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Abstract 
 

We document that artificial intelligence accounts for a significant and growing share of 
aggregate innovation produced during the past three decades, and is now diffuse across industries 
and technology fields. We then study publicly traded firms, finding that firms direct their 
production of innovation toward AI, motivated by their own, and their customers', labor's 
exposure to AI technology. We interact exogenously measured innovation capacity and AI 
exposure to instrument actual AI production. Our central findings are that producing AI increases 
a firm's future stock returns, supported by both higher profitability and lower risk. The results 
suggest that AI production increases firm value. 
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1. Introduction 

Artificial intelligence, the technology of machine cognition, has grown explosively 

during recent years. In this paper, we use newly available USPTO data on AI patents to study 

firms that produce AI innovation.1 We document that, in the aggregate, AI is increasingly a 

prominent subset of all innovation activity during the past three decades. Even in 1990, AI 

accounted for 5% of all innovation activity, and has risen to 15%-35% of innovation today.2 

Additionally, AI innovation is consistently more valuable than non-AI innovation over time, in 

terms of both scientific and commercial value. Moreover, AI innovation has already diffused 

widely over time, across industries and technology fields, as expected from a general purpose 

technology. For instance, AI today accounts for at least half of all innovation in about 20% of 

industries. Finally, U.S. publicly traded firms dominate AI, producing close to half of all AI 

innovation. 

Focusing on publicly traded firms during the past three decades, we then study the 

motivations for and value implications of producing AI innovation. We find that firms are 

motivated to direct their production of innovation toward AI based on how their own labor, as 

well as that of their customers, can be substituted or complemented by AI technology. This result 

is also the basis of our strategy for identifying the effect of AI innovation produced by the firm 

on the firm's future value, value drivers, and corporate operational outcomes, rather than 

studying the effect of endogenous actual AI innovation. 

We continue to our central findings on value implication. We find that producing AI 

innovation increases a firm's future stock returns, incrementally to non-AI innovation. These 

                                                 
1 By contrast, prior literature studies the adoption of previously developed AI technology, e.g., Alekseeva, Giné, 
Samila, and Taska (2020) and Babina, Fedyk, He, and Hodson (2022, 2023). 
2 The share of AI innovation is lowest when measured based on patent counts and highest based on market value of 
patents. 
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higher returns are supported by increasing future profitability, and decreasing future risk, with 

both being measured after, and as a result of, AI innovation successfully produced by the firm. 

Our final set of findings shows that the firm's AI innovation increases future labor productivity 

and decreases future physical capital intensity, among other mechanisms that we explore. 

Turning to a more detailed exposition of our empirical analysis at the firm level, we begin 

with our strategy for identifying the causal effect of AI innovation. In so doing, we also examine 

the motivations of firms to produce AI innovation. We instrument actual AI innovation with two 

mutually reinforcing incentives for a firm to produce AI innovation: its plausibly exogenous 

innovation capacity (as induced by tax credits for R&D spending), and its exposure to AI 

technology (and/or that of its customers). By AI exposure, we are referring to the potential of AI 

technology to substitute or complement labor for the firm that uses it as a production input. The 

greater is the firm's innovation capacity, the more its exposure to AI (and/or its customers' AI 

exposure) will incentivize it to produce AI innovation; and conversely, the greater is the firm's 

exposure to AI (and/or its customers' AI exposure), the more its innovation capacity will 

incentivize it to produce AI innovation. Advancing from the relevance condition to the exclusion 

restriction, it is plausible that the firm's innovation capacity and its AI exposure (and/or its 

customers') jointly only affect the firm's outcomes (e.g., profitability, risk, etc.) through their 

effects on the firm's AI innovation. 

We operationalize our interaction instrument as follows. We measure the firm's 

innovation capacity using its (tax credit induced) stock of R&D capital accumulated from annual 

R&D spending during the preceding 10 years. More precisely, we use annual R&D spending 

predicted from a firm-year model that exploits time-varying federal and state R&D tax credits to 

identify the plausibly exogenous component of R&D spending, which is then cumulated to 
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construct the firm's plausibly exogenous R&D capital stock.3 We lag R&D stock by two years to 

reflect the time it typically takes for patents to be granted. 

To measure a firm's AI exposure, we use the AI exposure of labor in the firm's industry. 

Specifically, we use occupation-level (SOC) AI exposure scores, weighted by employment in 

each occupation in each industry (SIC3), to calculate industry-level AI exposure scores. Our data 

on AI exposure scores capture the extent to which labor in an occupation can be substituted for 

or complemented by AI technology. We measure the AI exposure of a firm's customers 

analogously, using our industry AI exposures combined with inter-industry product purchase 

weights from the BEA's input-output tables. We fix industry-level employment weights before 

the start of our sample period to maximize the exogeneity of AI exposure. Accounting for data 

limitations on R&D tax credits, we are able to instrument AI innovation produced from 1990 to 

2017. 

We use our interaction instrument to predict actual AI innovation. In this first stage of our 

instrumental variables analytical framework, we find that the mutually reinforcing incentives of a 

firm's innovation capacity and its AI exposure significantly predict the firm's AI innovation 

output, economically and statistically. For a typical increase in our interaction instrument, AI 

patent counts increase by about 13% relative to its mean, roughly similarly for both the firm's 

own AI exposure and its customers'.4 We have no theoretical basis for favoring either exposure, 

whereas we can increase the precision of our IV estimates by using both exposures together. 

                                                 
3 For instance, see Wilson (2009); Bloom, Schankerman, and Van Reenen (2013); and Hombert and Matray (2018). 
4 These first stage results and all IV results in the paper are incremental to controlling for the direct effects of (tax 
credit induced) R&D capital stock and AI exposure. We also control for whether the firm produces patents and the 
firm's non-AI patent count, size, and age. Finally, we sweep out persistent differences across firms, three-digit SIC 
industries (which, indirectly, largely sweep out AI exposure), two-digit SIC industries each year, and the firm's 
headquarters state each year (which, indirectly, largely sweeps out R&D capital stock). 
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Therefore, we use both instruments in our baseline analysis (and our results are robust to using 

either instrument alone). 

We then examine the value implications of producing AI innovation, starting with stock 

returns during the year after production. In doing so, we exploit the general tendency of stock 

prices to be the best available (albeit imperfect) estimate of the discounted present value of 

future cash flows. Starting with actual AI patent grants, which are readily observable to 

investors, we find that a high minus low AI stock portfolio earns risk-adjusted returns of roughly 

50 basis points per month. We also exploit our IV approach to more credibly identify the effect 

of AI production on firm value in a reduced form setting. We double sort stocks (independently) 

into portfolios based on firms' (tax credit induced) R&D capital stock and their AI exposure. We 

again find that portfolios, at the intersection of these double sorts, outperform by about 50 bps 

per month (i.e., the high minus low AI exposure spread netting out the high minus low R&D 

capital stock spread). These results are similar using a wide range of factor models. 

We also implement our reduced form IV analysis in monthly Fama-MacBeth cross-

sectional regressions using all sample firms. This more demanding approach allows us to include 

a battery of control variables like in our first stage IV regressions (e.g., non-AI patent counts) as 

well as established determinants of stock returns. By our construction, these Fama-MacBeth 

regression estimates are incremental to R&D stock and AI exposure. We again find a significant 

return spread when we double sort on the two components of our interaction instrument, a spread 

of comparable magnitude to the preceding portfolio analysis. The results of our stock returns 

analyses, taken together, are incremental to the economic factors captured by R&D stock or non-

AI innovation. 
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We next examine the canonical financial drivers of value: cash flows and risk. From this 

point forward, we use detailed firm-level data over three decades, and we focus on our IV 

estimates to identify the causal effect of the firm's production of AI innovation. However, for all 

baseline analyses, we also report OLS estimates, which are generally smaller in economic 

magnitude (or negligible) and less statistically significant (often insignificant). Additionally, we 

are mindful that the full productivity potential of AI (e.g., as measured by profits) may not be 

realized by the time of writing, let alone throughout our three decade sample period.5 Thus our 

estimates may understate the total potential of AI. 

In our first IV results, we find that after successfully producing AI innovation (i.e., during 

the year after we measure AI patent grants), producer firms are more profitable. Specifically, for 

a typical 10% increase in instrumented AI patent counts, net income increases by roughly 0.8 

percentage points relative to total assets, and similarly for net profit margin. Moreover, AI 

producer firms are less risky. A 10% increase in instrumented AI patent counts decreases the 

volatility of net return on assets, and similarly net profit margin, by about 5-6%. This lower cash 

flow volatility is also reflected in lower stock return volatility, which decreases by roughly 2%. 

Our findings of higher abnormal stock returns and lower risk (even systematic risk) are mutually 

consistent because we are examining corporate outcomes after a firm successfully produces 

innovation (i.e., after the firm is granted a patent, rather than when the firm begins spending on 

R&D).6 

                                                 
5 E.g., Brynjolfsson, Rock, and Syverson (2019) argue that AI technology is still in the early stages of diffusing 
across sectors and into complementary technologies. 
6 At the start of an innovation project, when a firm begins investing in innovation, uncertainty does increase. 
However, as the project progresses, and if and when the project is successful in producing innovation (e.g., the firm 
is granted a patent), then uncertainty decreases (and continues to do so if and as the firm successfully 
commercializes the innovation in subsequent years and decades). 
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We then provide suggestive evidence on various mechanisms through which AI 

innovation can increase firm value. First, since AI is a labor enhancing technology, successful AI 

innovation can increase the producer firm's labor productivity directly, or indirectly by helping 

the firm better satisfy customer demand. We find that AI innovation increases labor productivity, 

but we do not find any effect of AI innovation on employment or the overall scale of the firm, 

suggesting that AI complements, rather than substitutes, labor. Second, AI can enable the firm to 

use its physical assets more efficiently or even require less physical capital to produce the same 

or more output. Indeed, we find a decrease in physical capital (e.g., PP&E) as well as investment 

(e.g., capex). 

Third, AI can increase the firm's innovation capacity, with the firm using its past AI 

innovations to improve the efficiency of its future R&D investments. Future innovation output, 

produced at a lower future cost, can be higher for both AI and non-AI innovation.7 This is indeed 

what we find. Fourth, AI can increase the firm's bargaining power vis-à-vis its customers, 

employees, and other business counterparties. The benefits of successful AI innovation can 

accrue to the producer firm's counterparties downstream and upstream in its supply chain (e.g., 

AI embedded products), improving the AI producer's bargaining power and thus increasing its 

own stability. The evidence, of more stable sales and costs, and greater product differentiation, is 

consistent with increased bargaining power. 

In our final analysis, we examine the financial policy implications of successful AI 

innovation. Both an increase in expected future profitability and a decrease in risk would enable 

the firm to be more aggressive with its financial structure. Our results, which include higher 

leverage and lower cash holdings, indicate that this is the case. 

                                                 
7 See Cockburn, Henderson, and Stern (2019) and Agrawal, McHale, and Oettl (2023) for a discussion. 
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We contribute to the literature on the economics of artificial intelligence. Focusing 

specifically on AI production, we show how successful AI innovation affects the producer firm's 

value. The existing literature focuses instead on AI adoption. Using corporate demand for labor 

with AI skills as proxied by job postings or resumes, existing studies document recent AI hiring 

trends in the labor market (Alekseeva, Azar, Giné, Samila, and Taska (2021)). They also find 

that AI adoption results in higher firm growth and product innovation (Alekseeva, Giné, Samila, 

and Taska (2020) and Babina, Fedyk, He, and Hodson (2023)) while flattening organizational 

hierarchies (Babina, Fedyk, He, and Hodson (2022)) and reducing hiring in non-AI positions 

(Acemoglu, Autor, Hazell, and Restrepo (2022)). Other studies find that, in high skill 

occupations, potential applications of AI change traditional work procedures (Grennan and 

Michaely (2021, 2020)). 

Moreover, a recent literature on the productivity implications of AI innovation argues 

that AI may not enhance productivity as much as widely assumed, or its productivity 

enhancements will take much longer than expected to materialize (Brynjolfsson, Rock, and 

Syverson (2019)). Our examination of AI production to date provides evidence that, at least for 

AI producer firms, both forward looking stock prices and realized corporate operational 

outcomes already appear to be reflecting productivity gains from AI innovation. 

Our paper uniquely provides causal evidence, from all U.S. publicly traded firms over the 

past three decades, showing that producing AI innovation, incrementally to non-AI innovation, 

increases firm value and how this occurs. Other recent studies examine stock returns around 

specific events to uncover a moderating role on firm value of the firm's labor's AI exposure: 

Google's public launch of TensorFlow (Rock (2021)) and OpenAI's ChatGPT (Eisfeldt, 

Schubert, and Zhang (2023)). Earlier studies in the literature on corporate innovation and stock 
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returns examine the predictive role of R&D intensity (Chan, Lakonishok, and Sougiannis 

(2001)), innovation efficiency and originality (Hirshleifer, Hsu, and Li (2013, 2018)), and firm 

size (Stoffman, Woeppel, and Yavuz (2022)). 

Finally, we contribute a novel identification methodology for the production of AI 

innovation. The existing literature focuses on identifying the causal effect of AI adoption. 

Babina, Fedyk, He, and Hodson (2023) exploit the AI research embedded in university alumni 

networks at the firms. Grennan and Michaely (2020) use news headline length to predict the 

usefulness of AI in stock analysis. Rock (2021) uses the launch of TensorFlow in an event study. 

The rest of this paper is organized as follows. Section 2 characterizes AI innovation. 

Section 3 presents the methodology. Section 4 examines various motivations for AI production. 

Section 5 and Section 6 examine, respectively, the value implications and key value drivers of AI 

production. Section 7 and Section 8 examine the mechanisms underlying AI production and its 

financing implications, respectively. Section 9 concludes. 

2. Characteristics of AI Innovation 

We begin our empirical analysis with a simple characterization of AI innovation in the 

aggregate. Our findings below demonstrate the significance of AI as a unique type of innovation 

as well as the importance of understanding AI production and its implication for firm value. 

Suffice it to say in the present section that we have newly available USPTO data on AI and non-

AI patents. We describe these data in Section 3.1. Here, we can use these data to characterize AI 

innovation during the period 1990-2020. 

First, we examine AI innovation activity as captured by patent grants. Specifically, we 

measure innovation activity variously as: patent counts; the scientific value of patents, captured 

by the number of forward citations made to patents; and the commercial value of patents, 
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captured by the estimates of the market value of patents made available by Kogan, Papanikolaou, 

Seru, and Stoffman (2017). 

[Insert Figure 1 about here] 

Figure 1 shows that AI is a prominent subset of all innovation activity. AI constitutes, 

very roughly, 5% of innovation activity in 1990. However, AI's share grows rapidly during the 

next three decades, accounting, by 2020, for over 15% of patents by number, 25% by scientific 

value, and 35% by commercial value. 

Additionally, AI patents are also more valuable than non-AI patents, both scientifically 

and commercially. Even considering the rapid growth of patent counts, the value of the average 

AI patent is about 50% higher in 2020, both in terms of scientific and commercial value. By 

comparison, in 1990, the value premiums for scientific and commercial value are 200% and 

parity, respectively (relative value results not tabulated). 

[Insert Figure 2 about here] 

Second, we examine the diffusion of AI innovation throughout the economy. We would 

expect to see evidence of widespread diffusion over time from a general purpose technology 

such as AI. This is indeed what we find in Figure 2, both across industries (as captured by three-

digit SIC codes) reflecting product markets, and across technology fields (as captured by the 

section and class of CPC codes). Starting with the share of AI patent grants across industries, 

already by 2020, in almost 20% of industries, AI accounts for at least half of all innovation 

(Panel A). Using the lower threshold of AI accounting for at least 10% of all patents, AI is 

present in roughly half of all industries. 

Instead of examining AI content in current innovation itself, we can examine AI content 

in the prior innovation upon which current innovation builds. Looking at backward citations to 
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patents, in close to 20% of industries by 2020, AI accounts for at least 50% of all citations to 

prior innovation (Panel B). Requiring only a minimum of at least 10% of all backward citations, 

AI is present is about three-quarters of all industries. Analysis of technology fields (Panel C and 

Panel D) leads to similar inferences, bearing in mind that AI is a technology, so it naturally 

remains concentrated in particular technology classes (Panel C). 

Finally, we examine the importance of publicly traded firms in AI innovation as 

compared to all patenting entities. Motivating our analysis is the large share of aggregate R&D 

spending and patent grants attributable to publicly traded firms. We restrict our sample here to 

U.S. publicly traded firms. 

[Insert Figure 3 about here] 

Figure 3 Panel A shows that while publicly traded firms consistently account for only one 

quarter of non-AI patent grants during the past three decades, they account for almost half of all 

AI patent grants (roughly 45% during the past two decades). Furthermore, we can restrict our 

sample to innovative public firms, i.e., public firms with at least one patent, to calculate the share 

of firms that produce AI innovation, i.e., at least one AI patent. Figure 3 Panel B shows that the 

proportion of innovative public firms that also produce AI innovation has risen from roughly 

15% in 1990 to about 45% in the past decade. 

In summary, publicly traded firms have historically and continue today to dominate the 

AI innovation, accounting for roughly half of it. Additionally, innovative publicly traded firms 

increasingly include AI in their innovation activities. These findings motivate our focus on 

publicly traded firms in the rest of the paper. 
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3. Methodology 

3.1. Measurement of AI Production 

To measure the production of AI innovation so that we can study its effects, we use 

patents that are classified, and to which we refer, as "AI patents" throughout the paper. As 

measures of successful innovation output, AI patent grants capture the capability of the firm to 

take commercial advantage of the AI technology that it produces. It can do so by implementing 

AI in its own operations, or supplying AI to its business counterparties, especially its customers, 

either directly (e.g., through patent transfers) or indirectly (e.g., embedded in product and 

services). 

We classify patents in the USPTO database as AI and non-AI using the recently released 

classification of Giczy, Pairolero, and Toole (2022). Traditional methods of identifying specific 

technologies in patent documents are not well suited to identifying AI technology in patent 

documents. Perhaps the greatest difficulty with AI is that it is a general purpose technology and 

hence necessarily diffuse across technology fields. Consequently, AI cannot simply be captured 

by a limited, predetermined set of widely used technology classes (e.g., CPCs) or keywords. 

While previous approaches like these (e.g., see Cockburn, Henderson, and Stern (2019)) tend to 

be correct about the patents that they identify as "AI", they also tend to miss a large number of 

patents that are in fact "AI". 

As an improvement, Giczy, Pairolero, and Toole (2022) take a stratified machine learning 

approach. We provide a summary of their approach here, and refer the reader to Appendix 1 for a 

description of the key details. First, AI is broken down into eight component technologies (e.g., 

knowledge processing and speech recognition). Next, a set of "surely AI" patents is identified as 

those that are at the intersection of four technology classification systems. Then, a set of "surely 
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non-AI" patents is identified, after excluding patents that are even remotely related to the "surely 

AI" patents (e.g., through patent family links or citations) and technology classes with 

abnormally high share of "surely AI" patents. 

A machine learning model is trained using the "surely AI" and "surely non-AI" patents, in 

several passes designed to minimize both false positives and false negatives in the subsequent 

application to the universe of patents. After training, the model subsequently evaluates all patent 

documents for their AI content, and assigns them a predicted probability of the patent containing 

a particular AI component technology. Finally, if the patent is predicted to be AI based on any 

AI component technology, it classified as an AI patent. 

3.2. Validation of AI Production Measure 

For a classification of AI and non-AI patents to be accurate, it must naturally minimize 

both false positive (minimal patents classified as "AI" that are not AI) and false negatives 

(minimal patents classified as "non-AI" that are in fact AI). With both of these objectives in 

mind, Giczy, Pairolero, and Toole (2022) carefully test their patent classification and show that it 

outperforms the existing alternatives.8 

Additionally, we perform our own analysis of the sensibility of our measure of AI 

production. We rank industries, from greatest to least, based on their total number of AI patents. 

We capture industries using three-digit SIC codes. We use all publicly traded firms in our 

baseline sample and all industries with at least 10 firms per year every year during our sample 

period. 

[Insert Table 1 about here] 

                                                 
8 The authors use four patent examiners at the USPTO, who are specialists in AI, to classify patents as AI or non-AI 
from 800 randomly selected patent documents. Each patent is reviewed by at least two examiners. If the first two 
examiners disagree, a third examiner adjudicates. Finally, the patent examiners' annotations are used to evaluate the 
validity of the authors' prediction model for false positives, false negatives, and a composite measure of the two. The 
authors' model is compared (and found superior to) existing alternative models. 



13 

Table 1 shows a highly intuitive ranking of industries based on AI production. As one 

might expect, computer programming, electronic components, and computer equipment have the 

highest AI production. To illustrate the sensibility of our AI production measure, we rank firms 

based on average annual AI patent counts. The top 20 firms, tabulated in Appendix Table 2 Panel 

A, are technology firms and widely known to be leaders in AI production. Meanwhile, Table 1 

shows that the lowest AI production is in operative builders, clothing stores, and equipment 

rentals. 

Our ranking in Table 1 is also broadly similar if, instead of the total number of AI 

patents, we eliminate the industry size effect by ranking based the mean number of patents per 

firm. Furthermore, we observe that in some industries, AI production is dominated by a few 

firms with a disproportionately higher level of AI production than their industry peers. For 

example, 70% of the AI patents in petroleum refining are owned by Exxon Mobil and Chevron, 

collectively. Therefore, we exclude from each industry the three firms with the highest number 

of AI patents, and then rank industries with the remaining firms based on the number of patents 

and the average number of patents per firm, respectively. The rankings are once again similar. 

As a final and suggestive validity check, we compare AI and non-AI patents in terms of 

their "process innovation" content. Since AI is a labor enhancing technology, we would expect 

firms to produce AI innovations that improve the productivity of their operations or that of their 

customers. We can shed light on such innovation using data on the process intensity of patents 

from Bena and Simintzi (2022). A "process claim" represents an innovation in task performance, 

whereas a non-process claim represents other types of innovations, including but not limited to 

product innovations. The share of process claims, relative to all claims, can be used to estimate 

the "process intensity" of a patent. Using this empirical approach, we find that for AI patents, 
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process intensity is roughly 50% on average, consistently during the past three decades. By 

contrast, for non-AI patents, the figure is only 30%. This is broadly consistent with AI patents 

focusing on improving task performance. 

3.3. Instrumentation of AI Production 

While AI patent grants are an observable and straightforward measure of AI innovation, 

using them directly to study their effects raises potential endogeneity concerns. For instance, 

while an increase in AI patent grants may lead investors to increase their appraisal of firm value, 

a firm that anticipates an otherwise unrelated increase in its future value may also be better able 

to finance its R&D spending and may receive more future AI patent grants. In addition to such 

cases of reverse causality, omitted factors can generate an observed correlation between AI 

patent grants and various corporate operational outcomes. In short, endogeneity makes OLS 

estimates unreliable. For this reason, we do not interpret or draw inferences from our OLS 

results. Nevertheless, we do tabulate all baseline results implemented as OLS regressions, as we 

discuss in Section 6. 

Our approach is to use an instrument that combines two key lagged components which, 

together, predict future corporate outcomes, resulting from current AI innovation and plausibly 

only through it. Our instrumental variable is the interaction of two components. Starting with the 

first component, in order to produce innovation (AI or non-AI), firms need to have sufficient 

innovation capacity to direct towards some specific technology such as AI. Empirically, firms 

with a larger stock of R&D capital are good candidates to invest in and successfully produce AI 

innovation. Second, the firm must have sufficient incentive to direct its innovation capacity 

towards AI technology. Since AI is a labor enhancing technology, in empirical terms, firms that 
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are measurably more exposed to AI, through their own labor or that of their customers, are good 

candidates to produce AI innovation. We develop each of these two measures below. 

To measure the first component of our instrumental variable, we use the user cost of 

R&D, implied by time-varying federal and state R&D tax credits, to predict the R&D spending 

of firms from 1988 to 2015. Specifically, using a panel of firm-years, we predict R&D 

expenditures by regressing R&D expenditures on the firm's annual user cost of R&D along with 

firm and year fixed effects. We calculate the firm's R&D user cost as the weighted average of 

R&D user cost across the firm's R&D hubs, i.e., the states in which its inventors are located, 

during the previous 10 years. If the firm does not have any patents during this period, we 

calculate the firm's R&D user cost based on its headquarters location.9 We then capitalize 

predicted R&D expenditures for each firm during the previous 10 years at a depreciation rate of 

15%. This R&D capital stock is our measure of the firm's plausibly exogenous innovation 

capacity. Data on the user cost of R&D are from Bloom, Schankerman, and Van Reenen (2013), 

and our methodology is similar to that of Wilson (2009), Bloom et al. (2013), and Hombert and 

Matray (2018). 

We then turn to the second component of our instrument, AI exposure. AI exposure refers 

to the potential of AI to substitute or complement labor. We measure "AI exposure" at the 

industry level by calculating the weighted average occupation-level AI exposure using as 

weights the occupational employment shares within the industry. Occupational AI exposures 

data are from Felten, Raj, and Seamans (2021), and occupational employment shares data are 

from the Bureau of Labor Statistics. We describe in detail the construction of occupational AI 

exposure scores in Appendix 2. Felten et al. (2021) validate their measure by studying job 

                                                 
9 Derrien, Kecskés, and Nguyen (2023) document that, for firms with available data on inventor location, roughly 
half of inventors are located in the same commuting zone as the firm's headquarters, with a predictably higher share 
located in the same state. 
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postings data (from Burning Glass Technologies). They find that occupational AI exposure 

predicts higher AI skill requirements in job postings for the corresponding occupation. Providing 

further validation, Acemoglu, Autor, Hazell, and Restrepo (2022) find that AI exposure 

aggregated to the establishment level predicts higher AI hiring. 

We measure a firm's AI exposure as its industry's labor's exposure to AI. Industries are 

captured using three-digit SIC codes. We fix employment weights in the 1988-1990 period, 

before the start of our sample period, to avoid the endogeneity that could arise from time-varying 

employment shares. These data first become available in 1988, and only one third of all 

industries (non-overlapping) are populated in each year during the first three years. We illustrate 

the sensibility of our AI exposure measure using the most dominant industry based on AI 

production (see Table 1): computer programming (SIC 737). Appendix Table 2 Panel B shows 

that the top 20 occupations, ranked by employment share, typically have high AI exposures, with 

an average exposure percentile of 93. 

To measure a firm's customers' AI exposure, we use the purchase share weighted average 

AI exposure of the firm's industry's customer industries. Specifically, for each industry, we 

obtain all customer industries from the Bureau of Economic Analysis industry input-output 

tables along with the product purchase share of each customer industry, i.e., how much of a 

given industry's products are sold to every possible customer industry. We then calculate, for 

each industry, the purchase share-weighted average of the AI exposures across customer 

industries. We again fix product purchase shares before our sample period, in 1987. As an 

illustration of our customer AI exposure measure, consider once again the most dominant 

industry based on AI production: computer programming (SIC 737). Appendix Table 2 Panel C 

shows that the top 20 customers of the computer programming industry, ranked by product 
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purchase share, are a diverse mix of industries. Computer programming itself has high AI 

exposure, but so do its typical customer industries, with an average exposure percentile of 97. 

We interact these two components – innovation capacity and AI exposure – to construct 

an interaction instrument. When R&D spending increases (because the user cost of R&D 

decreases as a result of time-varying federal and state R&D tax credits), firms with greater AI 

exposure (whether of their own labor or their customers') are more likely to produce AI 

innovation because such firms benefit more from the labor enhancement of AI technology. We 

lag our instrument by two years relative to AI patent counts to reflect the time it typically takes 

for patents to be granted. 

Since we can measure both the firm's own AI exposure and that of its customers, we 

construct two corresponding interaction instruments. We use both interaction instruments 

together in our baseline analyses because we have no theoretical reason to prefer one over the 

other, and we can increase the precision of our estimates by using both instruments together. 

However, we verify that our results are similar if we use each of our two interaction instruments 

separately. In all main analyses, we report the Hansen J-statistic for whether the estimated effects 

of AI patent counts are significantly different using each instrument separately. None of the 

differences is significant. Additionally, we tabulate all baseline results implemented using each 

instrument separately.10 As we discuss in Section 6, our estimates are similar in magnitude. 

Our identifying assumption is that firms with different AI exposures will only be affected 

differentially by changes in the (tax credit induced) R&D capital stock through the impact on AI 

innovation. To ensure that we identify exclusively off our interaction instrument, all regressions 

directly control for the components of the interaction, i.e., (tax credit induced) R&D capital stock 

                                                 
10 See Atanasov and Black (2016) for a discussion of this approach, and Angrist and Evans (1998) for an applied 
example. 



18 

as well as AI exposure. Therefore, to affect our results, any confounding effect across firms with 

high versus low AI exposure would have to covary with annual changes in the user cost of R&D. 

A fortiori, we include fixed effects for state-years based on the location of the firm's 

headquarters as well as fixed effects for three-digit SIC industries. This we do so that our results, 

more broadly, cannot be explained by confounding factors. State-year fixed effects largely 

absorb R&D capital stock (because innovation activities are concentrated at firm headquarters), 

but they additionally absorb all commonalities across geographically proximate firms. Similarly, 

industry fixed effects entirely absorb AI exposure, but they also absorb all additional 

commonalities across firms competing in proximate product markets. 

3.4. Model Specification 

Our main analysis begins with examining stock returns for AI producer firms at the 

portfolio-month and firm-month level. Our analysis then proceeds to the firm-year level, where 

we regress corporate outcomes (such as cash flow levels) on instrumented AI patent counts. 

The first stage of our instrumental variable regressions is as follows: 

ln(0.1+AI_Patent_Countsi,SIC2,SIC3,s,t) = 

α1·R&D_Stocki,s,t-2 × Firm's_AI_ExposureSIC3 + 

α2·R&D_Stocki,s,t-2 × Customers'_AI_ExposureSIC3 + 

α3·R&D_Stocki,s,t-2 + β·Xi,t + δs,t + δSIC3 + δi + δSIC2,t (1) 

The AI patent counts predicted from the first stage are then used to explain outcomes in 

the second stage of our instrumental variable regressions: 

Outcomei,SIC2,SIC3,s,t+1 = α·ln(0.1+AI_Patent_Countsi,t) + 

β1·R&D_Stocki,s,t-2 + β2·Xi,t + δs,t + δSIC3 + δi + δSIC2,t (2) 
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In the equations above, i indexes firms, SIC2 and SIC3 index two-digit and three-digit 

SIC industries, respectively, s indexes the state of the firm's headquarters, and t indexes year. Xi,t 

is a vector of firm-level control variables. The parameters δi, δSIC2,t, δSIC3, and δs,t are fixed 

effects, respectively, for firms, two-digit SIC industry-years, three-digit SIC industries, and state-

years. Fixed effects for three-digit SIC industries completely absorb the direct effects of AI 

exposure (both the firm's and its customers'), so they are dropped. State-year fixed effects are 

based on the headquarters location of the firm. 

By way of justification, our baseline specification includes a battery of control variables 

and fixed effects to ensure that we identify exclusively off our interaction instrument and not its 

components. The components of our interaction instrument which we use as control variables, 

we discuss in Section 3.3. A fortiori, we include fixed effects for state-years based on the 

location of the firm's headquarters as well as fixed effects for three-digit SIC industries. This we 

do so that our results, more broadly, cannot be explained by confounding factors. State-year 

fixed effects largely absorb R&D capital stock (because innovation activities are concentrated at 

firm headquarters), but they additionally absorb all commonalities across geographically 

proximate firms. Similarly, industry fixed effects entirely absorb AI exposure, but they also 

absorb all additional commonalities across firms competing in proximate product markets. 

To further ensure that generic innovation is not driving our results, we control for the 

number of non-AI patent grants as well as an innovation dummy variable for whether the firm 

has at least one patent granted during the previous year. Additionally, we control for total assets 

and firm age to account for the possibility that larger and older firms are more likely to invest in 

and adopt advanced technologies. We also include firm fixed effects to rule out the possibility 

that time-invariant differences across firms can explain our results. Finally, we include fixed 
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effects for industry-years (using two-digit SIC industry) so that our results cannot be explained 

by time-varying industrial commonalities. 

Finally, in our baseline specification, we cluster standard errors by firm and also by 

industry-year (using two-digit SIC industry), since firms in similar lines of business tend to 

behave similarly. Before taking the logarithm of a variable that takes on zero values, we add a 

constant approximately equal to a small increment of the values of the variable. We indicate 

these constants in the corresponding results and/or Appendix Table 1. We verify that our results 

are robust to adding a constant at least one order of magnitude higher or lower. We add a smaller 

increment of 0.1 to AI patent counts before taking logarithms, rather than 1 as for non-AI patent 

counts, because firms have roughly one order of magnitude fewer AI patents than non-AI 

patents. To facilitate comparison across the two AI exposure (the firm's own and its customers'), 

we standardize them to mean zero and standard deviation one. We winsorize variables whenever 

appropriate at the 1st and 99th percentiles. 

3.5. Sample and Descriptive Statistics 

The firms in our sample are publicly traded U.S. operating firms excluding financials and 

utilities. The data on firms are from CRSP and Compustat. The sample period spans 1990-2017 

in terms of year t. We measure AI production using AI patent grants during the 12 months before 

each fiscal yearend. We start our sample period in 1990 because by then there is a critical mass 

of AI patent grants each year. We are also limited by the need for 10 years of patent data to 

construct the tax credit induced R&D stock, which requires inventor locations going back to at 

least 1978 (i.e., for R&D stock in 1988). 

AI patent counts are measured in year t. They are instrumented with R&D stock 

measured at year t-2 and AI exposure fixed before the start of the sample period. Our data on 
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federal and state user cost of R&D end in 2015, which is the last year we are able to calculate the 

(tax credit induced) R&D stock (and hence AI patent counts in 2017). Outcomes are measured in 

year t+1. Since we need Compustat data from years t-2 to t+1, we effectively require at least four 

years of Compustat data for each firm-year. Ultimately, the sample comprises 93,544 firm-year 

observations from 1990 to 2017 corresponding to 10,362 unique firms. 

[Insert Table 2 about here] 

Table 2 provides descriptive statistics for the variables used in this paper. Variables are 

defined in Appendix Table 1. In any given year, on average, 33% of firms have at least one 

patent grant of any kind, and 10% have at least one AI patent grant (not tabulated). In the 

average firm-year, AI patent counts are 0.66 compared to 6.5 for non-AI patents, a tenfold 

multiple. 

4. Motivations for Producing AI Innovation and First Stage of IV Regressions 

We begin our firm-level analysis by examining the various motivations for which firms 

produce AI innovation. Firms with both higher innovation capacity and higher AI exposure are 

more likely to produce AI innovation, whether AI exposure is considered for the producer firm 

or its customers. At the same time, this economic framework is also the econometric framework 

for our identification of the effect of AI production in subsequent analyses. This, the first stage of 

our instrumental variable regressions, is based on Equation 1. 

[Insert Table 3 about here] 

Table 3 presents the results for the regressions of actual AI production, measured by AI 

patent counts, on our instrumental variable, the interaction of R&D capital stock and AI 

exposure. Column 1 supports a mutually enforcing effect of the producer firm's innovation 

capacity, measured by its (tax credit induced) R&D capital stock, and its own AI exposure. 
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Column 2 supports a similar effect, in economic magnitude and statistical significance, when the 

producer firm's AI exposure is replaced by its customers' AI exposure. 

We then combine the two motivations for AI production by including both instruments in 

our specification. Column 3 shows that, overall, each instrument remains economically and 

statistically significant alongside the other. For a one standard deviation increase in each of the 

two mutually reinforcing incentives for a firm to produce AI innovation, i.e., (the logarithm of) 

R&D stock and both AI exposures (mean zero, standard deviation one), AI patent counts 

increase by 15% (=(0.0241+0.0401)2.3) relative to its mean. Alternatively viewed, this is the 

estimated magnitude of the reinforcing effect of AI exposure on a given change in R&D stock, 

and vice versa. We use the specification in Column 3 (both instruments together) in our baseline 

IV regressions. The results are stronger for the "customers instrument" than the "firm 

instrument".11 However, our second stage results in this paper do not depend critically on 

whether we use one instrument, the other, or both together. 

Finally, we use our estimates in Table 3 to calculate the typical variation in AI production 

induced by our interaction instrument. Let us fix the logarithm of R&D stock at its mean of 

roughly 2, and increase AI exposure by one unit (i.e., one standard deviation), for both the firm 

and its customers. This increases AI patent counts by roughly 13% relative to its mean (Column 

3), which we approximate as 10% for ease of interpretation. We use this figure throughout the 

paper to calculate the estimate effect of a typical change in our instrument on corporate outcomes 

of interest. 

                                                 
11 This can happen if AI technology that enhances the firm's labor factor of production also enhances its customers' 
labor factor. As a test, we can mechanically remove the firm's AI exposure that overlaps its customers' AI exposure 
(since our input-output data indicate positive intra-industry product purchases for most industries), at the expense of 
a less accurate measure of customers' AI exposure. In this case, our coefficient estimate decrease in magnitude for 
the customers instrument, and it increases for the firm instrument (with the firm instrument's t-statistic rising to 2.2) 
(results not tabulated). 
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5. Value Implications of AI Production for the Producer Firm 

We examine the value implications of AI production for the producer firm using realized 

stock returns. We defer examination of the key drivers of value (i.e., cash flow levels and cash 

flow risk) to the next section. We examine realized stock returns to exploit the general tendency 

of stock prices to be the best available (albeit imperfect) estimate of the discounted present value 

of future cash flows. This is particular relevant for a technology like AI the full productivity 

potential of which may only be realized in the future. 

5.1. Returns on Portfolios Sorted by Actual AI Patent Counts 

We begin by examining the returns on portfolios formed based actual AI patent grants, 

which are readily observable to investors. For every firm, for every calendar year, we count the 

number of AI patents granted during the 12 months ending in the month of the most recent fiscal 

yearend date. At the end of June of the following calendar year, we form portfolios based on AI 

patent counts. Therefore, we begin using returns with at least a six month lag (for firms with a 

Dec. fiscal yearend) and up to a 17 month lag (for firms with a Jan. fiscal yearend). These timing 

differences result from consistently using the same baseline sample construction throughout the 

paper.12 We hold portfolios from July through June of the following calendar year (12 months), 

at which point we rebalance. Since we observe AI patent grants from 1990 to 2017, we examine 

returns from July 1991 to June 2019, for a total of 336 monthly observations for each portfolio. 

We sort firms into three quasi-terciles (so called because they contain an uneven number 

of firms): zero AI patents ("zero AI", T1), below the median for non-zero AI patents ("low AI", 

T2), and above the median ("high AI", T3). Medians are recalculated every year at the time of 

portfolio formation. We are limited to sorting into these quasi-terciles because only 10% or so of 

                                                 
12 In our returns analysis, we drop stocks with negative book-to-market ratios and stocks with prices lower than $1. 
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firm-years have non-zero AI patent counts.13 We further sort the zero AI patents tercile into two 

groups: zero total patents (T1a) and non-zero total patents (T1b). We therefore have a total of 

four portfolios to examine. We also form hedge portfolios that longs the high AI portfolio (T3) 

and shorts either of the "zero AI" portfolios (T1a and T1b). 

Our portfolios weightings are threefold: equally weighted, value weight, and size neutral. 

We use the size neutral approach as our baseline to mitigate the correlation between our sorting 

variable, AI patents, and firm size. As the calculation of size neutral returns demonstrates, this 

approach balances the equally and value weighted approaches so that returns are neither driven 

by the smallest or the largest firms.14 We calculate size neutral returns, for any arbitrary 

portfolio, as follows. We sort stocks in the portfolio into small and large groups, independently, 

based on the NYSE median size breakpoint. We then value weight stocks within each group 

within the portfolio, and calculate value-weighted returns for the small group separately from the 

large group. Finally, we take the simple average of the returns of the small and large groups. This 

is the size neutral return for the particular portfolio. 

[Insert Table 4 about here] 

Table 4 presents the results of these time-series portfolio return regressions. We use the 

Fama and French (2015) five-factor model as our baseline, but the results are robust to using 

alternative factor models (Section 5.3). The results indicate that AI patent counts spread returns, 

by about 50 basis points per month in our baseline specification (Panel C), for AI patent counts 

moving from T1 to T3. Spreads are somewhat higher when the short leg of the AI hedge 

portfolio is non-innovative firms (no patents) compared to innovative firms with no AI patents. 

                                                 
13 We nevertheless have a reasonable number of stocks in T2 and T3: an average of about 175 and 150, and a 
minimum of about 75 and 50, respectively. 
14 For other applications of this approach, see Griffin and Lemmon (2002); Hirshleifer, Hsu, and Li (2013); and Liu, 
Stambaugh, and Yuan (2019). 
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The results suggest that firms with observable higher AI production have higher risk-adjusted 

returns. 

5.2. Returns on Portfolios Double Sorted by R&D Stock and AI Exposure 

Studying how AI patent grants spread returns has the advantage of using a simple and 

observable measure of AI production. However, the disadvantage is that AI patent grants are 

endogenous to corporate outcomes. For instance, while higher future returns may result from 

successful innovation, investor anticipation of successful innovation can lower financing costs 

and thereby further increase the success of innovation efforts. 

Motivated by our baseline IV framework, we also take the approach of examining the 

returns on portfolios formed based on the two components of our interaction instrument. Inspired 

by the reduced form of our IV regressions, we sort stocks into portfolios based on R&D stock 

and AI exposure, which allows us to identify the plausibly causal effect of these IV components 

on returns. Our approach is more complex than spreading returns with AI patent grants, but it can 

be implemented (information obtained and spreads traded) by sophisticated investors. At the 

same time, we are mindful of limitations of this quasi-reduced form approach, and we interpret 

the results suggestively. 

Our reduced form approach is analogous to our previous approach. We consistently use 

the same baseline sample construction throughout the paper. We still use information that is 

available at the end of a given calendar year (year t), and we form portfolios at the end of June of 

the following calendar year (year t+1). However, instead of using information on actual AI 

patent counts (from year t) to form portfolios, we use information available on R&D stock and 

AI exposure. Since R&D stock is lagged by two years relative to AI production, it is measured in 

calendar year t-2. AI exposure is fixed before our sample period. 
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We sort firms into two groups (very roughly, halves) based on (tax credit induced) R&D 

capital stock, the first component of our interaction instrument: zero R&D stock ("low", L), and 

non-zero R&D stock ("high", H). Independently, we also sort firms into quintiles based on AI 

exposure, the second component of our interaction instrument. However, since "AI exposure" 

comprises the respective AI exposures of the firm and its customers, we need to combine them 

so that we can sort on a single exposure measure. We do so by taking their first principal 

component and using it as our measure of AI exposure in our baseline returns analyses. Our 

portfolios of interest are those at the intersection of the double sorts on R&D stock and AI 

exposure.15 Our results are similar if we continue to compare the top and bottom groups, but 

instead of quasi-halves for R&D stock and quintiles for AI exposure, we use more groups, as 

many as quintiles, for R&D stock, and less groups, as few as terciles, for AI exposure. 

[Insert Table 5 about here] 

Table 5 presents the results of portfolio return regressions implemented in a quasi-

reduced form setting. The Fama and French (2015) five-factor model is again the baseline, but 

the results are robust to alternatives (Section 5.3). While we would generally expect R&D stock 

to spread returns while holding AI exposure fixed, and vice versa, our greatest interest is in the 

spread of the spread. We interpret the results for our baseline size neutral portfolios (Panel C) as 

follows. We consider R&D stock moving from low to high together with AI exposure moving 

from Q1 to Q5. The results for our baseline size neutral portfolios (Panel C) show that these 

changes result in higher returns of about 50 basis points per month. 

We can also infer the AI patent counts corresponding to this return spread by using the 

results of Table 3. The coefficient estimate on the interaction instrument is approximately 0.06 

                                                 
15 In our baseline portfolio sorts, we again have a reasonable number of stocks: a mean of about 200-400, and a 
minimum of roughly 100. 
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(Table 3). Let us consider the same increases in R&D stock (low to high, equal to roughly 3.7 

units of ln(1+R&D stock)) and AI exposure (Q1 to Q5, equal to about 2.9 standard deviations) as 

above. Therefore, the increase in AI patent counts corresponding to a 50 bps/month increase in 

returns (Table 5 Panel C) is roughly 0.6 units of ln(0.1+AI patent counts), or a 60% increase 

relative to the mean (=0.063.72.9).16 We are careful to interpret these results suggestively, and 

we are not comparing them directly to the returns results for AI patent counts (Table 4). 

However, these results do suggest that innovation capacity and AI exposure, both of which 

positive affect AI production (Table 3), result in higher risk-adjusted returns. 

5.3. Robustness Tests for Portfolio Returns Analyses 

We directly eliminate the possibility of a confounding correlation between AI and non-AI 

innovation in Fama-MacBeth regressions of monthly stock returns as well as panel regressions 

throughout the paper. We do so by controlling for various measures of innovation outputs (e.g., 

non-AI patent counts) and inputs (e.g., R&D spending). It is not possible to be as rigorous in 

portfolio regressions. 

We also examine the robustness of our results with respect to alternative factor models 

proposed in the literature. As tabulated in Panels A through E of both Appendix Table 3 (c.f. 

Table 4) and Appendix Table 4 (c.f. Table 5), we find that the AI return spread remains 

economically and statistically significant in more demanding factor models, such as the Fama 

and French (2015) five-factor model with momentum and the Hou, Xue, and Zhang (2015) Q-

factor model. In less demanding models, with fewer factors, the results are weaker, which 

suggests that AI portfolios have less systematic risk as captured by canonical risk factors. It 

                                                 
16 Simply as a reference point, moving from T1 to T3 in Table 4 equals about 4.5 units of ln(0.1+AI patent counts). 
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would also be consistent with a firm's total risk being lower as a result of successful AI 

innovation (which we also document, in Section 6.2). 

Our inferences are also similar if we redo the results of Table 5 and Appendix Table 4 

(both doubled sorted by R&D stock and AI exposure) using, separately, each of our two 

interaction instruments (i.e., based on the firm's AI exposure versus that of its customers). 

Consistent with a decrease in precision from using only one instrument or the other, the results 

are somewhat less economically and statistically significant (not tabulated). 

5.4. Fama-MacBeth Cross-Sectional Return Regressions 

We examine the effect of potentially confounding variables on our estimates of risk-

adjusted returns following AI production. We run Fama-MacBeth cross-section returns 

regressions using the same sample of firm-months that we use in our time-series returns 

analyses. We implement, in Fama-MacBeth regressions, both our portfolio regressions sorted by 

actual AI patent counts (Table 4) and doubled sorted by R&D stock and AI exposure (Table 5). 

The erstwhile sorting variables are now our explanatory variables of interest. We again combine 

the respective AI exposures of the firm and its customers by taking their first principal 

component and using it as our baseline measure of AI exposure. 

Our battery of control variables includes non-AI patent counts and R&D spending. We 

also include our innovation dummy variable. We control for variables commonly used in the 

literature as well as our IV regressions: market capitalization, market-to-book of equity, 

momentum, short-term reversal, return on assets, capex-to-total assets, stock price, turnover, and 

firm age. As an alternative to unscaled non-AI patent counts and R&D spending, we also include 

these variables scaling by total assets. Finally, we include fixed effects for industries using the 

Fama and French 48 industry classification. 
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[Insert Table 6 about here] 

Table 6 shows that, in our panel regressions, actual AI patent counts are not statistically 

significant alongside our battery of control variables (Columns 1 and 2). By contrast, the 

interaction instrument is economically and statistically significant (Columns 3 and 4). For a one 

standard deviation increase in each of the two mutually reinforcing incentives for a firm to 

produce AI innovation, i.e., R&D stock and AI exposure, returns increase by roughly 7 basis 

points per month (=0.0302.31). As before, this estimated magnitude can be viewed 

alternatively as the reinforcing effect of AI exposure on a given change in R&D stock, and vice 

versa. The results are similar if we use each of our two interaction instruments separately 

(Appendix Table 5). It is noteworthy that our estimates on our interaction instrument are, by 

construction, incremental to our estimates on R&D stock. 

5.5. Comparison of Magnitudes of Panel Returns and Portfolio Returns 

Finally, we compare the magnitudes of the returns estimated in the panel regressions in 

Table 6 and the corresponding portfolio regressions in Table 5. The calculations above for Table 

6, which use a one standard deviation increase in each of R&D stock and AI exposure, are unlike 

those in Table 5. In the latter, R&D stock increases from low to high, and AI exposure increases 

from Q1 to Q5. These changes in Table 5, converted to their equivalent magnitudes in Table 6, 

are equal to 3.7 and 2.9 units of our R&D stock and AI exposure variables, respectively. 

Therefore, in Table 6, changes in R&D stock and AI exposure that are comparable to the change 

in Table 5, result in higher returns of roughly 32 basis points per month (=0.0303.72.9). This 

is similar to the risk-adjusted returns in Table 5, even without remarking on the battery of control 

variables included in Table 6. 
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6. The Effect of AI Production on the Key Drivers of Firm Value 

We examine how successful production of AI innovation affects the key drivers of firm 

value: cash flow levels and cash flow risk. To this end, we use various measures of profitability 

and risk, and we regress them on instrumented AI patent counts. The second stage of our 

instrumental variable regressions is based on Equation 2. 

6.1. The Effect of AI Production on Cash Flow Levels 

[Insert Table 7 about here] 

We measure profitability using return on assets and profit margin (both with net income 

in the numerator). These findings suggest that AI production increases cash flow levels. Table 7 

shows that a 10% increase in AI patent counts relative to its mean (i.e., a typical increase) 

increases profitability by 0.8 percentage points, similarly for return on assets and profit margin, 

which corresponds to roughly 2.5% of each dependent variable's standard deviation. Even 

though the full productivity potential of AI may not be realized by the time of writing, there is 

already some evidence of it during the past three decades that comprise our sample period. 

By contrast, using endogenous (uninstrumented) AI patent counts, we find no significant 

effect of AI production on the cash flow levels or cash flow risk. Indeed, we redo all IV 

regressions implemented as OLS regressions, and tabulate the results in the first column of 

Appendix Table 6 through Appendix Table 12 (corresponding to Table 7 through Table 13, 

respectively). In contrast to our IV estimates, our OLS estimates are generally much less 

significant, economically and statistically. 

Additionally, the Hansen J-statistic indicates the estimated effects of AI patent counts are 

not significantly different using each instrument separately. We also redo all IV regressions 

implemented using each instrument separately, and again tabulate the results in Appendix Table 



31 

6 through Appendix Table 12, in the second and third columns. Our estimates are similar in 

magnitude. 

6.2. The Effect of AI Production on Cash Flow Risk 

To better understand the effect of AI production on cash flow risk of the producer firm, it 

is noteworthy that we study firms subsequent to the successful grant of their AI patents. Hence, 

we distinguish between the innovation effort and innovation outputs. Innovation effort, 

characterized by R&D investments, involves upfront investments with highly uncertain 

outcomes. By contrast, innovation output, measured by patent grants, moderates the initial 

uncertainty associated with innovation efforts. 

[Insert Table 8 about here] 

We measure risk using the volatilities, respectively, of quarterly return on assets and 

profit margin. Our findings suggest that AI production decreases cash flow risk. Table 8 shows 

that a 10% increase in AI patent counts relative to its mean decreases the volatilities of return on 

assets and profit margin by 6% and 5% relative to their respective means. We also examine the 

volatility of daily stock returns, and we find a confirmatory reduction of 2% relative to its mean. 

Similarly across all three measures, the increase in AI patent counts corresponds to roughly 3%-

4.5% of the respective dependent variable's standard deviation. 

7. Mechanisms 

We investigate four possible mechanisms underlying the effect of AI production on the 

value of the producer firm: labor productivity, physical capital intensity, innovation capacity, and 

bargaining power. These mechanisms can directly improve the producer firm's operations (e.g., 

increase its labor productivity), through its AI production, motivated by its own AI exposure, 

most naturally decreasing costs (especially labor costs) but also increasing its sales. However, 
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they can also indirectly affect the producer firm, motivated by its customers' AI exposure. 

Specifically, if the AI innovation motivated by customers' AI exposure helps the producer firm 

better satisfy demand (e.g., improve measurement, detection, response, etc.), then this lowers the 

costs of the producer firm's operations (e.g., increase labor output relative to input) and thus 

increases the firm's profits (separately from any effect of AI on sales). While we frame our 

exposition of the mechanisms below in terms of the direct effect of producer firm's AI exposure 

on itself, for brevity, the abovementioned indirect effect of customers' AI exposure can also 

result in analogous effects. We therefore consider both exposures here, as in all of our analyses. 

7.1. Labor Productivity 

As a labor enhancing technology, AI can increase the productivity of the producer firm's 

operations by improving labor productivity. AI augments earlier automation technologies by 

automating cognitive tasks that depend on human sensory and decision making abilities. 

Therefore, even compared to earlier automation technologies, AI can significantly substitute or 

complement jobs or even entire occupations. 

[Insert Table 9 about here] 

We first examine labor productivity, which we capture using profit per employee. Table 9 

shows that profit per employee increases by roughly $7,500 as a result of a 10% increase in AI 

patent counts relative to its mean. This corresponds to about 3% of the standard deviation of 

profit per employee (which is roughly $250,000). This finding suggests that AI production 

increases labor productivity. 

We also examine the producer firm's level of employment. However, the effect of AI 

production here is unclear. If AI is, on balance, a substitute for labor, then employment will 

decrease. However, if AI complements labor on balance, making existing workers more 
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productive as they work with AI technology, or allowing the firm to hire workers who produce 

more than they cost thanks to AI technology, then employment will increase. 

We find no effect of AI production on the level of employment based on our results in 

Table 9. Nor do we find any effect on the overall scale of the producer firm, as measured by total 

assets. While we have no evidence of AI production hurting employment to date, neither do we 

find that it helps. 

7.2. Capital Intensity 

AI technology allows firms to improve the automation and planning of their operations. 

For instance, it can reduce the need to maintain spare production capacity (not only labor but 

also capital) and inventory for episodes of surging customer demand. In so doing, AI enables 

firms to reduce their investment in and maintenance of capital required for development as well 

as production. 

[Insert Table 10 about here] 

We therefore examine the capital intensity of AI producer firms along various 

dimensions. Table 10 shows that firms generally become less capital intensive as a result of AI 

production. A 10% increase in AI patent counts decreases property, plant, and equipment by 

roughly 2.5% relative to its mean. Additionally, and consistent with AI improving planning, we 

find that inventory decreases by about 3.5% relative to its mean. These magnitudes correspond to 

about 2% of the respective dependent variable's standard deviation. 

Additionally, we examine the investment of firms and find that it decreases as a result of 

AI production. Table 10 shows that capex and R&D spending, decrease by roughly 4% and 7% 

relative to their means, respectively, corresponding to about 3% of their respective standard 

deviations. By contrast, acquisitions expenditures increase by about 3.5%, corresponding to 
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roughly 2% of its standard deviation. This suggests that AI technology allows firms to shift some 

of their investment focus from inside the firm to outside of it. 

7.3. Innovation Capacity 

AI technology also allows firms to imitate the sensory, cognitive, and decision making 

abilities of humans, and, therefore, to automate such tasks. Applied to innovation activities, AI 

enables producer firms to reduce their R&D inputs, for example, by enhancing the productivity 

of high skilled workers in R&D hubs. However, AI can also improve the resulting innovation 

outputs, for instance, in terms of scale and speed (producing more innovation, and doing so more 

quickly). (The producer firm can also be affected indirectly, motivated by its customers' AI 

exposure, for instance, if its AI embedded products stimulate demand for further innovation 

upgrades in existing or new products.) We have already found that AI production decreases 

future R&D spending. We now consider future innovation outputs, in absolute terms and relative 

to the corresponding inputs. 

[Insert Table 11 about here] 

We begin by examining innovation output. Table 11 Panel A shows that AI production, 

as measured by successful current AI patent counts (i.e., in year t), increases future innovation 

output, as captured by future patent counts (i.e., in year t+1). A 10% increase in AI patent counts 

results in roughly 8% higher total patent counts (AI plus non-AI) relative to its mean, which 

corresponds to about 3% of its standard deviation. For AI and non-AI patent counts, respectively, 

the increase is 14% and 5% relative to the mean, or 8% and 2% relative to the standard deviation. 

We then turn to examining innovation efficiency, as captured by innovation output per 

corresponding dollar of R&D input. Specifically, we calculate innovation efficiency as the ratio 

of patent counts to R&D spending. More precisely, future patents (in year t+1) are scaled by 
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R&D (in year t-1), lagging R&D by two years to reflect the time it typically takes for patents to 

be granted. In this analysis only, we add $1,000 (the smallest increment in our data for R&D 

spending) to the R&D of every firm to avoid zero denominators and reducing the sample size by 

almost half. 

Table 11 Panel B shows that current AI production increases future innovation efficiency. 

For a 10% increase in AI patent counts, innovation efficiency measured using total patent counts 

(AI plus non-AI) are higher by 18% relative to the mean, corresponding to 5% of a standard 

deviation. In the case of AI and non-AI patent counts, respectively, the increase is 10% and 20% 

relative to the mean, or 4% and 5.5% relative to the standard deviation. 

7.4. Producer Firm Bargaining Power 

In the course of producing AI innovation that can subsequently be commercialized, AI 

producer firms can also improve their bargaining power vis-à-vis their business counterparties. 

This can even increase the stability of the firm's production outputs and inputs, and thereby 

reduce firm risk. Let us elaborate, starting with customers. Products that embed the producer 

firm's AI technology, or services integrating its AI technology with its customers' operations, can 

make it costly for customers to shift their business away from the AI producer firm. Similarly, as 

a safer customer for its suppliers, the AI producer itself may be able to command more reliable, 

or otherwise better or cheaper, products from its suppliers. Turning to employees, the threat of 

substitution from AI increases the firm's bargaining power relative to labor, which can allow the 

firm to lower its labor costs but also to increase its operating flexibility. The latter is particularly 

valuable in adverse business conditions during which flexibility may be much improved by 

actually substituting AI for labor. Overall, an AI producer can be more profitable for doing 

business with, and more costly to switch away from, for its counterparties. At the same time, the 
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greater stability of the AI producer is beneficial both for the firm itself and each of its 

counterparties. 

[Insert Table 12 about here] 

In light of the difficulty of measuring bargaining power directly, we instead use measures 

of the stability of the firm's output and input relationships. We find that both increase as a result 

of AI production. Starting with outputs, Table 12 shows that the volatility of quarterly sales 

decreases by about 3.5% relative to its mean as a result of a 10% increase in AI patent counts. 

Also evidencing a more stable relationship between the firm and its customers, product 

differentiation (vis-à-vis product market competitors) also increases. Specifically, the Hoberg 

and Phillips (2016) similarity score, converted to a differentiation, increases by about 5 

percentage points. 

Proceeding to inputs, Table 12 shows that the volatility of total costs of production 

decreases by about 3.5% relative to its mean as a result of a 10% increase in AI patent counts. If 

we break total costs down into their constituent SG&A and COGS, we find that their volatilities 

decrease by roughly 2.5% and 3%, respectively. Consistently across all of the regressions in 

Table 12, the estimated magnitudes correspond to about 2-3% of the respective dependent 

variable's standard deviation. 

8. Financing Implications of AI Production 

Having documented that AI producer firms have higher cash flows and lower cash flow 

risk, we turn to the financing implications of AI production. As a consequence of the effect of AI 

production on both of these key value drivers, we would expect AI producers to choose more 

aggressive financial structures. For instance, firms would be incentivized to shield from taxation 
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their higher profits by increasing their leverage. Firms lower financial distress costs resulting 

from lower risk would similarly motivate them to increase their leverage. 

[Insert Table 13 about here] 

Table 13 shows that subsequent to a 10% increase in AI patent counts, AI producers 

increase their leverage by about 3% relative to its mean. Similarly, and also consistent with 

lower precautionary motives for holding cash, the same variation in AI patent counts lowers cash 

holdings by about 2.5%. We further investigate the components of the change in leverage to 

better understand how firms react. We find that net debt issuance increases by roughly 2 

percentage points, while equity issuance decreases by roughly 0.8 p.p., even as share repurchases 

remain unchanged. Overall, AI production appears to increase financial structure aggressiveness. 

9. Conclusion 

We document that AI innovation is a prominent form of innovation with widespread 

applications across different product markets and technology fields. Publicly traded firms 

dominate the AI production in the economy, and an increasingly high share of innovative 

publicly traded firms produce AI innovation. We argue that AI production increases firm value 

for the producer firm, by increasing cash flow levels and decreasing cash flow risk. We find that 

AI producers have higher risk-adjusted stock returns. 

In our causal examination of the implications of AI production, we use an instrumental 

variable that exploits the interaction between the producer firm's plausibly exogenous innovation 

capacity and AI exposure driven incentives to produce AI innovation. We argue and find that 

firms produce AI innovation motivated by both their own AI exposure as well as that of their 

customers. Moreover, successful AI production causes higher profitability and lower risk. 
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We document four mechanisms through which AI production affects firm value. AI 

production increases the firm's labor productivity; it decreases the firm's physical capital 

intensity; it increases the firm's capacity for more innovation in absolute terms and relative to 

innovation costs; and it increases the firm's bargaining power vis-à-vis its business 

counterparties. We also find that, consistent with the decrease in risk, firms adopt more 

aggressive financial structures. 

Taken together, our findings help inform corporate managers, capital providers, and 

policy makers who increasingly need to evaluate investment opportunities to develop and deploy 

AI technology. AI production to date has been value enhancing for producer firms across several 

operational dimensions. This will likely continue in the near future. 
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Appendix 1 

Details of the Classification of Patents as AI versus Non-AI 

We describe here the key details of Giczy, Pairolero, and Toole (2022)'s machine 

learning approach for classifying patents as AI versus non-AI. As a starting point, AI is broken 

down into eight AI component technologies, and the universe of patent documents is evaluated 

for AI content pertaining to each of the eight components. The eight AI component technologies 

are knowledge processing, speech recognition, AI hardware, evolutionary computation, natural 

language processing, machine learning, computer vision, and planning/control. These 

components are not mutually exclusive. For instance, an invention in any one of the components 

is likely to also exploit machine learning models. The identification algorithm then focuses on 

each of these eight AI component technologies separately, until, for each component, all patents 

are assigned a predicted probability of being AI. 

To train a machine learning model to identify a patent as AI or non-AI, it is necessary to 

have one set of patents that are "surely AI" and another set that are "surely non-AI". The set of 

"surely AI" patents is identified by intersecting four patent classification systems: CPC, IPC, 

USPC, and Derwent World Patent Index. Each of these systems has its own set of patent classes 

that allow categorization of every patent as AI or non-AI according to each of the 

aforementioned eight AI component technologies. Giczy et al. deem a patent to be "surely AI" if 

all four patent classification systems agree that the patent belongs to the specific AI component 

technology under consideration.18 

                                                 
18 For example, to identify the "surely AI" set of patents for computer vision, the following is a list of the patent 
classes that are intersected from the four patent classification systems. From CPC/IPC: G06K9 (recognition of 
characters or patterns), G06T3 (image transformation), G06T5 (image enhancement/ restoration), and G06T7 (image 
analysis). From USPC: 382 (image analysis). From Derwent: T01-J10B (Image Processing), T04-D (Character and 
signal pattern recognition), and T01-J16 (artificial intelligence). 
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Having thus identified the training set of "surely AI" patents, the next step is to identify 

the set of "surely non-AI" patents. This begins by excluding the set of "surely AI" patents. 

However, some of the patents that remain may be related to AI. These patents are identified for 

exclusion in two independent procedures as follows. In the first procedure, patents are excluded 

if they share a patent family with any patent in the set of "surely AI" patents, and their backward 

and forward citations are also excluded.19 This step is repeated a second time, but this time the 

basis of exclusion is sharing a patent family with any patent excluded in the first step (as 

opposed to the set of "surely AI" patents). In the second procedure, patents are excluded if they 

belong to a CPC patent class that has an abnormally high share of "surely AI" patents 

(specifically, if the class' share of "surely AI" patents is more than 50 times the class' share of the 

universe of patents). The final step in creating the training set of "surely non-AI" patents is to 

randomly select 15,000 of the patents that remain after the foregoing exclusions. 

A machine learning model is then trained on the abstract, claims, and citations of the 

"surely AI" and "surely non-AI" patents. After training, the model subsequently evaluates all 

patent documents (i.e., not just those of "surely AI" and "surely non-AI" training sets) for their 

AI content. All patents are thus assigned a predicted probability of containing a particular AI 

component technology. Finally, if any of the predicted probabilities exceed 0.5 for any of the 

eight AI component technologies, the patent is classified as an AI patent. 

                                                 
19 A patent family is a group of patent applications and/or granted patents that share a common applicant/owner and 
share a similar inventive concept. 
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Appendix 2 

Details of the Construction of Occupational AI Exposure Scores 

The AI exposure of an occupation is the extent to which AI can be used to substitute or 

complement labor in that occupation, and the measure that we use reflects this agnosticism about 

the effect of AI on labor. Felten, Raj, and Seamans (2021) measure occupational AI exposure 

starting with estimating the AI exposure of all 52 "workspace abilities" in the Department of 

Labor O*NET database. These abilities simply describe the skills required to perform the tasks 

involved in various occupations. O*NET scores each ability, within each occupation, on its 

relevance and importance (e.g., surgeons receive high scores for arm-hand steadiness and 

deductive reasoning). 

Felten, Raj, and Seamans (2021) conduct a crowd sourced survey via Amazon's mTurk 

asking respondents if a specified O*NET ability "is related to or can use AI" in 10 "AI 

applications" defined by the Electronic Frontier Foundation.20 Survey responses (zero-one / no-

yes) are averaged within each of 520 ability-application pairs (52×10). Then, within each of 52 

O*NET workspace abilities, the survey average AI application scores are summed up, resulting 

in an AI application score for each workspace ability. Finally, the total AI application scores for 

O*NET workspace abilities are calculated as a weighted average across each O*NET 

occupation. The weights used are the initially mentioned O*NET scores for the relevance and 

importance of each workspace ability specific to the occupation. The final occupational scores 

are standardized (mean zero, standard deviation one). 

                                                 
20 This focus is chosen for the sake of concreteness and precision of survey responses. The EFF is a digital rights 
and privacy non-profit that collects statistics about the progress of AI across its applications. The 10 selected AI 
applications are those for which the EFF has recorded scientific activity since 2010. The applications comprise: 
abstract strategy games, real-time video games, image recognition, visual question answering, image generation, 
reading comprehension, language modeling, translation, speech recognition, and instrumental track recognition. 
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Table 1 
Industry Ranking Based on AI Production 

 
This table shows the ranking of industries based on their AI production. The sample is all firms in the baseline sample restricted to industries with at least 10 
firms per year every year during the sample period. The number of firms in an industry is the annual average number of firms. The number of AI patents is the 
annual average of the total number of AI patents granted to firms in the industry. The three most AI innovative firms in an industry are the three firms with the 
highest number of AI patents. 
 

All firms 
Excl. three most AI 

innovative firms 
Rank: 

Industry 
total AI 
patents 

SIC3 Industry name 
Number 
of firms 

Number 
of AI 

patents 

Rank: 
Mean AI 
patents 
per firm 

Rank: 
Industry 
total AI 
patents 

Rank: 
Mean AI 
patents 
per firm 

1 737 Computer programming, data processing, and other computer related 310.9 397.25 6 1 3 
2 367 Electronic components and accessories 139.6 226.50 3 3 2 
3 357 Computer and office equipment 113.9 222.71 2 2 1 
4 382 Laboratory apparatus and analytical, optical, measuring, and control 97.9 99.14 8 4 5 
5 366 Communications equipment 92.2 87.04 7 5 6 
6 384 Surgical, medical, and dental instruments and supplies 138.4 74.36 13 6 8 
7 481 Telephone communications 45.7 58.25 4 7 7 
8 372 Aircraft and parts 20.4 52.36 1 9 4 
9 371 Motor vehicles and motor vehicle equipment 45.5 45.89 9 10 10 

10 283 Drugs 270.6 38.89 24 8 14 
11 291 Petroleum refining 19.5 24.93 5 11 9 
12 353 Construction, mining, and materials handling machinery and equipment 24.5 20.50 10 19 18 
13 355 Special industry machinery, except metalworking machinery 36.1 18.89 12 12 11 
14 362 Electrical industrial apparatus 18.8 15.36 11 18 17 
15 596 Non-store retailers 28.2 11.50 14 20 19 
16 138 Oil and gas field services 30.4 11.36 15 22 24 
17 873 Research, development, and testing services 39.4 7.21 20 13 12 

18 284 
Soap, detergents, and cleaning preparations; perfumes, cosmetics, and other 
toilet preparations 

22.4 6.39 16 30 27 

19 421 Trucking and courier services, except air 27.6 5.96 17 33 39 
20 738 Miscellaneous business services 37.6 5.36 19 15 16 
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21 369 Miscellaneous electrical machinery, equipment, and supplies 20.8 5.21 18 14 13 
22 799 Miscellaneous amusement and recreation services 29.4 4.68 21 24 21 
23 483 Radio and television broadcasting stations 25.2 4.57 22 16 15 
24 356 General industrial machinery and equipment 39.6 3.93 26 17 20 
25 874 Management and public relations services 24.9 2.68 23 23 22 
26 504 Professional and commercial equipment and supplies 30.6 1.68 30 21 23 
27 208 Beverages 18.7 1.57 28 31 32 
28 451 Air transportation, scheduled, and air courier services 19.9 1.57 27 26 26 
29 506 Electrical goods 22.6 1.57 25 29 28 
30 281 Industrial inorganic chemicals 16.4 1.50 29 28 25 
31 131 Crude petroleum and natural gas 98.4 1.39 33 25 37 
32 308 Miscellaneous plastics products 29.2 0.64 32 27 29 
33 581 Eating and drinking places 68.5 0.64 37 40 40 
34 495 Sanitary services 24.8 0.61 31 32 38 
35 809 Miscellaneous health and allied services, not elsewhere classified 18.1 0.25 34 34 34 
36 736 Personnel supply services 26.4 0.21 36 37 33 
37 331 Steel works, blast furnaces, and rolling and finishing mills 27.3 0.14 35 36 30 
38 735 Miscellaneous equipment rental and leasing 15.6 0.07 40 39 35 
39 153 Operative builders 22.8 0.04 39 35 31 
40 565 Family clothing stores 15.3 0.04 38 38 36 
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Table 2 
Descriptive Statistics 

 
This table presents descriptive statistics for the main variables used in this paper. Variables are defined in Appendix 
Table 1. 
 

 Mean 
Standard 
deviation 

25th 
percentile 

Median 
75th 

percentile 
Independent variables      
 - AI patent counts 0.66 3.46 0.00 0.00 0.00 
 - Non-AI patent counts 6.5 26.8 0.0 0.0 1.0 
 - R&D stock [tax credit induced] ($ M) 127.7 493.1 0.0 1.9 40.3 
 - Firm's AI exposure 1.23 0.47 0.87 1.21 1.54 
 - Customers' AI exposure 1.14 0.36 0.85 1.14 1.37 
 - Total assets ($ M) 2,307 6,830 62 260 1,201 
 - Firm age (years) 15 15 4 10 21 
 - Innovation dummy variable 0.33 0.47 0.00 0.00 1.00 
      

Variables used in stock returns analysis      
 - Monthly stock return (%) 0.66 16.37 -7.82 -0.22 7.73 
 - Market capitalization ($ M) 2,314 7,481 46 217 1,075 
 - Market-to-book of equity 2.7 4.0 0.8 1.4 2.8 
 - Momentum (%) 9.7 60.6 -26.9 0.6 30.9 
 - Short-term reversal (%) 0.70 16.31 -7.84 -0.24 7.75 
 - Stock price ($) 19.9 22.8 4.3 12.0 27.2 
      

Dependent variables: Profitability      
 - Return on assets -0.057 0.279 -0.084 0.026 0.079 
 - Profit margin -0.093 0.327 -0.080 0.021 0.067 
      

Dependent variables: Risk      
 - Volatility of return on assets 0.03 0.07 0.01 0.01 0.03 
 - Volatility of profit margin 0.74 3.63 0.02 0.04 0.16 
 - Volatility of stock returns (%) 4.18 2.70 2.31 3.44 5.18 
      

Dependent variables: Labor productivity      
 - Profit per employee ($ M per employee) -0.050 0.247 -0.023 0.005 0.022 
 - Employment / Total assets 
   (employees per $ M) 

5.4 6.6 1.7 3.4 6.4 

- Total assets ($ M) 2,423 7,100 63 279 1,293 
      

Dependent variables: Capital intensity      
 - PP&E / Total assets 0.26 0.22 0.08 0.19 0.37 
 - Inventory / Total assets 0.14 0.16 0.01 0.09 0.21 
 - Capex / Total assets 0.061 0.077 0.016 0.036 0.073 
 - R&D / Total assets 0.067 0.131 0.000 0.004 0.077 
 - Acquisitions / Total assets 0.030 0.092 0.000 0.000 0.007 
      

Dependent variables: Innovation capacity      
 - Total patent counts / Total assets (per $ B) 10.6 31.6 0.0 0.0 4.2 
 - AI patent counts / Total assets (per $ B) 0.67 3.25 0.00 0.00 0.00 
 - Non-AI patent counts / Total assets 
    (per $ B) 

9.6 29.4 0.0 0.0 3.2 

 - Total innovation efficiency 117.46 629.27 0.00 0.00 0.13 
 - AI innovation efficiency 11.50 106.58 0.00 0.00 0.00 
 - Non-AI innovation efficiency 96.40 519.79 0.00 0.00 0.11 
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Dependent variables: Bargaining power      
 - Volatility of (Sales / Total assets) 0.039 0.046 0.011 0.023 0.049 
 - Product differentiation (%) 96.9 2.2 96.3 97.5 98.3 
 - Volatility of (Total costs / Total assets) 0.035 0.044 0.009 0.020 0.042 
 - Volatility of (SG&A / Total assets) 0.010 0.016 0.002 0.004 0.011 
 - Volatility of (COGS / Total assets) 0.028 0.037 0.006 0.015 0.034 
      

Dependent variables: Financial policies      
 - Leverage 0.23 0.23 0.02 0.18 0.35 
 - Cash holdings / Total assets 0.20 0.23 0.03 0.10 0.29 
 - Equity issuance / Total assets 0.085 0.268 0.000 0.004 0.022 
 - Share repurchases / Total assets 0.016 0.040 0.000 0.000 0.008 
 - Net debt issuance / Total assets 0.026 0.142 -0.023 0.000 0.030 
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Table 3 
First Stage of IV Regressions 

 
This table shows the results of regressions of AI production on the interaction between the producer firm's R&D 
stock and its own AI exposure or the AI exposure of its customers. Column 3 corresponds to the first stage of the IV 
regressions. The sample period spans 1990-2017 in terms of year t. AI patent counts are measured in year t. They are 
instrumented with R&D stock measured at year t-2 and AI exposure fixed before the start of the sample period. The 
sample and specifications are described in the text. Variables are defined in Appendix Table 1. ***, **, and * 
indicate statistical significance at the 1%, 5%, and 10% levels, respectively. 
 

 Dependent variable is ln(0.1+AI patent counts) 
  

 (1) (2) (3) 
ln(1+R&D stock) [tax credit induced] 0.052***   0.024* 
  Firm's AI exposure (6.44)   (1.90) 
    

ln(1+R&D stock) [tax credit induced]   0.057*** 0.040*** 
  Customers' AI exposure   (6.58) (3.01) 
    

ln(1+R&D stock) [tax credit induced] 0.037*** 0.038*** 0.038*** 
 (2.61) (2.61) (2.62) 
    

ln(1+Non-AI patent counts) 0.381*** 0.381*** 0.381*** 
 (12.48) (12.50) (12.51) 
    

Innovation dummy variable 0.165*** 0.165*** 0.165*** 
 (2.59) (2.59) (2.59) 
    

ln(Total assets) 0.051*** 0.051*** 0.051*** 
 (6.31) (6.31) (6.34) 
    

ln(Firm age) -0.036*** -0.038*** -0.038*** 
 (-3.82) (-4.07) (-4.07) 
    

Fixed effects    
State  Year? Yes Yes Yes 
SIC3 industry? Yes Yes Yes 
Firm? Yes Yes Yes 
SIC2 industry  Year? Yes Yes Yes 
    

Observations 91,868 91,868 91,868 
Adjusted R2 0.702 0.702 0.702 

 



51 

Table 4 
Risk-Adjusted Returns of Portfolios Sorted by Actual AI Patent Counts 

 
This table shows the risk-adjusted returns of portfolios sorted based on actual AI patent counts. The sample and 
specifications are described in the text. Returns are measured from July 1991 to June 2019. Firms are sorted into 
three quasi-terciles: zero, low, and high AI patents (T1, T2, and T3). The zero AI patents tercile is further sorted into 
two groups: zero innovation (T1a) and non-zero innovation (T1b). Returns are risk-adjusted using the Fama and 
French (2015) five-factor model. t-statistics are calculated using Newey and West (1987) standard errors with 
twelve lags. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively. 
 

Panel A: Equally Weighted Portfolios 

 
AI = 0 & 

Innovation  
= 0 (T1a) 

AI = 0 & 
Innovation  
> 0 (T1b) 

Low AI (T2) High AI (T3) T3 – T1a T3 – T1b 

MKT 0.99*** 1.10*** 1.15*** 1.17*** 0.18*** 0.07* 
 (23.02) (33.22) (24.90) (23.78) (3.96) (1.82) 
       

SMB 0.83*** 0.84*** 0.62*** 0.35*** -0.48*** -0.50*** 
 (12.48) (16.25) (7.36) (3.89) (-7.60) (-8.86) 
       

HML 0.19*** -0.05 -0.16** -0.07 -0.26*** -0.02 
 (2.76) (-0.96) (-2.08) (-0.84) (-4.45) (-0.34) 
       

RMW -0.14* -0.28*** -0.43*** -0.32** -0.18 -0.04 
 (-1.77) (-5.13) (-3.64) (-2.19) (-1.46) (-0.35) 
       

CMA -0.17 0.12 0.02 0.12 0.29* -0.01 
 (-1.21) (1.38) (0.13) (0.72) (1.87) (-0.04) 
       

Alpha 0.07 0.20 0.36** 0.49*** 0.42*** 0.29** 
 (0.49) (1.56) (2.20) (3.71) (3.28) (2.17) 
       

Observations 336 336 336 336 336 336 
Adjusted R2 0.868 0.917 0.873 0.847 0.295 0.314 

Panel B: Value Weighted Portfolios 

 
AI = 0 & 

Innovation  
= 0 (T1a) 

AI = 0 & 
Innovation  
> 0 (T1b) 

Low AI (T2) High AI (T3) T3 – T1a T3 – T1b 

MKT 1.11*** 1.03*** 0.97*** 1.01*** -0.09** -0.02 
 (35.89) (39.83) (31.30) (27.46) (-2.04) (-0.35) 
       

SMB 0.25*** 0.02 -0.17*** -0.20*** -0.46*** -0.22*** 
 (5.08) (0.41) (-2.91) (-3.75) (-6.94) (-3.39) 
       

HML 0.09 -0.09** -0.17*** -0.16** -0.25*** -0.07 
 (1.41) (-2.24) (-3.16) (-2.51) (-3.57) (-0.78) 
       

RMW 0.20*** 0.17*** 0.00 -0.15 -0.35*** -0.31*** 
 (2.79) (3.42) (0.03) (-1.51) (-5.27) (-3.39) 
       

CMA -0.22** 0.16** 0.18* -0.13 0.09 -0.30 
 (-2.30) (2.10) (1.77) (-0.91) (0.78) (-1.55) 
       

Alpha -0.19** -0.09 0.01 0.23** 0.42*** 0.32** 
 (-2.42) (-1.18) (0.07) (2.07) (3.40) (2.11) 
       

Observations 336 336 336 336 336 336 
Adjusted R2 0.907 0.892 0.804 0.864 0.306 0.180 
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Panel C: Size Neutral Portfolios 

 
AI = 0 & 

Innovation  
= 0 (T1a) 

AI = 0 & 
Innovation  
> 0 (T1b) 

Low AI (T2) 
High AI 

(T3) 
T3 – T1a T3 – T1b 

MKT 1.10*** 1.09*** 1.07*** 1.12*** 0.02 0.03 
 (37.47) (46.86) (34.00) (19.48) (0.36) (0.53) 
       

SMB 0.51*** 0.45*** 0.33*** 0.38*** -0.13 -0.07 
 (9.81) (9.52) (5.65) (4.18) (-1.63) (-0.92) 
       

HML 0.14** -0.05 -0.21*** -0.18* -0.32*** -0.12 
 (2.26) (-1.33) (-4.65) (-1.92) (-4.52) (-1.44) 
       

RMW 0.13 0.01 -0.26*** -0.26* -0.39*** -0.28** 
 (1.61) (0.22) (-3.12) (-1.68) (-3.63) (-2.48) 
       

CMA -0.23** 0.11 0.05 0.04 0.27* -0.07 
 (-2.14) (1.47) (0.42) (0.19) (1.69) (-0.38) 
       

Alpha -0.17** -0.03 0.21** 0.39*** 0.56*** 0.41*** 
 (-2.10) (-0.34) (2.11) (2.65) (4.32) (2.85) 
       

Observations 336 336 336 336 336 336 
Adjusted R2 0.925 0.931 0.889 0.810 0.215 0.117 
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Table 5 
Risk-Adjusted Returns of Portfolios Double Sorted by R&D Stock and AI Exposure 

 
This table shows the risk-adjusted returns of portfolios double sorted independently based on (tax credit induced) 
R&D capital stock and AI exposure. The sample and specifications are described in the text. Returns are measured 
from July 1991 through June 2019. Firms are sorted into two groups based on R&D capital stock: zero R&D stock 
("low", L), and non-zero R&D stock ("high", H). Independently, firms are sorted into quintiles based on AI exposure 
measured as the first principal component of the respective AI exposures of the firm and its customers. Returns are 
risk-adjusted using the Fama and French (2015) five-factor model. t-statistics are calculated using Newey and West 
(1987) standard errors with twelve lags. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% 
levels, respectively. 
 

Panel A: Equally Weighted Portfolios 

 
Exposure 
Q1 (low) 

Exposure 
Q2 

Exposure 
Q3 

Exposure 
Q4 

Exposure 
Q5 (high) 

Exposure 
(Q5 – Q1) 

Low R&D stock (L) -0.28** -0.43** -0.11 -0.23 0.15 0.42*** 
 (-1.98) (-2.43) (-0.71) (-1.07) (0.85) (2.89) 
         

High R&D stock (H) -0.14 0.03 0.60** 0.55** 0.86*** 1.00*** 
 (-1.17) (0.30) (2.47) (2.46) (4.01) (4.02) 
             

R&D stock (H – L) 0.13 0.47*** 0.70*** 0.79*** 0.71*** 0.58*** 
 (1.37) (2.88) (2.68) (3.23) (3.75) (2.72) 

Panel B: Value Weighted Portfolios 

 
Exposure 
Q1 (low) 

Exposure 
Q2 

Exposure 
Q3 

Exposure 
Q4 

Exposure 
Q5 (high) 

Exposure 
(Q5 – Q1) 

Low R&D stock (L) -0.33*** -0.30** -0.43*** -0.55*** -0.04 0.29** 
 (-3.22) (-2.50) (-3.34) (-3.05) (-0.34) (2.15) 
         

High R&D stock (H) -0.30*** 0.05 0.10 0.15 0.53*** 0.83*** 
 (-2.64) (0.45) (0.91) (0.93) (3.60) (3.74) 
             

R&D stock (H – L) 0.03 0.36* 0.52*** 0.69*** 0.57*** 0.54** 
 (0.32) (1.89) (3.45) (3.09) (3.15) (2.47) 

Panel C: Size Neutral Portfolios 

 
Exposure 
Q1 (low) 

Exposure 
Q2 

Exposure 
Q3 

Exposure 
Q4 

Exposure 
Q5 (high) 

Exposure 
(Q5 – Q1) 

Low R&D stock (L) -0.35*** -0.39*** -0.36*** -0.55*** 0.03 0.37*** 
 (-3.53) (-3.13) (-3.11) (-2.97) (0.21) (2.89) 
         

High R&D stock (H) -0.31*** -0.05 0.24* 0.20 0.61*** 0.93*** 
 (-2.68) (-0.49) (1.85) (1.40) (3.75) (4.31) 
             

R&D stock (H – L) 0.03 0.34** 0.61*** 0.76*** 0.59*** 0.55*** 
 (0.43) (2.27) (3.70) (3.59) (4.10) (2.98) 

 



54 

Table 6 
Fama-MacBeth Regressions of Stock Returns on AI Production 

 
This table shows the results of Fama-MacBeth regressions of individual monthly stock returns on AI production. 
The sample and specifications are described in the text. Returns are measured from July 1991 to June 2019. The 
"other control variables" are market capitalization, market-to-book of equity, momentum, short-term reversal, return 
on assets, capex-to-total assets, stock price, turnover, and firm age. Variables are defined in Appendix Table 1. t-
statistics are calculated using Newey and West (1987) standard errors with twelve lags. ***, **, and * indicate 
statistical significance at the 1%, 5%, and 10% levels, respectively. 
 

 Dependent variable is monthly stock return 
     

 (1) (2) (3) (4) 
ln(0.1+AI patent counts) 0.002 0.016     
 (0.11) (0.93)   
     

ln(1+R&D stock) [tax credit induced]     0.031*** 0.028*** 
  AI exposure     (3.07) (2.85) 
     

AI exposure   0.009 0.008 
   (0.15) (0.15) 
     

ln(1+R&D stock) [tax credit induced]   0.209*** 0.116*** 
   (5.83) (4.93) 
     

ln(1+Non-AI patent counts) -0.081**  -0.066*  
 (-2.08)  (-1.74)  
     

ln(1+R&D spending) 0.138***  -0.097**  
 (3.78)  (-2.43)  
     

ln(0.1+Non-AI patent counts/TA)  0.037*  0.047** 
  (1.83)  (2.23) 
     

ln(0.001+R&D spending/TA)  0.112***  0.024 
  (3.36)  (0.63) 
     

Innovation dummy variable 0.125 -0.130* 0.078 -0.228*** 
 (1.60) (-1.95) (1.04) (-3.21) 
     

Other control variables? Yes Yes Yes Yes 
FF48 industry fixed effects? Yes Yes Yes Yes 
     

Observations 993,135 993,135 993,135 993,135 
R2 0.090 0.091 0.091 0.092 
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Table 7 
The Effect of AI Production on the Producer Firm's Profitability 

 
This table shows the results of regressions of cash flow levels on AI production. AI patent counts are instrumented 
with the interaction between the producer firm's R&D stock and its own AI exposure as well as that of its customers. 
The sample period spans 1990-2017 in terms of year t. AI patent counts are measured in year t. They are 
instrumented with R&D stock measured at year t-2 and AI exposure fixed before the start of the sample period. 
Outcomes are measured in year t+1. The sample and specifications are described in the text. Variables are defined in 
Appendix Table 1. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively. 
 

 Dependent variable is 
   

 Return on assets Profit margin 
ln(0.1+AI patent counts) [instrumented] 0.075** 0.075** 
 (2.18) (2.08) 
   

ln(1+R&D stock) [tax credit induced] 0.006** 0.010*** 
 (2.51) (3.43) 
   

ln(1+Non-AI patent counts) -0.038*** -0.029** 
 (-2.89) (-2.06) 
   

Control variables? Yes Yes 
   

Fixed effects   
State  Year? Yes Yes 
SIC3 industry? Yes Yes 
Firm? Yes Yes 
SIC2 industry  Year? Yes Yes 
   

Observations 91,868 90,366 
F-statistic for instrument 24.9 25.2 
Hansen J-statistic 0.00 0.62 
p-value of Hansen J-statistic 0.979 0.430 
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Table 8 
The Effect of AI Production on the Producer Firm's Risk 

 
This table shows the results of regressions of cash flow volatility on AI production. AI patent counts are 
instrumented with the interaction between the producer firm's R&D stock and its own AI exposure as well as that of 
its customers. The sample period spans 1990-2017 in terms of year t. AI patent counts are measured in year t. They 
are instrumented with R&D stock measured at year t-2 and AI exposure fixed before the start of the sample period. 
Outcomes are measured in year t+1. The sample and specifications are described in the text. Variables are defined in 
Appendix Table 1. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively. 
 

 Dependent variable is ln(Volatility of ) 
    

 Return on assets Profit margin Stock returns 
ln(0.1+AI patent counts) [instrumented] -0.610*** -0.523*** -0.231*** 
 (-3.78) (-2.64) (-4.20) 
    

ln(1+R&D stock) [tax credit induced] -0.005 -0.049*** -0.002 
 (-0.33) (-2.70) (-0.38) 
    

ln(1+Non-AI patent counts) 0.243*** 0.230*** 0.083*** 
 (3.89) (3.00) (3.94) 
    

Control variables? Yes Yes Yes 
    

Fixed effects . . . 
State  Year? Yes Yes Yes 
SIC3 industry? Yes Yes Yes 
Firm? Yes Yes Yes 
SIC2 industry  Year? Yes Yes Yes 
    

Observations 90,763 88,384 91,457 
F-statistic for instrument 25.0 25.0 25.1 
Hansen J-statistic 0.13 0.41 0.10 
p-value of Hansen J-statistic 0.719 0.524 0.754 
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Table 9 
Mechanisms Underlying the Effect of AI Production: The Producer Firm's Labor Productivity 

 
This table shows the results of regressions of labor productivity measures on AI production. AI patent counts are 
instrumented with the interaction between the producer firm's R&D stock and its own AI exposure as well as that of 
its customers. The sample period spans 1990-2017 in terms of year t. AI patent counts are measured in year t. They 
are instrumented with R&D stock measured at year t-2 and AI exposure fixed before the start of the sample period. 
Outcomes are measured in year t+1. The sample and specifications are described in the text. Variables are defined in 
Appendix Table 1. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively. 
 

 Dependent variable is 
    

 
Profit per 
employee 

ln(Employment  
/ Total assets) 

ln(Total assets) 

ln(0.1+AI patent counts) [instrumented] 0.075* -0.081 -0.033 
 (1.95) (-0.90) (-0.79) 
    

ln(1+R&D stock) [tax credit induced] 0.005** 0.020** -0.002 
 (2.36) (2.23) (-0.53) 
    

ln(1+Non-AI patent counts) -0.027* 0.044 0.022 
 (-1.93) (1.30) (1.34) 
    

Control variables? Yes Yes Yes 
    

Fixed effects . . . 
State  Year? Yes Yes Yes 
SIC3 industry? Yes Yes Yes 
Firm? Yes Yes Yes 
SIC2 industry  Year? Yes Yes Yes 
    

Observations 90,494 90,335 91,914 
F-statistic for instrument 24.4 25.3 24.9 
Hansen J-statistic 0.01 0.13 0.03 
p-value of Hansen J-statistic 0.934 0.721 0.871 
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Table 10 
Mechanisms Underlying the Effect of AI Production: The Producer Firm's Capital Intensity 

 
This table shows the results of regressions of capital intensity and investments on AI production. AI patent counts are instrumented with the interaction between 
the producer firm's R&D stock and its own AI exposure as well as that of its customers. The sample period spans 1990-2017 in terms of year t. AI patent counts 
are measured in year t. They are instrumented with R&D stock measured at year t-2 and AI exposure fixed before the start of the sample period. Outcomes are 
measured in year t+1. The sample and specifications are described in the text. Variables are defined in Appendix Table 1. ***, **, and * indicate statistical 
significance at the 1%, 5%, and 10% levels, respectively. 
 

 Dependent variable is ln( / Total assets) 
      

 
Property, plant, and 

equipment 
Inventory Capex R&D spending 

Acquisitions 
expenditures 

ln(0.1+AI patent counts) [instrumented] -0.237** -0.344** -0.392*** -0.685*** 0.355* 
 (-2.39) (-2.11) (-2.85) (-3.65) (1.70) 
      

ln(1+R&D stock) [tax credit induced] -0.001 0.040*** -0.025* 0.167*** 0.012 
 (-0.09) (2.68) (-1.96) (8.84) (0.57) 
      

ln(1+Non-AI patent counts) 0.099** 0.148** 0.121** 0.285*** -0.105 
 (2.52) (2.30) (2.24) (3.88) (-1.27) 
      

Control variables? Yes Yes Yes Yes Yes 
      

Fixed effects . . . . . 
State  Year? Yes Yes Yes Yes Yes 
SIC3 industry? Yes Yes Yes Yes Yes 
Firm? Yes Yes Yes Yes Yes 
SIC2 industry  Year? Yes Yes Yes Yes Yes 
      

Observations 91,453 91,914 92,088 92,106 92,109 
F-statistic for instrument 25.3 24.9 24.9 24.9 24.9 
Hansen J-statistic 2.65 0.00 0.86 0.16 0.06 
p-value of Hansen J-statistic 0.104 0.984 0.355 0.693 0.803 
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Table 11 
Mechanisms Underlying the Effect of AI Production: The Producer Firm's Innovation Capacity 

 
This table shows the results of regressions of innovation outputs on AI production. AI patent counts are 
instrumented with the interaction between the producer firm's R&D stock and its own AI exposure as well as that of 
its customers. The sample period spans 1990-2017 in terms of year t. AI patent counts are measured in year t. They 
are instrumented with R&D stock measured at year t-2 and AI exposure fixed before the start of the sample period. 
Outcomes are measured in year t+1. The sample and specifications are described in the text. Variables are defined in 
Appendix Table 1. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively. 
 

Panel A: Innovation Output 
 Dependent variable is ln(Patent counts / Total assets) 
    

 Total patents AI patents Non-AI patents 
ln(0.1+AI patent counts) [instrumented] 0.774*** 1.420*** 0.485*** 
 (4.29) (11.18) (2.81) 
    

ln(1+R&D stock) [tax credit induced] 0.031 0.001 0.029 
 (1.46) (0.05) (1.50) 
    

ln(1+Non-AI patent counts) 0.346*** -0.007 0.474*** 
 (4.73) (-0.14) (6.89) 
    

Control variables? Yes Yes Yes 
    

Fixed effects . . . 
State  Year? Yes Yes Yes 
SIC3 industry? Yes Yes Yes 
Firm? Yes Yes Yes 
SIC2 industry  Year? Yes Yes Yes 
    

Observations 89,773 89,773 89,773 
F-statistic for instrument 25.2 25.2 25.2 
Hansen J-statistic 2.03 0.12 2.15 
p-value of Hansen J-statistic 0.155 0.727 0.142 

Panel B: Innovative Efficiency 
 Dependent variable is ln( innovation efficiency) 
    

 Total innovation AI innovation Non-AI innovation 
ln(0.1+AI patent counts) [instrumented] 1.822*** 0.956*** 1.973*** 
 (3.68) (3.11) (3.91) 
    

ln(1+R&D stock) [tax credit induced] -0.552*** -0.137*** -0.523*** 
 (-8.58) (-4.55) (-8.07) 
    

ln(1+Non-AI patent counts) -0.001 0.327*** -0.009 
 (-0.01) (2.62) (-0.05) 
    

Control variables? Yes Yes Yes 
    

Fixed effects . . . 
State  Year? Yes Yes Yes 
SIC3 industry? Yes Yes Yes 
Firm? Yes Yes Yes 
SIC2 industry  Year? Yes Yes Yes 
    

Observations 89,647 89,647 89,647 
F-statistic for instrument 25.3 25.3 25.3 
Hansen J-statistic 2.98 1.55 4.33 
p-value of Hansen J-statistic 0.084 0.212 0.038 
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Table 12 
Mechanisms Underlying the Effect of AI Production: The Producer Firm's Bargaining Power 

 
This table shows the results of regressions of the volatility of various production inputs and outputs on AI production. AI patent counts are instrumented with the 
interaction between the producer firm's R&D stock and its own AI exposure as well as that of its customers. The sample period spans 1990-2017 in terms of year 
t. AI patent counts are measured in year t. They are instrumented with R&D stock measured at year t-2 and AI exposure fixed before the start of the sample 
period. Outcomes are measured in year t+1. The sample and specifications are described in the text. Variables are defined in Appendix Table 1. ***, **, and * 
indicate statistical significance at the 1%, 5%, and 10% levels, respectively. 
 

 Dependent variable is 
      

 
ln(Volatility of 

(Sales  
/ Total assets)) 

Product 
differentiation 

ln(Volatility of 
(Total costs  

/ Total assets)) 

ln(Volatility of 
(SG&A  

/ Total assets)) 

ln(Volatility of 
(COGS  

/ Total assets)) 
ln(0.1+AI patent counts) [instrumented] -0.344*** 0.506* -0.351*** -0.260** -0.282*** 
 (-3.28) (1.88) (-3.29) (-2.48) (-2.65) 
      

ln(1+R&D stock) [tax credit induced] 0.011 -0.024 0.012 0.009 0.003 
 (1.07) (-0.81) (1.07) (0.86) (0.33) 
      

ln(1+Non-AI patent counts) 0.134*** -0.156 0.132*** 0.105** 0.110*** 
 (3.10) (-1.52) (3.15) (2.44) (2.59) 
      

Control variables? Yes Yes Yes Yes Yes 
      

Fixed effects . . . . . 
State  Year? Yes Yes Yes Yes Yes 
SIC3 industry? Yes Yes Yes Yes Yes 
Firm? Yes Yes Yes Yes Yes 
SIC2 industry  Year? Yes Yes Yes Yes Yes 
      

Observations 89,203 83,753 88,043 80,446 87,635 
F-statistic for instrument 25.1 22.2 25.1 28.6 25.7 
Hansen J-statistic 0.04 1.30 0.13 0.39 0.05 
p-value of Hansen J-statistic 0.834 0.254 0.723 0.533 0.825 
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Table 13 
The Effect of AI Production on the Producer Firm's Financial Policies 

 
This table shows the results of regressions of various financing variables on AI production. AI patent counts are instrumented with the interaction between the 
producer firm's R&D stock and its own AI exposure as well as that of its customers. The sample period spans 1990-2017 in terms of year t. AI patent counts are 
measured in year t. They are instrumented with R&D stock measured at year t-2 and AI exposure fixed before the start of the sample period. Outcomes are 
measured in year t+1. The sample and specifications are described in the text. Variables are defined in Appendix Table 1. ***, **, and * indicate statistical 
significance at the 1%, 5%, and 10% levels, respectively. 
 

 Dependent variable is 
      

 ln(Leverage) 
ln(Cash holdings  

/ Total assets) 
Net debt issuance  

/ Total assets 
Equity issuance  

/ Total assets 
Share repurchases  

/ Total assets 
ln(0.1+AI patent counts) [instrumented] 0.287* -0.251** 0.023* -0.083*** 0.008 
 (1.71) (-2.13) (1.67) (-2.58) (1.57) 
      

ln(1+R&D stock) [tax credit induced] 0.021 0.002 0.002 -0.008*** 0.000 
 (1.24) (0.19) (1.55) (-2.82) (0.33) 
      

ln(1+Non-AI patent counts) -0.046 0.095** -0.004 0.045*** -0.001 
 (-0.70) (2.06) (-0.64) (3.48) (-0.31) 
      

Control variables? Yes Yes Yes Yes Yes 
      

Fixed effects . . . . . 
State  Year? Yes Yes Yes Yes Yes 
SIC3 industry? Yes Yes Yes Yes Yes 
Firm? Yes Yes Yes Yes Yes 
SIC2 industry  Year? Yes Yes Yes Yes Yes 
      

Observations 91,914 91,913 92,109 92,109 92,109 
F-statistic for instrument 24.9 24.9 24.9 24.9 24.9 
Hansen J-statistic 0.63 2.13 1.16 0.11 0.12 
p-value of Hansen J-statistic 0.427 0.144 0.281 0.742 0.726 
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Figure 1. Share of AI innovation in aggregate innovation activity. This figure shows the annual share of AI 
patent grants in all patent grants (AI and non-AI). Innovation activity is measured variously as patent counts, 
forward citations to patents, and the market value of patents. 
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Panel A: Share of Industries with AI Patent Grants Exceeding Various 
Thresholds 
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Panel B: Share of Industries with Backward Citations to AI Patents 
Exceeding Various Thresholds 
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Panel C: Share of Technology Fields with AI Patent Grants Exceeding 

Various Thresholds 
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Panel D: Share of Technology Fields with Backward Citations to AI Patents 
Exceeding Various Thresholds 
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Figure 2. Diffusion of AI innovation across industries and technology fields. This figure shows the diffusion of AI innovation across industries (SIC3s) 
(Panels A and B) and technology fields (section and class of CPCs) (Panels C and D). 
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Panel A: Share of Publicly Traded Firms in AI vs. Non-AI Patents 
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Figure 3. The importance of publicly traded firms in AI innovation. This figure shows the share of publicly 
traded firms in AI patent grants separately from their share in non-AI patent grants (Panel A). The figure also shows, 
with the sample of publicly traded firms with at least one patent, the share of firms with at least one AI patent (Panel 
B). 
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Appendix Table 1 
Variable Definitions 

 
Independent Variables Common to All Regressions 

Name Definition 
 - AI patent counts The number of AI patent grants during the 12 months before the fiscal 

yearend date 
 - Non-AI patent counts The number of non-AI patent grants grants during the 12 months before the 

fiscal yearend date 
 - R&D stock [tax credit induced] R&D spending predicted using the user cost of R&D implied by federal 

and state R&D tax credits, capitalized during the previous 10 years at a 
depreciation rate of 15%. See Section 3.3 for details. 

 - Firm's AI exposure The producer firm's industry's labor's exposure to AI. AI exposure scores 
for each occupation are from Felten, Raj, and Seamans (2021) and 
aggregated at the industry level using employment shares between 1988 
and 1990. Firms are assigned to the industry-level AI exposure of their 
primary industry. See Section 3.3 for details. 

 - Customers' AI exposure  The producer firm's customers' industries' labor's exposure to AI. AI 
exposure scores for each occupation are from Felten, Raj, and Seamans 
(2021) and aggregated at the industry level using employment shares 
between 1988 and 1990. Customer industries and their product purchase 
shares are identified using industry input-output tables. Customers' AI 
exposure is calculated as the product purchase weighted average of the 
industry-level AI exposures of customer industries. See Section 3.3 for 
details. 

 - Total assets AT from Compustat 
 - Firm age Years since the date the firm began trading publicly according to CRSP 
 - Innovation dummy variable Dummy variable for whether the firm has at least one patent granted during 

the preceding 12 months 
Variables Used in Stock Returns Analysis 

Name Definition 
 - Monthly stock return RET from CRSP 
 - Market capitalization Stock price multiplied by shares outstanding from CRSP 
 - Market-to-book of equity Market capitalization at the end of December from CRSP scaled by the 

book value of common equity in the same year from Compustat. The latter 
is constructed as the Compustat book value of stockholders' equity, plus 
balance-sheet deferred taxes and investment tax credit, minus the book 
value of preferred stock. See Fama and French (1993) for details. 

 - Momentum Cumulative stock return during months [-12,-2] 
 - Short-term reversal Stock return during the previous month from CRSP 
 - Stock price Stock price from CRSP lagged by two months 
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Dependent Variables 
Name Definition 
Profitability  
 - Return on assets NI/AT from Compustat 
 - Profit margin NI/SALE from Compustat. Values less than -1 are replaced with -1. 
  

Risk  
 - Volatility of return on assets Standard deviation of quarterly NIQ/AT during the 12 months after the 

fiscal yearend date. From Compustat. 
 - Volatility of profit margin Standard deviation of quarterly NIQ/SALEQ during the 12 months after the 

fiscal yearend date. From Compustat. 
 - Volatility of stock returns Standard deviation of daily stock returns during the 12 months after the 

fiscal yearend date. From CRSP. 
  

Labor productivity  
 - Profit per employee NI/EMP from Compustat 
 - Employment / Total assets EMP/AT from Compustat 
  

Capital intensity  
 - PP&E / Total assets PPENT/AT from Compustat 
 - Inventory / Total assets INVT/AT from Compustat. Small constant added before taking logarithm: 

0.001. 
 - Capex / Total assets CAPX/AT from Compustat. Small constant added before taking logarithm: 

0.001. 
 - R&D / Total assets XRD/AT from Compustat. Small constant added before taking logarithm: 

0.001. 
 - Acquisitions / Total assets AQC/AT from Compustat. Small constant added before taking logarithm: 

0.001. 
  

Innovation capacity  
 - Total patent counts / Total assets  Total patent (AI and non-AI) grants during the 12 months before the fiscal 

yearend date, scaled by AT from Compustat (in $ billions). Small constant 
added before taking logarithm: 0.1. 

 - AI patent counts / Total assets  AI patents granted during the 12 months before the fiscal yearend date, 
scaled by AT from Compustat (in $ billions). Small constant added before 
taking logarithm: 0.01. 

 - Non-AI patent counts 
     / Total assets  

Non-AI patent grant during the 12 months before the fiscal yearend date, 
scaled by AT from Compustat (in $ billions). Small constant added before 
taking logarithm: 0.1. 

 - Total innovation efficiency Total patent (AI and non-AI) grants during the 12 months before the fiscal 
yearend date. Scaled by XRD from Compustat (in $ millions) plus $1,000. 
Scalar is lagged by two years. Small constant added before taking 
logarithm: 0.001. 

 - AI innovation efficiency AI patent grants during the 12 months before the fiscal yearend date. Scaled 
by XRD from Compustat (in $ millions) plus $1,000. Scalar is lagged by 
two years. Small constant added before taking logarithm: 0.0001. 

 - Non-AI innovation efficiency Non-AI patent grants during the 12 months before the fiscal yearend date. 
Scaled by XRD from Compustat (in $ millions) plus $1,000. Scalar is 
lagged by two years. Small constant added before taking logarithm: 0.001. 
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Bargaining power  
 - Volatility of  
    (Sales / Total assets) 

Standard deviation of quarterly SALEQ/AT during the 12 months after the 
fiscal yearend date. From Compustat. 

 - Product differentiation Hoberg and Phillips (2016) average product similarity score, subtracted 
from 1, multiplied by 100 

 - Volatility of  
    (Total costs / Total assets) 

Standard deviation of quarterly (COGSQ+XSGAQ)/AT during the 12 
months after the fiscal yearend date. From Compustat. 

 - Volatility of  
    (SG&A / Total assets) 

Standard deviation of quarterly XSGAQ/AT during the 12 months after the 
fiscal yearend date. From Compustat. 

 - Volatility of  
    (COGS / Total assets) 

Standard deviation of quarterly COGSQ/AT during the 12 months after the 
fiscal yearend date. From Compustat. 

 - Volatility of stock returns Standard deviation of daily stock returns during the 12 months before the 
fiscal yearend date. From CRSP. 

  

Financial policies  
 - Leverage (DLC+DLTT)/AT from Compustat. Small constant added before taking 

logarithm: 0.01. 
 - Cash holdings / Total assets CHE/AT from Compustat. Small constant added before taking logarithm: 

0.01. 
 - Net debt issuance / Total assets (DLCCH+DLTIS-DLTR)/AT from Compustat 
 - Equity issuance / Total assets SSTK/AT from Compustat 
 - Share repurchase / Total assets PRSTKC/AT from Compustat 
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Appendix Table 2 
Illustrative Examples 

 
This table shows the top publicly traded firms by AI patent grants (Panel A), the top occupations in industry SIC 737 
(Panel B), and the top customer industries of industry SIC 737 (Panel C). Industry SIC 737 is chosen because it has 
the most AI patent grants. 
 

Panel A: Top 20 Firms by AI Patent Grants 
AI patent 

counts (annual 
mean) 

Firm SIC3 Industry name 

1,499 IBM 737 Computer programming, data processing, and other computer related 
722 Microsoft 737 Computer programming, data processing, and other computer related 
703 Google 737 Computer programming, data processing, and other computer related 
297 HP 357 Computer and office equipment 
277 GE 351 Engines and turbines 
247 Intel 367 Electronic components and accessories 
240 Facebook 737 Computer programming, data processing, and other computer related 
227 HP 357 Computer and office equipment 
205 Amazon 596 Non-store retailers 
189 Xerox 357 Computer and office equipment 
186 Oracle 737 Computer programming, data processing, and other computer related 
169 AT&T 481 Telephone communications 
157 Apple 366 Communications equipment 
134 Lucent 737 Computer programming, data processing, and other computer related 
130 Sun 357 Computer and office equipment 
129 Qualcomm 367 Electronic components and accessories 
101 Cisco 357 Computer and office equipment 
88 Yahoo 737 Computer programming, data processing, and other computer related 
76 Adobe 737 Computer programming, data processing, and other computer related 
75 Verizon 481 Telephone communications 

Panel B: Top 20 Occupations in Industry SIC 737 

Employment share (%) Occupation name 
AI exposure 
(percentile) 

15.0 Computer programmers 89 
8.8 Systems analysts 77 
5.1 Computer engineers 86 
4.7 General managers & top executives 79 
4.6 Data entry keyers, except composing 67 
3.3 Secretaries, except legal & medical 83 
3.1 Computer operators, except peripheral equipment 73 
2.9 Engineering, mathematical & natural sciences managers 82 
2.3 Data processing equipment repairers 53 
2.1 General office clerks 80 
2.1 First line supervisors, clerical & administrative 82 
2.0 Bookkeeping, accounting & auditing clerks 82 
2.0 Salespersons, scientific products & services 77 
2.0 Marketing/advertising/public relations managers 91 
1.9 Sales agents, business services 91 
1.9 Electrical & electronic engineers 83 
1.9 Electrical/electronic technicians & technologists 61 
1.8 Computer programmer aides 89 
1.8 Other professional, paraprofessional/technicians 79 
1.5 Other computer scientists & related 81 
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Panel C: Top 20 Customer Industries of Industry SIC 737 
Product 

purchase share 
(%) 

SIC3 Industry name 
AI exposure 
(percentile) 

13.2 737 Computer programming, data processing, and other computer related 93 
12.9 602 Commercial banks 92 
12.5 872 Accounting, auditing, and bookkeeping services 100 
5.8 874 Management and public relations services 89 
5.3 735 Miscellaneous equipment rental and leasing 69 
3.8 801 Offices and clinics of doctors of medicine 87 
3.8 603 Savings institutions 93 
2.6 806 Hospitals 66 
2.6 481 Telephone communications 81 
2.6 871 Engineering, architectural, and surveying services 91 
2.1 621 Security brokers, dealers, and flotation companies 99 
1.5 802 Offices and clinics of dentists 65 
1.4 491 Electric services 62 
1.1 451 Air transportation, scheduled, and air courier services 56 
1.1 606 Credit unions 94 
0.8 541 Grocery stores 48 
0.8 272 Periodicals: publishing, or publishing and printing 88 
0.7 633 Fire, marine, and casualty insurance 96 
0.6 631 Life insurance 96 
0.6 822 Colleges, universities, professional schools, and junior colleges 86 

 


