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1. Introduction 

The term structure of credit default swap (CDS) spreads represents a valuable 

piece of information for pricing credit-risky securities; mainly (and unsurprisingly), 

actual positions in CDS contracts. Pricing models, based on the term structure of CDS 

spreads, can be classified as either parametric or semi-parametric. Parametric models 

have been used, among others, by Pan and Singleton (2008), Chen et al. (2013), and 

Jarrow et al. (2019), and generally work in the following way. First, a stochastic 

(parametric) process for the risk-neutral default intensity and a distribution function for 

the CDS spreads’ pricing errors are assumed. Second, based on these assumptions, the 

model parameters are estimated using the maximum-likelihood method or a similar 

optimization rule. Finally, the estimated model can be used to price existing CDS 

contracts and other credit-risky securities (e.g., risky bonds). An appealing characteristic 

of parametric models is the fact that all prices rely on a few parameter values, which 

dependence on more fundamental variables can also be analyzed. For the same reason, 

the main limitation of these models is that pricing errors can be minimized but never 

completely eliminated. In other words, the use of these models for pricing purposes 

necessarily assumes some degree of market-mispricing in observed CDS spreads, model-

mispricing, or a combination of the two.1    

When the primary interest is marking-to-market CDS contracts, the conventional 

approach consists of a semi-parametric model. While different variations exist (Hull and 

White, 2003; O’Kane and Turnbull, 2003), the core assumptions can be summarized as 

follows: the risk-free interest process and the default time are risk-neutrally independent, 

 
1 The previous discussion refers to so-called reduced-form models (Jarrow and Turnbull, 1995). Structural 
credit risk models (Merton, 1974) constitute a different family of parametric models. Du et al. (2019) offer 
a good example of the technical challenges associated with replicating an observed term structure of CDS 
spreads, based on a structural credit risk model. These later models are not addressed in the present study. 
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and (forward risk-neutral) default probabilities have a piecewise constant profile. Based 

on these assumptions, the term structure of default probabilities can be estimated 

sequentially, from the lowest to the highest maturity of available CDS spreads, such that 

these observed quotes are perfectly refitted by the model. As a constant default probability 

model represents the clearest example of a parametric model, a piecewise constant default 

probability model can be effectively described as semi-parametric.  

It is sensible to require a CDS pricing model to replicate observed CDS spreads. 

However, we may reasonably wonder whether this is sufficient—and if we can go further. 

Figure 1 provides an illustrative example. Panel 1A reflects the hypothetical complete 

term structure of CDS spreads (CTSCDS henceforth; black solid line, left axis). 

Generated using a particular parameterization of the Nelson-Siegel model, this comprises 

all possible maturities over a 10-year horizon: from one to 3,650 calendar dates.2 

However, the CTSCDS is not observed in practice. As the figure indicates, the observed 

term structure (OTSCDS; red points, left axis) is typically reduced to 6m, 1y, 2y, 3y, 4y, 

5y, 7y, and 10y maturities. Panel 1A incorporates the predicted CTSCDS, in accordance 

with the piecewise constant default probability model discussed below (PWCDP; blue 

dashed line, left axis) and the corresponding absolute pricing errors (APE; black dotted 

line, right axis). As the panel shows, the PWCDP model provides a perfect fit for the 

observed CDS spreads, although there may be non-negligible pricing errors for the rest 

of the curve.  

Now consider Panel 1B. It contains the same true CTSCDS as Panel 1A, but the 

OTSCDS is used in this case to perform a straight interpolation between the observed 

quotes. The precise method applied is Shape-Preserving Piecewise Cubic Hermite 

 
2 The precise parameter values in the Nelson-Siegel model are 𝛽𝛽0 = 50; 𝛽𝛽1 = 0; 𝛽𝛽2 = 1250; 𝛼𝛼1 = 10. 
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Interpolation (PCHIP).3 As the figure makes clear, the PCHIP method offers a more 

accurate representation of the true CTSCDS than the PWCDP model. In numerical terms, 

the mean absolute pricing errors (MAPE) are 2.61 bp for the PWCDP model and 0.11 bp 

for the PCHIP method. As this example shows, even a relatively simple interpolation 

scheme may provide a better fit for the CTSCDS than a PWCDP model, particularly for 

maturities up to 6m, where these kinds of models impose a flat term structure. By 

extension, the example also suggests that, instead of assuming a piecewise constant 

default probability ex-ante and estimating the CTSCDS ex-post, the problem of model- 

mispricing can be minimized by first fitting the most plausible CTSCDS, based on the 

observed quotes, and having a pricing model capable of reproducing next the entire curve. 

<Figure 1 about here> 

This study makes two main contributions to the literature on credit risk pricing 

and on the pricing of CDS contracts, in particular. As a first contribution, it derives an 

extremely simple, non-parametric pricing model that allows to refit any pre-specified 

CTSCDS. The model draws on the following three core elements. First, the price of a 

CDS contract can always be expressed as a simple function of a reduced number of well-

established building blocks in credit risk pricing, or credit risk discount factors (CRDF), 

initially defined by Lando (1998). Second, in a discrete-time economy, where all future 

asset maturities and possible defaulting times are the same (i.e., all future calendar dates, 

consistent with the proposed interpolation), a set of no-arbitrage conditions can be derived 

between the values of those CRDFs for any two consecutive maturities. Finally, based on 

these results, and provided that a CTSCDS is determined ex-ante, an equation system 

exits that allows the immediate bootstrap of such CRDFs for all possible maturities.  

 
3 PCHIP refers to the code used in the commercial software Matlab® for this interpolation method. 
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Regarding the implementation of the model, a reasonable concern is that refitting 

a CTSCDS (a total of 3,650 quotes in our example) may imply much higher complexity 

and/or computational costs than reproducing a limited number of observed quotes (only 

eight values in the same example), as the PWCDP model does. However, the opposite 

turns out to be true. As previously discussed, the price of a CDS contract is a simple 

function of the CRDFs, and as the present study shows, the same simple structure applies 

to the no-arbitrage conditions between these CRDFs. This implies that both the 

bootstrapping process and the posterior mark-to-market of any position in a CDS contract 

are very easy to implement. Specifically, the bootstrapping procedure is based exclusively 

on closed-form solutions. Thus, unlike conventional pricing models, it does not involve 

a sequence of root-search algorithms or any other optimization procedure.  

In terms of pricing errors, this study uses the Eurozone sovereign debt crisis as a 

research field to compare the performance of four different pricing approaches. On the 

one hand, the PWCDP model. On the other hand, the non-parametric model introduced 

in this study, where the CTSCDS has been estimated ex-ante using either a linear (Linear), 

PCHIP, or Cubic Spline (Spline) interpolation between the observed quotes. Based on 

this empirical analysis, we can conclude that the non-parametric model with a PCHIP 

interpolation provides the lowest MAPE, while the PWCDP model generates the highest 

MAPE.  

The second main contribution of the present study relates to a less obvious, but 

important application of the proposed pricing model: the time decomposition of CDS 

spreads. This refers to the problem of determining the percentage of a CDS spread that 

can be reasonably attributed to the protection of specific time intervals within the 

contracts’ maturity. Despite its intrinsic interest, this question has not received explicit 
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attention in the academic literature.4 This study shows that the time decomposition of 

CDS spreads is similar to, but also remarkably different from the usual decomposition of 

spot (risk-free interest) rates into forward rates. Analogous to a spot rate decomposition, 

a CDS spread decomposition follows from the possibility of representing a spot CDS 

contract as a portfolio of forward CDS contracts. However, in contrast to a forward rate 

agreement, the enforcement of a forward CDS contract is conditional on the survival of 

the underlying bond before the initiation date. The principal implication is that, unlike a 

spot rate, a CDS spread is not a simple mean of forward CDS spreads, and this is because 

forward CDS spreads may never be paid. Nevertheless, once the pricing of spot and 

forward CDS contracts is settled directly in relation to the CRDFs, this challenging 

characteristic of a CDS spread decomposition and its implications for the shape of the 

term structure of CDS spreads are both very easy to address.  

The remainder of this paper is organized as follows. Section 2 defines the basic 

setting and introduces the no-arbitrage conditions between the CRDFs. Section 3 reviews 

the pricing of CDS contracts, based on these CRDFs. Section 4 incorporates additional 

assumptions and describes the bootstrapping process. A conventional PWCDP is 

presented in Section 5 as a restricted case. Section 6 discusses the possible applications 

of the term structure of CRDFs, including the time decomposition of CDS spreads. 

Section 7 presents the case study that serves to compare the performance of different 

pricing approaches and to illustrate some of their possible applications. Section 8 provides 

a summary of the main conclusions. 

 
4 In the context of reduced-form models, it is common to express a CDS spread as a weighted average of 
risk-neutral hazard rates (Schönbucher, 2003; Lando and Mortensen, 2005), which may be seen as a form 
of time decomposition. However, the definition presented here is not the same and can be considered more 
general.  
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2. Basic Setting and No-Arbitrage Conditions between Credit Risk Discount Factors 

2.1. Setting 

 This study focuses on the pricing of CDS contracts and other single-name credit-

risky securities at the current (non-defaulting) time 0. With this goal in mind, a simple 

discrete-time economy with a daily time interval is assumed. Traded assets include (but 

are not restricted to) default-free and risky zero-coupon bonds of all possible maturities.5 

These maturities are denoted 𝑇𝑇, and correspond to all future calendar dates up to time 𝜏𝜏—

that is, 𝑇𝑇 ∈ {∆, 2∆, … , 𝜏𝜏}, with ∆= 1/365. The price of a default-free zero-coupon bond 

with nominal $1 and maturity 𝑇𝑇 is denoted 𝑍𝑍(𝑇𝑇).6 For risky bonds, default may occur at 

any future calendar date and represents an absorbing state. The default time is denoted 

𝜏𝜏𝑑𝑑, while the minimum between 𝜏𝜏𝑑𝑑 and 𝑇𝑇 is denoted 𝐿𝐿𝑑𝑑𝑇𝑇 . In the event of default, bond 

holders receive (irrespective of the possible coupon) a fraction 𝜃𝜃 of its face value and the 

asset is liquidated. Markets are complete and arbitrage-free.  

2.2. Credit Risk Discount Factors and No-Arbitrage Conditions 

 In our particular setting, the three basic CRDFs are defined as follows: 

• 𝐴𝐴(𝑇𝑇): The present value of an asset class 𝐴𝐴 paying a constant annuity of $∆ every ∆ 

years until 𝐿𝐿𝑑𝑑𝑇𝑇  (included). 

• 𝐵𝐵(𝑇𝑇): The present value of an asset class 𝐵𝐵 paying $1 at 𝜏𝜏𝑑𝑑, provided 𝜏𝜏𝑑𝑑 ≤ 𝑇𝑇. 

• 𝐶𝐶(𝑇𝑇): The present value of an asset class 𝐶𝐶 paying $1 at 𝑇𝑇, provided 𝜏𝜏𝑑𝑑 > 𝑇𝑇. 

 
5 This assumption is made for convenience and can be easily relaxed. In particular, as in Jarrow and Turnbull 
(1995), the only real requirement is that enough traded assets exist to allow the prices of default-free and 
risky zero-coupon bonds to recover for all possible maturities. 
6 Because all prices are determined at current time 0, a simple notation is used to avoid emphasizing the 
present time 0. Please also note that 𝑍𝑍(𝑇𝑇) ≡ 𝑒𝑒−𝑟𝑟(𝑇𝑇)𝑇𝑇 , where 𝑟𝑟(𝑇𝑇) is the spot rate with maturity 𝑇𝑇. 
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It is important to stress that, in the case of asset class 𝐴𝐴 with maturity 𝑇𝑇, a default 

time 𝜏𝜏𝑑𝑑 ≤ 𝑇𝑇 implies the cancelation of the periodic stream of payments from 𝜏𝜏𝑑𝑑 + ∆ 

onwards. This includes 𝜏𝜏𝑑𝑑 + ∆, but not 𝜏𝜏𝑑𝑑 itself. While such clarification would be 

meaningless in a continuous-time model (Lando, 1998), it is a key element in the present 

case. In addition, the discrete-time setting considered in this study makes it possible to 

introduce a fourth convenient CRDF:  

• 𝐸𝐸(𝑇𝑇): The present value of an asset class 𝐸𝐸 paying $1 at 𝑇𝑇, provided 𝜏𝜏𝑑𝑑 > 𝑇𝑇 − ∆ 

Hence, the difference between assets 𝐶𝐶 and 𝐸𝐸 with the same maturity 𝑇𝑇 is that the 

payment of $1 at 𝑇𝑇 is conditional on survival at time 𝑇𝑇 in the case of 𝐶𝐶, and on survival 

at the previous date 𝑇𝑇 − ∆  in the case of 𝐸𝐸.  

Figure 2 depicts the payment structure associated with the four contingent claims. 

Along with the assumptions made in Section 2.1, this payment structure implies two no-

arbitrage conditions that must hold for any two consecutive maturities, 𝑇𝑇 − ∆ and 𝑇𝑇.  

<Figure 2 about here> 

The first no-arbitrage condition (NAC1) relates 𝐴𝐴(𝑇𝑇), 𝐴𝐴(𝑇𝑇 − ∆) and 𝐸𝐸(𝑇𝑇): 

𝐴𝐴(𝑇𝑇) = 𝐴𝐴(𝑇𝑇 − ∆) + ∆𝐸𝐸(𝑇𝑇), (1) 

with 𝐴𝐴(0) = 0. 

Equation (1) reflects the fact that the present value of a daily annuity of $∆ paid 

until time 𝑇𝑇 or default must be equal to the sum of: (a) the present value of a daily annuity 

of $∆ paid until time 𝑇𝑇 − ∆ or default, and; (b) the present value of $∆ paid with certainty 

at time 𝑇𝑇, conditional on no default at time 𝑇𝑇 − ∆ or before. This second component 
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follows from the previous comment about the effect of a default event on asset class 𝐴𝐴 

payments. 

The second no-arbitrage condition (NAC2), which must hold for any two 

consecutive maturities 𝑇𝑇 − ∆ and 𝑇𝑇, is as follows: 

𝐶𝐶(𝑇𝑇) + 𝐵𝐵(𝑇𝑇) − 𝐵𝐵(𝑇𝑇 − ∆) = 𝐸𝐸(𝑇𝑇), (2) 

with 𝐵𝐵(0) = 0. 

On the left-hand side of Equation (2), 𝐶𝐶(𝑇𝑇) is the present value of $1 paid at time 

𝑇𝑇, conditional on no default at that time or before. In addition, 𝐵𝐵(𝑇𝑇) − 𝐵𝐵(𝑇𝑇 − ∆) equals 

the present value of $1 paid at 𝑇𝑇 in the case of default at that precise moment and not 

before. Taken as a whole, the left side of Equation (2) equals the present value $1 paid 

with certainty at time 𝑇𝑇, conditional on no default at time 𝑇𝑇 − ∆ or before, and this is 

exactly what 𝐸𝐸(𝑇𝑇) on the right side of said equation represents. Combining Equations (1) 

and (2) leads to the following related condition: 

𝐴𝐴(𝑇𝑇) = 𝐴𝐴(𝑇𝑇 − ∆) + ∆[𝐶𝐶(𝑇𝑇) + 𝐵𝐵(𝑇𝑇) − 𝐵𝐵(𝑇𝑇 − ∆)]. (3) 

Equation (3) provides a necessary relationship between the three core CRDFs for 

any two consecutive maturities 𝑇𝑇 − ∆ and 𝑇𝑇. One important observation is that this 

equilibrium condition relies exclusively on the payment structure associated with assets 

𝐴𝐴, 𝐵𝐵, and 𝐶𝐶 and the assumptions made in Section 2.1. In other words, it does not depend 

on any risk-neutral pricing model.7 

 

 
7 A further intuitive implication of Equation (3) is that 𝐴𝐴(𝑇𝑇) = ∆�∑ 𝐶𝐶(ℎ∆)𝑇𝑇/∆

ℎ=1 + 𝐵𝐵(𝑇𝑇)�. 
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3. Credit Default Swap Spreads as a Function of Credit Risk Discount Factors 

The value of a position in a CDS contract with maturity 𝑇𝑇 equals the difference 

between its premium leg and protection leg. The daily structure of the premium leg is 

shown in Figure 3. This figure reflects a key feature of a CDS contract. Namely, while 

the annual premium per dollar of protected debt, 𝑐𝑐𝑐𝑐𝑐𝑐, is generally paid in quarterly 

installments, the liquidation of the contract in the case of default implies the payment of 

the premium accrued since the last quarterly payment. For this reason, a non-defaulting 

state on a given day implies a consolidated right to accrue ∆𝑐𝑐𝑐𝑐𝑐𝑐 the following day, 

regardless of whether or not a default occurs on that posterior day. If we further assume 

no counterparty risk from the protection buyer’s side, such a consolidated right to accrue 

∆𝑐𝑐𝑐𝑐𝑐𝑐 can be considered as a risk-free income on a given day, conditional on no default 

on the previous day. Because this payment structure mimics that of asset 𝐴𝐴, scaled by 

𝑐𝑐𝑐𝑐𝑐𝑐, the present value of the premium leg is simply:  

𝑋𝑋(𝑇𝑇) = 𝑐𝑐𝑐𝑐𝑐𝑐𝐴𝐴(𝑇𝑇), (4) 

where the nominal value of the protected bond is normalized to 1. 

<Figure 3 about here> 

The daily structure of the protection leg is shown in Figure 4. On any given day, 

the protection payment is 0 in the case of no default, and a fraction (1 − 𝜃𝜃) of the 

protected bond’s face value in the case of default. Thus, the payment structure of the 

protection leg reproduces that of asset 𝐵𝐵 scaled by (1 − 𝜃𝜃), and the same applies for its 

present value for a nominal of 1: 

𝑌𝑌(𝑇𝑇) = (1 − 𝜃𝜃)𝐵𝐵(𝑇𝑇). (5) 
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<Figure 4 about here> 

The break-even CDS spread, 𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇), is finally obtained by equating the premium 

and protection legs of the contract (see also Duffie and Singleton, 2003):  

𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇) =
(1 − 𝜃𝜃)𝐵𝐵(𝑇𝑇)

𝐴𝐴(𝑇𝑇) . (6) 

4. Additional Assumptions and the Bootstrapping of Credit Risk Discount Factors 

All previous results are based on no-arbitrage arguments alone, implying that they 

do not rely on any particular risk-neutral pricing model. However, a convenient additional 

assumption is that the risk-free interest rate process and default time are risk-neutrally 

independent (Jarrow and Turnbull, 1995; Jarrow, et al., 1997; Duffie and Singleton, 2003; 

Hull and White, 2003; O’Kane and Turnbull, 2003). If we denote 𝑆𝑆(𝑇𝑇) the risk-neutral 

survival probability at time 𝑇𝑇 (as seen at current time 0), this new assumption allows us 

to decompose 𝐶𝐶(𝑇𝑇 − ∆) and 𝐸𝐸(𝑇𝑇) as follows: 𝐶𝐶(𝑇𝑇 − ∆) = 𝑍𝑍(𝑇𝑇 − ∆)𝑆𝑆(𝑇𝑇 − ∆); and 

𝐸𝐸(𝑇𝑇) = 𝑍𝑍(𝑇𝑇)𝑆𝑆(𝑇𝑇 − ∆). If we further denote 𝑓𝑓(𝑇𝑇 − ∆,𝑇𝑇) ≡

−(1 ∆⁄ )𝑙𝑙𝑙𝑙𝑙𝑙[𝑍𝑍(𝑇𝑇) 𝑍𝑍(𝑇𝑇 − ∆)⁄ ] the forward rate between 𝑇𝑇 − ∆ and 𝑇𝑇, we then obtain:  

𝐸𝐸(𝑇𝑇) = 𝑒𝑒−𝑓𝑓(𝑇𝑇−∆,𝑇𝑇)∆𝐶𝐶(𝑇𝑇 − ∆), (7) 

with 𝐶𝐶(0) = 1. The interpretation of the previous equation is straightforward. Under the 

assumption of risk-neutral independence between the risk-free interest rate process and 

the default time, 𝐸𝐸(𝑇𝑇) can be obtained by discounting first from 𝑇𝑇 to 𝑇𝑇 − ∆ at the forward 

rate, and then from 𝑇𝑇 − ∆ to current time 0, using the discount factor 𝐶𝐶(𝑇𝑇 − ∆). 

Let us now assume that 𝐴𝐴(𝑇𝑇 − ∆), 𝐵𝐵(𝑇𝑇 − ∆), and 𝐶𝐶(𝑇𝑇 − ∆) values are available 

for a given maturity 𝑇𝑇 − ∆. In such a case, and assuming that the forward rate 𝑓𝑓(𝑇𝑇 − ∆,𝑇𝑇) 
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is also available, Equations (1), (2), (6) and (7) lead to a system of three equations and 

three unknowns—𝐴𝐴(𝑇𝑇), 𝐵𝐵(𝑇𝑇), and 𝐶𝐶(𝑇𝑇)—with a simple closed-form solution: 

𝐴𝐴(𝑇𝑇) = 𝐴𝐴(𝑇𝑇 − ∆) + ∆𝑒𝑒−𝑓𝑓(𝑇𝑇−∆,𝑇𝑇)∆𝐶𝐶(𝑇𝑇 − ∆); (8a) 

𝐵𝐵(𝑇𝑇) =
𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇)𝐴𝐴(𝑇𝑇)

(1 − 𝜃𝜃) ; (8b) 

𝐶𝐶(𝑇𝑇) = 𝑒𝑒−𝑓𝑓(𝑇𝑇−∆,𝑇𝑇)∆𝐶𝐶(𝑇𝑇 − ∆) − 𝐵𝐵(𝑇𝑇) + 𝐵𝐵(𝑇𝑇 − ∆). (8c) 

Several aspects of this result deserve special attention. First, because Equation 

System (8) links {𝐴𝐴(𝑇𝑇),𝐵𝐵(𝑇𝑇),𝐶𝐶(𝑇𝑇)} to {𝐴𝐴(𝑇𝑇 − ∆),𝐵𝐵(𝑇𝑇 − ∆),𝐶𝐶(𝑇𝑇 − ∆)}, it allows us to 

bootstrap the full term structure of CRDFs, based on a previously settled CTSCDS and 

the initial values {𝐴𝐴(0),𝐵𝐵(0),𝐶𝐶(0)} = {0,0,1}. Second, because the solution is also in 

closed-form (trivial and unique), such an estimation does not require the implementation 

of a series of root-search algorithms or any other optimization rule. In other words, the 

full term structure of CRDFs can be obtained instantaneously, simply with a spreadsheet. 

Third, these term structures converge naturally toward their risk-free counterparts as the 

CTSCDS tends to zero: 𝐵𝐵(𝑇𝑇) tends to zero, 𝐶𝐶(𝑇𝑇) tends to 𝑍𝑍(𝑇𝑇), and 𝐴𝐴(𝑇𝑇) tends to 

∆∑ 𝑍𝑍(ℎ∆)𝑇𝑇/∆
ℎ=1 .8 Fourth, the solution is also free from any specific assumption about the 

risk-free interest rate process or default time. The unique imposed assumption is that they 

are independent in a risk-neutral way. Last, and related to the above, the solution does not 

even involve the estimation of risk-neutral survival (or forward default) probabilities. As 

the next section demonstrates, these can be obtained easily as a sub-product of the 

 
8 This last expression indicates that 𝐴𝐴(𝑇𝑇) tends to the present value of a risk-free daily annuity of $∆ paid 
until time 𝑇𝑇. This result is a direct implication of the previous remarks on 𝐵𝐵(𝑇𝑇) and 𝐶𝐶(𝑇𝑇) and the 
observation made in footnote 7. 



13 
 
 

bootstrapping process; however, such additional results are not needed for any of the 

applications considered in this study. 

Table 1 provides a numerical example, in which the CTSCDS is estimated from 

the same OTSCDS as in Figure 1, but using a simple linear interpolation.9 The table 

reflects the CDS spreads for the observed maturities (6m, 1y, 2y, 3y, 4y, 5y, 7y, and 10y) 

and some of the interpolated values. For the interval (0,6m] it could be presumed either a 

flat term structure or the same slope as that in the interval [6m,1y]. For this and other 

cases of linear interpolation, the latter option is adopted. The example also assumes a 

constant risk-free rate of 2% and recovery rate of 40%. The final estimates of the CRDFs 

for the selected maturities are presented in Table 1, while Figure 5 plots the results for all 

possible maturities. It is worth stressing that, although different interpolation schemes 

(i.e., Linear, PCHIP, Spline) can be considered in the first step, the posterior 

bootstrapping process will be always the same.  

<Table 1 about here> 

<Figure 5 about here> 

5. A Restricted Case: The Piecewise Constant Default Probability Model  

This section describes a PWCDP model as a restricted version of the non-

parametric model introduced above. First, we can show that Equation System (8) 

produces the same results as those generated by a model that, based on a CTSCDS, 

estimates the risk-neutral default probability at any time 𝑇𝑇, conditional on no previous 

default. If we denote 𝑞𝑞(𝑇𝑇) as the elements of this term structure of forward risk-neutral 

default probabilities, the risk-neutral survival probability at time 𝑇𝑇 is 

 
9 The Excel file containing this example is available at www.santiagoforte.com. 
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𝑆𝑆(𝑇𝑇) = �[1 − 𝑞𝑞(𝑢𝑢∆)]
𝑇𝑇/∆

𝑢𝑢=0

, (9) 

while the risk-neutral probability of default at time 𝑇𝑇 (and not before) is 

𝐻𝐻(𝑇𝑇) = 𝑞𝑞(𝑇𝑇) � [1 − 𝑞𝑞(𝑢𝑢∆)]
(𝑇𝑇−∆)/∆

𝑢𝑢=0

. (10) 

It should be noted that 𝑞𝑞(0) = 0. From Equations (9) and (10), and assuming again that 

the risk-free interest process and default time are risk-neutrally independent, we obtain 

the following expressions for 𝐴𝐴(𝑇𝑇), 𝐵𝐵(𝑇𝑇), 𝐶𝐶(𝑇𝑇), and 𝐸𝐸(𝑇𝑇): 

𝐴𝐴(𝑇𝑇) = ∆�{𝑍𝑍(ℎ∆)𝑆𝑆[(ℎ − 1)∆]}
𝑇𝑇/∆

ℎ=1
= ∆��𝑍𝑍(ℎ∆)�[1− 𝑞𝑞(𝑢𝑢∆)]

ℎ−1

𝑢𝑢=0
�

𝑇𝑇/∆

ℎ=1
; (11) 

𝐵𝐵(𝑇𝑇) = �{𝑍𝑍(ℎ∆)𝐻𝐻(ℎ∆)}
𝑇𝑇/∆

ℎ=1

= ��𝑍𝑍(ℎ∆)𝑞𝑞(ℎ∆)�[1 − 𝑞𝑞(𝑢𝑢∆)]
ℎ−1

𝑢𝑢=0

�
𝑇𝑇/∆

ℎ=1

; (12) 

𝐶𝐶(𝑇𝑇) = 𝑍𝑍(𝑇𝑇)𝑆𝑆(𝑇𝑇) = 𝑍𝑍(𝑇𝑇)�[1 − 𝑞𝑞(𝑢𝑢∆)]
𝑇𝑇/∆

𝑢𝑢=0

; (13) 

𝐸𝐸(𝑇𝑇) = 𝑍𝑍(𝑇𝑇)𝑆𝑆(𝑇𝑇 − ∆) = 𝑍𝑍(𝑇𝑇) � [1 − 𝑞𝑞(𝑢𝑢∆)]
(𝑇𝑇−∆)/∆

𝑢𝑢=0

. (14) 

It is a relatively simple task (addressed in the Appendix) to show that Equations 

(11)–(14) satisfy both NAC1 and NAC2. Based on Equations (6), (11), and (12), it also 

holds that: 
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𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇) =
(1 − 𝜃𝜃)∑ {𝑍𝑍(ℎ∆)𝑞𝑞(ℎ∆)∏ [1 − 𝑞𝑞(𝑢𝑢∆)]ℎ−1

𝑢𝑢=0 }𝑇𝑇/∆
ℎ=1

∆∑ {𝑍𝑍(ℎ∆)∏ [1 − 𝑞𝑞(𝑢𝑢∆)]ℎ−1
𝑢𝑢=0 }𝑇𝑇/∆

ℎ=1

. (15) 

Equation (15) provides the break-even CDS spread for a contract with maturity 𝑇𝑇, 

as a function of all forward risk-neutral default probabilities from 0 to 𝑇𝑇. From this 

equation, it is actually possible to isolate 𝑞𝑞(𝑇𝑇) as a function of all previous probabilities: 

𝑞𝑞(𝑇𝑇) =
𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇)∆∑ �𝑍𝑍(ℎ∆)∏ [1 − 𝑞𝑞(𝑢𝑢∆)]ℎ−1

𝑢𝑢=0 � − (1 − 𝜃𝜃)∑ �𝑍𝑍(ℎ∆)𝑞𝑞(ℎ∆)∏ [1 − 𝑞𝑞(𝑢𝑢∆)]ℎ−1
𝑢𝑢=0 �(𝑇𝑇−∆)/∆

ℎ=1
𝑇𝑇/∆
ℎ=1

(1 − 𝜃𝜃)𝑍𝑍(𝑇𝑇)∏ [1 − 𝑞𝑞(𝑢𝑢∆)](𝑇𝑇−∆)/∆
𝑢𝑢=0

. (16) 

 Hence, it is indeed possible to bootstrap a complete term structure of 𝑞𝑞(𝑇𝑇) values 

from a CTSCDS by means of Equation (16). This term structure can be used to determine 

the core CRDFs from Equations (11)–(13) and, finally, to price different single-name 

credit-risky securities, as described in Section 6. However, this task is arduous and 

unnecessary. This is because Equation System (8) leads to exactly the same result in a 

much easier way. In addition, even if the intention is to estimate the term structure of the 

𝑞𝑞(𝑇𝑇) and/or 𝑆𝑆(𝑇𝑇) values, this aim can be achieved more easily (and with identical results) 

by incorporating two additional equations into Equation System (8):  

𝑆𝑆(𝑇𝑇) =
𝐶𝐶(𝑇𝑇)
𝑍𝑍(𝑇𝑇) ; (17) 

𝑞𝑞(𝑇𝑇) = 1 −
𝑆𝑆(𝑇𝑇)

𝑆𝑆(𝑇𝑇 − ∆) . (18) 

Please note that 𝑆𝑆(0) = 1. 

Consider now the implementation of a conventional PWCDP model. In our 

particular setting, this would entail the following. First, it is assumed that 𝑞𝑞(𝑇𝑇) is in effect 

piecewise constant, where changes coincide with the maturity of observable CDS spreads. 
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Second, the term structure of 𝑞𝑞(𝑇𝑇) values is estimated sequentially so that Equation (15) 

fits the observed CDS spreads perfectly. It is worth mentioning that a bootstrapping 

process of this sort implies the implementation of a sequence of root-search algorithms 

(one for each observed quote). Finally, based on the term structure of 𝑞𝑞(𝑇𝑇) values 

obtained, we can determine the term structure of the core CRDFs and the prices of 

different single-name credit-risky securities, as previously described.10  

 Comparing the two pricing approaches, the PWCDP model imposes ex-ante a 

piecewise constant profile on the term structure of 𝑞𝑞(𝑇𝑇), leading ex-post to an effective 

interpolation of the observed CDS spreads (see again Figure 1, Panel 1A). By contrast, 

the non-parametric model imposes ex-ante a particular interpolation scheme between the 

observed quotes, implying ex-post a complete term structure of 𝑞𝑞(𝑇𝑇) values. Figure 6 

provides a numerical example. In this figure, the term structure of 𝑞𝑞(𝑇𝑇) and 𝑆𝑆(𝑇𝑇) is 

estimated by assuming the same OTSCDS as in Figure 1, and four different pricing 

models: the PWCDP model on the one hand, and the non-parametric model with a linear 

(NP/Linear), PCHIP (NP/PCHIP), or Spline (NP/Spline) interpolation on the other. As 

the figure makes clear, the PWCDP model entails the most discontinuous term structure 

of 𝑞𝑞(𝑇𝑇) values, while the NP/Spline model generates the smoothest term structure. 

Nevertheless, because of the small marginal effect of 𝑞𝑞(𝑇𝑇) on 𝑆𝑆(𝑇𝑇), the term structure of 

𝑆𝑆(𝑇𝑇) exhibits no evident jumps in any case. 

The ability to generate a smooth term structure of forward risk-neutral default 

probabilities is, of course, a nice property for a credit risk pricing model, although it is 

 
10 We can also analyze the limit case where 𝑞𝑞(𝑇𝑇) is a constant parameter equal to 𝑞𝑞. In such a case, and 
based again on Equation (15), the CDS spread is also constant and given by 𝑐𝑐𝑐𝑐𝑐𝑐 = (1 − 𝜃𝜃)𝑞𝑞/∆. This result 
is nothing but the discrete-time version of the so-called credit risk triangle between the CDS spread, the 
recovery rate, and the constant hazard rate in a continuous-time model (see e.g., O’Kane, 2008). As is 
evident, this naïve version of a fully parametric model will only be consistent with a flat OTSCDS. 
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actually of second-order importance. What is important to stress here is that the non-

parametric model is less restrictive and much easier to implement than the PWCDP 

model. Moreover, as the empirical evidence in Section 7 demonstrates, it leads to lower 

MAPE. Before addressing this empirical analysis, Section 6 reviews some possible 

applications of the term structure of CRDFs, with a special focus on a novel one: the time 

decomposition of CDS spreads. 

<Figure 6 about here> 

6. Applications 

6.1. Pricing of CDS Contracts 

The clearest application of the term structure of CRDFs obtained from the term 

structure of CDS spreads (TSCDS) is the marking-to-market of any position in a CDS 

contract.11 In the case of a long position with a previously settled spread, 𝑐𝑐𝑐𝑐𝑐𝑐, this value 

is simply: 

𝑉𝑉(𝑇𝑇) = (1 − 𝜃𝜃)𝐵𝐵(𝑇𝑇) − 𝑐𝑐𝑐𝑐𝑐𝑐𝐴𝐴(𝑇𝑇). (19) 

By extension, this also implies a simple approach to estimating CDS returns 

(Berndt and Obreja, 2010; Augustin et al., 2020). 

 

 

 

 
11 The distinction between OTSCDS and CTSCDS is relevant for presenting different estimation 
approaches for the full term structure of CRDFs, but less relevant for describing the potential applications 
of those CRDFs. In addition, the interpretation of the possible TSCDS shapes provided in this section is 
equally valid for the OTSCDS and CTSCDS. Thus, unless an alternative is necessary, the generic 
expression TSCDS will be used in the remainder of this paper. 
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6.2. Pricing of Risky Bonds 

 Consider a risky bond with coupon 𝑏𝑏, nominal 𝑝𝑝, and maturity 𝑇𝑇. Let us also 

denote 𝑇𝑇𝑚𝑚 as the maturity of the 𝑚𝑚th coupon payment, where 𝑚𝑚 = 1, … ,𝑀𝑀, and 𝑇𝑇𝑀𝑀 = 𝑇𝑇. 

The present value of this bond will be: 

𝑑𝑑(𝑇𝑇) = 𝑏𝑏 � 𝐶𝐶(𝑇𝑇𝑚𝑚)
𝑀𝑀

𝑚𝑚=1

+ 𝑝𝑝𝑝𝑝(𝑇𝑇) + 𝜃𝜃𝜃𝜃𝜃𝜃(𝑇𝑇). (20) 

The first term on the right side of the equation reflects the present value of the 

stream of coupon payments. The second term accounts for the payment of the nominal 

amount at maturity, in the case of no default. Finally, the last term incorporates the present 

value of the fractional recovery of the nominal value in the case of default. 

6.3. Pricing of Forward CDS Contracts 

Now, consider a forward CDS contract signed at current time 0 for credit 

protection between 𝑇𝑇𝑗𝑗 and 𝑇𝑇𝑘𝑘, with 0 ≤ 𝑇𝑇𝑗𝑗 < 𝑇𝑇𝑘𝑘. More precisely, the initiation date is 𝑇𝑇𝑗𝑗, 

conditional on 𝜏𝜏𝑑𝑑 > 𝑇𝑇𝑗𝑗, so the first effective date with the accrual of premium payments 

and delivery of the bond in exchange for the bond’s face value in the case of default is 

𝑇𝑇𝑗𝑗 + ∆. The daily structure of this contract is, in fact, the structure described in Figures 3 

and 4 for a spot contract. The sole difference is that the starting date is now 𝑇𝑇𝑗𝑗 rather than 

0, and the ending date is 𝑇𝑇𝑘𝑘. To derive the present value of the premium leg of the forward 

contract based on the CRDFs, let us define (for any 𝑇𝑇∗ and 𝑇𝑇, with 0 ≤ 𝑇𝑇∗ < 𝑇𝑇): 

• 𝐴𝐴(𝑇𝑇∗,𝑇𝑇): The present value of the same asset class 𝐴𝐴 paying a constant annuity of $∆ 

every ∆ years, but this time between 𝑇𝑇∗ and 𝑇𝑇 with the following conditions: (i) the 

first payment is at 𝑇𝑇∗ + ∆, conditional on 𝜏𝜏𝑑𝑑 > 𝑇𝑇∗ (otherwise, the asset is liquidated 

at 𝜏𝜏𝑑𝑑), and; (ii) provided that 𝜏𝜏𝑑𝑑 > 𝑇𝑇∗, the last payment is at 𝐿𝐿𝑑𝑑𝑇𝑇  (included).  
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Based on the definition of 𝐴𝐴(𝑇𝑇) and 𝐴𝐴(𝑇𝑇∗,𝑇𝑇), it holds that 

𝐴𝐴(𝑇𝑇∗,𝑇𝑇) = 𝐴𝐴(𝑇𝑇) − 𝐴𝐴(𝑇𝑇∗). (21) 

If we use 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 to denote the spread of the forward CDS contract described above, the 

present value of the premium leg is: 

𝑋𝑋�𝑇𝑇𝑗𝑗 ,𝑇𝑇𝑘𝑘� = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�𝑇𝑇𝑗𝑗 ,𝑇𝑇𝑘𝑘�. (22) 

We can also derive the present value of the protection leg based on the CRDFs. 

Let us define: 

• 𝐵𝐵(𝑇𝑇∗,𝑇𝑇): The present value of the same asset class 𝐵𝐵 paying $1 at 𝜏𝜏𝑑𝑑, provided this 

time that 𝑇𝑇∗ < 𝜏𝜏𝑑𝑑 ≤ 𝑇𝑇. 

From the definition of 𝐵𝐵(𝑇𝑇) and 𝐵𝐵(𝑇𝑇∗,𝑇𝑇), it must hold that 

𝐵𝐵(𝑇𝑇∗,𝑇𝑇) = 𝐵𝐵(𝑇𝑇) − 𝐵𝐵(𝑇𝑇∗), (23) 

and the present value of the protection leg is: 

𝑌𝑌�𝑇𝑇𝑗𝑗 ,𝑇𝑇𝑘𝑘� = (1 − 𝜃𝜃)𝐵𝐵�𝑇𝑇𝑗𝑗 ,𝑇𝑇𝑘𝑘�. (24) 

The value of a long position in the forward CDS contract is thus: 

𝐹𝐹𝐹𝐹�𝑇𝑇𝑗𝑗 ,𝑇𝑇𝑘𝑘� = (1 − 𝜃𝜃)𝐵𝐵�𝑇𝑇𝑗𝑗 ,𝑇𝑇𝑘𝑘� − 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐴𝐴�𝑇𝑇𝑗𝑗 ,𝑇𝑇𝑘𝑘�. (25) 

By imposing 𝐹𝐹𝐹𝐹�𝑇𝑇𝑗𝑗 ,𝑇𝑇𝑘𝑘� = 0, we finally obtain the break-even forward CDS spread:  

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�𝑇𝑇𝑗𝑗 ,𝑇𝑇𝑘𝑘� =
(1 − 𝜃𝜃)𝐵𝐵�𝑇𝑇𝑗𝑗 ,𝑇𝑇𝑘𝑘�

𝐴𝐴�𝑇𝑇𝑗𝑗 ,𝑇𝑇𝑘𝑘�
. (26) 

It is worth noting that 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(0,𝑇𝑇) = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇). 
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6.4. A Note on Portfolio Management 

Previous results on the pricing of single-name credit-risky securities apply, 

regardless of the exact pricing model used to determine the CRDFs. However, the non-

parametric model introduced in this study offers clear advantages for portfolio 

management. As has been shown, the combination of a CTSCDS (obtained directly from 

the OTSCDS) and the term structure of risk-free interest rates (TSIR) provides a direct 

estimate of the term structure of CRDFs. Moreover, the prices of those securities are 

simple functions of these CRDFs. Consequently, the model allows for a straight mapping 

between observable market risk factors (OTSCDS and TSIR) and the prices of the most 

common single-name credit-risky securities (spot and forward CDS contracts and risky 

bonds). The final implication is the possibility of translating the predicted distribution 

function for such market risk factors into a distribution function for the values of different 

credit-risky portfolios, using Monte Carlo simulations. By extension, this represents an 

easy path for integrating market and credit risk.12 

6.5. Time Decomposition of CDS Spreads 

It is not entirely clear why, to date, despite the large amount of work done on the 

pricing of CDS contracts, the academic literature has never provided an explicit 

formulation of the time decomposition of CDS spreads. The explanation may be that any 

representation of a CDS spread, based on either a parametric or semi-parametric model, 

depends strongly on the assumptions and parameters of the specific model. Equation (15) 

provides a good example; in such a representation, the time decomposition of CDS 

spreads does not emerge intuitively. As will be shown below, the situation changes 

 
12 Clearly, this extension to portfolio management should incorporate the probability of a default event at 
the future pricing date. Accordingly, the empirical evidence of the connection between historical/current 
CDS levels and the probability of a future default event should be accounted for. 
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considerably when spot and forward CDS spreads are expressed as simple functions of 

the CRDFs.  

In line with the case of a spot rate decomposition, the time decomposition of CDS 

spreads follows from the possibility of representing a long (short) position in a CDS 

contract as a portfolio of long (short) positions in 𝑁𝑁 consecutive forward CDS contracts. 

If we define 𝑇𝑇0 = 0 and 𝑇𝑇𝑁𝑁 = 𝑇𝑇, then 

𝑋𝑋(𝑇𝑇) = �𝑋𝑋(𝑇𝑇𝑖𝑖−1,𝑇𝑇𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

, (27) 

that is, the present value of the cost of credit protection up to time 𝑇𝑇 must be equal to the 

present value of the cost of credit protection for an arbitrary number of consecutive (but 

not necessarily identical) time intervals between time 0 and time 𝑇𝑇. Consequently,  

𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇) = �𝑤𝑤(𝑇𝑇𝑖𝑖−1,𝑇𝑇𝑖𝑖;𝑇𝑇)𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑇𝑇𝑖𝑖−1,𝑇𝑇𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

, (28) 

where 

𝑤𝑤(𝑇𝑇𝑖𝑖−1,𝑇𝑇𝑖𝑖;𝑇𝑇) =
𝐴𝐴(𝑇𝑇𝑖𝑖−1,𝑇𝑇𝑖𝑖)
𝐴𝐴(𝑇𝑇) ∈ [0,1]; (29) 

with 

�𝑤𝑤(𝑇𝑇𝑖𝑖−1,𝑇𝑇𝑖𝑖;𝑇𝑇) = 1
𝑁𝑁

𝑖𝑖=1

. (30) 

Based on Equations (28)–(30), we can divide the maturity 𝑇𝑇 of a CDS contract 

into an arbitrary number of intermediate time intervals and express the associated CDS 
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spread as a weighted average of the forward CDS spreads corresponding to those time 

slots. The weight of a particular forward spread 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑇𝑇𝑖𝑖−1,𝑇𝑇𝑖𝑖) on the spot spread 𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇) 

is given by the weight of 𝐴𝐴(𝑇𝑇𝑖𝑖−1,𝑇𝑇𝑖𝑖) in 𝐴𝐴(𝑇𝑇). Among the factors that influence this ratio 

(relative time length; time value of money), it is worth highlighting the risk of default up 

to initiation date 𝑇𝑇𝑖𝑖−1. All things being equal, the higher this risk, the lower the present 

value of any stream of payments in the time interval (𝑇𝑇𝑖𝑖−1,𝑇𝑇𝑖𝑖], conditional on no previous 

default—and therefore, the lower the influence of the corresponding forward spread on 

the spot spread. This reflects one main difference with the time decomposition of spot 

rates: unlike the forward rates embedded in a spot rate, the forward CDS spreads 

contained in a CDS spread may never be paid, and this is properly reflected in their 

weights. In summary, a distinguishing aspect of a CDS spread decomposition is the fact 

that the risk of default enters both the forward spreads and their weights. 

As a corollary to the previous results, the level and steepness of the TSCDS are to 

a certain extent related. To understand this more clearly, let us consider the following 

simple decomposition:  

𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇) = �1 −
𝐴𝐴(𝑇𝑇∗,𝑇𝑇)
𝐴𝐴(𝑇𝑇) � 𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇∗) +

𝐴𝐴(𝑇𝑇∗,𝑇𝑇)
𝐴𝐴(𝑇𝑇) 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑇𝑇∗,𝑇𝑇); (31) 

and rearranging terms, 

[𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇) − 𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇∗)] =
𝐴𝐴(𝑇𝑇∗,𝑇𝑇)
𝐴𝐴(𝑇𝑇)

[𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑇𝑇∗,𝑇𝑇) − 𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇∗)]. (32) 

Equation (32) provides an intuitive interpretation of the possible forms of the 

TSCDS (increasing, decreasing, or hump-shaped) and its steepness. Concerning the 

possible forms, a forward spread 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑇𝑇∗,𝑇𝑇) higher (lower) than the spot spread 𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇∗) 
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implies, as expected, a positive (negative) slope in the interval [𝑇𝑇∗,𝑇𝑇]. However, the 

steepness depends not only on the absolute difference between 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑇𝑇∗,𝑇𝑇) and 𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇∗), 

but also on the ratio 𝐴𝐴(𝑇𝑇∗,𝑇𝑇)/𝐴𝐴(𝑇𝑇). Following previous arguments, the higher the risk 

of default up to 𝑇𝑇∗, the lower this ratio and, assuming that all other things are equal, the 

flatter the TSCDS in the interval [𝑇𝑇∗,𝑇𝑇]. Thus, in effect, when it comes to analyzing a 

TSCDS, the level and steepness cannot be completely dissociated.13 

A final implication of the previous results is the possibility of interpreting 

𝑤𝑤(𝑇𝑇𝑖𝑖−1,𝑇𝑇𝑖𝑖;𝑇𝑇)𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑇𝑇𝑖𝑖−1,𝑇𝑇𝑖𝑖) as the total contribution of the time interval (𝑇𝑇𝑖𝑖−1,𝑇𝑇𝑖𝑖] to the 

CDS spread with maturity 𝑇𝑇. Accordingly, the relative contribution will be 

𝑄𝑄(𝑇𝑇𝑖𝑖−1,𝑇𝑇𝑖𝑖;𝑇𝑇) =
𝑤𝑤(𝑇𝑇𝑖𝑖−1,𝑇𝑇𝑖𝑖;𝑇𝑇)𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑇𝑇𝑖𝑖−1,𝑇𝑇𝑖𝑖)

𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇) =
𝐵𝐵(𝑇𝑇𝑖𝑖−1,𝑇𝑇𝑖𝑖)
𝐵𝐵(𝑇𝑇) ∈ [0,1], (33) 

with  

�𝑄𝑄(𝑇𝑇𝑖𝑖−1,𝑇𝑇𝑖𝑖;𝑇𝑇) = 1
𝑁𝑁

𝑖𝑖=1

. (34) 

Equation (33) indicates that the relative contribution of one particular time interval 

(𝑇𝑇𝑖𝑖−1,𝑇𝑇𝑖𝑖] to the spread of a CDS contract with maturity 𝑇𝑇 is given by the ratio between 

the following: the present value of $1 paid at default if this happens during that particular 

 
13 Please note that the discussion above refers to the expected influence of level on the steepness, not the 
sign (positive or negative) of the slope. Also, it leaves aside the underlying economic reasons for the actual 
shape of the TSCDS. For example, Bhat et al., (2016) provide empirical evidence which supports the 
predictions of Duffie and Lando (2001) as regards the effect of higher accounting transparency on the level, 
slope, and concavity of the TSCDS for corporate issuers, while Augustin (2018) explores the influence of 
global and country-specific risk on the shape of sovereign TSCDS. It is also worth noting that practitioners 
usually think of forward CDS spreads as a function of spot spreads. Likewise, the term structure of forward 
CDS spreads is typically analyzed based on the TSCDS. From a practitioner’s point of view, this makes 
complete sense. As trading normally concentrates on liquid spot contracts, a forward contract can be 
constructed synthetically from such spot contracts if needed. When applying a strict economic 
interpretation, however, it makes more sense to think of spot spreads as a product of forward spreads.  
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time interval, and the present value of $1 paid at default if this happens at any time during 

the life of the contract. The proximity of these two values implies that the risk of default 

is concentrated in that specific time interval, thus making a significant contribution to the 

spread of the CDS contract. The opposite result is achieved if there is a significant 

difference between the two aforementioned values. 

7. Case Study: The Eurozone Sovereign Debt Crisis 

The aim of this section is twofold. First, to compare the performance of a 

conventional PWCDP model with that of the non-parametric model presented in this 

study. In the latter case, different interpolation schemes for the ex-ante estimation of the 

CTSCDS will be considered. Second, to illustrate some possible applications of the term 

structure of the CRDFs obtained—in particular, the estimation of forward CDS spreads 

and time decomposition of (spot) CDS spreads.  

The Eurozone sovereign debt crisis provides an interesting framework for 

addressing these two questions. Within a short period of time, it combines issuers with 

relatively low and extremely high CDS spread levels. In addition, we can expect the 

liquidity of a CDS contract to be higher for France and Ireland than for an average 

corporation with a similar default risk. For the following analyses, weekly data on CDS 

spreads with maturities ranging from 6m to 10y and a CR/CR14 restructuring clause are 

collected from Markit. The period considered is 2010–2019, and the selected countries 

are France, Spain, Italy, Ireland, Portugal, and Greece. In the particular case of Greece, 

the sample period closed earlier, on October 18, 2011. While this choice may seem 

somewhat arbitrary, it corresponds to the first observation of a 6m-CDS spread above 

10,000 bp, with no further drop below that level until the effective default of Greek 
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sovereign debt.14 The risk-free interest rates are approximated using the German TSIR.15 

Finally, following market conventions, a recovery rate of 40% is assumed. Table 2 

presents the main descriptive statistics for each country’s CDS spread. 

<Table 2 about here> 

7.1. Semi-Parametric vs. Non-Parametric Estimation: Relative Pricing Errors  

 As an initial step, the performance of the four different pricing models—PWCDP, 

NP/Linear, NP/PCHIP, and NP/Spline—is evaluated based on their relative pricing 

errors. To address this comparison, we need to solve the problem that, unlike the 

illustrative example in Section 1, the true CTSCDS is not known. As only a limited 

number of observed quotes are actually available, the comparison proceeds as follows. 

For each issuer and date, the four models are estimated using all but the 6m-CDS spread. 

Next, the results are used to determine the 6m-CDS spread predicted by each model, with 

absolute pricing errors gauged through comparison with the actual quote. The process is 

repeated for other available maturities to obtain a final sample of absolute pricing errors. 

Three important clarifications must be made regarding this empirical test. First, strictly 

speaking, the comparison will be made between a pricing model (PWCDP) and three 

direct interpolation schemes between the observed quotes (Linear, PCHIP, and Spline). 

However, because the non-parametric model can reproduce any of these CTSCDS, the 

analysis represents, in effect, a comparison between a conventional PWCDP model and 

 
14 The initial proposal for a bond exchange with a nominal discount of 50% on notional Greek debt was 
made during the Euro Summit held on October 26, 2011, and formally announced on February 21, 2012 
(see Zettelmeyer et al., 2013 for details). On February 28, 2012, the International Swaps and Derivatives 
Association (ISDA) accepted a question related to a potential Hellenic Republic credit event. The 
occurrence of a credit event was initially denied by the ISDA on March 1, 2012, but was finally accepted 
on March 9, 2012, after a second question was formulated.  
15 Zero and negative spot rates are frequently observed along the sample period. To avoid potential problems 
associated with non-positive risk-free interest rates, a minimum value of 0.01% is imposed. 
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the non-parametric model introduced in this study. Second, although the overall results 

effectively allow for the comparison of different pricing models, the numbers obtained 

will tend to underestimate their real accuracy. This is because some information that could 

be used to estimate them will always be ignored. Third, while pricing errors for the 6m 

maturity (the first OTSCDS element) are considered for comparison purposes, those for 

the 10y (the final element) are excluded. This is because, in practice, the lowest possible 

CDS contract maturity that might need to be priced is one day. Hence, whatever the lowest 

available maturity may be within the OTSCDS, some form of extrapolation will always 

be required to complete the left side of the CTSCDS. By contrast, the maturity of an 

existing CDS contract will never be higher than that of the last available quote in the 

OTSCDS. For this reason, it is unnecessary to investigate potential pricing errors beyond 

the longest available maturity and may actually distort conclusions.16  

 Table 3 provides the main descriptive statistics for the absolute pricing errors. 

Among the four competing approaches, the NP/PCHIP model implies the lowest MAPE, 

while the PWCDP model generates the highest MAPE (the same conclusion applies to 

the median). A rough calculation suggests that, on average, pricing errors from 

NP/PCHIP are half of those generated by PWCDP, and even the simple NP/Linear 

approach generally provides more accurate results. 

<Table 3 about here> 

 Figure 7 presents a more in-depth analysis of the pricing errors generated by each 

model. The first two panels represent the MAPE by country and year and clearly suggest 

that the overall credit risk level is an important determinant of the individual and relative 

 
16 Please note that, for liquidity reasons, CDS spreads with maturities beyond 10y (i.e., 15y, 20y, and 30y) 
are not covered in this case study. However, the same reasoning would apply, regardless of the length of 
the longest available maturity in practice. 
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performance of various pricing models. To arrive at this result, we can compare the 

MAPE of France with that of Greece and Portugal (Panel 7A), and also compare the 

results during and after the sovereign debt crisis (7B).17 Because the introductory example 

in Section 1 suggests that the maturity of the CDS contract may be also an important 

factor in the relative performance of the different pricing models, the last two panels of 

Figure 7 explicitly account for these two factors. Regarding maturity (7C), and consistent 

with the introductory example, PWCDP underperforms all other models for the shortest 

maturities. However, these differences tend to decline and even revert, in the case of the 

longest values. That said, NP/PCHIP outperforms PWCDP for all maturities in the range 

of 6m–5y, and offers a similar result for the 7y. It is worth noting that the accuracy of any 

model in the (0,5y] interval is particularly relevant. As the 5y is by far the most traded 

maturity, most existing CDS contracts have a remaining maturity in that specific range. 

Regarding the credit risk level (7D), this is approximated by the 5y-CDS spread. The 

results confirm that the higher this level, the higher both the MAPE of all models and the 

benefits of considering the non-parametric approach with an appropriate interpolation 

scheme. 

<Figure 7 about here> 

 Tables 4 and 5 provide additional details on the maturity and credit risk level 

effects. Specifically, Table 4 presents the MAPE by model, crossing different maturities 

and 5y-CDS spreads, while Table 5 highlights the difference between the MAPE of the 

model at hand, in each case, and that of the most accurate model. Thus, a value of 0.00 

bp indicates that the corresponding model is, on average, the most accurate approach for 

 
17 One possible concern is that the yearly results are merely the reflection of a “Greece Effect.” However, 
the 2012 results are comparable to those for 2011. This is observed even though the sample period for 
Greece closed on October 18, 2011. 
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that specific maturity and 5y-CDS spread level. In contrast to Figure 7, Table 5 offers a 

consistent but richer picture of the relative performance of the four pricing models. For 

example, as Figure 7 indicates, PWCDP tends to generate more accurate results than other 

models for the 7y maturity, although this is not always the case. For the (300,1000] 

interval of the 5y-CDS spread level, it is actually the simplest NP/Linear model that 

generates the lowest MAPE. Another example is provided by NP/Spline. According to 

Figure 7, this is the most accurate model for a 5y-CDS spread level above 1,000 bp, but 

the least accurate approach for the 7y maturity. Table 5 clarifies that the NP/Spline model 

is the preferred method for some, but not all maturities when the 5y-CDS spread is in the 

highest range. In particular, for the 7y maturity, NP/Spline is the least accurate model. 

<Table 4 about here> 

<Table 5 about here> 

 The overall results in Figure 7 and Tables 4 and 5 suggest that no single model is 

superior under all circumstances. Nonetheless, they also support the conclusion that the 

NP/PCHIP model represents the most sensible option if a particular approach must be 

chosen. This conclusion is particularly true when the NP/PCHIP model is compared with 

the PWCDP model, and sustained via the following observations: first, NP/PCHIP 

provides the lowest overall MAPE (Table 3); second, when sorting by maturity and credit 

risk level (Table 5), this is the only model that never deviates more than 1.5 bp from the 

most accurate alternative. Thus, in what follows, results will be based on the NP/PCHIP 

approach.  

7.2. Examples of the Term Structure and Time Decomposition of CDS Spreads 

We can now proceed to analyze different examples of the term structure and time 

decomposition of CDS spreads. To simplify the exposition and interpretation of the 
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results, only CDS spreads with a time interval of one year, and up to the most liquid 5y 

maturity (i.e., 1, 2, 3, 4, and 5y-CDS spreads), will be inspected. Similarly, the estimated 

forward CDS spreads will always refer to contracts with a total length of one year, 

initiated at time 0 (identical to a 1y spot CDS spread), 1 2, 3, or 4. Finally, the 

decomposition of CDS spreads will also concentrate on those specific time slots. 

Figure 8 analyzes the particular case of France (July 27, 2010) and contains six 

panels. Panel 8A plots the TSCDS and reflects both the effectively observed and the 

interpolated spreads. The resulting term structures of 𝐴𝐴(𝑇𝑇), 𝐵𝐵(𝑇𝑇), and 𝐶𝐶(𝑇𝑇) values are 

presented in Panels 8B, 8C, and 8E, respectively. Taken together, the information 

provided in these panels is representative of an investment-grade issuer. First, the TSCDS 

has a low overall level and a positive slope, reflecting the higher level of uncertainty 

associated with future time periods. In addition, the smooth decline in 𝐶𝐶(𝑇𝑇) as maturity 

increases seems to reflect the time value of money more than it reflects a significant 

increase in the risk of default. Consistent with this perception, 𝐵𝐵(𝑇𝑇) remains low, while 

𝐴𝐴(𝑇𝑇) grows steadily. Panel 8E again depicts the TSCDS, although this time in 

combination with the estimated term structure of forward CDS spreads (TSFCDS) and 

(for comparison purposes) the term structure of the simple mean of forward CDS spreads 

(TSMFCDS). The panel also contains the actual weight of each forward CDS spread for 

different spot spreads. In this particular example, such weights are always close to 1/𝑇𝑇; 

in other words, all relevant forward CDS spreads have approximately the same influence 

on a given CDS spread. Consequently, the TSCDS is very similar to the TSMFCDS. 

Panel 8F shows the final contribution of each year of protection on each CDS spread. If 

we focus on the time decomposition of the 5-year CDS spread, the exact contributions of 

years 1, 2, 3, 4, and 5 are 11%, 17%, 21%, 24%, and 26%, respectively. As shown in 

Panel 8E, such differences can be explained by the TSFCDS alone. The actual weight of 
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each forward spread on the 5-year spot spread is roughly the same; in fact, it is slightly 

decreasing. 

<Figure 8 about here> 

 Figure 9 reproduces Figure 8 in the case of Greece (September 13, 2011), and it 

reveals a completely different situation. In Panel 9A, the risk of imminent default is 

already reflected in the somewhat extreme short-run CDS spreads. Consistent with this 

situation, the 𝐶𝐶(𝑇𝑇) value (Panel 9D) declines rapidly, reaching just €0.50 for 6-month 

maturity and €0.10 for 5-year maturity. The 𝐵𝐵(𝑇𝑇) value (Panel 9C) moves in the opposite 

direction: around the same €0.50 for 6-month maturity, and €0.90 for 5-year maturity. 

Moreover, for the same maturities, the 𝐴𝐴(𝑇𝑇) value (Panel 9B) only reaches €0.35 and 

€1.22, respectively. The results in Panel 9E reflect the predicted connection between level 

and steepness in the TSCDS (Section 6.5). Due to the low present value of future 

payments, conditional on no previous default, the corresponding forward spreads have a 

small weight on the spot spreads. This, in turn, translates into a TSCDS that is 

significantly flatter than the TSMFCDS. For instance, while the weight of the first 

forward CDS spread in the 5-year spot CDS spread is 21% in the example of France, this 

same weight jumps to 45% in the case of Greece. This effectively explains why the 

significant drop in successive forward CDS spreads does not translate into a proportional 

reduction in spot spreads. Finally, as Panel 9F reflects, the combination of a high first 

forward CDS spread (the highest, in fact) and a high weight for this spread causes the 

year-one protection to account for 75% of the 5-year CDS spread. This is in sharp contrast 

to the corresponding value of 11% in the case of France. 

<Figure 9 about here> 
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 Figure 10 repeats the analysis used in the case of Ireland (October 25, 2011). It 

provides an example of an intermediate, hump-shaped TSCDS, which, for the rest, is 

consistent with previous results. 

<Figure 10 about here> 

7.3. The European Central Bank Intervention 

“The ECB is ready to do whatever it takes to preserve the Euro, and believe me; 

it will be enough.” 

Mario Draghi, President of the European Central Bank. July 26, 2012. 

 The risk of a Eurozone collapse forced the European Central Bank (ECB) to 

change its policy. It is well known that Draghi’s statement on July 26, 2012, and the 

decisions that followed had a significant impact on credit spreads within the Eurozone. 

We can now analyze the impact of this episode in more detail. For the sake of 

concreteness and conciseness, the analysis will focus on the cases of Spain and Italy. The 

results for other countries exhibit a similar pattern and they are available on request.  

 Figure 11, which presents the results of the analysis of Spain, consists of four 

panels. Panels 11A and 11B depict the evolution of spot and forward CDS spreads; both 

reflect the significant impact of Draghi’s statement on the cost of credit protection. Panels 

11C and 11D focus on the composition of the 5-year CDS spreads. Regarding the weight 

of each forward spread (Panel 11C), the weight of the first forward CDS spread reached 

its peak immediately before the announcement, while the weight of the last forward 

spread hit bottom. After Draghi’s remark, the weight of all forward spreads began to 

converge until they finally reached a situation typical of an investment-grade issuer (see 

the example of France in Figure 8). The evolution of each year’s contribution to the 5-

year CDS spread (Panel 11D) confirms that Draghi’s statement and the ECB’s posterior 



32 
 
 

policy change had a significant impact not only on the level, but also on the composition 

of the CDS spreads. The analysis of Italy in Figure 12 reveals a similar picture, with one 

main difference: the significant impact of Giuseppe Conte’s resignation announcement 

on May 27, 2018.  

<Figure 11 about here> 

<Figure 12 about here> 

8. Conclusions 

This study introduces a simple non-parametric approach to pricing CDS contracts 

and other single-name credit-risky securities. Like the traditional estimation of implied 

discount factors in risk-free bond prices, this method provides direct estimates of credit 

risk discount factors from the term structure of CDS spreads. Its implementation is based 

exclusively on closed-form solutions, implying that no root-search algorithm or any other 

form of optimization are required. Empirical evidence from the Eurozone likewise 

confirms that this model leads to fewer pricing errors than a conventional semi-parametric 

(piecewise constant default probability) model, which can, in fact, be seen as a restricted 

and computationally demanding version of the non-parametric model presented in this 

study. On the whole, the proposed model is shown to be an effective alternative to semi-

parametric models, when the intention is marking-to-market CDS positions. It is equally 

fair to say that the proposed model should not be seen as a substitute for parametric 

models, which have their own path. 

As a second main contribution, the present study formalizes the concept of time 

decomposition of CDS spreads. This is defined as the problem of determining the 

percentage of a CDS spread, which can be reasonably attributed to the protection of 

specific time intervals within the contract’s maturity. Parallel to the traditional 
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decomposition of spot rates into forwards rates, the decomposition of CDS spreads 

follows from the fact that a spot CDS contract can be reproduced by a portfolio of forward 

CDS contracts. However, unlike a spot rate, a spot CDS spread is not a simple mean of 

forward spreads. The reason for this is that forward spreads may never be paid, and this 

is properly reflected in the weight they impose on spot spreads. Despite this peculiarity, 

the time decomposition of CDS spreads is extremely easy to implement and interpret, 

once spot and forward spreads are defined in terms of credit risk discount factors.  

As regards future research, an important element of the pricing model presented 

in this study is the ex-ante interpolation of observed CDS spreads. Thus, the relative 

performance of alternative interpolation schemes is a question that deserves further 

investigation. 
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Appendix 

 This appendix shows that Equations (11)–(14) satisfy both NAC1 and NAC2. As 

regards NAC1: 

                               𝐴𝐴(𝑇𝑇) = ∆�{𝑍𝑍(ℎ∆)𝑆𝑆[(ℎ− 1)∆]}
𝑇𝑇/∆

ℎ=1
 

                                                   = ∆ � {𝑍𝑍(ℎ∆)𝑆𝑆[(ℎ − 1)∆]}
(𝑇𝑇−∆)/∆

ℎ=1

+ ∆𝑍𝑍(𝑇𝑇)𝑆𝑆(𝑇𝑇 − ∆) 

                                                   = 𝐴𝐴(𝑇𝑇 − ∆) + ∆𝐸𝐸(𝑇𝑇). 

Concerning NAC2: 

𝐶𝐶(𝑇𝑇) + 𝐵𝐵(𝑇𝑇) − 𝐵𝐵(𝑇𝑇 − ∆) = 𝑍𝑍(𝑇𝑇)𝑆𝑆(𝑇𝑇) + �{𝑍𝑍(ℎ∆)𝐻𝐻(ℎ∆)}
𝑇𝑇/∆

ℎ=1

− � {𝑍𝑍(ℎ∆)𝐻𝐻(ℎ∆)}
(𝑇𝑇−∆)/∆

ℎ=1

 

                                                   = 𝑍𝑍(𝑇𝑇)𝑆𝑆(𝑇𝑇) + 𝑍𝑍(𝑇𝑇)𝐻𝐻(𝑇𝑇) 

                                                   = 𝑍𝑍(𝑇𝑇)��[1 − 𝑞𝑞(𝑢𝑢∆)]
𝑇𝑇/∆

𝑢𝑢=0

+ 𝑞𝑞(𝑇𝑇) � [1 − 𝑞𝑞(𝑢𝑢∆)]
(𝑇𝑇−∆)/∆

𝑢𝑢=0

� 

                                                   = 𝑍𝑍(𝑇𝑇) � [1 − 𝑞𝑞(𝑢𝑢∆)]
(𝑇𝑇−∆)/∆

𝑢𝑢=0

 

                                                   = 𝑍𝑍(𝑇𝑇)𝑆𝑆(𝑇𝑇 − ∆) 

                                                   = 𝐸𝐸(𝑇𝑇). 
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Tables and Figures 

Table 1. Numerical example of the bootstrapping of credit risk discount factors. 

 

This table presents a subsample of the numerical example results, where the term structure of 𝐴𝐴(𝑇𝑇), 𝐵𝐵(𝑇𝑇), 

and 𝐶𝐶(𝑇𝑇) is estimated based on a CTSCDS and Equation System (8). In this case, the CTSCDS is obtained 

through a linear interpolation of CDS spreads with observed maturities (Obs. Mat.). These observed spreads 

and the initial CRDF values are indicated in bold format. The example assumes a constant risk-free rate of 

2% and a recovery rate of 40%. 

 

 

Obs. Mat.

0 - 0.00000 0.00000 1.00000

1/365 52.13 0.00274 0.00002 0.99992

2/365 52.28 0.00548 0.00005 0.99984

… … … … …

182/365 80.15 0.49469 0.00661 0.98350

6m 183/365 80.31 0.49739 0.00666 0.98339

184/365 80.46 0.50008 0.00671 0.98329

… … … … …

364/365 108.33 0.98009 0.01770 0.96270

1y 1 108.49 0.98272 0.01777 0.96258

… … … … …

2y 2 159.52 1.92044 0.05106 0.91053

… … … … …

3y 3 203.90 2.80097 0.09519 0.84879

… … … … …

4y 4 242.35 3.61675 0.14609 0.78158

… … … … …

5y 5 275.51 4.36408 0.20039 0.71232

… … … … …

7y 7 328.22 5.65471 0.30933 0.57757

… … … … …

10y 10 380.30 7.12610 0.45168 0.40580

𝑇𝑇 𝑐𝑐𝑐𝑐𝑐𝑐 𝑇𝑇 𝐴𝐴 𝑇𝑇 𝐶𝐶 𝑇𝑇𝐵𝐵 𝑇𝑇
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Table 2. Main descriptive statistics for the CDS spreads. 

 

This table presents the main descriptive statistics for the CDS spreads of France, Spain, Italy, Ireland, 

Portugal, and Greece. Data are collected weekly from January 2010 to December 2019, inclusive. The 

exception is Greece, where the last observation corresponds to October 18, 2011. 

 

 

 

 

 

 

 

France cds(0.5) cds(1) cds(2) cds(3) cds(4) cds(5) cds(7) cds(10)
Mean 14.60 16.37 21.94 28.01 35.20 42.09 52.27 62.35
Median 5.86 7.09 11.15 16.83 23.29 30.55 45.35 57.72
Min 1.18 1.56 3.59 5.63 8.18 10.88 17.06 23.12
Max 115.24 120.95 135.82 146.12 160.58 170.36 177.06 184.06
SD 21.32 22.40 25.73 28.04 30.64 32.45 32.10 31.51

Spain cds(0.5) cds(1) cds(2) cds(3) cds(4) cds(5) cds(7) cds(10)
Mean 70.88 80.51 98.93 112.73 122.11 130.51 142.04 151.00
Median 23.30 31.13 47.49 60.21 70.79 80.76 99.17 116.40
Min 3.64 5.25 9.58 13.72 17.79 24.02 34.18 45.25
Max 375.53 409.00 486.14 503.25 504.31 504.15 485.57 460.42
SD 88.78 93.07 101.95 105.10 104.26 103.08 96.13 87.02

Italy cds(0.5) cds(1) cds(2) cds(3) cds(4) cds(5) cds(7) cds(10)
Mean 76.47 91.10 117.82 138.68 152.89 164.74 180.32 191.74
Median 41.76 54.58 82.16 104.46 119.48 131.94 154.24 172.94
Min 10.03 17.11 31.06 42.42 52.25 62.13 80.29 97.35
Max 551.72 555.99 544.32 530.58 514.43 501.52 486.33 467.85
SD 89.01 95.11 96.93 95.62 92.40 89.42 81.61 73.44

Ireland cds(0.5) cds(1) cds(2) cds(3) cds(4) cds(5) cds(7) cds(10)
Mean 144.86 155.00 168.30 172.97 170.93 171.10 174.79 174.42
Median 10.90 14.78 23.69 33.34 43.16 52.12 70.73 88.19
Min 2.07 2.98 5.39 8.47 11.87 15.36 21.53 27.83
Max 1,356.41 1,359.22 1,341.46 1,302.16 1,211.33 1,149.98 1,089.27 1,016.41
SD 263.51 272.69 277.81 266.16 242.10 224.19 202.96 178.28

Portugal cds(0.5) cds(1) cds(2) cds(3) cds(4) cds(5) cds(7) cds(10)
Mean 221.62 259.25 293.77 302.30 303.47 307.92 312.54 310.02
Median 71.88 94.46 134.17 161.19 192.80 213.54 239.03 255.92
Min 2.68 4.35 9.96 15.71 22.61 27.79 42.01 57.82
Max 1,669.43 2,122.97 2,133.04 1,857.78 1,670.09 1,554.03 1,391.93 1,232.70
SD 341.17 396.15 408.94 369.77 327.59 299.34 260.92 224.02

Greece cds(0.5) cds(1) cds(2) cds(3) cds(4) cds(5) cds(7) cds(10)
Mean 1,829.69 1,768.99 1,651.31 1,545.61 1,430.87 1,349.55 1,252.76 1,164.89
Median 952.66 956.15 973.97 956.46 917.90 870.20 826.59 771.31
Min 224.09 223.90 235.93 246.24 252.39 256.23 255.73 255.30
Max 12,822.95 10,934.82 9,531.71 8,686.78 8,096.37 7,669.84 7,113.72 6,918.56
SD 2,659.22 2,314.64 1,931.05 1,704.00 1,552.66 1,446.31 1,310.84 1,214.67
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Table 3. Main descriptive statistics for the absolute pricing error by pricing model. 

 

This table presents the main descriptive statistics for the absolute pricing error by pricing model: PWCDP 

NP/Linear, NP/PCHIP, and NP/Spline. The absolute pricing error for each observed maturity is estimated 

by ignoring the specific quote in the estimation process; next, the actual and predicted CDS spread for that 

maturity are compared. The reported statistics correspond to pricing errors for 6m, 1y, 2y, 3y, 4y, 5y, and 

7y maturities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PWCDP NP/Linear NP/PCHIP NP/Spline
Mean 8.51 6.26 4.64 5.07
Median 3.49 1.78 1.46 1.61
Min 0.00 0.00 0.00 0.00
Max 1,888.13 942.77 781.65 658.98
SD 34.45 25.17 18.06 16.00
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Table 4. Mean absolute pricing error by maturity and 5y-CDS spread level. 

 

This table presents MAPE by maturity (vertical axis) and 5y-CDS spread level (horizontal axis). The pricing 

models considered are PWCDP, NP/Linear, NP/PCHIP, and NP/Spline. 

 

 

 

 

 

PWCDP (0,50] (50,150] (150,300] (300,500] (500,1000] >1000
6m 1.35 2.77 4.11 5.56 6.57 16.99
1y 1.49 2.92 3.98 4.53 4.38 10.10
2y 1.68 2.67 3.37 3.19 5.00 10.24
3y 1.52 1.93 2.19 2.81 5.44 7.17
4y 1.49 1.55 1.69 1.61 2.08 2.60
5y 1.71 1.86 1.45 1.98 2.49 3.35
7y 1.63 1.46 1.52 2.27 3.42 4.30

NP/Linear (0,50] (50,150] (150,300] (300,500] (500,1000] >1000
6m 1.08 1.66 2.59 4.31 5.48 14.63
1y 0.90 1.36 2.12 3.52 4.48 11.95
2y 1.03 1.19 1.87 3.32 5.24 9.69
3y 1.12 1.23 1.88 2.92 4.36 6.05
4y 1.25 0.92 1.37 1.34 2.87 5.31
5y 1.45 1.36 2.23 2.37 3.53 5.80
7y 2.08 2.21 2.45 2.00 2.61 5.88

NP/PCHIP (0,50] (50,150] (150,300] (300,500] (500,1000] >1000
6m 1.07 1.82 2.75 4.16 5.04 12.68
1y 0.88 1.34 2.03 3.07 3.69 9.18
2y 1.06 1.20 1.63 2.34 4.52 8.12
3y 1.15 1.01 1.36 2.39 3.49 4.96
4y 1.28 0.83 1.13 1.57 3.01 3.69
5y 1.45 1.12 1.52 1.84 2.68 3.72
7y 1.92 1.57 1.51 2.05 3.43 4.42

NP/Spline (0,50] (50,150] (150,300] (300,500] (500,1000] >1000
6m 1.22 2.01 2.89 4.08 5.84 11.62
1y 0.93 1.34 1.92 2.71 3.88 7.72
2y 1.08 1.26 1.82 2.56 3.67 7.30
3y 1.16 1.00 1.33 2.08 3.47 5.08
4y 1.29 0.89 1.23 1.90 3.12 3.87
5y 1.44 1.02 1.37 1.92 2.49 3.18
7y 2.03 2.08 2.79 3.91 5.08 6.49
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Table 5. Difference between the mean absolute pricing error of each model and that of the most 

accurate model by maturity and 5y-CDS spread level. 

 

This table reports the difference between the MAPE of each pricing model and that of the most accurate 

model. The differences are sorted by maturity (vertical axis) and 5y-CDS spread level (horizontal axis). 

The pricing models considered are PWCDP, NP/Linear, NP/PCHIP, and NP/Spline. 

 

 

 

 

PWCDP (0,50] (50,150] (150,300] (300,500] (500,1000] >1000
6m 0.28 1.11 1.52 1.48 1.53 5.37
1y 0.61 1.58 2.06 1.82 0.69 2.38
2y 0.65 1.49 1.74 0.85 1.33 2.94
3y 0.40 0.93 0.86 0.73 1.97 2.20
4y 0.24 0.73 0.57 0.27 0.00 0.00
5y 0.27 0.84 0.08 0.14 0.00 0.17
7y 0.00 0.00 0.02 0.28 0.81 0.00

NP/Linear (0,50] (50,150] (150,300] (300,500] (500,1000] >1000
6m 0.00 0.00 0.00 0.23 0.45 3.01
1y 0.02 0.02 0.20 0.81 0.79 4.23
2y 0.00 0.00 0.24 0.99 1.57 2.39
3y 0.00 0.23 0.55 0.84 0.89 1.09
4y 0.00 0.09 0.24 0.00 0.79 2.71
5y 0.00 0.34 0.86 0.53 1.04 2.62
7y 0.45 0.75 0.94 0.00 0.00 1.58

NP/PCHIP (0,50] (50,150] (150,300] (300,500] (500,1000] >1000
6m 0.00 0.16 0.16 0.08 0.00 1.06
1y 0.00 0.00 0.11 0.36 0.00 1.46
2y 0.02 0.01 0.00 0.00 0.85 0.82
3y 0.03 0.01 0.03 0.31 0.02 0.00
4y 0.03 0.00 0.00 0.24 0.93 1.09
5y 0.01 0.10 0.15 0.00 0.19 0.54
7y 0.29 0.10 0.00 0.06 0.82 0.12

NP/Spline (0,50] (50,150] (150,300] (300,500] (500,1000] >1000
6m 0.15 0.35 0.30 0.00 0.80 0.00
1y 0.05 0.00 0.00 0.00 0.19 0.00
2y 0.04 0.08 0.19 0.23 0.00 0.00
3y 0.04 0.00 0.00 0.00 0.00 0.12
4y 0.04 0.06 0.10 0.56 1.04 1.27
5y 0.00 0.00 0.00 0.08 0.00 0.00
7y 0.40 0.62 1.28 1.91 2.47 2.18
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Figure 1. Example of estimation approaches for the complete term structure of CDS spreads. 
 

 
 

 

This figure provides an example of two possible estimation approaches for the CTSCDS (True; black solid 

line, left axis) based on the OTSCDS (red points, left axis). These estimation approaches are the PWCDP 

model (Panel 1A; blue dashed line, left axis), and the PCHIP method (Panel 1B; blue dashed line, left axis). 

It is assumed that the actual CTSCDS corresponds to a particular parametrization of the Nelson-Siegel 

model. The figure also incorporates the absolute pricing errors from each estimation method (APE; black 

dotted line, right axis). 
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Figure 2. Structure of payments for assets 𝐴𝐴, 𝐵𝐵, 𝐶𝐶, and 𝐸𝐸 with maturity 𝑇𝑇. 
 

 

 

 

 

 

 

 

 

 

 

This figure presents the structure of payments for assets 𝐴𝐴, 𝐵𝐵, 𝐶𝐶, and 𝐸𝐸 with maturity 𝑇𝑇 > 0. The possible 

outcomes for each day are no default (𝑁𝑁𝑁𝑁) or default (𝐷𝐷). 
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Figure 3. Daily structure of the premium leg in a CDS contract with maturity 𝑇𝑇. 
 

 

 

 

 

 

 

 

 

 

 

This figure presents the daily structure of the premium leg in a CDS contract with maturity 𝑇𝑇 > 0. The 

possible outcomes for each day are no default (𝑁𝑁𝑁𝑁) or default (𝐷𝐷). 
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Figure 4. Daily structure of the protection leg in a CDS contract with maturity 𝑇𝑇. 
 

 

 

 

 

 

 

 

 

 

 

This figure presents the daily structure of the protection leg in a CDS contract with maturity 𝑇𝑇 > 0. The 

possible outcomes for each day are no default (𝑁𝑁𝑁𝑁) or default (𝐷𝐷). 
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Figure 5. Numerical example of the bootstrapping of credit risk discount factors.  

    

    
This figure plots the numerical example results, where the term structures of 𝐴𝐴(𝑇𝑇), 𝐵𝐵(𝑇𝑇), and 𝐶𝐶(𝑇𝑇) are 

estimated based on the CTSCDS and Equation System (8). The red point indicates that the CDS spread 

corresponds to an observed maturity: 6m, 1y, 2y, 3y, 4y, 5y, 7y, or 10y. In this case, the CTSCDS is 

obtained via a linear interpolation of the observed quotes. The example assumes a constant risk-free rate of 

2% and a recovery rate of 40%. 
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Figure 6. Example of the term structures of forward risk-neutral default and survival probabilities 

by pricing model. 

    

    

This figure plots the term structures of 𝑞𝑞(𝑇𝑇) (black solid line, left axis) and 𝑆𝑆(𝑇𝑇) (blue dashed line, right 

axis) for four different pricing models: PWCDP (Panel 6A), NP/Linear (6B), NP/PCHIP (6C), and 

NP/Spline (6D). All cases assume the same OTSCDS with the following maturities: 6m, 1y, 2y, 3y, 4y, 5y, 

7y, and 10y. 
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Figure 7. Mean absolute pricing error by country, year, maturity, and 5y-CDS spread level.  

    

    

This figure plots the MAPE by country (Panel 7A), year (7B), maturity (7C), and 5y-CDS spread level 

(7D). The pricing models considered are PWCDP (black solid line), NP/Linear (blue dotted line), 

NP/PCHIP (red dashed line), and NP/Spline (grey solid line). 
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Figure 8. Term structure and time decomposition of CDS spreads for France—July 27, 2010. 

    

    

    

This figure comprises six panels, which present the term structure and time decomposition of CDS spreads 

for France on July 27, 2010. Panel 8A plots the CTSCDS, estimated based on the observed quotes (red 

points) and the PCHIP method. Panels 8B, 8C, and 8D present the term structures of 𝐴𝐴(𝑇𝑇), 𝐵𝐵(𝑇𝑇), and 𝐶𝐶(𝑇𝑇), 

respectively. Panel 8E plots the OTSCDS (1 to 5y; black solid line), TSFCDS (red dashed line), and 

TSMFCDS (green dotted line). It also shows the actual weight of each forward CDS spread on each spot 

CDS spread. Finally, Panel 8F shows the corresponding decomposition of each CDS spread.  
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Figure 9. Term structure and time decomposition of CDS spreads for Greece—September 13, 2011.  

    

    

    

This figure comprises six panels, which present the term structure and time decomposition of CDS spreads 

for Greece on September 13, 2011. Panel 9A plots the CTSCDS, estimated based on the observed quotes 

(red points) and the PCHIP method. Panels 9B, 9C, and 9D present the term structures of 𝐴𝐴(𝑇𝑇), 𝐵𝐵(𝑇𝑇), and 

𝐶𝐶(𝑇𝑇), respectively. Panel 9E plots the OTSCDS (1 to 5y; black solid line), TSFCDS (red dashed line), and 

TSMFCDS (green dotted line). It also shows the actual weight of each forward CDS spread on each spot 

CDS spread. Finally, Panel 9F shows the corresponding decomposition of each CDS spread.  
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Figure 10. Term structure and time decomposition of CDS spreads for Ireland—October 25, 2011.  

    

    

    

This figure comprises six panels, which present the term structure and time decomposition of CDS spreads 

for Ireland on October 25, 2011. Panel 10A plots the CTSCDS, estimated based on the observed quotes 

(red points) and the PCHIP method. Panels 10B, 10C, and 10D present the term structures of 𝐴𝐴(𝑇𝑇), 𝐵𝐵(𝑇𝑇), 

and 𝐶𝐶(𝑇𝑇), respectively. Panel 10E plots the OTSCDS (1 to 5y; black solid line), TSFCDS (red dashed line), 

and TSMFCDS (green dotted line). It also shows the actual weight of each forward CDS spread on each 

spot CDS spread. Finally, Panel 10F shows the corresponding decomposition of each CDS spread.  
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Figure 11. Time decomposition of the 5-year CDS spread for Spain, January 2010–December 2019.  

    

    

This figure comprises four panels, which show the time decomposition of the 5-year CDS spread for Spain 

from January 2010 to December 2019, inclusive. Panel 11A plots the time series of 1- to 5-year CDS 

spreads. Panel 11B presents the time series of forward CDS spreads. Panel 11C shows the evolution of the 

weight of each forward CDS spread on the 5-year CDS spread. Panel 11D plots the time series of the final 

decomposition of the 5-year CDS spread. The results in the last three panels are based on weekly estimates 

of the CTSCDS, generated based on the observed quotes and the PCHIP method. 
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Figure 12. Time decomposition of the 5-year CDS spread for Italy, January 2010–December 2019.  

    

    

This figure comprises four panels, which show the time decomposition of the 5-year CDS spread for Italy 

from January 2010 to December 2019, inclusive. Panel 12A plots the time series of 1- to 5-year CDS 

spreads. Panel 12B presents the time series of forward CDS spreads. Panel 12C shows the evolution of the 

weight of each forward CDS spread on the 5-year CDS spread. Panel 12D plots the time series of the final 

decomposition of the 5-year CDS spread. The results in the last three panels are based on weekly estimates 

of the CTSCDS, generated based on the observed quotes and the PCHIP method. 
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