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Abstract

Net-zero portfolios (NZP), which aim to reduce carbon footprint exposure to zero by a
target date, are becoming a popular vehicle to align investors’ incentives with climate
scenarios and to exert pressure on carbon emitters. We characterize the decision and
timing to divest individual companies from NZP using a novel forward-looking measure,
distance-to-exit (DTE), which calculates the distance, in years, until a company gets
excluded from NZP. Companies with greater DTE have higher valuation ratios and
lower expected returns, consistent with the hypothesis that DTE captures uncertain
institutional pressure to decarbonize and thus can be a useful tool to quantify carbon-
transition risk.
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1 Introduction

The growing concerns about climate change motivate the need for a transition away from fos-

sil fuels to renewable energy. The uncertainty about the process generates risk for companies

and investors in the economy. How to measure such transition risk is one of the key questions

tackled by the literature on climate finance, largely because transition risk is often regarded

as a market-based incentive mechanism facilitating decarbonization efforts (e.g., Pedersen,

2024). Among various channels driving such risk, an increasing and uncertain pressure from

institutional investors on the corporate sector is one of the most debated. In this paper,

we propose a novel framework to assess the scope and magnitude of such pressure based

on the scientific social objective to decarbonize the economy. This approach allows us to

conceptualize a forward-looking firm-level measure of institutional pressure, distance-to-exit

(DTE), which we further relate to the the cross-section of global stock returns.

The starting point to quantify DTE is the concept of net-zero portfolios (e.g., Bolton

et al., 2022). Net-zero portfolios (NZP) aim to reduce carbon footprint over time by mim-

icking scientific paths of decarbonization for the global economy. The economic idea behind

them is to reward companies that undertake emissions reduction, by including such com-

panies in NZP, and to penalize companies that are behind the decarbonization curve, by

excluding them from NZP. The popularity of broadly defined NZP among institutional in-

vestors has been rapidly growing, with more than $130 trillion of assets under management

currently covered by various initiatives1 and some institutions formally tracking the net-

zero objective in their investment.2 The NZP initiative has also shaped some discussions

surrounding sustainable finance, as is the case for the EU Climate Transition Benchmark

Regulation, which establishes uniform rules for low-carbon investment benchmark indexes

and sets their required decarbonization trajectories.3

Important in the NZP framework are decarbonization paths reported by climate scientists

1See, for example, https://www.netzeroassetmanagers.org/; https://www.unepfi.org/

net-zero-alliance/; and https://www.unepfi.org/net-zero-banking/. The specific initiatives
need not be mutually exclusive; hence the economic value of the movement measures its upper bound.

2For example, in January 2024, PenSam, one of Denmark’s largest labor market pension providers,
licensed S&P’s NZP-focused index for its exclusive use, tracking roughly $6 billion.

3See https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32019R2089.
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that imply the dynamic carbon budget (in terms of their portfolio holdings’ carbon footprint)

that investors can allocate to their portfolio holdings every year. Given this budget, investors

select stocks for their portfolios based on individual firms’ revealed efforts to decarbonize

their activities. Companies that do not fit within the budget of the portfolio are removed from

NZP. As the budget gets progressively tighter, companies are more likely to exit NZP unless

they change their own absolute and relative decarbonization efforts. Companies for which

the exclusion threat is greater face more immediate pressure. We measure such exposures

using the distance in years until the expected exclusion from the NZP takes place, and

define them as DTE. We argue that DTE are forward-looking measures of carbon-transition

risk implied by investor preferences, and test how much compensation investors require for

bearing such risk.

We begin our empirical analyses by discussing a step-by-step process to construct DTE.

The advantage of our approach is its flexibility to incorporate variants of decarbonization

effort and the speed of implementing it. In the first step, we assume that climate-oriented

investors, at each point in time, decarbonize their portfolios’ carbon exposures to near zero

by 2050. Further, informed by the last available level of portfolio carbon footprint, their

subsequent carbon budget gets reduced at a constant rate, the assumption we later relax,

subject to not exceeding the total cumulative budget for the entire period. This process

generates a path of individual budget constraints over time. In the second step, investors

select stocks for their portfolios given their per-period budget. Our selection rule is based on

a novel, composite Misalignment Score measure of decarbonization efforts integrating three

industry-adjusted inputs: (1) current and past emission levels; (2) current and past emission

intensities; and (3) forward-looking decarbonization plans, including decarbonization com-

mitments, green innovation, green governance, or greenwashing incentives. To fill up the

portfolio carbon budget, we set emissions of companies either as constant over time, or we

predict their levels until 2050 using past firm-level emission growth rates and their future

commitments. In the final step, depending on our model of future emissions, we obtain two

variants of firm-level measures of DTE calculated as the number of years a given stock is

kept in an investor’s net-zero portfolio.

Next, we study the determinants of DTE using a large panel of over 13, 000 global firms
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with emissions and other firm characteristics, sampled over the 2005-2022 period. We doc-

ument a number of results. Both DTE measures are negatively related to levels of total

emissions. They are also negatively related to market-to-book ratios, past stock returns,

and firm investments. In turn, they are positively related to firm assets size and market

capitalization, though the coefficients are statistically significant only for the latter measure.

They are also positively related to measures of property, plant, and equipment and firm age.

We further test whether by excluding companies in a non-random fashion, NZP drifts

away from the unconstrained benchmark. Testing such property can be useful if the social

planner implementing NZP aims to reach inclusive, broad-based decarbonization, rather than

the outcome in which some economic sectors are excluded at the beginning of the process.

We show that such drift in our sample is relatively modest. Even though, as expected, we

find that the dynamics of NZP generates an uneven exclusion of certain sectors and stocks,

the basic properties of the constrained portfolios relative to the benchmark are not very

different. We also do not find a strong evidence that NZP underweight large companies and

thus they are unlikely to endure significant transaction costs. Finally, they do not penalize

companies that could be instrumental in driving the transition to green equilibrium.

In the second part of the paper, we examine how much the variation in DTE can explain

the cross-section of stock returns. There are at least three direct channels through which

the pricing effect could operate. First, divestment by a significant fraction of investors can

reduce risk sharing, and thus affect equilibrium prices and returns (e.g., Merton, 1987). The

cross-sectional variation in equilibrium expected returns would become even larger if compa-

nies differ in their levels of idiosyncratic risk, as is the case for companies with different DTE.

Second, and novel to our study, is the pricing effect induced by investors’ expectations of

future divestment, which could be nontrivial even if one does not observe significant portfolio

movements today because asset prices discount both current and future divestment.4 Finally,

through net-zero portfolios, investors could communicate expectations of future divestment,

and thus put pressure on corporates to adjust their decarbonization efforts to avoid potential

penalties. To the extent that companies facing investor pressure would face uncertain paths

4Using a calibrated model a concurrent theoretical paper by Cheng et al. (2023) also presents significant
pricing effects of such future-divestment channel.

3



of adjustment, holding everything else the same, companies for which divestment horizon

is shorter would be more risky, similar to the duration-based mechanism (e.g., Lettau and

Wachter, 2007). More broadly, this last communication channel generates a new insight,

namely, DTE can be tools of both divestment and engagement. Notably, in contrast to stan-

dard economic frameworks, in which price effects largely depend on individual firms’ actions,

in our setting, the strength of the three forces depends not only on the individual firm-level

efforts but also on the behavior of other companies subject to similar pressures. This compe-

tition effect among companies is induced by the presence of an aggregate constraint imposed

on the portfolio holdings.

Our baseline model relates DTE to next month’s stock returns. Our empirical specifi-

cation is based on a pooled cross-sectional regression framework of Bolton and Kacperczyk

(2021b), and includes a host of firm-level characteristics, as well as country and industry-

year-month fixed effects. We find a statistically strong negative association between DTE

and future stock returns, both in the univariate and multivariate setting. The results are

economically sizable: Depending on the empirical specification, a one-standard-deviation

increase in DTE for a given cross-section of firms is associated with an approximate 1.2–2.3

percentage-point reduction in next month’s annualized stock returns.

Given that the variation in DTE depends jointly on stock selection mechanism and

carbon budget, a natural question to ask is how much each of the elements contributes to

the explanatory power of stock returns. To answer this question, we expand our baseline

model to include both DTE and Misalignment Score as separate control variables. We find

two results. First, in the regression without DTE, the Score is positively related to future

stock returns. This is consistent with the view that investors require higher compensation

for holding companies with lower decarbonization efforts. Second, when we include both

the Score and DTE in the same regression, we find that DTE is negative and statistically

significant, while statistical significance of the Score becomes weaker. These results imply

that the significance of DTE to explain the cross-sectional variation of stock returns does

not simply stem from the selection of companies; carbon budget also plays a crucial role.

Another dimension of interest concerns the dynamics of the annual portfolio carbon

budget. Even though the aggregate budget every year is pinned down by the scientific
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evidence, how investors distribute it over time is at their discretion and directly informs the

dynamics of institutional pressure. To assess the importance of this margin, we consider a

number of possibilities: (a) investors decarbonize their portfolios at a slower rate for the

first half of the remaining period and then at a faster rate for the second half; (b) investors

decarbonize their portfolios at a faster rate for the first half and then at a slower rate

for the second half; (c) investors follow a more sophisticated science-based decarbonization

path, of Andrew (2020). Each of the three scenarios implies different measures of DTE

because aggregate annual constraints vary in each case. Using the different DTE in our

baseline specification, we find that the qualitative results across different options are similar.

Quantitatively, however, we find that the return premium is economically larger for the case

in which the pressure applied by investors is weaker in the first period and stronger in the

second period, relative to the case in which the pressure is first stronger and then weaker.

A crucial element of our DTE setting is the measurement of firm-level decarbonization

efforts. OurMisalignment Score in the baseline tests assigns an equal weight to three elements

of predicted decarbonization success. However, in the absence of the specific knowledge, the

specific weighting of the three elements we apply is somewhat arbitrary. We assess the

robustness of our results to different weighting schemes and find that the qualitative results

of our regression models remain similar. Nonetheless, the economic power of the different

DTE to explain stock returns varies. Notably, our baseline equal-weight scheme produces

the mid-of-the range magnitudes.

A broader interpretation of DTE is that of transition risk. In this regard, we can think of

DTE as one of several competing transition risk measures. While this view clearly has some

merits, it is important to note that DTE is based on a very specific friction driving transition

risk, which is investor pressure. As such, other alternatives are not exactly like-to-like

comparisons. How much common variation in transition risk such measures cover, relative

to DTE, is an empirical question. We answer this question by including additional popular

measures of transition risk, such as emission levels, their intensities, ESG scores provided by

LSEG and MSCI, and text-based measures of Sautner et al. (2023). As expected, we find

that some of the variation in returns due to DTE can be explained by the other measures.

Nonetheless, the coefficients of DTE retain their sign and statistical significance. These
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results suggest that DTE carry independent variation to explain stock returns.

A common challenge with the interpretation of any asset pricing model is the distinction

between expected and realized returns. In line with studies on large global equity data, we

provide additional supportive evidence using valuation regressions. The benefit of using this

approach is that valuation ratios are less noisy than stock returns and we can control for

future growth opportunities; thus the interpretation of our results is more aligned with the

pure discount rate effect. In our tests, we consider two measures of firm value: price-to-

earnings and price-to-book. We find a strong positive correlation between DTE and these

multiples.

In another test, we examine whether the DTE premia also accrue on the extensive margin,

that is, whether companies which never exit NZP are priced differently than those that do

exit at any point up to and including 2050. We find that even though the directions of the

relationships are the same, their economic and statistical significance are weaker. Thus, the

pressure from institutional investors matters more at an intensive than extensive margin.

This result is quite intuitive in that beyond certain point whether company gets excluded or

not from NZP is less relevant.

In principle, our tests aim to capture economic significance of investor pressure. Whether

such interpretation is consistent with empirical evidence can be assessed in our data. To this

end, we consider two tests. In the first one, we relate the size of the DTE premium to a shift

in investors pressure due to Paris Agreement. Anecdotally, the pressure on corporates to

decarbonize has increased significantly in the post-Paris period. Using our regression frame-

work, we find that the cross-sectional premium in stock returns doubles when we measure

risk premia using stock returns, and increases by about 60% when we use price-to-earnings

ratios; these results are statistically more precisely estimated for measures based on fore-

casted emissions. In the second test, we test whether the strength of our effects gets larger

over time, consistent with the view that the increasing investor pressure is a more contin-

uous process. To this end, we study the variation of the DTE coefficients over time. We

find that the coefficient of DTE in our regressions becomes progressively stronger over time.

Interestingly, the effect becomes slightly smaller in 2022, supporting the view that investors’

willingness to pay for green preference has subsided in that year (Baker et al., 2022).
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In the last part of the paper, we provide additional robustness to our findings. First, our

baseline model measures contribution of each company’s emissions using both direct (scope

1) and indirect emissions (scope 2 and scope 3). This consideration is supported by the view

that the source of emissions should not dictate whether companies are responsible for them

or not. At the same time, scope 3 emissions are generally more difficult to assign to firms

within their production function and thus they can be more noisy. We show that our results

hold when we exclude scope 3 emissions. Second, our results hold when we restrict our

sample to companies that have emissions data in any period prior to 2016 (legacy sample).

Finally, the effect of DTE on stock returns interacts with the firm-level decision to disclose

their climate data directly, consistent with the economic rationale of disclosure (e.g., Bolton

and Kacperczyk (2021a)), but the reduction in our effect is less than 40% of the total

effect. Overall, our results indicate a strong and robust relation between firms’ DTE and

their equity values, consistent with the view that NZP are a source of transition risk for

companies with different degrees of institutional pressure.

Our paper is related to various strands of literature on climate finance. First, we extend

the literature on firm-level transition risk (e.g., Bolton and Kacperczyk, 2021b, 2023; Sautner

et al., 2023) by proposing novel measures of such risk. In contrast to previous studies that

either solely rely on the past emission data or use textual measures subjected to reporting

biases, our DTE measures integrate both past and future climate-related information, and

they are tightly linked to scientific evidence through the concept of decarbonization paths.

Second, our paper parallels recent literature on NZP. The closest papers to ours are Bolton

et al. (2022), which introduces the specifics of NZP, and Jondeau et al. (2021) and Cheng

et al. (2022), which apply a similar methodology and extend it to corporate and sovereign

bonds, respectively. We extend the basic framework of these studies in two critical dimen-

sions: (a) by considering various paths of decarbonization, and (b) by using different signals

that investors can use to sort companies into portfolios. Most important, we use the NZP

framework to derive firm-specific measures of transition risk and show that they are related

to the cross-section of stock returns and their equity valuation ratios.

Third, our paper relates to studies emphasizing the role of institutional investors for

transition risk (e.g., Krueger et al., 2020; Pedersen et al., 2021; Pastor et al., 2023; Atta-
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Darkua et al., 2023). In contrast to these studies, we focus on the specific investment

principle that institutional investors apply, net-zero portfolios, and link the resulting pressure

to firm values. In this regard, our paper is the first one to integrate formally institutional

investors’ pressure in measures of transition risk. Fourth, our paper is related to studies that

discuss the importance of institutional investors in the context of divestment (e.g., Heinkel

et al., 2001; Andersson et al., 2016; De Angelis et al., 2023; Berk and van Binsbergen, 2022;

Ceccarelli et al., 2024; Cheng et al., 2023) and firm engagement (e.g., Gillan and Starks, 2000;

Broccardo et al., 2022). These studies aim to show the different ways in which institutional

investors can affect firm value and the cost of capital. Notably, they typically focus on one

specific channel, or, in some ways, tend to assess the relative importance of divestment vs.

engagement. Moreover, in these studies, divestment and engagement are ex-post phenomena.

Our study is different in at least two aspects. First, we study the economic importance of

both expected and present divestment, which means that our framework does not necessarily

require significant exclusionary forces to be in force at present. Pricing effects can happen

because investors rationally anticipate that divestment may intensify in the future. Second,

we argue that the threat of future divestment can be a form of engagement with firms to

decarbonize their operations.

Finally, at a more general level, our paper can be interpreted as a new approach to testing

duration-based asset pricing models (e.g., Lettau and Wachter, 2007). Differently from the

literature on the topic that resorts to measures based on time-series resolution of cash-flow

risks, we show the timing differences that are directly built into discount rates through the

DTE measures. The advantage of our approach is that it does not rely on specific assets,

such as dividend strips, to generate differences in timing of risks; instead, it relies on the

specific characteristic of stocks that are time dependent (DTE).

The rest of the paper proceeds as follows. In Section 2, we describe the details of our

methodology to construct DTE, and summarize the data. Section 3 presents details on the

empirical properties of DTE. Section 4 reports results from the regression models relating

DTE to stock returns and valuation ratios, and discusses various extensions and robustness.

Section 5 concludes.
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2 Methodology & Data

In this section, we describe the methodology and the data to construct DTE measures.

Our starting point is the concept of net-zero portfolios (NZP) following the work of Bolton

et al. (2022) and adapted to our framework. Important in this concept are two elements:

(a) the dynamic carbon budget, applied by investors in their portfolio decisions, which is

informed by scientific projections about climate scenarios, and determines the maximum

amount of emissions NZP can be exposed to at each point in time until the final period; and

(b) the rule by which investors select companies into NZP. Next, we describe the details of

how to calculate DTE. Finally, we provide summary statistics related to the main variables.

Our data set covers a large sample of global firms with historical and forward-looking carbon

emissions metrics and other firm characteristics over the 2005-2022 period.

2.1 Net-Zero Portfolios

Net-zero portfolios (NZP) aim to reduce carbon footprint over time, typically until 2050,

by mimicking scientific paths of decarbonization for the global economy. Even though NZP

by themselves do not guarantee the decarbonization of the global economy, they aim to

provide incentives for the companies to do so. Specifically, investors reward companies that

undertake emissions reduction, by including such companies in NZP, and penalize companies

that are behind the decarbonization curve, by excluding them from NZP.

2.1.1 Dynamic Carbon Budget

The starting point for constructing a portfolio budget is the global carbon budget. The

global budget is defined as the amount of aggregate emissions that can be maximally pro-

duced to adhere to scientifically determined climate scenarios informed by temperature

changes. In theory, many carbon budgets are possible, as long as different scenarios are

being considered; in practice, some scenarios are more popular than others. In our paper,

we focus on one such scenario, in which the Intergovernmental Panel on Climate Change

(IPCC), the leading provider of climate data, estimates that in order to limit the global
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temperature rise to below 1.5°C compared to pre-industrial levels, with 83% probability,

one would need to limit global emissions to 300 GtCO2 as of the beginning of 2020 (IPCC,

2021). To get a better sense of this number the following thought exercise can be useful.

The Global Carbon Project, a consortium of scientists, estimates that global emissions in

2020 reached 39.3 GtCO2;5 which means that the remaining budget as of beginning of 2021

is 260.7 GtCO2. Assuming a scenario in which emissions stay constant into the near fu-

ture, the remaining budget would be depleted within 6.6 years (260.7/39.3). These findings

underscore the urgency of addressing emissions reduction to sustainably manage the finite

carbon budget and to attain critical climate objectives.

Given the global carbon budget, we can construct the portfolio carbon budget as follows.

First, we define the investable universe, which includes stocks on all publicly traded firms in

the Trucost data set, our source of emissions data. Second, we sum up scope 1–3 emissions

from all such firms in a given year (e.g., 25.8 GtCO2e in 2020).6 Third, assuming that the

rate of portfolio decarbonization is proportional to the rate of global decarbonization, the

cumulative portfolio budget is equal to the portfolio emissions in 2020 times the number of

6.6 years left to exhaust the world cumulative budget as of that date. This procedure yields

an estimate of cumulative portfolio budget of 170.3 GtCO2e.

Having pinned down the size of the total carbon budget for NZP, the next step is to decide

the pathway along which investors would decarbonize their portfolios. We consider several

different choices of such decarbonization paths: (a) investors immediately decarbonize their

portfolios’ footprint at a constant rate, (b) investors decarbonize their portfolios at a slower

rate for the first half of the remaining period and then at a faster rate for the second half, (c)

investors decarbonize their portfolios at a faster rate for the first half and then at a slower rate

for the second half, (d) investors follow a more sophisticated science-based decarbonization

path. Pathways (b) and (d) allow for some inertia in the early years of mitigation (“an oil

5See https://globalcarbonbudget.org/.
6Our motivation to use the sum of all three scopes of emissions is to recognize the fact that investors

in their decisions likely care about all aspects of corporate contribution to global warming, not just direct
emissions. This notion has been supported by previous studies based on global data, which show that
each scope of emissions independently contributes to pricing differences. Even though this approach has an
element of double counting, we believe what drives the cross-sectional distribution in transition risk is the
rate of decarbonization at the aggregate level and not necessarily the level of emissions. As a robustness, we
also considered a less inclusive measure based on scope 1 and 2 and the results are qualitatively similar.
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tanker cannot turn on a dime”), which can be thought of as more realistic forms of putting

pressure on the corporates.

Figure 1 shows how these different decarbonization paths evolve over time, when choosing

starting dates between 2006 and 2022. The green pathways, denoted as Const, assume that

investors follow a constant reduction rate from the first year, such that the terminal emissions

in 2050 are smaller than 0.1 GtCO2.7 The light blue pathways, SF, assume that investors’

carbon budget switches from a slower reduction rate of 1% to a faster reduction rate that

is not larger than 30% (determined based on feasibility) after several years. The yellow

pathways, FS, switch from a faster reduction rate to a slower reduction rate of 1%. Here,

the faster rate is applied to the maximum number of years possible to make the 2050 emission

budget as low as possible while making sure that the total cumulative budget is fully used.

As an example, for the cohort starting in 2006, the terminal 2050 emission budget can be as

high as 12 GtCO2. The dark blue pathways, RAEM, follow the emission mitigation pathway

of Andrew (2020).8 Here, emissions can increase initially and then decrease. Historical

emissions are reported by black lines.

To provide a visual illustration of the portfolio budget’s construction, Figure 2 zooms

in on a snapshot of decarbonization pathways using a constant reduction rate as of the

beginning of 2021. Specifically, historical global emissions in 2020 amount to 39.3 GtCO2

(indicated by the brown bar in the upper panel), and the corresponding annual carbon

footprint of the investable universe is 25.8 GtCO2 (the brown bar in the lower panel). Using

the proportionality rule, the remaining global emissions budget of 260.3 GtCO2 translates

into a cumulative portfolio budget of 170.3 GtCO2 from 2021 onward. This proportionality

rule applies not only to total emissions but also to all individual yearly carbon budgets. This

procedure gives rise to the entire portfolio decarbonization pathways with a 30-year horizon

from 2021 to 2050, as is shown by the green bars in the lower panel of Figure 2. For example,

for the first year of decarbonization, global emissions would need to drop to 32.2 GtCO2

(first green bar on the upper panel), and, correspondingly, our net-zero portfolio would allow

for a carbon footprint of 21.2 GtCO2 (first green bar on the lower panel) in 2021.

7Notably, the immediate reduction in portfolio emissions does not lead to the depletion of the global
budget.

8The mitigation curves were adapted from Raupach et al. (2014) by Andrew (2020).
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2.1.2 NZP Selection Rule

As a final step to obtaining NZP, we select companies, such that their total emissions

jointly do not exceed the yearly emission budget. In this section, we describe the selection

rule. Our broad principle is that companies with greater decarbonization prospects should

be given preference. Specifically, we select companies according to their combined efforts to

decarbonize their activities, measured by our novel composite, the Misalignment Score. Each

individual firm-level component of our measure is neutral with respect to a 4-digit Global In-

dustry Classification Standard industry group (GICS-4). Our measures utilize a wide range

of data, starting with the emissions data, which we obtain from S&P Trucost, and then fol-

lowing with forward-looking climate-related indicators from the following databases: LSEG

ESG, CDP, and Orbis Intellectual Property. Trucost reports firm-level absolute greenhouse

gas emissions in tons of carbon dioxide equivalent (tCO2e) for scope 1, 2, and 3 upstream

emissions.9

In our analysis, we distinguish between carbon budgets based on current emissions and

those based on forecasted emissions. For the latter, for a given dynamic budget path, in-

vestors estimate total emissions for each point in time along the path taking a given decar-

bonization cohort as a starting point for making predictions. Since creating a sophisticated

predictability framework is beyond the scope of this study, we rely on a fairly simple pro-

cedure to form predictions, a weighted average between pre-announced, self-reported firm

commitments to decarbonize their efforts and past emissions trends.10 In the Appendix, we

describe the details of our data and methods to source commitments data, and then present

our method to incorporate trend data. The final forecasted emissions pathway is a weighted

average of the decarbonization target-based path and the emissions trend path. Following

the target credibility framework set out by the Glasgow Financial Alliance for Net Zero

(GFANZ, 2023), we assign a 75% weight to a target-based path if a firm meets two criteria:

(1) its targets are approved by the Science Based Targets initiative (SBTi), and (2) has tar-

gets for both short-term and medium-to-long-term horizon. In the case in which a firm only

9To maintain consistency in our data across years, we use scope 3 emissions coming from upstream
activities, as the emissions from downstream activities are only available from 2017 onwards.

10This experiment is akin to that utilized in equity valuation research in which future cash flows are
determined by subjective analyst expectations of cash flows and their growth and past growth rates.
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meets one of the above two criteria, we assign a 50% weight to the target-based path. We

only assign a 25% weight to the target-based path if a firm only has medium-to-long-term

targets that are not approved by SBTi. For all these three cases, we assign the rest of the

weights to the trend path. Finally, if a firm only has short-term targets, or does not have

targets at all, our forecasts rely fully on the trend path.

Selection Rule: Misalignment Score. The basic idea is to integrate information from

past decarbonization efforts with information that speaks to future efforts to do so. To

this end, we define a novel metric, the Misalignment Score, defined as a weighted average

of the three categories of variables: (1) historical emissions levels and their growth rates,

(2) historical emissions intensities and their growth rates, and (3) forward-looking climate-

related activity metrics. In our baseline analysis, we apply equal weights to each of the

categories but our results are robust to other weighting schemes. Within each category,

we assign equal weights to individual characteristics.11 All three categories aim to predict

firm-level decarbonization outcomes. Carbon emissions levels and their growth rates are

useful to extrapolate current emissions trends into the future. Intensity-level metrics add an

additional dimension of efficiency of carbon production, not directly linked to company size.

Finally, forward-looking metrics summarize all the efforts undertaken by the company that

relate to the companies’ ambition to reduce future emissions.

Specifically, within the first category, we include the size and the three-year moving-

average simple growth rate of the company’s absolute carbon emissions. Within the second

category, we include the level and the three-year moving-average growth rate of the com-

panies’ carbon intensities, measured as tons of CO2 equivalent divided by the company’s

revenue in millions of dollars.12 Within the third category, we incorporate three aspects of

decarbonization ambition measures: (a) environmental variables from the company’s Corpo-

rate Social Responsibility (CSR) report, (b) patent variables on green and brown innovations,

11The weighting scheme we apply to construct the score is a choice variable and can be modified in a
very flexible way. We chose these specific weights to reflect the importance of directly observed emissions in
the prospects of decarbonization. The equal weights within each category are consistent with an uninformed
prior regarding the importance of each individual corporate action.

12We winsorize the year-on-year growth rate of the company’s absolute carbon emissions and carbon
intensities at the 2.5% level.
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and (c) variables on decarbonization commitments reported in the CDP survey. In the Ap-

pendix, we describe the details for the components forming each of the three categories.

2.1.3 Distance-to-Exit (DTE)

We define the distance-to-exit of a company i in year t, DTEi,t, as the number of years a

stock remains included in NZP. We consider two variants of DTE depending on whether we

sum up constant (DTE-CE ) or forecasted emissions (DTE-FE ) to fill up the carbon budget.

To illustrate the construction and basic properties of the two DTE, we follow the example of

Apple. We compute Apple’s DTE by ranking all stocks based on their climate performance

and calculating the number of years Apple’s stock remains in the net-zero portfolio. We

repeat this process for every year from 2006 until 2022. The table below provides numerical

results for the DTE.

Estimation Year 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

DTE-CE
Exit Year 2014 2018 2019 2018 2018 2014 2014 2015 2016 2017 2018 2018 2019 2020 2021 2022 2023
Distance-to Exit 7 10 10 8 7 2 1 1 1 1 1 0 0 0 0 0 0

DTE-FE
Exit Year 2012 2014 2017 2017 2017 2014 2013 2015 2016 2017 2018 2018 2019 2020 2021 2022 2023
Distance-to Exit 5 6 8 7 6 2 0 1 1 1 1 0 0 0 0 0 0

In the first panel, we present results from sorting companies on DTE-CE. Apple’s DTE is

generally decreasing from 2006 to 2022. This could reflect both a tightening of the portfolio

budget or a worsening of the company’s decarbonization efforts. However, given that the

decline is not monotonic, this suggests that at least part of the effect is driven by the changing

performance of Apple relative to its peers. The second panel shows the results based on DTE-

FE. Compared to the previous case, we observe values which are significantly lower. This

result suggests that Apple is likely performing worse when you take into consideration the

projection of its emissions into the future. In both cases, we can see that Apple would hit an

immediate divestment outcome no later than 2018. For the rest of the paper, we apply the

same procedure for all other companies in our data, thereby generating a panel of firm-level

DTE.
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2.2 Financial Data

Our firm-level financial data source is S&P Global Compustat. The dependent variables

in our regressions are RETi,t, which is the monthly return of an individual stock i in month t.

To calculate returns, we follow the approach outlined in Chaieb et al. (2021), with necessary

adjustments. We focus on securities categorized as common or ordinary shares (tpci = ’0’) in

Compustat. Total return indexes are created by combining variables such as prices (prccm),

adjustment factors (ajexdm), quotation units (qunit), exchange rates (exratm), and total

return factors (trfm). We apply -30% delisting returns when delisting is performance related

(based on the delisting reasons dlrsn), following Shumway (1997).

We define the book value of common equity, that is, as a difference between the book

value of stockholder’s equity, adjusted for tax effects, and the book value of preferred stock.13

To construct the book value per share, we follow Asness and Frazzini (2013), and adjust

book value for corporate actions between fiscal year-end and the date of portfolio formation.

To construct price-to-book ratio, we divide current price by book value per share (both

measured in local currency). The price-to-book ratio is updated monthly. Price-to-sales

and price-to-earnings are built in an analogous way. LOGMBi,t, is the natural logarithm

of the price-to-book ration. Similarly, we take the natural logarithm of price-to-earnings,

LOGPEi,t.

Further, we define our control variables that we use in our cross-sectional regressions.

Market capitalization is computed as a product of number of shares outstanding and stock

prices (prccm). For North-American stocks, we use the last reported shares outstanding

on the last trading day of the month (cshom), while for non-North American stocks, we

use current shares outstanding (cshoc). LOGMKTCAPi,t is the natural logarithm of firm

i’s market capitalization at time t; LEV ERAGEi,t, which is the ratio of debt to book

value of assets; momentum, MOMi,t, which is given by the average of the most recent 12

months’ returns on stock i, leading up to and including month t–1; capital expenditures,

INV EST/ASSETSi,t, which we measure as the firm’s capital expenditures divided by the

book value of its assets; LOGPPEi,t, which is given by the natural logarithm, of the firm’s

13See Bali et al. (2016), page 178.
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property, plant, and equipment; the firm’s earnings performance, ROEi,t, which is given by

the ratio of firm i’s net yearly income divided by the value of its equity; the firm’s total

risk, AGEi,t, which is the firm age in number of years, V OLATi,t, which is the standard

deviation of returns based on the past 12 monthly returns; SALESGRi,t, which is the annual

growth rate in firm sales. To mitigate the impact of outliers, we winsorize LEVERAGE,

INVEST/ASSETS, ROE, MOM, VOLAT, and SALESGR at the 2.5% level.

2.3 Summary Statistics

In this section, we summarize the variables we use in our analysis based on the pooled

sample of all companies observed in any period during the period 2005–2022. We report

basic statistics for each variable of interest, including their means, medians, 25th and 75th

percentiles, and standard deviations. We present the information in Table 1.

In Panel A, we show information for emissions-related metrics. We present emission

levels, their growth rates, intensities, and the growth rates thereof. Emissions are measured

as a sum of scope 1, scope 2, and upstream scope 3 emissions, for which information is

complete for the entire period of our analysis. Consistent with previous work, we find that

emission levels are highly right skewed. While the mean value of firm-level emissions equals

approximately 3 million tons of CO2e, the corresponding median is about 218,000. We also

find that emissions are highly dispersed across firms, as indicated by a high value of standard

deviation, which is over 5 times larger than the mean value of emissions. Finally, both levels

and emissions intensities exhibit, on average, a positive growth rate on an annual basis even

though the values are highly dispersed across firms.

In Panel B, we report summary statistics for firm-level Misalignment Score and its sub-

components. Summary statistics for the components are presented on an industry-adjusted

basis and after being standardized. We note that different components exhibit a different

degree of cross-firm-level variation. The most dispersed metrics are those related to the

level and intensity of emissions. In turn, variables related to forward-looking information

are distributed in a fairly comparable way. Notably, unlike emission variables that are right

skewed, most of the other metrics are left skewed, supporting the view that forward-looking

information is generally less available.
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In Panel C, we show summary statistics for DTE. Since one of the DTE measures is

based on the budget based on forecasted emissions we also report summary statistics of

the emission forecasts one year and five years ahead. We observe a similar variation in the

distribution of the two DTE. The metric based on constant emissions has greater values, with

an average of about 11.4. In turn, DTE based on forecasted emissions is slightly smaller with

the average value of about 10.9.

Finally, in Panel D, we summarize information on firm-level variables that enter our

regression models in Section 4. The distribution of these variables is consistent with previous

studies on global carbon-transition risk (e.g., Bolton and Kacperczyk, 2023).

3 The Anatomy of DTE

In this section, we characterize the main properties of DTE. First, we show its relation

to other measures of climate risk. Next, we study the time-series variation in DTE. Sub-

sequently, we analyze the main determinants of DTE using pooled regression framework.

Finally, we provide evidence on the properties of NZP portfolios with different DTE in terms

of their industry weighting and characteristic exposures.

3.1 Correlation Structure and Time-Series Variation of DTE

We begin by tabulating some of the properties of DTE. First, we relate DTE to each

other, to firm emissions, and to Misalignment Score, which is its main building block. Next,

we show the time-series distributions of DTE. Both are reported in Table 2 below.

In Panel A, we report the correlation matrix across DTE and measures on which they are

based.14 We find that DTE are strongly positively correlated with each other, which suggests

that the role of forecast emissions in the budget calculation may not be that critical. We also

find that DTE are negatively correlated both with emission measures and with Misalignment

Score but the correlations are fairly modest, which suggests that DTE do not capture exactly

same information as the raw metric from which they are derived. The likely driver of the

14Table IA.1 reports the correlation structure across additional DTE constructed under different decar-
bonization pathways.
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difference is the dynamic carbon budget constraint that induces additional variation in DTE.

In Panel B, we study the time-series variation of DTE. As expected, average values of

both DTE decrease slightly over time, consistent with the shrinking carbon budget and

greater decarbonization pressure. At the same time, given that the marginal decline in DTE

is less than a unit of time corresponding to it, this pattern suggests that companies undertake

additional measures beyond their emission adjustments to reduce the institutional pressure.

An additional interacting factor potentially affecting our interpretation of the average is

the changing universe of firms in our data. For this reason, we resort to a more detailed

regression analysis of the determinants of DTE.

3.2 Determinants of DTE

We relate the variation in DTE to various corporate characteristics by estimating the

following regression model:

DTEi,t = a0 + a1Controlsi,t−1 + µt + εi,t, (1)

where DTEi,t is a generic term standing for two measures of distance-to-exit for firm i at time

t. The vector of firm-level controls includes the firm-specific variables LOGCO2, LOGMKT-

CAP, LOGASSETS, LOGMB, LEVERAGE, MOM, INVEST/ASSETS, LOGPPE, VOLAT,

ROE, DOLVOL, and AGE.

We estimate this regression model using pooled OLS. We include country-fixed effects, as

well as industry-year-month fixed effects. We double cluster standard errors at the firm and

time dimensions. We present the results in Table 3. We document a number of regularities.

First, both DTE measures are negatively related to levels of total emissions. Second, we find

that both DTE are positively related to firm assets size and market capitalization, though the

coefficients are statistically significant only for the latter measure. Third, DTE are positively

related to firms’ measures of property, plant, and equipment and firm age. Fourth, DTE is

negatively related to firm LOGMB, MOM, and INVEST/ASSETS. Finally, the results for

other variables, such as LEVERAGE, VOLAT, and ROE indicate no strong relationship.
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3.3 Industry and Style Exposures of DTE Portfolios

In this section, we provide additional insights regarding the properties of DTE portfolios

by entertaining two-way comparisons between DTE-based portfolios and the benchmark

portfolio including the universe of stocks in Trucost database. Each figure presents results

for DTE-CE in the left panel, and for DTE-FE in the right panel. To facilitate comparisons,

we focus on the data in 2020. Within each group, we consider three different investable sets:

stocks with DTE ≥ 5, stocks with DTE ≥ 15, and stocks with DTE = 30, the maximum

value of DTE for this cohort.

We begin by showing the GICS-4 market weights in our portfolios relative to the Tru-

cost benchmark. We present the results in Figure 3. The black dots in the figure represent

market weights for the benchmark. Software and Services sector is the largest sector, fol-

lowed by Capital Goods and Banks. Orange dots represent corresponding market weights

of portfolios of companies with a minimum value of DTE equal to 5. In the left panel, we

show the results for DTE-CE portfolios. We note that most of the sector weights are not

significantly different from those of the benchmark. Nonetheless, certain sectors are under-

weighted (Pharmaceuticals, Consumer Discretionary, and Technology Hardware) and others

are overweighted (Materials, Food, Utilities, and Insurance). These results conform to the

general patterns of carbon footprints of these industries. When we consider the composition

of industries for DTE-FE, the deviations of the weights from the benchmark do not appear

visibly different than those in the previous case. We further consider portfolios with DTE

values of minimum 15 (blue dots) and the values greater than or equal 30 (green dots).

While in each of the cases the deviations from the benchmark, as expected, increase slightly,

there does not seem to be a very strong tilt away from the benchmark in our portfolios. In

particular, we do not seem to observe several extreme cases in which certain sectors are fully

excluded, with the exception of Banks, Technology, Energy, and Transportation (in the left

panel) and Banks and Transportation (in the right panel), which are fully excluded in the

case of the longest DTE portfolio.

Another dimension along which we compare DTE portfolios is the number of stocks

held. This comparison allows us to allay the concern that DTE portfolios become thinly
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populated as the carbon budget gets tighter, and thus they may significantly deviate from

the benchmark and become under-diversified. We show the results from this analysis in

Figure 4. Two observations are noteworthy. First, the number of stocks in the portfolio

that includes companies with DTE ≥ 5 is not visibly different than that in the benchmark

portfolio. This is true for both variants of DTE. Second, as we restrict the universe of

companies towards the greater DTE values, the number of stocks in the portfolio drops,

but the drop is really visible only for the extreme portfolio with companies that stay in

the portfolio beyond 2050. Still, even this example is somewhat stylized as it ignores the

possibility that companies may improve their decarbonization profiles at the final periods of

the investment horizon. At the very least, the uncertainty around this situation is too high

to argue that the NZP in 2050 would include only a handful of stocks.

Next, we examine the ability of our portfolios to reduce their exposure to carbon footprint

within each sectoral activity. Figure 5 depicts the results from the analysis in which we

compare the carbon footprint of portfolios in Figure 3 and 4 to the carbon footprint of

the Trucost benchmark. As an example, a portfolio containing stocks with DTE-CE ≥ 5

observes reductions in its carbon footprint anywhere from 30% (Insurance) to 85% (Financial

Services). These results are fairly impressive in conjunction with the fact that these are

well-diversified portfolios. In Figure 6, we ask the same question from the perspective of

future (estimated) emissions. Here, we predict emissions for 2025, 2035, and 2050 and show

the proportion of carbon footprint of DTE portfolios relative to the Trucost universe. The

results are quite consistent and show that in a 5-year period the DTE portfolios would reduce

carbon footprint in each sector by anywhere between 40% and 80%. The numbers become

significantly larger for emissions predicted for 2035. Based on our analysis, the expectation

for 2050 is that we would decarbonize the portfolio by almost 100%, but this number is

obviously not guaranteed.

As a final diagnostic, we assess the properties of DTE portfolios in terms of their fac-

tor/style exposure. In Figure 7, we look at the percentage deviations of median values in

style exposures for each of the above-defined three portfolios from those of Trucost. Our

style characteristics include LOGASSETS, LEVERAGE, LOGMB, MOM, and ROE. As a

reference, we also show the deviations in terms of current and forecasted emissions. Our
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DTE portfolios are not significantly tilted away from the benchmark in almost all the char-

acteristics. The small deviation in size exposure for the portfolio of DTE > 5 is particularly

comforting in light of potential concerns regarding transaction costs or exclusion of salient

companies due to holding small stocks. What is particularly impressive, however, is that our

DTE portfolios exhibit a significant reduction in carbon footprint.

4 DTE and Stock Returns

In this section, we present our main findings on the pricing effects of our DTE measures.

We begin by reporting results for the measures constructed with constant decarbonization

paths. We then proceed to show results on the specific drivers and additional robustness.

4.1 Empirical Specification

Our analysis of carbon-transition risk centers on the cross-sectional regression model

relating individual companies’ stock returns to measures of DTE. Following the work of

Bolton and Kacperczyk (2021b, 2023), we take a characteristic-based approach along the

lines of Daniel and Titman (1997). This approach is particularly well suited given the

rich cross-sectional variation in firm characteristics in our sample.15 As shown in Bolton and

Kacperczyk (2023), the following characteristics are particularly relevant in carbon transition

risk models: firm size; book-to-market; leverage; capital expenditures over assets; property,

plant, and equipment; return on equity; sales growth; firm age; firm profitability, as measured

by return on equity (ROE); and a measure of, respectively, stock return momentum and

volatility. This characteristics-based approach also allows us to take full advantage of fixed

effects along time, country, and industry-year-month dimensions. Further, we can better

account for the potential dependence of residuals by using a clustering methodology. Finally,

the advantage of taking a characteristics-based approach is that we do not need to take

a stance on the underlying asset pricing model. Our aim is more limited: to provide a

15The risk factor-based approach has been a popular method to measure risk premia in a single-country,
but in a fully global study, such as this one, this approach is problematic because of the difficulties in
specifying appropriate factor-mimicking portfolios for a large number of countries with limited data, and
because of cross-country comparability issues.
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comprehensive picture of the cross-sectional variation in stock-level returns due to differences

in DTE. Stated differently, our approach is to identify a company’s transition risk beta.

We begin by linking companies’ monthly stock returns to our measures of DTE and

other characteristics, all lagged by one month. This regression model reflects the long-run,

structural, firm-level impact of net-zero portfolios on stock returns. Specifically, we estimate

the following model:

RETi,t = b0 + b1DTEi,t−1 + b2Controlsi,t−1 + µt + εi,t, (2)

where RET i ,t measures the stock return of company i in month t, and DTE is a generic term

standing for various measures of distance-to-exit constructed using our earlier framework.

The vector of firm-level controls includes the firm-specific variables LOGMKTCAP, LOGMB,

LEVERAGE, MOM, INVEST/ASSETS, LOGPPE, VOLAT, ROE, and AGE.

We estimate this cross-sectional regression model using pooled OLS. We also include

country fixed effects, as well as industry-year-month fixed effects. Including industry-year-

month fixed effects is important in transition risk regressions due to significant cross-industry

differences in emissions, as indicated by Bolton and Kacperczyk (2023). The added benefit of

firm-level data is that the absorbed industry effects can be time varying. We double cluster

standard errors at the industry and year levels, which allows us to account for any cross-

industry correlation in the residuals as well as capture the fact that some control variables,

including DTE, are measured at an annual frequency.16 Our coefficient of interest in equation

(2) is b1, which measures the association between DTE and returns.

We report the results in Table 4, separately for DTE-CE and DTE-FE. We first consider

models without firm controls but with fixed effects (columns 1 and 2) and then models with

all time-varying controls (columns 3 and 4). Throughout all four specifications, we find a

strong negative predictive relation between measures of DTE and next-month stock returns,

consistent with the view that companies with higher DTE face lower carbon-transition risk

and thus investors require lower returns for holding them. All four coefficients of DTE are

statistically significant at the 1% level of statistical significance. The effects are also econom-

16As a robustness, we have also considered specifications with clustering at firm and year dimensions and
found very similar results.
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ically significant. To illustrate, a coefficient in column (3) equals -0.017 and the standard

deviation of DTE-CE in this specification is 6.6. This means that a one-standard-deviation

increase in DTE-CE is associated with 0.12% lower stock returns per month, or 1.5% annu-

alized. The equivalent result for DTE-FE is a slightly larger 1.7%. Among other controls,

LOGPPE, MOM, and ROE are positively related to future stock returns, and LOGMB and

LOGMKTCAP are negatively related. All other characteristics are statistically insignifi-

cant.

4.2 Additional Analyses

In this section, we report a number of results from various analyses that provide further

evidence on the economic mechanism driving our results as well as offer additional robustness

of the main results.

4.2.1 The Relative Importance of Misalignment Score and Carbon Budget

The basic principle to construct any DTE measure involves two elements: (1) the carbon

budget that limits the exposure of the portfolio to carbon emissions, and (2) the sorting rule

that decides the rank of companies for the net-zero portfolio. A natural question to ask is

how much of the variation in stock returns we observe due to DTE is driven by each of the

elements. We provide some evidence on this issue by conducting an additional analysis in

which we directly include the measure of Misalignment Score in our regression model. In

such a specification, the coefficient of DTE captures the residual variation, mostly due to

carbon budget. We report the results from estimating the model in equation (2) in Table 5.

As a starting point, in column 1, we show the results in which Misalignment Score is the

main control variable, along with other time-varying firm characteristics and fixed effects.

We find that the Score is strongly positively related to future stock returns. This result is

comforting for two reasons. First, it suggests that the measure is not a noisy proxy for firm

decarbonization efforts. Second, the positive sign of the coefficient is consistent with the

view that companies that are more misaligned with the decarbonization objective, and likely

having higher exposure to transition risk, should be associated with higher expected returns.
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Next, in columns 2 and 3, we report the results in which Misalignment Score is jointly

included in the same regression model with DTE measures. Three notable results emerge

from the analysis. First, in the joint regression both DTE and Misalignment Score have

expected signs of the coefficients with respect to returns. Second, relatively speaking, DTE

is a stronger predictor of returns than is the Score. In fact, compared to our baseline results,

the coefficient of DTE gets reduced by only a small fraction, which suggests that most of

the variation in DTE is due to tightening budget rather than the Score itself. This is not

totally surprising given that DTE andMisalignment Score are not highly correlated with each

other. Finally, given the results, one cannot argue that DTE is simply a more complicated

transformation of ingredients of Misalignment Score; rather, the carbon budget is an integral

part of the signal.

4.2.2 Alternative Decarbonization Pathways

In our analysis so far, we have assumed that investors follow the decarbonization path,

and the resulting carbon budget, determined by the constant rate of decarbonization. How-

ever, in reality, investors need not follow only such path. In fact, the only constraint they

face is on the cumulative carbon budget and this can be satisfied through different paths.

Which of the paths each investor follows is hard to determine and our paper does not aim

to answer this question directly. What is more important to us is that the annual portfolio

constraint becomes tighter over time as more carbon emissions are produced in the economy

and the carbon budget gets depleted. In fact, the use of different paths allows us to capture

quantitatively different scenarios through which the pressure of investors holding NZP can

be imposed on companies.

With this insight in mind, we analyze three alternative paths. First, we consider the case

in which investors first decarbonize at a slower pace for the first half of their investment

period and then they decarbonize at a faster pace until they reach residual emissions in

2050. We call this an SF path. This path reflects an argument that is often made in climate

discussions that rapid decarbonization may not be easy and companies need some time to

adjust to the new paradigm. Second, we consider the opposite situation in which investors

decarbonize first at a faster rate and then at a slower rate, an FS path. This idea is consistent
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with the alternative view expressed by people such Mark Carney, the former Governor of

the Bank of Canada and Bank of England, that the climate problem is the tragedy of the

horizon and the society cannot afford to wait. Finally, we consider a theory-motivated path

from Andrew (2020), who follows mitigation curves of Raupach et al. (2014), which describe

approximately exponential decay pathways, such that the quota is never exceeded. These

curves allow for some inertia in the early years of mitigation (“an oil tanker cannot turn

on a dime”). Notably, these are not exponential pathways, as the rate of mitigation is not

the same every year. Further, mitigation curves are defined such that the sum of historical

cumulative emissions and cumulative emissions following the mitigation curves exactly meets

the global emissions quota in 2100. This choice is dictated by policy that often dictates that

portfolio decarbonization should strictly adhere to a scientific objective.

We report the results for the above decarbonization paths in Table 6. As before, we look

at the impact on next-month stock returns following specification (2). The results indicate

a strong empirical robustness to the choice of different decarbonization paths. For all three

decarbonization paths and two variants of DTE, we find a strong negative coefficient that

is also statistically highly significant at the 1% level. This result confirms our hypothesis

that a large class of paths implying growing institutional pressure results in an economically

significant spread in returns. As an additional insight, we find some variation in the strength

of the relationship with the different paths. For example, the results for SF path are eco-

nomically stronger than those for FS path, which may suggest that investors consider the

former to be a more realistic form of putting a stronger pressure on the corporates whose

shares they hold in their portfolios.

4.2.3 Alternative Weighting of the Misalignment Score

Another relevant aspect of our analysis relates to the construction of our Misalignment

Score. In doing that, we have arbitrarily assumed an equal exposure to three different

elements of decarbonization efforts. In the absence of any economic prior such assumption

seems least controversial. Of course, it could still be that this choice made us focus on a very

specific solution that could be different from any other choices. To allay a potential concern

of such non-robustness, we consider two alternative weighting schemes. One in which we
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put a 25% weight on absolute emissions category and equal weights on the remaining two,

and another one in which the first weight is set at 50%. Each of the two variants has an

additional number attached to the variable of DTE. With these alternative measures we

repeat our estimation of the baseline return regression. We report the results in Table 7.

Our tests uncover two findings. First, our baseline results are not specific to our choice of

the equal weighting in the Misalignment Score as the other two weighting schemes generate

a very similar pattern of effects with the coefficients being negative and highly statistically

significant. Second, and more interesting, we find that the economic magnitude of our

results, if anything, gets stronger for some of the alternatives. In particular, when we assign

the weight of 50% to absolute emissions, the implied annualized return spread is as high as

2.3%. We conclude that our baseline choice does not produce any specific upward bias in

the observed effect and our results extend to other reasonable choices of DTE measurement.

4.2.4 Controlling for Other Climate Change Measures

Our DTE measures aim to capture forward-looking transition risk. One could argue

that some of the variation they capture also reflects past information. In fact, in construct-

ing DTE we also rely on past climate-related information, such as measures of emissions,

forward-looking announcements, and broader ESG policies. In addition, one may argue that

DTE do not capture any additional information beyond what the typical signals of transition

risk that have been previously studied in the literature capture. To this end, in Table 8, we

report the results from estimating the returns regression model, in which we include as addi-

tional controls: in columns 1 and 2, the natural logarithm of total emissions, Log Emissions,

the natural logarithm of the cumulative forecasted total emissions,Log Cumulative Forecasted

Emissions, the Misalignment Score, and emission intensity, in columns 3 and 4, the text-

based measure of aggregate climate change exposure (CCExposure) of Sautner et al. (2023),

in columns 5 and 6, the sub-components of the text-based measure capturing opportuni-

ties (CCExposureOpp), policy (CCExposureReg), and physical aspects (CCExposurePhy)

of climate risk, and in columns 7-10, broadly defined ESG scores across environment, social,

and governance factors. These scores are provided by LSEG (formerly Refinitiv) sourced via

Workspace and are reported in percentile ranks (columns 7 and 8) and by MSCI (columns
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9 and 10). They are designed to measure a company’s relative ESG performance, commit-

ment, and effectiveness, based on company-reported data. Notably, both text-based and

ESG measures are available only for a subset of companies, so the results across different

specifications are not fully comparable.

We find that controlling for all the past information we still find a negative and sta-

tistically significant relationship between DTE and future stock returns. The results are

statistically stronger for the larger sample of firms in columns 1-2, but still significant even

if we reduce our sample size, as is evident in columns 3-8. Obviously, since DTE is partly

based on the measures we control for the economic magnitudes get smaller but the reduction

in the magnitudes of both DTE measures is merely 40%. We draw two conclusions from

these results. First, investors price in forward-looking information over and above the past

information. Second, our DTE are not simply mimicking other previously used measures

of transition risk but they carry distinct information that is useful in pricing stocks. More

specific, the coefficients of the other climate-related variables are in line with earlier findings

in the literature (Bolton and Kacperczyk (2023) and Sautner et al. (2023)).17 When it comes

to the effects from ESG scores the results from the literature on those are less conclusive.

4.2.5 Valuation Ratios

It is well known that stock returns are noisy proxies for expected returns. It is sometimes

possible to get more precise measures of expected returns based on analyst forecasts. How-

ever, a major challenge with this approach is that (1) analyst forecasts are only available

for a relatively small subset of global stocks; (2) analyst forecasts may be biased because of

industry incentive structures; and (3) the metric of implied cost of equity critically depends

on the postulated valuation model.

As an alternative, we look at the pricing of carbon emissions from a different perspective

and relate our DTE measures to two different valuation ratios, LOGMB and LOGPE, which

tend to be more stable over time and are available for a large set of firms. Looking at

valuation ratios helps us to better distinguish the explanation of our results as one based

17In our tests, the text-based measures of transition risk are largely insignificant, which is in line with the
results in Sautner et al. (2023) who report similar null results in their own specifications.
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on required expected returns vs. one due to luck. Accordingly, we estimate the following

regression model:

Valuation Ratioi,t = c0 + c1DTEi,t−1 + c2Controlsi,t−1 + µt + εi,t. (3)

Our dependent variables are price-to-earnings ratio, LOGPE, and market-to-book ratio,

LOGMB.18 Our control variables include MOM, VOLAT, AGE, ROE, and SALESGR. In

addition, we use one and two year-ahead measures of ROE and SALESGR to proxy for future

investment opportunities. Finally, in all specifications, we include country and industry-year-

month fixed effects. As before we double-cluster standard errors at the industry and year

level. The main independent variables of interest are DTE-CE and DTE-FE. Our coefficient

of interest is c1. We present the results in Table 9.

In columns 1-2, we show the results for LOGMB. Consistent with our hypothesis of

the presence of carbon-transition risk, we find that companies with high values of DTE have

higher LOGMB. The effects are statistically significant at the 1% level of significance for both

measures of DTE. In columns 3-4, we show the results for LOGPE. We again find a positive

and statistically highly significant relation between DTE and LOGPE. Overall, the results

indicate strong pricing effects for both DTE measures. Given that we control for future

growth opportunities, these results are more consistent with the risk-based explanations of

returns rather than the cash-flow-based unexpected return story.

4.2.6 Extensive Margin

The results so far exploit the cross-sectional variation among companies that are sub-

jected to net-zero portfolio exclusion and assign maximum DTE values to companies that

never get excluded. However, one could argue that companies that are never excluded are po-

tentially very different from the rest and as such they are priced differently. We explore such

extensive-margin dimension by defining an indicator variable (EXTDTE-CE and EXTDTE-

FE) that is equal to one for companies that never exit net-zero portfolios, and is equal to

zero for companies that exit at any point prior to and including the final year 2050. We use

18As a third alternative we have also considered log of price-to-sales ratio. The results for this measure
are even stronger.
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such indicator variables as predictors of future stock returns in specification (2), columns 1

and 2, LOGPE, columns 3 and 4. We report the results from estimating these alternative

models in Table 10. The results show a consistent negative coefficient of each individual

indicator variable for RET , suggesting that companies that never exit have lower expected

returns than those that do, and the positive coefficient for LOGPE. Of the four estimates,

however, only one coefficient, in column 1, is marginally statistically significant. Hence, we

conclude that the DTE effect is a better predictor of values on the intensive rather than

extensive margin. This result is useful as it suggests that the relative rankings of companies

in terms of their exit times are an important consideration in valuation effects.

4.2.7 Time-Series Effects

One of the advantages of our framework is that DTE aim to capture economic significance

of investor pressure. Whether such interpretation is consistent with empirical evidence can

be assessed in our data. Anecdotally, it seems that the pressure to align with net-zero

objectives has been growing up, as has been evident from the formation of new investor

alliances. In this section, we aim to formally identify some of the pressure in the data.

As a first test, we test whether the DTE effects become larger in the post-2015 period,

that is, following the Paris agreement of 2015 (e.g., Bolton and Kacperczyk, 2021b). To this

end, we define an indicator variable, Paris, that is equal to one for the years starting from

2016 and equal to zero up to and including 2015. To measure the incremental pricing effect

of the structural shift, we modify our baseline regression model by adding the interaction

term between DTE and Paris as the main control variable:

RETi,t = d0 + d1DTEi,t−1 + d2DTEi,t−1 × Parist−1 + d3Controlsi,t−1 + µt + εi,t, (4)

Our coefficient of interest is d2. We report the results from this model in Table 11. Our

dependent variables are RET, in columns 1 and 2, and LOGPE, in columns 3 and 4. On

average, we find that the valuation effects get larger following the Paris agreement. The

absolute value of the coefficient of DTE, in either specification, increases by a substantial

fraction relative to the pre-Paris period. However, most of the effects are not precisely
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estimated as is evident from the relatively weaker statistical significance.

In another test, we examine the time-series properties of the DTE premium, consistent

with the view that the increasing investor pressure is a more continuous process. To this end,

we estimate our baseline regression model of returns for each year-month in our sample. The

only modification is that we do not include time fixed effects in the regression model. Next,

to estimate the average cross-sectional effect, we average the coefficients across time and

calculate standard errors using Newey-West method allowing for 12 lags of autocorrelation.

We report the results in Table 12. We find that the results largely conform to the estimates

obtained from the pooling regression in Table 4. The magnitudes are slightly smaller but this

could be explained by the effect that our aggregate sample is weighted more towards the later

periods of the sample during which the effect is likely more pronounced. We formally test

this conjecture by estimating a univariate regression model with the estimated coefficients as

a dependent variable and the monthly time trend as a control. These results are presented in

the bottom panel of the table. We consider two specifications, a full sample one and another

excluding observations from 2022. The latter approach accounts for the possible slow-down

in the intensity of sustainable investment following the onset of the war in Ukraine and the

polarization of green preferences in the United States due to energy price increase. For both

tests, we find a negative coefficient of the time trend, which is consistent with the hypothesis

that the pressure to conform to net-zero alignment has been growing larger over time and

does not only result from a discrete shift in transition risk following Paris.

A potential confounding factor of our time-series effects results from the change in the

sample of firms covered by Trucost. In particular, Trucost has expanded the scope of its

coverage of emissions in the post-Paris period. As a result, it is possible that the apparent

acceleration of the net-zero effects could simply reflect the changing sample composition. To

test this conjecture formally, we restrict our sample to companies which had any emission

coverage in any period up to and including 2015, that is, before the structural break in our

data. With this restricted sample, we estimate our baseline model for returns, with and

without other firm controls. We report the results from this estimation in Table IA.3 of the

Internet Appendix.

The results indicate that our basic results are not a simple artifact of the changing
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coverage of firms by Trucost. The coefficients of DTE in the restricted sample, though

slightly smaller, are still statistically significant, as seen from columns 1 and 2, and they

cannot be explained by inclusion of Misalignment Score in the model, as seen from columns

3 and 4. Notably, both DTE and Misalignment Score remain statistically significant in the

latter specification.

4.2.8 The Role of Carbon Disclosure

Another dimension of carbon-transition risk relates to the disclosure of climate-related

information. As previous studies have argued, information about carbon emissions is only

disclosed by some and not all companies, and the decision to disclose is likely endogenous

(e.g., Bolton and Kacperczyk, 2021a). As such, it is possible that the pricing of individual

companies may depend on whether information about their carbon footprint is self-disclosed

or measured by third party, such as S&P Global (Trucost). We examine the relevance of this

issue by conditioning our returns regressions on such information. We define an indicator

variable, Disclosure, that is equal to one if a company directly discloses its emissions and

is equal to zero if the information is estimated by the data provider. To assess the marginal

impact of such information, we estimate the following regression model with the main effect

being captured by the interaction term between DTE and Disclosure:

RETi,t = e0 + d1DTEi,t−1 + e2DTEi,t−1 ×Disclosuret−1 + e3Controlsi,t−1 + µt + εi,t, (5)

The main coefficient of our interest is e2. We report the results from estimating this model

in Table IA.4. We find that the marginal effect of disclosure on stock returns is positive and

statistically significant. Companies with disclosed emissions face a lower degree of transition

risk, which is consistent with the results in Bolton and Kacperczyk (2021a) using emissions

data. What is important here is that both the effect for the estimated and disclosed data

is negative and statistically different from zero. Hence, our DTE findings are not simply

restricted to a specific subset of companies for which Trucost estimates emissions.
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4.2.9 Excluding Scope 3 Emissions

our baseline model measures contribution of each company’s emissions using both direct

(scope 1) and indirect emissions (scope 2 and scope 3). One concern is that scope 3 are

generally more difficult to assign to firms within their production networks and thus they

can be more noisy. Another issue could be that of double counting emissions. The former

issue is probably not first order since measurement error tends to bias the coefficient of the

regression towards zero. The latter consideration is supported by the view that the source of

emissions should not dictate whether companies are responsible for them or not. However,

since the hypothesis can be formally tested, in this section, we assess the importance of

these potential issues by using DTE that are based on the sum of scope 1 and scope 2

emissions only. With the alternative measures, we estimate the model in equation (2). We

report the results in Table 13. The results of the model are qualitatively identical and

quantitatively very similar to those in our baseline model. Again, we find a strong negative

association between DTE and future stock returns. The economic magnitudes of the results

are also similar. Thus, it is unlikely that our results are spurious or not robust to alternative

specifications.

5 Conclusions

In the coming years and decades investors will be exposed to substantial risk resulting

from the transition to a greener economy. What has emerged as a formidable driving factor

of this process is the social pressure manifested through investment decisions of shareholders

globally. With the intensifying climate events, one can expect this pressure to become even

stronger over time. Quantifying this pressure both in terms of investors’ risks and companies’

cost of capital has become of first-order economic importance, largely because market-based

carbon pricing could be part of the solution to the climate problem. In this paper, we

provide a formal framework of net-zero portfolios that allows one to capture this economic

force. Net-zero portfolios generate a shock to asset ownership structure and possibly can

influence asset prices.

We operationalize this empirical mechanism using a novel measure of distance-to-exit
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(DTE) that blends climate forecasts into portfolio decisions. In a large sample of global

stocks, we show that companies that are more exposed to an exit from net-zero portfolios,

and thus face greater investors’ pressure to be excluded from their portfolios, have lower

price multiples and higher returns. This result is economically large and is consistent with

the view that DTE offer a useful framework for measuring transition risk. We further show

that DTE isolate distinct variation to that captured by previously used measures based on

corporate carbon emissions or subjective corporate beliefs. Distinct from these, they also

incorporate information that is forward-looking and is grounded in climate science.

At the broad level, our study is the first empirical attempt to highlight the role of ex-

pected divestment and its role for asset prices. Earlier studies on portfolio holdings isolate

pricing effects due to realized divestment; the mechanism we propose also operates through

expected divestment and engagement coming through the interaction between asset holders

and corporates themselves. We are also one of the first studies in economics that formally

links transition risk to scientific evidence grounded in IPCC projections. We show the im-

portance of communicating such information to firms and investors, as it enters directly into

portfolio decisions of institutional investors and cost of capital calculation and investment

decisions of firms. In this regard, our results indicate that scientific evidence on climate can

be a useful macro-level predictor of asset prices.

Even though our DTE setting does not involve a formal optimization problem, our frame-

work is closely representative of the decision of a large passive investor. Indirectly, this insight

is supported by two observations: our NZP are well diversified across sectors and the tracking

error of our portfolio is minimal for fairly large amounts of capital. Similarly, even though

our empirical results are reported for a subset of listed global equities, the DTE idea is quite

flexible and can be applied to unlisted companies, as well as it can be extended beyond

equity markets. The reason why we restricted our universe was to present pricing effects

associated with the cross-sectional variation in DTE.

While our study aims to provide a comprehensive evidence on the asset pricing implication

of net-zero portfolios, we believe it lends itself naturally to additional investigations, both

theoretical and empirical. On the theory side, our current approach involves dynamic carbon

budget with investors making decisions conditional on a given point they enter the market. In
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this regard, our framework is static with different investors entering the market at different

points in time. This type of cohort effect is representative of the world in which entry

into NZP investments is staggered over time. Solving a fully dynamic model could shed

additional insights into this decision process. Another promising avenue to explore is the

game-theoretic foundation of the interactions between institutional investors and corporates

through the competitive forces induced by tight carbon budget. Our study suggests that it

is not only individual companies’ decarbonization efforts but also their competitors’ actions

that determine the equilibrium expected returns due to transition risk. On the empirical side,

we provide a flexible framework that incorporates general climate-related information into

transition risk framework. Unlike the typical studies that introduce such information on a

case-by-case basis, our framework allows us to aggregate signals into one composite statistic,

captured by DTE. Notably, the choice of the signals is unified by the same objective function

of maximizing decarbonization. All in, much more remains to be done, and we hope this

study opens up the burgeoning literature on climate finance to new avenues of research.
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Le Quéré, 2014, Sharing a quota on cumulative carbon emissions, Nature Climate Change

4, 873–879.

Sautner, Zacharias, Laurence Van Lent, Grigory Vilkov, and Ruishen Zhang, 2023, Firm-

level climate change exposure, The Journal of Finance 78, 1449–1498.

Shumway, Tyler, 1997, The delisting bias in CRSP data, The Journal of Finance 52, 327–340.

37



Appendices
This Appendix provides the details related to the construction of the variables we use

to select stocks into NZP. We discuss the data on commitments, forecasted emissions, and
individual components of the Misalignment Score.

A Commitments Data

We obtain all firm commitments tracked by the annual CDP survey from 2011 to 2022.
CDP started asking its member companies to report their emissions reduction targets in
2011. Company commitments can take different forms, including carbon intensity improve-
ments, absolute emissions reductions, or other forms like percentage of procurement. In our
study, we focus on commitments to reduce absolute emissions only as they are considered
to require the most effort, are more difficult to manipulate, and translate directly into a
global decarbonization objective (Bolton and Kacperczyk, 2022). Since a company could be
following the same commitment over multiple years, we define survey year as any year in
which a specific emissions reduction target was observed in the CDP survey. Commitments
also vary in terms of their base year, target year defining how far the commitment extends
into the future, as well as target ambition, TGT , which is a percentage of emissions reduction
over the target horizon. For comparability of targets, within and across firms, we convert
TGT into linear annual reductions, Target LAR, as follows:

Target LAR =
TGT

target year− base year
. (6)

Target LAR measures the magnitude of annual emissions reduction over the entire time
frame of the target (base year to target year).

Firms also tend to have multiple targets with different scope coverage in each survey
year.19 Within a given emissions scope, we define CECOVER as the reported percentage
of carbon emissions covered by the target; as an example, “100% of combined scope 1 + 2
is covered by the target”. The early vintages of the CDP surveys contain missing values
of CECOVER or data errors, such as CECOVER ≤ 1% even if the level of target-covered
emissions in tons exists and is sizable. In such cases, we back out CECOVER by taking the
ratio of emissions (in tons) covered by the target reported by CDP, relative to total base year
emissions in the corresponding scope, reported by Trucost. The maximum value we allow
for CECOVER equals 100%. We also perform manual checks if the same target is followed
by a firm over multiple years, and we fill missing values of CECOVER accordingly. Our final
measure of the decarbonization abatement rate is the Normalized Target LAR:

Normalized Target LAR = Target LAR× CECOVER. (7)

19For example, Table IA.2 shows that 953 companies reported 1645 targets in 2020.
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Based on the above, we define the Targeted Reduction in Emissions Level as:

Targeted Reduction in Emissions Level =

Normalized Target LAR× (target year – base year)× base year emissions.
(8)

The Targeted Reduction in Emissions Level forms the foundation for one of the two main
inputs in our measure of forecasted emissions.

B Forecasted Emissions

The forecasted emissions pathway is a weighted average of the decarbonization target-
based path and the emissions trend path. Specifically, we construct the decarbonization
target-based pathway by aggregating the CDP decarbonization commitments with different
ambitions and horizons at the firm level. We start by categorizing the targets into seven
scope groups: (1) scope 1, (2) scope 2, (3) scope 3, (4) scope 1+2, (5) scope 1+3, (6) scope
2+ 3, and (7) scope 1+ 2+ 3. We also categorize commitments with target years of up to 4
years from the survey year as short-term targets and the rest as medium-to-long-term. We
further screen targets using the following criteria. For a specific target to be considered valid,
both the survey year and target year should be greater than the base year. Additionally,
targets up to and including the current survey year are not forward-looking and hence are
not considered valid. Next, in each survey year, we compute the Targeted Reduction in
Emissions Level based on the Normalized Target LAR for every target, as defined earlier.

Many firms report multiple targets within the same scope and time frame, which would
lead to multiple target-based emissions pathways. In order to generate one representative
forecast, we perform a series of filtering steps to arrive at a single pathway for each firm on
its scope 1+2 and scope 1+2+3 forecasts, respectively. Within each scope group and time
horizon, we select the target with the highest level of SBTi validation, with the progress
status underway (instead of achieved), and with the highest Targeted Reduction in Emis-
sions Level. Specific to scope 3, firms sometimes set up multiple targets regarding different
segments of their emissions; for example, two scope 3 targets with the same target year,
on business travel and downstream transportation, respectively. In these cases, instead of
selecting only one target, we aggregate the emission reduction implied by these two segments
of targets into the overall scope 3 emission forecast. Note that this process ensures only one
Targeted Reduction in Emissions Level per target year per scope group while allowing for
processing and aggregating multiple targets.

In each survey year t, our forecast horizon is the longest among target years for a given
firm. Within each of the seven scope groups, we calculate multiple Targeted Emissions Check-
points spanning different target years by subtracting each Targeted Reduction in Emissions
Level from their corresponding base year total emissions. Among the seven scope groups,
our focus is to construct forecasts for scope 1 + 2 and scope 1 + 2 + 3 emissions. However,
the Targeted Emissions Checkpoints for scope 1+2 and scope 1+2+3 might not be directly
available from the reported targets; hence, we need to infer them by adding or subtracting
other scope groups. We prioritize the targets that are better defined and tighter, that is,
we prefer individual scope targets (e.g., inferring scope 1 + 2 target from individual targets
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on scope 1 and scope 2 emissions) over targets combining scopes (e.g., scope 1 + 2, scope
1 + 2 + 3, etc). With this preference hierarchy, we consider all the possible combinations to
allow for a maximum amount of Checkpoints for the scope 1+2 and scope 1+2+3 emissions
pathways. As an example, to infer scope 1 + 2, we first search for individual targets on
scope 1 and scope 2, then we search for targets on scope 1 + 2, followed by those on scope
1 + 2 + 3 subtracting scope 3, and so on. To generate a full path of annual reductions, we
interpolate linearly between Checkpoints. The horizon of the target pathway depends on
the target year of the company’s commitments. In the case of a company having a shorter
horizon for scope 1 + 2+ 3 emissions pathways than scope 1 + 2, we try to infer the implied
scope 3 emissions target by the difference between the two pathways and hold the latest
implied scope 3 emissions constant to lengthen the scope 1 + 2 + 3 emissions pathways. We
do the reverse for scope 1+ 2 pathways as well. If none of the above options are available to
back out scope 1+2 and scope 1+2+3 emissions pathways, we also consider partially using
constant emissions. For example, for the scope 1 + 2 pathway, we hold the current scope 1
emissions constant if only scope 2 Targeted Emissions Checkpoints are available.

The second element of our emissions forecasts is the past emissions trend-based pathway,
with the forecast horizon from a given year t to 2050. We use a three-year moving median of
the emissions growth rate to proxy for the short-term growth rate from t to t+3.20 We proxy
for the long-term industry-level emissions growth rates using annual growth rates from 2006
to 2022 across all firms. We apply the above long-term growth rate to data from t+ 16 and
hold it constant until 2050. Between years t + 4 and t + 16, we let the short-term growth
rate converge to the long-term growth rate using exponential interpolation. This process is
akin to methods used in forecasting of long-term cash flow growth rates. To simplify our
measures, we use scope 1 + 2 growth rate to proxy for scope 1 + 2 + 3 growth rate for the
short-term growth rate.21 For the long-term growth rate, we use the unconditional growth
rate based on scope 1 + 2 growth rate to forecast scope 1 + 2 and scope 1 + 2+ 3 emissions.
If a company has a decarbonization target, but its implied long-term growth rate is positive,
we assume the long-term growth rate to be zero. We let the current emissions level evolve
based on the interpolated growth rates to construct past trend-based emissions pathways for
both scope 1 + 2 and scope 1 + 2 + 3 scenarios.

C Construction of the Misalignment Score

Corporate Social Responsibility Indicators

We focus on six firm characteristics that are directly linked to a firm’s potential decar-
bonization actions, all of them obtained from LSEG. The primary underlying source for

20To proxy for the short-term growth rate from t to t + 3, we use a two-year moving median of the
emissions growth rate when there are only two years of growth rate data available. Alternatively, we use the
industry median year-on-year growth rate if there is only one year of data available. The year-on-year growth
rate of the company’s absolute carbon emissions is winsorized at the 5% level for forecasting emissions.

21If the 90th percentile of the cross-sectional scope 1+2 growth rate is larger than 40%, we flag the growth
rates that are larger than the 90th percentile. Otherwise, we flag the growth rates that are larger than 40%.
For the flagged growth rates, we replace them with the smaller number between the applied cutoff or scope
1 + 2 + 3 growth rate to alleviate the effect of outliers.
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LSEG is the company’s Corporate Social Responsibility (CSR) report. The six CSR in-
dicators relate to the following questions: (i) does the company have any decarbonization
target?; (ii) does the company have any decarbonization policy?; (iii) does the company
report its emissions?; (iv) does the company have a CSR committee or team?; (v) has the
company signed the United Nation Principles for Responsible Investment (UNPRI)?; and
(vi) does the company support the UN Sustainable Development Goal 13 (SDG 13) on Cli-
mate Action? Table IA.2 reports the percentage of firms with an environmentally positive
answer to the above six questions. We can observe an increasing trend in the number of
firms classified positively based on these CSR metrics. We note the drop in the percentage of
positive answers between 2016 and 2017, which was predominantly driven by the expansion
of the stock universe covered by Trucost into smaller firms.

Green and Brown Efficiency Innovation

In the second category, we quantify the scope of green patenting activity, both in terms of
the volume as well as the impact of patents. Our source of patent data is Orbis Intellectual
Property, which provides a comprehensive coverage of patent filings and corporate ownership
of patents by listed and unlisted companies in 81 countries. This data set includes 136 million
patents held by 2.3 million firms. It also provides patent citations, which are a good measure
of the importance of the innovation protected by the patent. Following Bolton et al. (2023),
we classify patents into green and brown-efficiency categories. Both types of patents aim
to reduce carbon footprint. Subsequently, we define the following six variables that enter
into construction of our Misalignment Score: Green patent number is the number of green
patents registered by a company in a given year, Brown patent number is the number of
brown-efficiency patents registered by a company in a given year, Green patent citation
number is the cumulative number of citations to green patents registered by a company in
a given year, Brown patent citation number is the cumulative number of citations to brown-
efficiency patents registered by a company in a given year, Green patent ratio is the number of
green patents registered by a company in a given year scaled by the total number of patents
of the same company in that year, and Brown patent ratio is the number of brown-efficiency
patents registered by a company in a given year scaled by the total number of patents of
the same company in that year. Table IA.2 reports the percentage coverage of firms with
a positive number of green and brown-efficiency patents. In general, the patent coverage is
stable over the time horizon from 2006 to 2022. The change in the coverage from 2016 to
2017 is driven by the inclusion of a substantial amount of small firms in our stock universe.

CDP Indicators

In the last category, we define additional factors that relate to firms’ decarbonization
commitments. Specifically, we focus on five metrics of such commitments.

We begin by evaluating the company’s progress against its promise. A simple measure
of target underperformance is the difference between Normalized Target LAR and the actual
annual emissions reduction rate, calculated using a three-year moving average of emissions
growth rate.

We then define the realized rate of emissions abatement. Assuming a constant CECOVER
between the base year and the survey year, we define the actual linear annual reduction
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achieved, Actual LAR, as:

Actual LAR =
Emissions in base year− Emissions in survey year

Emissions in base year× (survey year− base year)
. (9)

Subsequently, in each survey year, we define the Dynamic Abatement Rate as the differ-
ence between the target reduction target and the actual reduction achieved as:

Dynamic Abatement Rate =
1

target year− survey year
×(

TGT − Actual LAR× (survey year− base year)
)
.

(10)

This reflects the actual reduction effort required per year accounting for the target progress
to date.

One could argue that the level of Dynamic Abatement Rate can go both ways, indicat-
ing either a more ambitious target or underperformance relative to the planned reduction.
Therefore, we further transform the dynamic abatement rate into its difference with the ac-
tual annual emission reduction rate calculated using a three-year moving average of emissions
growth rate. We interpret the difference as the degree of target impracticability.

Next, we define the target setting year as the year when the target was initially set as
reported by CDP. Tracking the target progress when a target was initially set helps us to
gauge if a firm deliberately selects a base year with high emissions for easy target completion.
Our greenwashing indicator is defined as

Greenwashing =
Emissions in base year− Emissions in target setting year

Emissions in base year
× 1

TGT
. (11)

Finally, the CDP survey includes the SBTi status for each target from 2015. To join the
SBTi a company must first sign a commitment letter. Then the company has to develop and
submit a science-based emission reduction target for validation within 24 months. Once the
target has been validated it is disclosed. We also classify targets into three groups in terms
of their SBTi involvement: (1) SBTi approved, (2) SBTi committed, and (3) non-SBTi.
We give more credit to the targets with SBTi validations when we forecast emissions and
construct composite misalignment scores.

To illustrate the mechanics of each of the above indicators, we focus on Apple, which
made commitments to CDP. As of 2020, scope 1, 2, and 3 emissions of Apple are growing at
a rate of 13.96% and its scope 1, and 2 emissions are growing at a rate of 17.80% based on a
three-year moving average. Apple reports an active pre-existing target, dated back to 2012,
committing to a 52% reduction covering 100% of scope 1 and 2 with 160, 400 tons of base
year absolute emissions over the 2012-2036 period. The Normalized Target LAR is 2.17% per
year with a target horizon of 24 years. Apple also set a new target of 75% reduction covering
100% of scope 1, 2, and 3 with 38, 400, 000 tons of base year absolute emissions over the 2015-
2030 period. The Normalized Target LAR is 5% per year with a target horizon of 15 years.
The SBTi status for both targets is classified as committed but not yet approved. Thus,
Apple is scored based on the new target as we prioritize the target with the highest level of
SBTi validation, and with the highest target reduction, consistent with the framework for
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forecasted emissions. Regarding the new target, the target underperformance is thus 18.96%
(5.00%− (−13.96%)), the Actual LAR is in total 34.64% from 2015 to 202022, the reduction
left is 75%− 34.64% = 40.36% and that indicates a Dynamic Abatement Rate of 4.04% per
year from 2020 to 2030, leading to a target impracticability measure of 18.00% (4.04% −
(−13.96%)). As for the greenwashing indicator, it is 0% for the existing target as 2012 is both
the base year and the target-setting year. For the new target, the base year (2015) scope 1-3
emissions are 26,547,913 tCO2, and the target-setting year (2020) scope 1-3 emissions are
39,453,087 tCO2 as reported by Trucost, resulting in −64.81% emissions reduction already
achieved. Thus, we use 0%—the maximum value—for the final greenwashing indicator.

To construct the composite Misalignment Score, we follow the following three steps.
First, we process the variables, including converting all the Boolean variables from the CSR
report, into numerical values, and computing and filtering the CDP target-related variables.
All variables included in the score are expressed in units consistent with the assumption that
a less climate-aligned firm receives a higher value. Except for the emissions-related variables
for which we exclude missing values, we penalize the non-reporters by applying the worst
possible value in a given industry. For example, we allocate a value of 2 if a firm only has
non-SBTi targets or does not have a target at all, a value of 1 if a firm has SBTi committed
targets, and a value of 0 if the targets are SBTi approved. Note that we do not penalize firms
with no targets using the worst greenwashing indicator; instead, we assume zero greenwashing
in the absence of any targets. Second, we apply the best-in-class method by standardizing
each variable within GICS-4 industry groups using the z-score transformation.23 Third, we
aggregate variables within each sub-category using equal weights and then construct the final
composite score using appropriate weights.

Category Category
Weight

Data
Source

Variables Reported Value Score Input Standardized
Value

Historical hard data 33.33% Trucost
Carbon emission 39,453,087.42 39,453,087.42 165.24
Emission growth 0.14 0.14 0.68

Historical soft data 33.33% Trucost
Carbon Intensity 143.72 143.72 -0.56
Intensity growth 0.06 0.06 1.61

Forward-looking soft data 33.33%

CSR Report

Decarbonization target existence Yes 0.00 -2.63
Decarbonization policy existence Yes 0.00 -1.75

Emission disclosure Reported 0.00 -1.91
Sustainability committee existence Yes 0.00 -2.05

UNPRI signatory No 1.00 NA
SDG13 climate action Yes 0.00 -2.62

Orbis Patent

Green patent number 23 -23.00 -2.10
Brown efficiency patent number 0 0.00 0.10
Green patent citation number 264 -264.00 -16.47

Brown efficiency patent citation number 0 0.00 0.11
Green patent ratio 0.04 -0.04 -0.03

Brown efficiency patent ratio 0 0.00 0.08

CDP Survey

SBTi participation Submitted 1.00 -2.76
Greenwashing indicator 0 0.00 -0.04

Abatement rate 5 -5.00 -6.36
Target underperformance 18.96 18.96 -3.08
Target impracticability 18.00 18.00 -3.13

Final Score 28.28

The Table above presents an example of the Misalignment Score breakdown for Apple
Inc., as of the end of 2020. This illustrative case is further extended into all companies and

22The target-covered emissions are 38, 400, 000 tons in the base year 2015 and 25, 100, 000 tons in the
survey year 2020 as reported by CDP. Thus the Actual LAR is 6.93% per year ( 25,100,000−38,400,000

38,400,000×(2020−2015) ) or

34.64% in total from 2015 to 2020.
23In the early sample period, the standardized z-scores for Boolean variables are undefined if there is no

variability within an industry group for a particular year. In such cases, we assign NA to the standardized
value of the variable, and firms are not scored on this particular variable for that year.
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all years of our data. In column 1, we show the category label. In column 2, we report the
weights assigned to each category. Column 3 reports the corresponding data source. Column
4 details each component within each category. Column 5 shows the data as reported by the
company. Column 6 illustrates our transformation of the reported value into the score input.
Column 7 presents the values that are first industry adjusted and then standardized using
z-scores.24 In general, higher values of the score are associated with a greater misalignment
of a company.

We observe that Apple’s Misalignment Score is equal to 28.28. The main individual
factors contributing negatively to the score are carbon emissions levels. On the other hand,
Apple’s score is reduced by the impact of its green patents, abatement rate, and CDP target
performance-related variables.

24The standardized value for the UNPRI signatory variable is set to NA due to a lack of variability within
industry groups, as none of the firms were reported to be signatories in 2020. Therefore, no firm in the
technology industry is scored based on this variable for 2020.
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Figure 1: Global carbon budget

This figure shows the evolution of decarbonization paths from 2006 to 2022. The green pathways, Const,
assume that investors follow a constant reduction rate from the first year, so that the terminal emissions value
in 2050 is smaller than 0.1 GtCO2. The light blue pathways, SF, switch decarbonization rate from a slower
reduction rate of 1% to a faster reduction rate that is not larger than 30% (selected based on feasibility)
after several years. The yellow pathways, FS, switch from a faster reduction rate to a slower reduction rate
of 1%. Here, the faster rate is applied to the maximum number of years possible to make the 2050 emissions
budget as low as possible while making sure we fully use up the total cumulative budget. The dark blue
pathways, RAEM, follow the emissions mitigation pathway of Andrew (2020). The mitigation curves were
adapted from Raupach et al. (2014) by Andrew (2020). Historical emissions are depicted by the black lines.
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Figure 2: Net-zero portfolio carbon budget

This figure illustrates the correspondence between the global decarbonization pathway and one applied at
the portfolio level as of the beginning of 2021. The coefficient of proportionality between the two pathways is
equal to the ratio of the historical portfolio emissions (25.8 GtCO2) over the world emissions (39.3 GtCO2)
measured at the end of 2020. The first carbon constraint for 2021 is illustrated by the first green bar (second
bar in each figure).
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Figure 3: Industry exposures (in %) of the DTE-investable portfolios relative to the Trucost
universe in 2020

This figure shows industry exposures of DTE value-weighted portfolios compared with those displayed by
the (value-weighted) universe of all stocks in the Trucost database as of 2020. We show results for portfolios
based on two variants of DTE. In the left panel, we use DTE-CE, and in the right panel, DTE-FE. We
consider three investable sets: stocks with DTE ≥ 5, stocks with DTE ≥ 15, and stocks with DTE ≥ 30.
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Figure 4: The number of DTE-investable stocks by industry in 2020

This figure shows the number of stocks held in DTE industry portfolios compared with that in the universe
of all stocks in the Trucost database as of 2020. We consider portfolios based on two variants of DTE. In
the left panel, we use DTE-CE, and in the right panel, DTE-FE. We consider three investable sets: stocks
with DTE ≥ 5, stocks with DTE ≥ 15, and stocks with DTE ≥ 30.
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Figure 5: Carbon emissions of DTE-investable industry portfolios relative to the Trucost
universe in 2020: Constant-emission model

This figure shows the percentage reductions in carbon footprint of DTE value-weighted industry portfolios
compared with that in the universe of all stocks in the Trucost database as of 2020. We show results for
portfolios based on two variants of DTE. In the left panel, we use DTE-CE, and in the right panel we use
DTE-FE. Carbon footprint is based on the observed annual total emissions in 2020. We consider three
investable sets: stocks with DTE ≥ 5, stocks with DTE ≥ 15, and stocks with DTE ≥ 30.
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Figure 6: Carbon emissions of DTE-investable industry portfolios relative to the Trucost
universe as of 2020: Forecasted-emission model

This figure shows the percentage reduction in total carbon footprint of DTE-investable portfolios compared
with that in the universe of all stocks in the Trucost database as of 2020. We characterize DTE-investable
value-weighted portfolios in three years: 2025, 2035, and 2050. We analyze the investable sets based on two
variants of DTE. In the left panel, we use DTE-CE, and in the right panel, we use DTE-FE. The carbon
footprint is based on the 2020 emissions forecasts over the horizon from 2020 to 2050.
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Figure 7: Percentage deviations in characteristics of DTE-investable portfolios from those of
the Trucost universe in 2020

This figure shows the the percentage deviations in style characteristics of DTE portfolios compared with
those in the universe of all stocks in the Trucost database as of 2020. We consider portfolio median values
based on two variants of DTE. In the left panel, we use DTE-CE, and in the right panel, DTE-FE. The
characteristics we consider include ASSETS, LEVERAGE, MB, MOM, and ROE. Carbon footprint is based
on both 2020 emissions and emission forecasts. We consider three investable sets: stocks with DTE ≥ 5,
stocks with DTE ≥ 15, and stocks with DTE ≥ 30.
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Table 1: Summary Statistics

This table reports summary statistics (mean, standard deviation, the 25th, 50th, and 75th percentile) of
the main variables. The sample period is 2005–2022. Panel A reports the emissions variables. Panel B
shows the Misalignment Score and its industry-standardized sub-components. Panel C reports the one-
year and five-year ahead forecasted emissions, the three-year average of forecasted emissions, the three-year
average of percentage change in forecasted emissions, and distance-to-exit (DTE) derived using different
metrics of ranking. We show two variants of DTE: Misalignment Score plus constant emissions (DTE-CE );
Misalignment Score plus forecasted emissions (DTE-FE ). Panel D summarizes information on firm-level
variables that enter our regression models. RET is the monthly stock return; LOGPE is the natural logarithm
of share price divided by earnings per share; LOGMB is the natural logarithm of market cap divided by book
value; LOGSIZE is the natural logarithm of market capitalization; LOGASSETS is the natural logarithm
of asset value; LEVERAGE is the ratio of debt to book value of assets; MOM is the average stock returns
over the previous year; INVEST/ASSETS is capital expenditures divided by the book value of its assets;
LOGPPE is the natural logarithm of the property, plant, and equipment; VOLAT is the standard deviation
of returns based on the past 12 monthly returns; ROE is the ratio of net yearly income divided by the
value of equity; AGE is firm age; SALESGR is the annual growth rate in firm sales; Log Emissions is the
natural logarithm of scope 1, 2, 3 upstream total emissions; Log Average Forecasted Emissions is the natural
logarithm of the three-year average of forecasted emissions.

Mean Std.Dev Q25 Median Q75

Panel A: Carbon Emissions
Carbon Emissions (Scope 1, 2, 3 upstream) 2956648 15472626 45403 217431 1063323
Growth Rate in Carbon Emissions (Scope 1, 2, 3 upstream) 0.098 0.234 -0.029 0.051 0.168
Carbon Emissions Intensity (Scope 1, 2, 3 upstream) 548.713 2911.106 85.174 190.412 419.693
Growth Rate in Carbon Emissions Intensity (Scope 1, 2, 3 upstream) -0.009 0.087 -0.053 -0.016 0.025

Panel B: Misalignment Score Components (Industry-Group Standardized)
Misalignment Score 0.457 9.720 -0.050 0.142 0.400
Carbon Emissions (Scope 1, 2, 3 upstream) 1.659 15.291 -0.205 0.020 0.826
Growth Rate in Carbon Emissions (Scope 1, 2, 3 upstream) 0.222 1.143 -0.392 0.001 0.580
Carbon Emissions Intensity (Scope 1, 2, 3 upstream) 1.286 41.945 -0.292 0.000 0.613
Growth Rate in Carbon Emissions Intensity (Scope 1, 2, 3 upstream) 0.522 62.318 -0.442 0.000 0.503
Decarbonization Target -0.016 1.010 0.284 0.429 0.561
Decarbonization Policy -0.017 1.003 -1.098 0.556 0.757
Reported Emissions -0.015 1.004 -1.141 0.547 0.716
CSR Committee -0.013 1.003 -1.095 0.513 0.708
UNPRI Signatory 0.000 1.017 0.039 0.050 0.120
SDG 13 Climate Action -0.010 1.013 0.039 0.381 0.552
# Patent (Green) -0.007 1.026 0.084 0.114 0.169
# Patent (Brown) -0.005 1.022 0.072 0.100 0.140
# Patent Citation (Green) -0.007 1.024 0.074 0.114 0.177
# Patent Citation (Brown) -0.005 1.018 0.066 0.103 0.136
Ratio of # Green Patent over # Patent -0.008 1.013 0.089 0.180 0.289
Ratio of # Brown Patent over # Patent -0.004 1.011 0.063 0.097 0.175
SBTi Status -0.007 1.019 0.135 0.177 0.221
Greenwash Indicator 0.002 1.014 -0.067 -0.028 0.015
Abatement rate -0.005 1.003 0.150 0.186 0.240
Underperformance -0.009 1.015 0.202 0.249 0.306
Infeasible Indicator -0.009 1.017 0.195 0.233 0.300

Panel C: DTE-Related Variables
Forecasted Emissions t+ 1 3068398 16162804 46627 224722 1101036
Forecasted Emissions t+ 5 4031219 25607157 49911 259456 1329257
DTE-CE 11.399 6.826 7.000 11.000 14.000
DTE-FE 10.914 7.300 6.000 10.000 14.000

Panel D: Additional Regression Variables
RET 0.893 12.151 -5.238 0.347 6.167
LOGPE 3.075 0.933 2.520 2.980 3.498
LOGMB 0.748 0.983 0.112 0.690 1.333
LOGSIZE 9.628 2.461 7.990 9.417 11.141
LOGASSETS 9.665 2.606 7.904 9.411 11.305
LEVERAGE (winsorized at 2.5%) 0.218 0.172 0.067 0.198 0.334
MOM (winsorized at 2.5%) 0.131 0.427 -0.152 0.059 0.319
INVEST/ASSETS (winsorized at 2.5%) 0.045 0.044 0.014 0.032 0.061
LOGPPE PPE 7.919 3.094 5.861 7.798 9.908
VOLAT (winsorized at 2.5%) 0.102 0.052 0.065 0.090 0.125
ROE (winsorized at 2.5%) 0.113 0.174 0.044 0.107 0.188
Age -0.029 0.029 -0.038 -0.022 -0.013

52



Table 2: DTE: Basic Properties

Panel A reports Pearson correlation coefficients across carbon emissions, the Misalignment Score, and the
two variants of DTE, as defined in Table 1. Panel B shows the time-series variation of the stock universe
and the average DTE.

Emissions Misalignment
Score

DTE-CE

Panel A: Correlations
Misalignment Score 0.056 1.000
DTE-CE -0.170 -0.104 1.000
DTE-FE -0.159 -0.097 0.982

Year No. Firms DTE-CE DTE-FE

Panel B: Stock universe and average DTEs by year
2006 3117 12.762 10.255
2007 3381 11.878 8.488
2008 3351 11.640 9.483
2009 3435 11.180 10.893
2010 3605 11.457 11.802
2011 3859 11.940 11.775
2012 3994 11.330 10.261
2013 4014 11.315 11.247
2014 4715 11.594 11.434
2015 5020 11.441 12.684
2016 5158 10.897 12.060
2017 11697 11.843 10.726
2018 12494 12.113 11.674
2019 12985 11.341 10.696
2020 13698 10.886 11.210
2021 14991 10.541 10.412
2022 14484 11.427 10.336
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Table 3: Determinants of the Distance-to-Exit (DTE)

The dependent variables are DTE-CE and DTE-FE, defined in Table 1. The independent variables are
defined in Table 1. These include Log Emissions, LOGMKTCAP, LOGASSETS, LOGMB, LEVERAGE,
MOM, INVEST/ASSETS, LOGPPE, VOLAT, ROE, and AGE. The sample period is 2005–2022. Standard
errors (in parentheses) are double clustered at the firm and year levels. All regressions include industry-
year-month fixed effects and country fixed effects. ***1% significance; **5% significance; *10% significance.

Dependent variable: DTE-CE DTE-FE
(1) (2)

Log Emissions -1.669*** -1.719***
(0.111) (0.121)

LOGMKTCAP 0.395*** 0.432***
(0.130) (0.142)

LOGASSETS 0.150 0.161
(0.134) (0.143)

LOGMB -0.394*** -0.439***
(0.102) (0.111)

LEVERAGE 0.104 0.078
(0.364) (0.386)

MOM -0.315* -0.351*
(0.158) (0.169)

INVEST/ASSETS -8.200*** -8.493***
(1.423) (1.426)

LOGPPE 0.300*** 0.313***
(0.063) (0.066)

VOLAT -0.780 -0.697
(0.754) (0.842)

ROE 0.023 -0.002
(0.308) (0.327)

AGE 9.798*** 10.701***
(1.988) (2.164)

Constant 25.742*** 25.394***
(1.061) (1.157)

Country fixed effects Yes Yes
Industry-year-month fixed effects Yes Yes
Observations 1,009,299 1,009,299
R-squared 0.293 0.290
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Table 4: Returns and DTE

The dependent variable is firm-level return, RETi,t+1, measured monthly. The main independent variables
are DTE-CE and DTE-FE, as defined in Table 1. Control variables include LOGMKTCAP, LOGMB,
LEVERAGE, MOM, INVEST/ASSETS, LOGPPE, VOLAT, ROE, and AGE, as defined in Table 1. The
sample period is 2005–2022. Standard errors (in parentheses) are double clustered at the industry and year
levels. All regressions include industry-year-month fixed effects and country fixed effects. ***1% significance;
**5% significance; *10% significance.

Dependent variable: RET (1) (2) (3) (4)

DTE-CE -0.013*** -0.017***
(0.004) (0.004)

DTE-FE -0.013*** -0.016***
(0.003) (0.004)

LOGMKTCAP -0.210*** -0.209***
(0.049) (0.049)

LOGMB -0.242*** -0.243***
(0.069) (0.069)

LEVERAGE -0.064 -0.063
(0.243) (0.243)

MOM 0.465** 0.465**
(0.160) (0.160)

INVEST/ASSETS -0.447 -0.444
(0.846) (0.845)

LOGPPE 0.076** 0.076**
(0.028) (0.028)

VOLAT 1.961 1.963
(3.150) (3.150)

ROE 0.811*** 0.812***
(0.262) (0.262)

AGE 0.972 0.977
(0.981) (0.979)

Constant 1.033*** 1.019*** 2.394*** 2.363***
(0.040) (0.037) (0.414) (0.415)

Country fixed effects Yes Yes Yes Yes
Industry-year-month fixed effects Yes Yes Yes Yes
Observations 995,505 995,505 995,505 995,505
R-squared 0.230 0.230 0.231 0.231
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Table 5: Controlling for Misalignment Score

The dependent variable is firm-level return, RETi,t+1, measured monthly. The main independent vari-
ables are Misalignment Score and DTE-CE and DTE-FE, as defined in Table 1. Control variables include
LOGMKTCAP, LOGMB, LEVERAGE, MOM, INVEST/ASSETS, LOGPPE, VOLAT, ROE, and AGE, as
defined in Table 1. The sample period is 2005–2022. Standard errors (in parentheses) are double clustered
at the industry and year levels. All regressions include industry-year-month fixed effects and country fixed
effects. ***1% significance; **5% significance; *10% significance.

Dependent variable: RET (1) (2) (3)

Misalignment Score 0.119*** 0.032 0.039
(0.037) (0.034) (0.030)

DTE-CE -0.014***
(0.003)

DTE-FE -0.013***
(0.003)

Controls Yes Yes Yes
Country fixed effects Yes Yes Yes
Industry-year-month fixed effects Yes Yes Yes
Observations 995,505 995,505 995,505
R-squared 0.231 0.231 0.231
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Table 6: Returns and DTE: Alternative Decarbonization Pathways

We consider alternative portfolio decarbonization pathways. Pathway RAEM follows the emission mitigation
pathway of Andrew (2020). Pathway SF switches from a slow reduction rate of 1% to a faster reduction rate
that is not larger than 30% after several years. Pathway FS switches from a faster reduction rate to a slow
reduction rate of 1%. The main independent variables are DTE-CE and DTE-FE, defined as in Table 1,
but assuming alternative pathways. The dependent variable is RET , measured monthly. Control variables
mimic those from respective tables. The sample period is 2005–2022. Standard errors (in parentheses) are
double clustered at the industry and year levels. All regressions include year-month fixed effects and country
fixed effects. ***1% significance; **5% significance; *10% significance.

Dependent variable: returns (1) (2) (3) (4) (5) (6)

Pathway RAEM: DTE-CE -0.016***
(0.004)

Pathway RAEM: DTE-FE -0.013***
(0.004)

Pathway FS: DTE-CE -0.010***
(0.003)

Pathway FS: DTE-FE -0.009***
(0.002)

Pathway SF: DTE-CE -0.026***
(0.007)

Pathway SF: DTE-FE -0.019***
(0.005)

Controls Yes Yes Yes Yes Yes Yes
Country fixed effects Yes Yes Yes Yes Yes Yes
Industry-year-month fixed effects Yes Yes Yes Yes Yes Yes
Observations 995,505 995,505 995,505 995,505 995,505 995,505
R-squared 0.231 0.231 0.231 0.231 0.231 0.231
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Table 7: Returns and DTE: Different Misalignment Score Weights

The dependent variable is firm-level return, RETi,t+1, measured monthly. The main independent variables
are DTE-CE and DTE-FE, as defined in Table 1, but with different weights applied to the Misalignment
Score categories. The “25” in the variable indicates a 25% weight in the absolute emissions category; the
“50” in the variable indicates a 50% weight in the absolute emissions category. Control variables include
LOGMKTCAP, LOGMB, LEVERAGE, MOM, INVEST/ASSETS, LOGPPE, VOLAT, ROE, and AGE, as
defined in Table 1. The sample period is 2005–2022. Standard errors (in parentheses) are double clustered
at the industry and year levels. All regressions include industry-year-month fixed effects and country fixed
effects. ***1% significance; **5% significance; *10% significance.

Dependent variable: RET (1) (2) (3) (4)

DTE-CE 25 -0.014***
(0.004)

DTE-FE 25 -0.013***
(0.003)

DTE-CE 50 -0.026***
(0.006)

DTE-FE 50 -0.023***
(0.006)

Controls Yes Yes Yes Yes
Country fixed effects Yes Yes Yes Yes
Industry-year-month fixed effects Yes Yes Yes Yes
Observations 995,505 995,505 995,505 995,505
R-squared 0.231 0.231 0.231 0.231
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Table 8: Returns and DTE: Controlling for Other Environmental Variables

The dependent variable is RET , measured monthly. The main independent variables are DTE-CE and
DTE-FE, as defined in Table 1. In addition to the same set of control variables as in Table 4, we also include
the natural logarithm of total emissions (Log Emissions), the natural logarithm of cumulative forecasted
emissions until 2050 (Log Cumulative Forecasted Emissions) in columns (1) and (2); the following text-
based climate change exposure variables from Sautner et al. (2023): climate change exposure (CCExposure)
in columns (3) and (4), and opportunity climate change exposure (CCExposureOpp), regulatory climate
change exposure (CCExposureReg), physical climate change exposure (CCExposurePhy), in columns (5)
and (6); and LSEG’s and MSCI’s Environmental, Social, and Governance Pillar Scores in columns (7) to
(10). The sample period is 2005–2022. Standard errors (in parentheses) are double clustered at the industry
and year levels. All regressions include industry-year-month fixed effects and country fixed effects. ***1%
significance; **5% significance; *10% significance.

Dependent variable: RET (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

DTE-CE -0.009** -0.009* -0.009* -0.010** -0.008**
(0.003) (0.005) (0.005) (0.004) (0.003)

DTE-FE -0.009*** -0.009* -0.009* -0.009** -0.007**
(0.003) (0.004) (0.004) (0.004) (0.003)

Misalignment Score -0.011 -0.008
(0.032) (0.028)

Log Emissions 0.257*** 0.258***
(0.052) (0.052)

Log Cumulative Forecasted Emissions 0.056 0.055
(0.044) (0.043)

CCExposure 7.957 7.967
(19.490) (19.494)

CCExposureOpp 9.492 9.517
(26.539) (26.539)

CCExposureReg -11.007 -11.073
(46.399) (46.424)

CCExposurePhy 142.913 143.044
(83.408) (83.392)

Environmental Pillar Score (LSEG) 0.002* 0.002*
(0.001) (0.001)

Social Pillar Score (LSEG) 0.004*** 0.004***
(0.001) (0.001)

Governance Pillar Score (LSEG) 0.000 0.000
(0.001) (0.001)

Environmental Pillar Score (MSCI) 0.037*** 0.037***
(0.011) (0.011)

Social Pillar Score (MSCI) 0.002 0.002
(0.012) (0.012)

Governance Pillar Score (MSCI) 0.022* 0.022*
(0.012) (0.012)

Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country-fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry-year-month-fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 995,505 995,505 325,757 325,757 325,757 325,757 562,645 562,645 477,681 477,681
R-squared 0.231 0.231 0.383 0.383 0.383 0.383 0.313 0.313 0.320 0.320

59



Table 9: Valuation Ratios and DTE

The dependent variables are LOGPE and LOGMB, measured monthly. The main independent variables are
DTE-CE and DTE-FE, as defined in Table 1. Control variables mimic those in Table 4. The sample period
is 2005–2022. Standard errors (in parentheses) are double clustered at the industry and year levels. All
regressions include a vector of controls, industry-year-month fixed effects, and country fixed effects. ***1%
significance; **5% significance; *10% significance.

Dependent variable: LOGMB LOGPE

(1) (2) (3) (4)

DTE-CE 0.004*** 0.005***
(0.001) (0.001)

DTE-FE 0.003*** 0.004***
(0.001) (0.001)

Controls Yes Yes Yes Yes
Country fixed effects Yes Yes Yes Yes
Industry-year-month fixed effects Yes Yes Yes Yes
Observations 712,023 712,023 633,015 633,015
R-squared 0.577 0.577 0.429 0.429
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Table 10: Returns and DTE: Extensive Margin

The dependent variables are RET and LOGPE, measured monthly. The independent variables (EXT) are
transformations of DTE-CE and DTE-FE, as defined in Table 1, that are equal to one for companies that
never exit net-zero portfolios, and equal to zero for companies that exit net-zero portfolios at any point
prior to and including the final year 2050. Control variables are the same as in Table 4. The sample period
is 2005–2022. Standard errors (in parentheses) are double clustered at the industry and year levels. All
regressions include industry-year-month fixed effects and country fixed effects. ***1% significance; **5%
significance; *10% significance.

Dependent variable: RET LOGPE

(1) (2) (3) (4)

EXT DTE-CE -0.146* 0.028
(0.076) (0.039)

EXT DTE-FE -0.106 0.015
(0.075) (0.034)

Controls Yes Yes Yes Yes
Country fixed effects Yes Yes Yes Yes
Industry-year-month fixed effects Yes Yes Yes Yes
Observations 995,505 995,505 633,015 633,015
R-squared 0.231 0.231 0.428 0.428
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Table 11: Valuations and DTE: The Role of Paris Agreement

The dependent variables are RET and LOGPE, measured monthly. We define an indicator variable, Paris,
that is equal to one for all observations from year 2016 onwards, and equal to zero for the period of up to
and including 2015. The main independent variables are DTE-CE and DTE-FE, as defined in Table 1, and
the interaction terms between DTE and Paris. All regressions include the same set of control variables as
in Table 4. The sample period is 2005–2022. Standard errors (in parentheses) are double clustered at the
industry and year levels. All regressions include industry-year-month fixed effects and country fixed effects.
***1% significance; **5% significance; *10% significance.

Dependent variable: RET LOGPE

(1) (2) (3) (4)

DTE-CE -0.009* 0.003***
(0.005) (0.001)

DTE-FE -0.008** 0.003***
(0.004) (0.001)

DTE-CE × Paris -0.014 0.002*
(0.009) (0.001)

DTE-FE × Paris -0.015* 0.002*
(0.008) (0.001)

Controls Yes Yes Yes Yes
Country fixed effects Yes Yes Yes Yes
Industry-year-month fixed effects Yes Yes Yes Yes
Observations 995,505 995,505 633,015 633,015
R-squared 0.231 0.231 0.429 0.429
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Table 12: Returns and DTE: Time-Series Effects

The top panel presents the results in which the coefficients are obtained each period from the cross-sectional
regressions and then averaged over time. The dependent variable is RET, measured monthly. The main
independent variables are DTE-CE and DTE-FE, as defined in Table 1. We include the same set of control
variables as in Table 4. The bottom panel reports estimates from a regression of cross-sectional coefficients
of the DTE (from step 1 of the cross-sectional regression) on time trend. Trend is a variable that is
equal to 1 to 203 indicating each month from 2006.02 to 2022.12, Trend (ex 2022) excludes observations in
2022. The Newey-West standard errors (in parentheses) allow for 12 lags in autocorrelation structure. All
regressions include industry fixed effects and country fixed effects. ***1% significance; **5% significance;
*10% significance.

Dependent variable: RET (1) (2)

DTE-CE -0.012***
(0.003)

DTE-FE -0.011***
(0.003)

Controls Yes Yes
Country fixed effects Yes Yes
Industry fixed effects Yes Yes

Trend -0.006 -0.005
(0.004) (0.003)

Observations 203 203

Trend (ex 2022) -0.009** -0.008**
(0.004) (0.004)

Observations 191 191
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Table 13: Returns and DTE: Excluding Scope 3 Emissions

The dependent variable is RET, measured monthly. The main independent variables are DTE-CE and
DTE-FE, as defined in Table 1, but excluding scope 3 emissions. Control variables mimic those in Table
4. The sample period is 2005–2022. Standard errors (in parentheses) are double clustered at the industry
and year levels. All regressions include industry-year-month fixed effects and country fixed effects. ***1%
significance; **5% significance; *10% significance.

Dependent variable: returns (1) (2) (3) (4)

DTE-CE -0.007** -0.007**
(0.003) (0.003)

DTE-FE -0.007** -0.008***
(0.003) (0.003)

Controls No No Yes Yes
Country fixed effects Yes Yes Yes Yes
Industry-year-month-fixed effects Yes Yes Yes Yes
Observations 995,505 995,505 995,505 995,505
R-squared 0.230 0.230 0.231 0.231
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IA Additional Tables and Figures

Table IA.1: Correlations between carbon emissions, Misalignment Score, and DTE.

This table presents the correlation matrix between carbon emissions, Misalignment Score, and DTE. DTE are constructed using
different ranking measures and portfolio decarbonization pathways. We show two variants of DTE: Misalignment Score plus
constant emissions (DTE-CE); Misalignment Score plus forecasted emissions (DTE-FE). Pathway RA assumes that investors
follow the emission mitigation pathway of Andrew (2020). Pathway FS assumes that investors switch from a faster reduction
rate to a slow reduction rate of 1%. Pathway SF assumes that investors switch from a slow reduction rate of 1% to a faster
reduction rate that is not greater than 30% after several years.

Pathway RA Pathway FS Pathway SF

Carbon
Emissions

Misalignment
Score

DTE-CE DTE-FE DTE-CE DTE-FE DTE-CE

Misalignment Score 0.06 1.00
Robbie Andrews (RA) Reduction Pathway
DTE-CE -0.11 -0.09 1.00
DTE-FE -0.13 -0.09 0.97 1.00
Switch Fast-Slow (FS) Reduction Pathway
DTE-CE -0.17 -0.09 0.78 0.80 1.00
DTE-FE -0.17 -0.09 0.76 0.81 0.96 1.00
Switch Slow-Fast (SF) Reduction Pathway
DTE-CE -0.07 -0.10 0.94 0.87 0.69 0.65 1.00
DTE-FE -0.12 -0.10 0.96 0.94 0.76 0.74 0.94
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Table IA.2: Detailed Summary Statistics of Misalignment Score Variables

This table presents further details on the forward-looking sub-components of the Misalignment Score. Panel
A reports the percentage of firms with environmentally positive answers to the six ESG variables. Panel B
reports the percentage coverage of firms with green and brown efficiency patents, respectively. Across firms
with green (brown efficiency) patents, we also report the average number of green (brown efficiency) patents
registered by a company in a given year, the cumulative number of citations to green (brown efficiency)
patents registered by a company in a given year, and the number of green (brown efficiency) patents registered
by a company in a given year scaled by the total number of patents of the same company in that year. Panel
C reports the number of targets, number of firms with targets, number of firms with targets on Scope 1
emission, number of firms with targets on Scope 2 emission, number of firms with targets on Scope 3 emission,
number of firms with SBTi approved targets, and number of firms with SBTi considered targets.

Year # Firms Decarbonization
Target

Decarbonization
Policy

Reported
Emissions

CSR
Committee

UNPRI
Signatory

SDG 13
Climate
Action

Panel A: Refinitiv ESG
2007 3381 19.91 26.56 23.93 15.76 0.47
2008 3351 25.28 36.35 27.84 24.44 0.60
2009 3435 28.70 40.52 35.02 35.23 0.70
2010 3605 29.68 45.16 40.25 41.75 0.83
2011 3859 30.19 45.24 41.10 43.64 0.96
2012 3994 30.05 47.20 42.89 45.62 1.05
2013 4014 29.35 47.73 43.85 46.06 1.17
2014 4715 24.86 43.39 39.75 40.45 1.17
2015 5020 24.58 43.94 40.56 38.65 1.22
2016 5158 24.58 46.18 43.41 39.74 1.84 0.02
2017 11697 12.81 25.25 23.51 20.89 1.00 0.01
2018 12494 14.32 28.04 26.25 22.52 0.95 0.14
2019 12985 17.34 33.48 30.44 26.69 1.05 11.90
2020 13698 20.02 37.23 33.14 30.77 1.47 19.88
2021 14991 24.24 39.91 34.79 35.14 1.58 24.43
2022 14484 27.73 42.18 36.67 39.06 1.28 27.19

Overall 17632 21.88 36.90 33.28 31.88 1.15 13.13

Green Patents Brown Efficiency Patents

Year # Firms % Coverage # Patents # Patents
Citations

# Green
Patents to #
Patents Ratio

% Coverage # Patents # Patent
Citations

# Brown
Patents to #
Patents Ratio

Panel B: Patents
2006 3117 15.72 6.92 269.86 0.22 7.83 7.36 108.91 0.19 [t]
2007 3381 15.47 6.96 256.20 0.22 7.48 6.75 140.92 0.17
2008 3351 16.50 6.70 492.65 0.23 8.06 7.26 1567.29 0.20
2009 3435 16.48 7.45 484.68 0.23 6.96 7.72 228.07 0.17
2010 3605 17.00 8.00 286.37 0.25 7.71 7.73 102.63 0.17
2011 3859 17.05 8.42 301.26 0.24 7.20 7.11 79.91 0.19
2012 3994 17.63 9.68 285.13 0.25 7.54 8.03 103.04 0.16
2013 4014 17.96 10.84 311.18 0.26 7.90 8.43 79.27 0.16
2014 4715 16.69 11.00 312.37 0.28 7.53 7.67 79.31 0.19
2015 5020 16.57 11.97 166.91 0.28 7.33 8.72 67.09 0.18
2016 5158 16.71 12.59 247.10 0.28 7.74 8.96 55.24 0.16
2017 11697 9.66 10.39 146.40 0.33 3.93 8.65 40.73 0.20
2018 12494 8.86 9.81 84.03 0.33 3.87 8.57 30.80 0.20
2019 12985 9.09 10.15 69.16 0.33 3.63 10.73 28.76 0.22
2020 13698 8.73 9.96 267.39 0.35 3.20 8.53 20.85 0.20
2021 14991 7.97 10.16 43.78 0.35 2.69 8.01 16.53 0.21
2022 14484 8.07 9.89 42.89 0.36 2.20 7.92 13.46 0.21

Overall 17632 11.52 9.78 211.87 0.30 4.74 8.29 134.28 0.19

Year # Firms # Targets Firms with
Valid Target

Firms with
Scope 1
Related
Target

Firms with
Scope 2
Related
Target

Firms with
Scope 3
Related
Target

Firms with
SBTi

Approved
Target

Firms with
SBTi

Considered
Target

Panel C: CDP Targets
2012 3994 465 324 299 283 92
2013 4014 553 386 353 339 118
2014 4715 655 453 410 400 129
2015 5020 582 410 356 356 112
2016 5158 869 551 491 490 134 126
2017 11697 1196 688 614 614 183 56 133
2018 12494 1286 743 675 675 200 100 206
2019 12985 1523 869 807 802 253 171 231
2020 13698 1645 953 900 888 318 262 303
2021 14991 2471 1354 1307 1287 529 386 474
2022 14484 3465 1974 1934 1915 900 551 518

Overall 17632 15162 2379 2299 2298 1146 635 1023
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Table IA.3: Returns and DTE: Restricted Universe of Firms

The dependent variable is RET , measured monthly. The main independent variables are Misalignment Score
and DTE-CE and DTE-FE, as defined in Table 1. The sample universe uses firms for which any emission
data is available prior to 2016. Control variables mimic those in Table 4. The sample period is 2005–2022.
Standard errors (in parentheses) are double clustered at the industry and year levels. All regressions include
industry-year-month fixed effects and country fixed effects. ***1% significance; **5% significance; *10%
significance.

Dependent variable: returns (1) (2) (3) (4)

DTE-CE -0.011*** -0.006**
(0.002) (0.003)

DTE-FE -0.010*** -0.005*
(0.002) (0.003)

Misalignment Score 0.057* 0.062**
(0.033) (0.030)

Controls No No Yes Yes
Country fixed effects Yes Yes Yes Yes
Industry-year-month fixed effects Yes Yes Yes Yes
Observations 578,647 578,647 578,647 578,647
R-squared 0.315 0.315 0.315 0.315

4



Table IA.4: Returns and DTE: The Role of Carbon Disclosure

The dependent variable is RET , measured monthly. Disclosure is an indicator variable that is equal to one
if the company directly discloses its emissions, and it is equal to zero if the information is estimated by the
data provider. The main independent variables are DTE-CE and DTE-FE, as defined in Table 1, and the
interaction terms between DTE and Disclosure. We include the same set of control variables as in Table
4. The sample period is 2005–2022. Standard errors (in parentheses) are double clustered at the industry
and year levels. All regressions include industry-year-month fixed effects and country fixed effects. ***1%
significance; **5% significance; *10% significance.

Dependent variable: returns (1) (2)

DTE-CE -0.041***
(0.007)

DTE-FE -0.036***
(0.006)

Disclosure -0.211* -0.142
(0.114) (0.109)

DTE-CE × Disclosure 0.024***
(0.007)

DTE-FE × Disclosure 0.019**
(0.007)

Controls Yes Yes
Country fixed effects Yes Yes
Industry-year-month fixed effects Yes Yes
Observations 995,453 995,453
R-squared 0.256 0.256
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