean and σi

t is the daily conditional volatility of com-

modity i at time t. Let ẑit represents the estimated standardized residuals of an ARMA-

GARCH-type model for commodity i at time t. An algorithm for FHS involves the

following steps13:

1. take the scenario simulation b = 1 and sample the sequence of length H of stan-

dardized residuals, {ẑ∗hb}h=1,...,T+H , from the historical estimates with replacement

(bootstrap);

2. consider the last historical estimates of the model as pre-sample values: σ∗
0 =

σ̂T , r
∗
0 = rT ;

3. filter the bootstrapped standardized residuals based on the pre-sample values and

obtain the simulated predicted returns, {r∗hb}h=1,...,T+H ;

4. repeat the procedure for b = 2, . . . , B to get a bootstrapped matrix of size H×1×B

for the standardized residuals, residuals, variances, and returns of each commodity

i in the sample.

The multivariate extension of FHS involves drawing with replacement a complete cross-

section of commodities estimated standardized residuals at a random date to generate a

13From here the index i is omitted for clarity.
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matrix of size H ×N ×B of returns and conditional volatilities, preserving the observed

market co-movements between the commodities.

B Extreme Value Theory

EVT is concerned with modeling and inferring the probability distributions of extreme

events. It provides a theoretical framework for the tails of distributions and the prob-

abilities of observing extreme values beyond typical observations. Two commonly used

approaches in EVT are Block Maxima (BM) and Peaks Over Threshold (POT). BM di-

vides observations into non-overlapping blocks and selects the maximum value, while POT

identifies extreme values above a threshold. The POT approach is generally considered

more efficient and suitable for estimating tail risk as it utilizes all available information.

In this work, we focus on the POT approach which fits a Generalized Pareto Distribution

to the exceedance data.

Let X1, . . . , XN be iid random sample taken from a generic random variable X with

distribution function F (x) and right endpoint xF . The support of X is assumed to be the

discrete set SX = {u1, . . . , uK}. The distribution function of exceedances above threshold

u < xF is denoted as Fu(x). It can be expressed as:

Fu(x) = P{X − u ≤ x|X > u} =
P{u < X < x+ u}

P{X > u}
=


F (x)−F (u)
1−F (u)

x ≥ 0

0 else

.

According to the Pickands-Balkema-De Haan theorem (Pickands, 1975; Balkema and

De Haan, 1974), for a sufficiently large threshold u, the excess loss Y = X − u|X > u

converges to the Generalized Pareto Distribution (GPD) with shape parameter ξ > 0.

The distribution of exceedances above u can be well approximated by the GPD:

Fu(x) ≈ Gξ,σu(x),

whereGξ,σu is the GPD. The threshold stability property ensures that Fv(x) = Gξ,σ+ξ(v−u)(x)

holds for u large enough.

Pickands (1975) introduced the Generalized Pareto Distribution (GPD), where loss

exceedances over some high threshold have PDF:

fξ,σu(x) =


1
σu

(
1 + ξ x−u

σu

)(− 1
ξ
−1)

, ξ ̸= 0

1
σu

exp
(
−x−u

σu

)
, ξ = 0

(17)
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and CDF:

Gξ,σu(x) =

1−
(
1 + ξ x−u

σu

)−1/ξ

, ξ ̸= 0

1− exp
(
−x−u

σu

)
, ξ = 0.

(18)

where σu > 0, x− u ≥ 0 when ξ ≥ 0 and u ≤ x ≤ u− σu/ξ when ξ < 0. The parameter

ξ is referred as the shape or tail index, the parameter σu is referred as the scale, and the

parameter u is referred as the threshold or the location.

When the threshold u is known and both σ and ξ are unknown, the parameters of the

GPD model can be estimated. The log-likelihood function is given by:

l(ξ, σ) = −Tu lnσ −
(
1 +

1

ξ

) Tu∑
k=1

ln

(
1 + ξ

xk − u

σ

)
. (19)

The log-likelihood function is maximized subject to the constraints σ > 0 and 1+ξ/σ(xk−

u) > 0 for all k. The resulting GPD model is denoted as Gξ̂,σ̂,u.

B.1 Threshold Identification

Threshold identification is a critical aspect of modeling with the GPD. As pointed out

by Christoffersen (2011), the selection of an appropriate threshold is the ”Achilles heel”

of Extreme Value Theory (EVT) using GPD. This step involves a trade-off between bias

and variance. If the threshold is set too high, only a few data points remain in the tail,

resulting in a noisy estimate of the tail parameter, ξ. On the other hand, if the threshold

is set too low, the GPD fit may be poor and the estimate of ξ becomes biased.

To address this challenge, Bader et al. (2018) proposed an automated threshold se-

lection procedure based on sequential goodness-of-fit (GoF) tests. The procedure, named

ForwardStop, is applied to the random sample X1, . . . , Xk, . . . , XN . For simplicity, we

assume that the labels 1, . . . , k, . . . , N point to ranks, so that Prob(X1 < · · · < Xk <

· · · < XN) = 1.

According to the Pickands-Balkema-De Haan theorem (Pickands, 1975; Balkema and

De Haan, 1974), the exceedances Yk = Xk−u, for k = 1, . . . , N , follow a GPD distribution

when u ∈ SX is large enough.

The goal is to find the optimal threshold u∗ = uk̂+1 ∈ SX that balances the bias-

variance trade-off.

The ForwardStop rule is applied by performing GoF tests, such as the Anderson-

Darling test, on a sequence of candidate thresholds u1 < u2 < · · · < uk < · · · < uK . The
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null hypotheses for these tests are as follows:

H
(k)
0 : Fuk

(x) = GPD(uk, σk, ξk)

H
(k)
0 : Fuk

(x) ̸= GPD(uk, σk, ξk)

. (20)

where Fuk
(x) represents the distribution function of X above the threshold uk, and

GPD(uk, σk, ξk) is the GPD distribution with threshold uk, scale parameter σk, and shape

parameter ξk.

The ForwardStop rule is defined as:

k̂ = max

{
k ∈ {1, 2, ..., K} : −1

k

k∑
i=1

log(1− pi) ≤ α

}
, (21)

where α is a pre-specified significance level. The optimal threshold is the cutoff point where

H
(1)
0 , H

(i)
0 , . . . , H

(k̂)
0 are rejected defined as u = xk̂+1: from that point the exceedances

follows a GPD since GoF tests fail to reject the null hypotheses and before that point GoF

tests reject the null hypothesis at the specified significance level α. If ∄ k̂ ∈ {1, . . . , K}

no rejection is made and Tu = T .

By applying the ForwardStop rule, rejection of the null hypotheses up to a certain

threshold implies rejection for all lower thresholds. The sequential nature of the tests

accounts for the ordered statistics.

B.2 Conditional and Multivariate EVT

Let rit represents the daily return of commodity i = 1, . . . , N at time t = 1, . . . , T , where

T denotes the time series sample size. Assume the returns dynamics are driven by the

following equation:

rit = µi
t + σi

tz
i
t (22)

where µi
t is the daily conditional mean and σi

t is the daily conditional volatility of com-

modity i at time t. Let ẑit represents the estimated standardized residuals of an ARMA-

GARCH-type model for commodity i at time t. To apply conditional EVT following the

procedure proposed by McNeil and Frey (2000), we fit a piece-wise cumulative distribu-

tion with Generalized Pareto tails to the standardized residuals of each commodity i in
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the sample14:

F (ẑt) =



TuL

T

(
1 + ξL

uL−ẑt
σL

)− 1
ξL , for ẑt < uL

1
Tγ

∑T
s=1 K

(
ẑt−ẑs

γ

)
, for uL < ẑt < uR

1− TuR

T

(
1 + ξR

ẑt−uR

σR

)− 1
ξR , for ẑt > uR

(23)

where the subscript L,R denote the left and the right tails, T is the number of observa-

tions, Tu is the number of observations exceeding the threshold u, σ > 0, x− u ≥ 0 when

ξ ≥ 0 and u ≤ x ≤ u− σ/ξ when ξ < 0.

In multivariate EVT, marginal distributions are estimated using a conditional univari-

ate piece-wise CDF with GPD tails, while the dependence structure is modeled using a

copula. We used the t-copula, which is better suited for financial time series due to its

ability to handle heavier tails and outliers. In contrast, the Gaussian copula assumes a

normal distribution that may not be appropriate. Vine copulas, although useful for com-

plex dependencies, are less commonly used in financial time series, especially for extreme

market events, and can be harder to interpret than the t-copula. Studies have consistently

shown the superior performance of the Student-t copula in risk management and port-

folio optimization during extreme market conditions (Patton, 2006; McNeil et al., 2015;

Demarta and McNeil, 2005; Cherubini et al., 2004; Fernandes et al., 2021).

An algorithm for multivariate EVT involves the following steps:

1. fit a piece-wise CDF with GPD tails to the estimated standardized residuals, {ẑit}t=1,...,T ,

and repeat the procedure for each commodity i in the sample N ;

2. calibrate the t-copula parameters on the semi-parametric CDFs with GPD tails

marginals of the standardized residuals matrix, {ẑit}
i=1,...,N
t=1,...,T , estimated at point 1;

3. take the scenario simulation b = 1 and sample a matrix, {ẑ∗ihb}
i=1,...,N
h=1,...,T+H , of jointly

dependent standardized residuals, based on the dependence structure from the pre-

vious step;

4. consider the last historical estimates of the model as pre-sample values: σ∗
0 =

σ̂T , r
∗
0 = rT ;

5. filter the bootstrapped standardized residuals based on the pre-sample values and

obtain the simulated predicted returns matrix, {r∗ihb}
i=1,...,N
h=1,...,T+H ;

14For clarity, the index i is omitted from this point onward.
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6. repeat the procedure from point 3. for b = 2, . . . , B to get a simulated matrix of

size H × N × B of returns and conditional volatilities, preserving the estimated

dependence structure between the commodities.

33



C Tables

Table 1: Descriptive statistics of commodities returns.

Commodity Mean Min Median Max StdDev Skew Kurt

2013 - 2016

TTFGas -0.0049 -0.1169 -0.0174 0.1385 0.0692 0.6389 9.6146

Energy -0.0087 -0.0883 -0.0146 0.0835 0.0701 0.2136 4.8206

Petroleum -0.0091 -0.0900 -0.0146 0.0901 0.0733 0.2721 4.9053

Grains -0.0052 -0.0439 -0.0053 0.0578 0.0417 0.0712 3.8579

Gasoil -0.0089 -0.0814 -0.0058 0.0855 0.0646 0.4410 5.5659

Aluminum -0.0012 -0.0296 -0.0023 0.0344 0.0364 0.2247 3.1643

Nickel -0.0049 -0.0889 -0.0003 0.0624 0.0634 -0.1886 4.8155

Zinc 0.0048 -0.0683 0.0012 0.0942 0.0498 0.3227 6.2681

Brent Crude -0.0096 -0.0967 -0.0143 0.0937 0.0785 0.2139 5.1920

Precious Metals -0.0024 -0.0384 -0.0100 0.0426 0.0349 0.2127 5.0040

2017 - 2019

TTFGas -0.0077 -0.1318 -0.0054 0.3170 0.1038 2.0790 24.4606

Energy 0.0016 -0.0708 0.0234 0.1214 0.0569 -0.1518 8.3981

Petroleum 0.0021 -0.0748 0.0248 0.1264 0.0594 -0.1598 8.4522

Grains 0.0018 -0.0467 -0.0027 0.0413 0.0391 0.0694 4.2458

Gasoil 0.0031 -0.0545 0.0095 0.0947 0.0520 0.0261 5.4013

Aluminum 0.0010 -0.0766 0.0000 0.0536 0.0392 0.0978 7.4549

Nickel 0.0054 -0.0587 0.0024 0.0851 0.0609 0.0890 4.4591

Zinc -0.0019 -0.0652 0.0000 0.0532 0.0505 0.0160 3.6588

Brent Crude 0.0024 -0.0780 0.0251 0.1330 0.0619 -0.1787 8.8908

Precious Metals 0.0042 -0.0255 0.0068 0.0350 0.0246 0.0118 4.7845

2020 - 2022

TTFGas 0.0377 -0.3524 0.0000 0.4128 0.2249 0.1611 9.1168

Energy 0.0082 -0.3018 0.0313 0.1599 0.1106 -1.8455 21.2012

Petroleum 0.0076 -0.3328 0.0346 0.1736 0.1175 -1.9903 23.0728

Grains 0.0084 -0.0630 0.0055 0.0618 0.0531 -0.1255 5.0131

Gasoil 0.0093 -0.1630 0.0371 0.1151 0.1054 -0.7360 7.1230

Aluminum 0.0045 -0.0694 0.0000 0.0568 0.0529 -0.2469 4.6181

Nickel 0.0088 -0.1618 0.0075 0.4960 0.1050 5.8269 103.8200

Zinc 0.0040 -0.0626 0.0060 0.0743 0.0576 -0.1906 4.6248

Brent Crude 0.0067 -0.2683 0.0333 0.1908 0.1092 -1.3464 18.0334

Precious Metals 0.0017 -0.0543 0.0068 0.0572 0.0412 -0.3811 6.7597
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The table reports summary statistics for commodities over sub-periods: Mean is the average daily return

(not annualized). Min and Max are the minimum and the maximum daily return, respectively. Median

is the median daily return (not annualized). StdDev is the periodal standard deviation (not annualized).

Skew and Kurt are the skewness and the excess kurtosis.
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The table represents correlation between commodities calculated over the entire time window. Pear-

son is Pearson correlation coefficient. Kendall is Kendall’s Tau non-parametric correlation coefficient.

Spearman is Spearman rank correlation coefficient.
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The table shows parameter estimates for ARMA-GARCH-type models. const1 is the constant of

the conditional mean model. AR is the auto-regressive coefficient estimate. MA is the moving-average

coefficient estimate. const2 is the constant of the conditional volatility model. GARCH is the GARCH

coefficient estimate. ARCH is the ARCH coefficient estimate. Leverage is the leverage coefficient esti-

mate, included only in EGARCH and GJR models. DoF is the estimated Degrees of Freedom of the

Student-t distribution. AIC is the Akaike Information Criteria. BIC is the Bayesian (Schwarz) Informa-

tion Criteria. ***, ** and * denote significance at 0.01, 0.05 and 0.10 level, respectively.
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Table 4: Estimated GPD parameters for the tails of standardized residuals.

ARMA(1,1)-GARCH(1,1) TûL
/T ξ̂L σ̂L TûR

/T ξ̂R σ̂R

TTFGas 0.2902 -0.0180 0.6164 0.7915 0.1237 0.5967

Energy 0.1993 0.0887 0.6512 0.7365 -0.0186 0.5613

Petroleum 0.2784 0.0497 0.6976 0.7386 -0.0295 0.5785

Grains 0.2950 -0.0901 0.6513 0.7784 -0.1149 0.7202

Gasoil 0.1770 -0.0112 0.7161 0.7281 -0.0462 0.6037

Aluminium 0.3003 -0.1429 0.6874 0.8816 -0.0747 0.6170

Nickel 0.2780 -0.0517 0.6765 0.8728 0.2170 0.4851

Zinc 0.2574 -0.1038 0.6949 0.8785 0.0122 0.5638

Brent Crude 0.2705 0.0632 0.6812 0.7312 -0.0104 0.5732

Precious Metals 0.0747 0.0242 0.6954 0.8033 -0.0217 0.6513

ARMA(1,1)-EGARCH(1,1) TûL
/T ξ̂L σ̂L TûR

/T ξ̂R σ̂R

TTFGas 0.2906 -0.0343 0.6212 0.7920 0.1200 0.5833

Energy 0.1879 0.1173 0.6101 0.7356 -0.0252 0.5614

Petroleum 0.2762 0.0505 0.6879 0.7356 -0.0353 0.5746

Grains 0.2976 -0.0998 0.6612 0.7928 -0.1102 0.7061

Gasoil 0.1490 0.0104 0.6453 0.7181 -0.0644 0.6231

Aluminium 0.3042 -0.1452 0.6915 0.8781 -0.0486 0.6028

Nickel 0.2784 -0.0546 0.6767 0.8680 0.1904 0.5018

Zinc 0.2583 -0.0967 0.6883 0.8820 0.0039 0.5671

Brent Crude 0.2745 0.0581 0.6742 0.7343 -0.0137 0.5687

Precious Metals 0.0752 0.0014 0.7369 0.8016 -0.0098 0.6436

ARMA(1,1)-GJR(1,1) TûL
/T ξ̂L σ̂L TûR

/T ξ̂R σ̂R

TTFGas 0.2906 -0.0191 0.6178 0.7915 0.1247 0.5949

Energy 0.2640 0.0414 0.6948 0.7426 -0.0191 0.5667

Petroleum 0.2758 0.0360 0.7085 0.7365 -0.0300 0.5815

Grains 0.2963 -0.0901 0.6516 0.7902 -0.0961 0.6862

Gasoil 0.1582 0.0000 0.6711 0.7177 -0.0610 0.6230

Aluminium 0.3055 -0.1554 0.7005 0.8829 -0.0634 0.6078

Nickel 0.2775 -0.0492 0.6733 0.8724 0.2143 0.4867

Zinc 0.2635 -0.0979 0.6900 0.8698 0.0439 0.5268

Brent Crude 0.2592 0.0651 0.6692 0.7299 -0.0156 0.5825

Precious Metals 0.0747 0.0022 0.7294 0.8011 -0.0098 0.6380
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The table presents estimated parameter for selected commodities using GPD. TûL
/T and TûR

/T are,

respectively, the left and the right tail portions, obtained applying the ForwardStop rule by Bader et al.

(2018). ξ̂L and ξ̂R are, respectively, the left and the right shape parameters, obtained by ML. σ̂L and σ̂R

are, respectively, the left and the right scale parameters, obtained by ML.
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The table represents correlation matrix for the t copula. ARMA(1,1)-GARCH(1,1) refers to the corre-

lation matrix computed over standardized residuals estimated from ARMA(1,1)-GARCH(1,1). ARMA(1,1)-

EGARCH(1,1) refers to the correlation matrix computed over standardized residuals estimated from

ARMA(1,1)-EGARCH(1,1). ARMA(1,1)-GJR(1,1) refers to the correlation matrix computed over stan-

dardized residuals estimated from ARMA(1,1)-GJR(1,1).
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Table 6: TTF Natural Gas Forecasts.

Days

Ahead

Baseline Scenario Fixed Price Cap Dynamic Price Cap

FHS EVT FHS EVT FHS EVT

M
ea
n

1 0.0383 0.0347 -0.4096 -0.4027 -0.0280 -0.0353

3 0.1041 0.0995 -0.5803 -0.5785 -0.0673 -0.0725

6 0.1817 0.1892 -0.6981 -0.6919 -0.0885 -0.0990

9 0.2472 0.2531 -0.7431 -0.7318 -0.1088 -0.1034

12 0.3062 0.3187 -0.7520 -0.7564 -0.0999 -0.0908

T
ri
m
M
ea
n

1 0.0284 0.0240 -0.3897 -0.3843 -0.0237 -0.0315

3 0.0728 0.0723 -0.5455 -0.5488 -0.0505 -0.0550

6 0.1265 0.1345 -0.6541 -0.6430 -0.0533 -0.0723

9 0.1720 0.1850 -0.6949 -0.6816 -0.0670 -0.0758

12 0.2117 0.2301 -0.6994 -0.7056 -0.0548 -0.0578

Q
1

1 -0.1672 -0.1684 -0.5271 -0.5163 -0.1923 -0.2007

3 -0.2396 -0.2369 -0.7129 -0.7568 -0.2965 -0.3050

6 -0.2833 -0.2630 -0.9011 -0.8461 -0.3575 -0.3547

9 -0.3062 -0.2896 -0.9466 -0.9255 -0.3954 -0.4081

12 -0.3257 -0.3026 -0.9682 -0.9489 -0.4262 -0.4208

M
ed
ia
n

1 0.0162 0.0150 -0.3565 -0.3640 -0.0265 -0.0301

3 0.0438 0.0462 -0.4981 -0.5077 -0.0396 -0.0373

6 0.0857 0.0828 -0.5853 -0.5859 -0.0358 -0.0603

9 0.1193 0.1284 -0.6361 -0.6302 -0.0389 -0.0556

12 0.1526 0.1694 -0.6453 -0.6437 -0.0197 -0.0357

Q
3

1 0.2186 0.2103 -0.2466 -0.2363 0.1490 0.1426

3 0.3649 0.3565 -0.3531 -0.3159 0.2136 0.1949

6 0.5037 0.4980 -0.3966 -0.3861 0.2689 0.2319

9 0.6016 0.6178 -0.4189 -0.4173 0.3019 0.2745

12 0.6982 0.7114 -0.3947 -0.4168 0.3405 0.3346

R
a
n
ge

1 0.3858 0.3787 0.2805 0.2800 0.3413 0.3434

3 0.6045 0.5934 0.3598 0.4409 0.5101 0.4999

6 0.7870 0.7610 0.5045 0.4600 0.6264 0.5866

9 0.9079 0.9074 0.5277 0.5082 0.6974 0.6826

12 1.0239 1.0140 0.5735 0.5320 0.7667 0.7555

The table represents descriptive statistic for the compounded simulated returns over 1,3,6,9 and 12 months (results from

different models have been merged). Mean is sample average. TrimMean is sample average removing 5% lower and 5%

upper outliers. Q1 is first quartile. Median is the second quantile. Q3 is the third quantile. Range is the interquartile

range, difference between Q3 and Q1.
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Table 7: Energy Forecasts.

Days

Ahead

Baseline Scenario Fixed Price Cap Dynamic Price Cap

FHS EVT FHS EVT FHS EVT

M
ea
n

20 -0.0052 -0.0058 -0.0228 -0.0305 -0.0080 -0.0087

60 -0.0177 -0.0195 -0.0447 -0.0527 -0.0244 -0.0262

125 -0.0408 -0.0434 -0.0810 -0.0877 -0.0468 -0.0577

190 -0.0649 -0.0704 -0.1138 -0.1302 -0.0842 -0.0800

250 -0.0885 -0.0961 -0.1457 -0.1534 -0.1035 -0.1000

T
ri
m
M
ea
n

20 -0.0019 -0.0028 -0.0178 -0.0262 -0.0050 -0.0058

60 -0.0083 -0.0098 -0.0342 -0.0411 -0.0153 -0.0169

125 -0.0219 -0.0251 -0.0633 -0.0697 -0.0297 -0.0363

190 -0.0364 -0.0434 -0.0914 -0.0989 -0.0532 -0.0508

250 -0.0532 -0.0607 -0.1156 -0.1134 -0.0673 -0.0623

Q
1

20 -0.0538 -0.0555 -0.0748 -0.0834 -0.0545 -0.0586

60 -0.0987 -0.1022 -0.1217 -0.1464 -0.1057 -0.1076

125 -0.1605 -0.1636 -0.1991 -0.2192 -0.1713 -0.1695

190 -0.2098 -0.2197 -0.2807 -0.2890 -0.2272 -0.2159

250 -0.2654 -0.2712 -0.3208 -0.3358 -0.2762 -0.2614

M
ed
ia
n

20 0.0023 0.0006 -0.0176 -0.0225 -0.0012 -0.0023

60 0.0020 0.0015 -0.0269 -0.0293 -0.0062 -0.0048

125 -0.0017 -0.0036 -0.0382 -0.0457 -0.0131 -0.0172

190 -0.0110 -0.0161 -0.0504 -0.0652 -0.0266 -0.0306

250 -0.0200 -0.0262 -0.0771 -0.0619 -0.0331 -0.0272

Q
3

20 0.0528 0.0527 0.0404 0.0346 0.0513 0.0474

60 0.0897 0.0891 0.0655 0.0727 0.0857 0.0787

125 0.1308 0.1282 0.1059 0.1005 0.1264 0.1127

190 0.1581 0.1576 0.1206 0.1186 0.1424 0.1468

250 0.1788 0.1752 0.1384 0.1186 0.1717 0.1618

R
a
n
ge

20 0.1065 0.1082 0.1152 0.1179 0.1057 0.1059

60 0.1884 0.1914 0.1872 0.2191 0.1914 0.1862

125 0.2913 0.2918 0.3050 0.3197 0.2977 0.2822

190 0.3679 0.3773 0.4013 0.4076 0.3695 0.3627

250 0.4443 0.4463 0.4592 0.4545 0.4480 0.4232
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Table 8: Petroleum Forecasts.

Days

Ahead

Baseline Scenario Fixed Price Cap Dynamic Price Cap

FHS EVT FHS EVT FHS EVT

M
ea
n

20 -0.0054 -0.0060 -0.0229 -0.0306 -0.0083 -0.0086

60 -0.0189 -0.0208 -0.0455 -0.0539 -0.0258 -0.0275

125 -0.0451 -0.0477 -0.0854 -0.0907 -0.0515 -0.0628

190 -0.0727 -0.0783 -0.1199 -0.1355 -0.0936 -0.0887

250 -0.0993 -0.1078 -0.1559 -0.1621 -0.1168 -0.1130

T
ri
m
M
ea
n

20 -0.0019 -0.0029 -0.0176 -0.0262 -0.0052 -0.0056

60 -0.0088 -0.0107 -0.0344 -0.0418 -0.0161 -0.0176

125 -0.0242 -0.0282 -0.0654 -0.0712 -0.0327 -0.0396

190 -0.0413 -0.0496 -0.0966 -0.1038 -0.0592 -0.0571

250 -0.0607 -0.0693 -0.1232 -0.1224 -0.0757 -0.0708

Q
1

20 -0.0546 -0.0568 -0.0738 -0.0857 -0.0560 -0.0578

60 -0.1005 -0.1064 -0.1261 -0.1517 -0.1092 -0.1102

125 -0.1682 -0.1736 -0.2111 -0.2294 -0.1833 -0.1802

190 -0.2227 -0.2328 -0.2867 -0.3206 -0.2423 -0.2297

250 -0.2795 -0.2905 -0.3413 -0.3442 -0.2874 -0.2855

M
ed
ia
n

20 0.0023 0.0009 -0.0163 -0.0201 -0.0013 -0.0018

60 0.0023 0.0009 -0.0264 -0.0274 -0.0051 -0.0041

125 -0.0019 -0.0065 -0.0397 -0.0451 -0.0128 -0.0197

190 -0.0128 -0.0207 -0.0527 -0.0639 -0.0256 -0.0331

250 -0.0251 -0.0297 -0.0820 -0.0702 -0.0403 -0.0319

Q
3

20 0.0534 0.0539 0.0418 0.0364 0.0511 0.0487

60 0.0917 0.0918 0.0692 0.0714 0.0858 0.0838

125 0.1341 0.1315 0.1152 0.1040 0.1282 0.1180

190 0.1607 0.1607 0.1215 0.1235 0.1463 0.1483

250 0.1822 0.1765 0.1357 0.1226 0.1721 0.1701

R
a
n
ge

20 0.1081 0.1107 0.1157 0.1220 0.1071 0.1065

60 0.1922 0.1982 0.1954 0.2231 0.1951 0.1940

125 0.3023 0.3051 0.3264 0.3334 0.3115 0.2982

190 0.3834 0.3935 0.4082 0.4440 0.3886 0.3780

250 0.4617 0.4670 0.4769 0.4667 0.4595 0.4557
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Table 9: Grains Forecasts.

Days

Ahead

Baseline Scenario Fixed Price Cap Dynamic Price Cap

FHS EVT FHS EVT FHS EVT

M
ea
n

20 0.0039 0.0041 -0.0008 0.0026 0.0023 0.0044

60 0.0106 0.0102 0.0012 0.0122 0.0064 0.0098

125 0.0223 0.0224 0.0048 0.0280 0.0154 0.0214

190 0.0329 0.0326 0.0179 0.0401 0.0250 0.0329

250 0.0429 0.0424 0.0238 0.0439 0.0334 0.0434

T
ri
m
M
ea
n

20 0.0033 0.0038 -0.0011 0.0018 0.0016 0.0038

60 0.0094 0.0093 0.0002 0.0114 0.0044 0.0085

125 0.0202 0.0208 0.0043 0.0255 0.0133 0.0204

190 0.0306 0.0302 0.0175 0.0376 0.0228 0.0306

250 0.0399 0.0399 0.0206 0.0409 0.0293 0.0417

Q
1

20 -0.0364 -0.0368 -0.0397 -0.0373 -0.0373 -0.0368

60 -0.0590 -0.0588 -0.0655 -0.0565 -0.0641 -0.0591

125 -0.0763 -0.0766 -0.0929 -0.0595 -0.0847 -0.0738

190 -0.0886 -0.0889 -0.0982 -0.0768 -0.1026 -0.0858

250 -0.0988 -0.0980 -0.1116 -0.0828 -0.1125 -0.0936

M
ed
ia
n

20 0.0026 0.0030 -0.0014 0.0021 0.0001 0.0035

60 0.0076 0.0076 0.0008 0.0099 0.0029 0.0067

125 0.0173 0.0189 0.0063 0.0247 0.0114 0.0192

190 0.0253 0.0278 0.0124 0.0348 0.0164 0.0313

250 0.0353 0.0369 0.0225 0.0371 0.0225 0.0410

Q
3

20 0.0430 0.0437 0.0362 0.0406 0.0401 0.0438

60 0.0757 0.0771 0.0636 0.0785 0.0679 0.0743

125 0.1144 0.1159 0.0975 0.1194 0.1087 0.1161

190 0.1508 0.1475 0.1397 0.1432 0.1469 0.1472

250 0.1775 0.1756 0.1450 0.1683 0.1708 0.1750

R
a
n
ge

20 0.0793 0.0805 0.0758 0.0778 0.0773 0.0806

60 0.1347 0.1359 0.1291 0.1350 0.1320 0.1334

125 0.1907 0.1925 0.1904 0.1788 0.1933 0.1899

190 0.2394 0.2364 0.2379 0.2199 0.2495 0.2330

250 0.2763 0.2737 0.2566 0.2511 0.2833 0.2686
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Table 10: Gasoil Forecasts.

Days

Ahead

Baseline Scenario Fixed Price Cap Dynamic Price Cap

FHS EVT FHS EVT FHS EVT

M
ea
n

20 -0.0050 -0.0046 -0.0356 -0.0408 -0.0117 -0.0103

60 -0.0228 -0.0235 -0.0753 -0.0729 -0.0403 -0.0390

125 -0.0538 -0.0533 -0.1319 -0.1262 -0.0681 -0.0725

190 -0.0786 -0.0818 -0.1670 -0.1657 -0.1039 -0.1044

250 -0.1040 -0.1071 -0.1884 -0.1993 -0.1222 -0.1254

T
ri
m
M
ea
n

20 -0.0018 -0.0016 -0.0318 -0.0377 -0.0083 -0.0070

60 -0.0139 -0.0137 -0.0659 -0.0643 -0.0301 -0.0287

125 -0.0351 -0.0342 -0.1097 -0.1062 -0.0497 -0.0515

190 -0.0529 -0.0559 -0.1382 -0.1371 -0.0741 -0.0751

250 -0.0724 -0.0756 -0.1513 -0.1627 -0.0870 -0.0932

Q
1

20 -0.0790 -0.0793 -0.1077 -0.1221 -0.0837 -0.0837

60 -0.1451 -0.1451 -0.2119 -0.2055 -0.1615 -0.1615

125 -0.2193 -0.2185 -0.2959 -0.2875 -0.2280 -0.2311

190 -0.2763 -0.2762 -0.3721 -0.3527 -0.2941 -0.2848

250 -0.3264 -0.3273 -0.4137 -0.4115 -0.3329 -0.3371

M
ed
ia
n

20 0.0030 0.0028 -0.0253 -0.0289 -0.0010 -0.0017

60 -0.0035 -0.0022 -0.0500 -0.0444 -0.0213 -0.0146

125 -0.0135 -0.0148 -0.0814 -0.0872 -0.0300 -0.0309

190 -0.0240 -0.0302 -0.0981 -0.1048 -0.0417 -0.0518

250 -0.0407 -0.0450 -0.1295 -0.1228 -0.0563 -0.0598

Q
3

20 0.0763 0.0784 0.0446 0.0503 0.0687 0.0735

60 0.1250 0.1255 0.0757 0.0824 0.1077 0.1154

125 0.1619 0.1607 0.1026 0.1039 0.1447 0.1420

190 0.1878 0.1869 0.1258 0.1219 0.1549 0.1516

250 0.2021 0.2012 0.1319 0.1317 0.1730 0.1745

R
a
n
ge

20 0.1553 0.1577 0.1523 0.1725 0.1524 0.1572

60 0.2701 0.2706 0.2877 0.2879 0.2692 0.2769

125 0.3813 0.3792 0.3985 0.3914 0.3728 0.3732

190 0.4641 0.4631 0.4979 0.4746 0.4490 0.4363

250 0.5285 0.5285 0.5456 0.5432 0.5059 0.5115
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Table 11: Aluminum Forecasts.

Days

Ahead

Baseline Scenario Fixed Price Cap Dynamic Price Cap

FHS EVT FHS EVT FHS EVT

M
ea
n

20 0.0050 0.0044 0.0003 0.0040 0.0049 0.0038

60 0.0126 0.0115 0.0058 0.0102 0.0118 0.0086

125 0.0241 0.0247 0.0208 0.0208 0.0235 0.0225

190 0.0364 0.0371 0.0367 0.0285 0.0344 0.0318

250 0.0467 0.0491 0.0434 0.0403 0.0450 0.0459

T
ri
m
M
ea
n

20 0.0040 0.0031 -0.0009 0.0023 0.0036 0.0027

60 0.0107 0.0092 0.0061 0.0093 0.0106 0.0070

125 0.0213 0.0214 0.0199 0.0189 0.0207 0.0203

190 0.0336 0.0337 0.0348 0.0279 0.0314 0.0296

250 0.0433 0.0457 0.0427 0.0398 0.0414 0.0427

Q
1

20 -0.0550 -0.0564 -0.0552 -0.0599 -0.0565 -0.0583

60 -0.0814 -0.0826 -0.0958 -0.0855 -0.0784 -0.0859

125 -0.0984 -0.0970 -0.1119 -0.1108 -0.0991 -0.0934

190 -0.1047 -0.1053 -0.1059 -0.1110 -0.1042 -0.1046

250 -0.1080 -0.1074 -0.1112 -0.1164 -0.1061 -0.1080

M
ed
ia
n

20 0.0016 0.0015 -0.0072 0.0009 0.0016 0.0036

60 0.0069 0.0075 0.0035 0.0082 0.0051 0.0058

125 0.0163 0.0178 0.0179 0.0137 0.0172 0.0160

190 0.0282 0.0293 0.0244 0.0223 0.0227 0.0300

250 0.0371 0.0416 0.0325 0.0445 0.0304 0.0394

Q
3

20 0.0627 0.0613 0.0554 0.0603 0.0610 0.0603

60 0.1012 0.0981 0.1025 0.1023 0.0985 0.0966

125 0.1372 0.1379 0.1487 0.1501 0.1353 0.1308

190 0.1684 0.1690 0.1756 0.1708 0.1661 0.1567

250 0.1929 0.1963 0.1859 0.1997 0.1891 0.1900

R
a
n
ge

20 0.1178 0.1177 0.1106 0.1203 0.1175 0.1186

60 0.1826 0.1808 0.1983 0.1878 0.1769 0.1825

125 0.2356 0.2349 0.2606 0.2608 0.2343 0.2242

190 0.2732 0.2743 0.2815 0.2817 0.2703 0.2613

250 0.3008 0.3038 0.2971 0.3160 0.2952 0.2981
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Table 12: Nickel Forecasts.

Days

Ahead

Baseline Scenario Fixed Price Cap Dynamic Price Cap

FHS EVT FHS EVT FHS EVT

M
ea
n

20 0.0053 0.0046 -0.0050 -0.0007 0.0037 0.0044

60 0.0195 0.0156 0.0058 0.0065 0.0179 0.0130

125 0.0417 0.0369 0.0221 0.0154 0.0355 0.0307

190 0.0654 0.0560 0.0399 0.0341 0.0578 0.0473

250 0.0846 0.0751 0.0524 0.0646 0.0735 0.0670

T
ri
m
M
ea
n

20 0.0035 0.0039 -0.0068 -0.0006 0.0019 0.0046

60 0.0159 0.0145 0.0029 0.0055 0.0140 0.0125

125 0.0366 0.0359 0.0191 0.0157 0.0303 0.0297

190 0.0595 0.0551 0.0375 0.0345 0.0518 0.0472

250 0.0781 0.0744 0.0448 0.0673 0.0676 0.0667

Q
1

20 -0.0651 -0.0643 -0.0823 -0.0689 -0.0658 -0.0614

60 -0.0943 -0.0944 -0.1156 -0.0952 -0.0973 -0.0914

125 -0.1180 -0.1158 -0.1562 -0.1407 -0.1256 -0.1209

190 -0.1278 -0.1278 -0.1563 -0.1465 -0.1405 -0.1385

250 -0.1315 -0.1301 -0.1836 -0.1443 -0.1393 -0.1366

M
ed
ia
n

20 0.0037 0.0031 -0.0087 -0.0009 0.0015 0.0055

60 0.0152 0.0134 0.0055 0.0023 0.0128 0.0099

125 0.0332 0.0341 0.0171 0.0101 0.0299 0.0300

190 0.0543 0.0532 0.0479 0.0238 0.0505 0.0491

250 0.0695 0.0735 0.0353 0.0673 0.0602 0.0674

Q
3

20 0.0717 0.0720 0.0644 0.0671 0.0705 0.0722

60 0.1220 0.1215 0.1152 0.1108 0.1218 0.1170

125 0.1887 0.1895 0.1882 0.1647 0.1838 0.1809

190 0.2415 0.2369 0.2254 0.2192 0.2419 0.2370

250 0.2868 0.2783 0.2538 0.2785 0.2772 0.2718

R
a
n
ge

20 0.1368 0.1364 0.1467 0.1361 0.1362 0.1336

60 0.2163 0.2158 0.2307 0.2060 0.2191 0.2084

125 0.3068 0.3053 0.3444 0.3054 0.3094 0.3018

190 0.3693 0.3647 0.3818 0.3658 0.3824 0.3755

250 0.4183 0.4084 0.4374 0.4229 0.4164 0.4084
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Table 13: Zinc Forecasts.

Days

Ahead

Baseline Scenario Fixed Price Cap Dynamic Price Cap

FHS EVT FHS EVT FHS EVT

M
ea
n

20 0.0036 0.0039 -0.0016 -0.0003 0.0013 0.0056

60 0.0103 0.0123 0.0071 0.0026 0.0065 0.0123

125 0.0244 0.0272 0.0191 0.0095 0.0220 0.0235

190 0.0402 0.0416 0.0393 0.0216 0.0355 0.0403

250 0.0537 0.0553 0.0477 0.0361 0.0473 0.0545

T
ri
m
M
ea
n

20 0.0038 0.0041 -0.0009 -0.0013 0.0019 0.0061

60 0.0111 0.0132 0.0088 0.0023 0.0080 0.0127

125 0.0258 0.0281 0.0210 0.0113 0.0249 0.0254

190 0.0418 0.0426 0.0401 0.0214 0.0376 0.0430

250 0.0550 0.0566 0.0494 0.0375 0.0502 0.0567

Q
1

20 -0.0580 -0.0564 -0.0717 -0.0616 -0.0596 -0.0518

60 -0.0904 -0.0871 -0.0951 -0.0966 -0.0936 -0.0888

125 -0.1080 -0.1073 -0.1105 -0.1337 -0.1105 -0.1116

190 -0.1176 -0.1178 -0.1236 -0.1486 -0.1241 -0.1182

250 -0.1248 -0.1222 -0.1550 -0.1479 -0.1268 -0.1197

M
ed
ia
n

20 0.0033 0.0042 -0.0003 -0.0032 0.0019 0.0072

60 0.0128 0.0151 0.0144 0.0077 0.0131 0.0157

125 0.0283 0.0297 0.0213 0.0144 0.0267 0.0278

190 0.0420 0.0442 0.0424 0.0208 0.0419 0.0544

250 0.0571 0.0608 0.0602 0.0390 0.0515 0.0650

Q
3

20 0.0658 0.0655 0.0674 0.0600 0.0632 0.0674

60 0.1129 0.1137 0.1181 0.1002 0.1075 0.1145

125 0.1604 0.1665 0.1525 0.1496 0.1591 0.1688

190 0.2022 0.2046 0.2065 0.1812 0.2022 0.2069

250 0.2368 0.2387 0.2609 0.2219 0.2376 0.2364

R
a
n
ge

20 0.1238 0.1219 0.1392 0.1216 0.1228 0.1192

60 0.2033 0.2008 0.2131 0.1968 0.2011 0.2033

125 0.2685 0.2739 0.2630 0.2834 0.2696 0.2803

190 0.3198 0.3224 0.3301 0.3298 0.3263 0.3251

250 0.3616 0.3610 0.4159 0.3699 0.3644 0.3561
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Table 14: Brent crude oil Forecasts.

Days

Ahead

Baseline Scenario Fixed Price Cap Dynamic Price Cap

FHS EVT FHS EVT FHS EVT

M
ea
n

20 -0.0070 -0.0075 -0.0252 -0.0319 -0.0097 -0.0099

60 -0.0194 -0.0209 -0.0465 -0.0551 -0.0267 -0.0270

125 -0.0426 -0.0451 -0.0823 -0.0905 -0.0488 -0.0592

190 -0.0673 -0.0715 -0.1142 -0.1337 -0.0868 -0.0805

250 -0.0909 -0.0974 -0.1484 -0.1576 -0.1097 -0.1013

T
ri
m
M
ea
n

20 -0.0036 -0.0046 -0.0201 -0.0280 -0.0068 -0.0071

60 -0.0102 -0.0117 -0.0351 -0.0440 -0.0175 -0.0179

125 -0.0235 -0.0272 -0.0628 -0.0721 -0.0321 -0.0376

190 -0.0380 -0.0450 -0.0924 -0.1016 -0.0545 -0.0506

250 -0.0552 -0.0624 -0.1160 -0.1173 -0.0705 -0.0626

Q
1

20 -0.0570 -0.0596 -0.0790 -0.0878 -0.0600 -0.0620

60 -0.1042 -0.1078 -0.1262 -0.1553 -0.1127 -0.1101

125 -0.1670 -0.1713 -0.1936 -0.2313 -0.1791 -0.1745

190 -0.2190 -0.2256 -0.2624 -0.3132 -0.2402 -0.2222

250 -0.2729 -0.2808 -0.3456 -0.3360 -0.2847 -0.2688

M
ed
ia
n

20 -0.0001 -0.0009 -0.0166 -0.0257 -0.0028 -0.0035

60 0.0004 -0.0011 -0.0241 -0.0299 -0.0064 -0.0080

125 -0.0034 -0.0063 -0.0410 -0.0493 -0.0144 -0.0166

190 -0.0111 -0.0148 -0.0549 -0.0633 -0.0280 -0.0248

250 -0.0200 -0.0263 -0.0710 -0.0740 -0.0378 -0.0266

Q
3

20 0.0531 0.0531 0.0408 0.0382 0.0507 0.0461

60 0.0919 0.0909 0.0652 0.0710 0.0842 0.0824

125 0.1333 0.1335 0.1067 0.1043 0.1278 0.1171

190 0.1618 0.1610 0.1171 0.1191 0.1447 0.1460

250 0.1821 0.1797 0.1379 0.1313 0.1690 0.1683

R
a
n
ge

20 0.1101 0.1127 0.1198 0.1260 0.1108 0.1081

60 0.1961 0.1987 0.1914 0.2263 0.1969 0.1925

125 0.3003 0.3049 0.3004 0.3356 0.3069 0.2916

190 0.3808 0.3866 0.3795 0.4323 0.3849 0.3682

250 0.4549 0.4605 0.4835 0.4673 0.4537 0.4371

52



Table 15: Precious Metals Forecasts.

Days

Ahead

Baseline Scenario Fixed Price Cap Dynamic Price Cap

FHS EVT FHS EVT FHS EVT

M
ea
n

20 -0.0003 0.0004 0.0006 0.0035 0.0007 0.0022

60 0.0028 0.0029 0.0103 0.0048 0.0054 0.0048

125 0.0080 0.0077 0.0184 0.0112 0.0116 0.0120

190 0.0120 0.0117 0.0224 0.0157 0.0143 0.0182

250 0.0156 0.0156 0.0235 0.0222 0.0201 0.0259

T
ri
m
M
ea
n

20 -0.0002 0.0005 0.0005 0.0032 0.0008 0.0020

60 0.0025 0.0027 0.0096 0.0055 0.0055 0.0043

125 0.0076 0.0070 0.0176 0.0103 0.0112 0.0110

190 0.0111 0.0108 0.0207 0.0148 0.0138 0.0173

250 0.0147 0.0146 0.0218 0.0206 0.0195 0.0247

Q
1

20 -0.0307 -0.0300 -0.0300 -0.0287 -0.0293 -0.0279

60 -0.0495 -0.0496 -0.0441 -0.0485 -0.0472 -0.0476

125 -0.0676 -0.0669 -0.0664 -0.0613 -0.0634 -0.0620

190 -0.0808 -0.0809 -0.0782 -0.0795 -0.0767 -0.0704

250 -0.0893 -0.0888 -0.0951 -0.0839 -0.0869 -0.0810

M
ed
ia
n

20 -0.0002 0.0009 -0.0009 0.0014 0.0003 0.0026

60 0.0017 0.0027 0.0100 0.0049 0.0056 0.0024

125 0.0079 0.0062 0.0176 0.0054 0.0118 0.0081

190 0.0093 0.0097 0.0174 0.0160 0.0125 0.0140

250 0.0132 0.0146 0.0159 0.0236 0.0186 0.0246

Q
3

20 0.0303 0.0306 0.0342 0.0361 0.0312 0.0305

60 0.0553 0.0542 0.0654 0.0560 0.0595 0.0546

125 0.0814 0.0804 0.1028 0.0831 0.0832 0.0840

190 0.1019 0.1007 0.1184 0.0986 0.1038 0.1062

250 0.1167 0.1161 0.1413 0.1174 0.1207 0.1262

R
a
n
ge

20 0.0609 0.0607 0.0642 0.0648 0.0605 0.0585

60 0.1048 0.1038 0.1095 0.1045 0.1067 0.1022

125 0.1490 0.1473 0.1692 0.1444 0.1466 0.1459

190 0.1826 0.1816 0.1965 0.1781 0.1805 0.1766

250 0.2060 0.2049 0.2364 0.2014 0.2076 0.2072
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Table 16: Estimated and Forecasted Conditional Volatility.

TTF En Pet Gr Gl Al Ni Zi Br PM

historical

Mean 0.0339 0.0213 0.0223 0.0126 0.0204 0.0119 0.0196 0.0150 0.0226 0.0100

TrimMean 0.0307 0.0197 0.0206 0.0123 0.0192 0.0115 0.0188 0.0148 0.0212 0.0098

Q1 0.0175 0.0143 0.0148 0.0104 0.0141 0.0099 0.0171 0.0130 0.0151 0.0083

Median 0.0251 0.0185 0.0192 0.0119 0.0178 0.0110 0.0183 0.0143 0.0199 0.0096

Q3 0.0405 0.0247 0.0258 0.0140 0.0231 0.0128 0.0200 0.0166 0.0267 0.0109

Range 0.0230 0.0104 0.0111 0.0037 0.0091 0.0029 0.0029 0.0036 0.0117 0.0026

baseline scenario FHS

Mean 0.0499 0.0219 0.0228 0.0130 0.0244 0.0140 0.0202 0.0173 0.0237 0.0106

TrimMean 0.0418 0.0198 0.0206 0.0127 0.0227 0.0137 0.0197 0.0171 0.0214 0.0105

Q1 0.0220 0.0140 0.0145 0.0105 0.0158 0.0109 0.0174 0.0145 0.0150 0.0092

Median 0.0349 0.0181 0.0186 0.0123 0.0212 0.0130 0.0190 0.0168 0.0195 0.0104

Q3 0.0583 0.0243 0.0252 0.0145 0.0281 0.0164 0.0216 0.0196 0.0262 0.0116

Range 0.0363 0.0102 0.0108 0.0040 0.0123 0.0055 0.0043 0.0051 0.0111 0.0024

baseline scenario EVT

Mean 0.0495 0.0222 0.0233 0.0130 0.0247 0.0141 0.0201 0.0173 0.0240 0.0106

TrimMean 0.0416 0.0202 0.0210 0.0127 0.0229 0.0138 0.0197 0.0171 0.0218 0.0105

Q1 0.0221 0.0142 0.0148 0.0106 0.0160 0.0109 0.0174 0.0145 0.0153 0.0093

Median 0.0349 0.0184 0.0191 0.0124 0.0215 0.0131 0.0190 0.0168 0.0199 0.0104

Q3 0.0579 0.0247 0.0259 0.0146 0.0284 0.0164 0.0217 0.0197 0.0267 0.0116

Range 0.0358 0.0105 0.0111 0.0040 0.0124 0.0055 0.0043 0.0051 0.0114 0.0024

Fixed Price Cap FHS

Mean 0.0364 0.0224 0.0234 0.0128 0.0250 0.0141 0.0202 0.0173 0.0242 0.0106

TrimMean 0.0336 0.0203 0.0211 0.0125 0.0229 0.0138 0.0197 0.0171 0.0219 0.0105

Q1 0.0193 0.0142 0.0146 0.0104 0.0157 0.0109 0.0174 0.0145 0.0152 0.0092

Median 0.0287 0.0183 0.0189 0.0122 0.0213 0.0131 0.0190 0.0169 0.0197 0.0104

Q3 0.0457 0.0250 0.0260 0.0143 0.0286 0.0165 0.0217 0.0197 0.0268 0.0116

Range 0.0263 0.0108 0.0114 0.0039 0.0129 0.0056 0.0043 0.0051 0.0116 0.0024

Fixed Price Cap EVT

Mean 0.0364 0.0226 0.0235 0.0129 0.0254 0.0141 0.0201 0.0173 0.0243 0.0106

TrimMean 0.0334 0.0205 0.0213 0.0126 0.0237 0.0138 0.0197 0.0171 0.0221 0.0105

Q1 0.0193 0.0144 0.0149 0.0106 0.0164 0.0109 0.0174 0.0146 0.0155 0.0092

Median 0.0283 0.0187 0.0193 0.0123 0.0223 0.0131 0.0190 0.0168 0.0202 0.0104

Q3 0.0454 0.0252 0.0263 0.0144 0.0295 0.0163 0.0216 0.0197 0.0274 0.0116

Range 0.0261 0.0109 0.0115 0.0039 0.0131 0.0054 0.0042 0.0051 0.0119 0.0024

Dynamic Price Cap FHS

Mean 0.0269 0.0216 0.0226 0.0128 0.0242 0.0139 0.0201 0.0173 0.0235 0.0106

TrimMean 0.0251 0.0194 0.0202 0.0125 0.0222 0.0136 0.0195 0.0171 0.0210 0.0105

Q1 0.0163 0.0137 0.0141 0.0104 0.0154 0.0108 0.0173 0.0145 0.0147 0.0092

Median 0.0214 0.0177 0.0182 0.0122 0.0207 0.0129 0.0188 0.0168 0.0190 0.0104

Q3 0.0313 0.0237 0.0246 0.0143 0.0275 0.0161 0.0214 0.0197 0.0256 0.0116

Range 0.0150 0.0100 0.0105 0.0038 0.0121 0.0053 0.0040 0.0052 0.0109 0.0024

Dynamic Price Cap EVT

Mean 0.0270 0.0217 0.0227 0.0129 0.0243 0.0138 0.0199 0.0173 0.0235 0.0105

TrimMean 0.0252 0.0199 0.0207 0.0126 0.0224 0.0135 0.0195 0.0171 0.0214 0.0104

Q1 0.0163 0.0140 0.0145 0.0105 0.0156 0.0107 0.0173 0.0145 0.0150 0.0092

Median 0.0214 0.0181 0.0188 0.0123 0.0209 0.0128 0.0188 0.0168 0.0195 0.0103

Q3 0.0315 0.0244 0.0255 0.0144 0.0277 0.0159 0.0213 0.0196 0.0263 0.0115

Range 0.0152 0.0104 0.0110 0.0039 0.0121 0.0052 0.0040 0.0052 0.0113 0.0024

The table represents statistics for estimated and forecasted conditional volatility (results from different

models have been merged). Mean is sample daily average. TrimMean is sample daily average removing

5% lower and 5% upper outliers. Q1 is first quartile. Median is the second quantile. Q3 is the third

quantile. Range is the interquartile range, difference between Q3 and Q1. TTF is Dutch TTF Gas, En

is Energy, Gr is Grains, Gl is Gasoil, Al is Aluminum, Ni is Nickel, Zi is Zinc, Br is Brent crude oil and

PM are Precious Metals.
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D Figures

Figure 1: Piece-wise CDF
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Figure 2: GPD PDF and CDF
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Figure 4: Relative price movements of each commodity and returns plot.
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In the right plot the initial level of each commodity has been normalized to unity to facilitate the

comparison of relative performance.

Figure 5: Rolling Pearson correlation.

2015 2016 2017 2018 2019 2020 2021 2022

Date

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

C
o
rr

e
la

ti
o
n
 I
n
d
e
x

Pearson Rolling Correlation

Energy

Petroleum

Grains

Gasoil

Aluminium

Nickel

Zinc

BrentCrude

PreciousMetals

The plot shows rolling Pearson correlation coefficient of TTFGas with other commodities: starting from

day 250 each day a new observation is added and an old observation is dropped from the calculation.
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The plots show forecasts for the selected commodity prices. The gray solid line correspond to his-

torical observed returns. The yellow area correspond to the forecasting horizon. The red lines are for

ARMA(1,1)-GARCH(1,1). The green lines are for ARMA(1,1)-EGARCH(1,1). The blue lines are for

ARMA(1,1)-GJR(1,1). Dotted lines represent 0.05 and 0.95 percentiles. Colored solid lines represent the

median.
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