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1 Introduction

In many financial institutions, there is a well established practice of measuring the risk of their portfolios
in terms of economic capital (cf., e.g. Dev, 2004). Measuring portfolio-wide economic capital, however, is
only the first step towards active, portfolio-oriented risk management. For purposes like identification of
concentrations, risk-sensitive pricing or portfolio optimization it is also necessary to decompose portfolio-
wide economic capital into a sum of risk contributions by sub-portfolios or single exposures (see, e.g.,
Litterman, 1996).

Overviews of a variety of different methodologies for this so-called capital allocation were given, e.g.,
by Koyluoglu and Stoker (2002) and Urban et al. (2004). McNeil et al. (2005, Section 6.3) discuss in
some detail the Euler allocation principle. The goal with this chapter is to provide more background
information on the Euler allocation, in particular with respect to the connection of Euler’s theorem and
risk diversification and some estimation issues with Euler risk contributions. We furthermore investigate
a new application of Euler’s theorem to the problem of how to identify the contributions of underlying
names to expected losses of collateralized debt obligation (CDO) tranches. Martin and Tasche (2007)
suggested to apply Euler allocation to measure the impact of systematic factors on portfolio risk. In the
last section of the chapter, we illustrate this approach with another example and compare its results with
the results of an alternative approach. The presentation of the subjects is largely based on work on the
subject by the author but, of course, refers to other authors where appropriate.

Section 2 “Theory” is mainly devoted to a motivation of the Euler allocation principle by taking recourse
to the economic concept of RORAC compatibility (Section 2.2). Additionally, Section 2.4 demonstrates
that Euler risk contributions are well-suited as a tool for the detection of risk concentrations. Section 3
“Practice” presents the formulae that are needed to calculate Euler risk contributions for standard devia-
tion based risk measures, Value-at-Risk (VaR) and Expected Shortfall (ES). Some VaR-specific estimation
issues are discussed in Section 3.2. Furthermore, in Section 3.4, it is shown that there is a quite natural
relationship between Euler contributions to VaR and the Nadaraya-Watson kernel estimator for condi-
tional expectations. As a further practical application of Euler’s theorem, we analyze in Section 3.5 the
decomposition of CDO tranche expected loss into components associated with the underlying names and
illustrate the results with a numerical example. In Section 3.6 this example is re-used for illustrating
different concepts of measuring the impact of single risk factors or sets of risk factors on portfolio risk.
The chapter concludes with a brief summary in Section 4. Appendix A provides some useful facts on
homogeneous functions.
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2 Theory

The Euler allocation principle may be applied to any risk measure that is homogeneous of degree 1 in the
sense of Definition A.1 (see Appendix A) and differentiable in an appropriate sense. After having intro-
duced the basic setting for the chapter in Section 2.1, we discuss in Section 2.2 the economic motivation
for the use of Euler risk contributions. The fact that the Euler allocation principle can be derived by
economic considerations constitutes the – maybe – most appealing feature of this principle. We show in
Sections 2.3 and 2.4 that the economic foundation of the Euler allocation becomes even stronger in the
case of sub-additive risk measures because it can then be used for efficient detection of risk concentration.

2.1 Basic setting

Suppose that real-valued random variables X1, . . . , Xn are given that stand for the profits and losses with
the assets (or some sub-portfolios) in a portfolio. Let X denote the portfolio-wide profit/loss, i.e. let

X =
n∑
i=1

Xi. (2.1)

The economic capital (EC) required by the portfolio (i.e. capital as a buffer against high losses caused
by the portfolio) is determined with a risk measure ρ, i.e.

EC = ρ(X). (2.2)

In practice, usually, ρ is related to the variance or a quantile of the portfolio loss distribution. See Section
3 for some examples of how ρ can be chosen.

For some kinds of risk (in particular credit risk), for risk management traditionally only losses are consid-
ered. Let Li ≥ 0 denote the loss with (credit) asset i and assume that L =

∑
Li stands for portfolio-wide

loss. Then this loss perspective on portfolio risk can be reconciled with the profit/loss perspective from
(2.1) and (2.2) by considering

Xi = gi − Li, (2.3)

where gi denotes the lender’s stipulated gain with credit asset i if the credit is repaid regularly. In the
following, as a general rule we will adopt the profit/loss perspective from (2.2).

It is useful to allow for some dynamics in model (2.1) by introducing weight variables u = (u1, . . . , un):

X(u) = X(u1, . . . , un) =
n∑
i=1

uiXi. (2.4)

Then we have obviously X = X(1, . . . , 1). The variable ui can be interpreted as amount of money invested
in the asset which underlies Xi or just as the credit exposure if Xi is chosen as a default indicator. For the
purpose of this chapter we assume that the probability distribution of the random vector (X1, . . . , Xn)
is fixed. We will, however, consider some variations of the variable u. It is then convenient to introduce
the function

fρ,X(u) = ρ(X(u)). (2.5)

For the same risk measure ρ, the function fρ,X can look quite different for different distributions of X.
As we assume that the distribution of X is fixed, we can nevertheless drop the index X and write fρ for
fρ,X .

In this chapter, we focus attention to (positively) homogeneous risk measures ρ and functions fρ (see
Appendix A for some important properties of such functions).
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2.2 Defining risk contributions

When portfolio-wide economic capital is measured according to (2.2), it may be useful to answer the
question: How much contributes asset (or sub-portfolio) i to EC = ρ(X)? Some potential applications of
the answer to this question will be given below. For the time being, we denote the (still to be defined)
risk contribution of Xi to ρ(X) by ρ(Xi |X).

Definition 2.1 Let µi = E[Xi]. Then

• the total portfolio Return on Risk Adjusted Capital1 is defined by

RORAC(X) =
E[X]
ρ(X)

=
∑m
i=1 µi
ρ(X)

,

• the portfolio-related RORAC of the i-th asset is defined by

RORAC(Xi |X) =
E[Xi]

ρ(Xi |X)
=

µi
ρ(Xi |X)

.

Based on the notion of RORAC as introduced in Definition 2.1, two properties of risk contributions can
be stated that are desirable from an economic point of view.

Definition 2.2 Let X denote portfolio-wide profit/loss as in (2.1).

• Risk contributions ρ(X1 |X), . . . , ρ(Xn |X) to portfolio-wide risk ρ(X) satisfy the full allocation
property if

n∑
i=1

ρ(Xi |X) = ρ(X).

• Risk contributions ρ(Xi |X) are RORAC compatible if there are some εi > 0 such that

RORAC(Xi |X) > RORAC(X) ⇒ RORAC(X + hXi) > RORAC(X)

for all 0 < h < εi.

It turns out that in the case of a “smooth” risk measure ρ, requiring the RORAC compatibility property
of Definition 2.2 completely determines the risk contributions ρ(Xi |X).

Proposition 2.1 Let ρ be a risk measure and fρ be the function that corresponds to ρ according to (2.4)
and (2.5). Assume that fρ is continuously differentiable. If there are risk contributions ρ(X1 |X), . . . ,
ρ(Xn |X) that are RORAC compatible in the sense of Definition 2.2 for arbitrary expected values µ1, . . . , µn
of X1, . . . , Xn, then ρ(Xi |X) is uniquely determined as

ρEuler(Xi |X) =
d ρ

d h
(X + hXi)

∣∣
h=0

=
∂ fρ
∂ ui

(1, . . . , 1). (2.6)

See Theorem 4.4 of Tasche (1999) for a proof of Proposition 2.1. It is easy to see that risk contributions
defined by (2.6) are always RORAC compatible.

Figure 1 demonstrates the concept of Definition 2.2 and Proposition 2.1 with a two-sub-portfolios exam-
ple2. As long as RORAC(X1 |X) 6= RORAC(X) or RORAC(X2 |X) 6= RORAC(X), the portfolio-wide

1Note that performance measurement by RORAC can be motivated by Markowitz-type risk-return optimization for
general risk measures that are homogeneous of any degree τ (see Tasche, 1999, Section 6).

2The risk measure chosen for this example is unexpected loss based on Value-at-Risk (see (3.8a)).
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Figure 1: Illustration of Definition 2.2 and Proposition 2.1. Sub-portfolio profit/loss vari-
ables X1 = 0.015 − L1, X2 = 0.04 − L2 with L1, L2 as defined by (3.28a). Portfolio-wide
profit/loss X = X(u) = uX1 + (1− u)X2, where u ∈ [0, 1] is the weight of sub-portfolio 1.
ρ(X) = ULVaR,α(X) as defined by (3.8a). Parameter values as in (3.29).

Portfolio and sub−portfolio RORAC

Weight of sub−portfolio 1

0% 25% 50% 75% 100%

0%

5%

10%

15%

20% Portfolio
Sub−portfolio 1
Sub−portfolio 2

RORAC (when considered as function of the weight of the first sub-portfolio) does not reach its opti-
mum. Only at a weight of about 70% of sub-portfolio 1, when all the three RORAC-curves intersect, the
portfolio-wide RORAC obtains its maximum because no further improvement by shifting the portfolio-
weights is possible.

What about the full allocation property of Definition 2.2? Assume that the function fρ corresponding
to the risk measure ρ is continuously differentiable. Then, by Euler’s theorem on homogeneous functions
(see Theorem A.1 in Appendix A), fρ satisfies the equation

fρ(u) =
n∑
i=1

ui
∂ fρ(u)
∂ ui

(2.7)

for all u in its range of definition if and only if it is homogeneous of degree 1 (cf. Definition A.1).
Consequently, for the risk contributions to risk measures ρ with continuously differentiable fρ the two
properties of Definition 2.2 can obtain at the same time if and only if the risk measure is homogeneous
of degree 1. The risk contributions are then uniquely determined by (2.6).

Remark 2.1 If ρ is a risk measure which is homogeneous of degree 1 (in the sense of Definition A.1),
then risk contributions according to (2.6) are called Euler contributions. Euler contributions satisfy both
properties of Definition 2.2, i.e. they are RORAC compatible and add up to portfolio-wide risk. The
process of assigning capital to assets or sub-portfolios by calculating Euler contributions is called Euler
allocation.
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The use of the Euler allocation principle was justified by several authors with different reasonings:

• Patrik et al. (1999) argued from a practitioner’s view emphasizing mainly the fact that the risk con-
tributions according to the Euler principle by (2.6) naturally add up to the portfolio-wide economic
capital.

• Litterman (1996) and Tasche (1999, as mentioned above) pointed out that the Euler principle is
fully compatible with economically sensible portfolio diagnostics and optimization.

• Denault (2001) derived the Euler principle by game-theoretic considerations.

• In the context of capital allocation for insurance companies, Myers and Read (2001) argued that ap-
plying the Euler principle to the expected “default value” (essentially E[max(X, 0)]) of the insurance
portfolio is most appropriate for deriving line-by-line surplus requirements.

• Kalkbrener (2005) presented an axiomatic approach to capital allocation and risk contributions.
One of his axioms requires that risk contributions do not exceed the corresponding stand-alone
risks. From this axiom in connection with more technical conditions, in the context of sub-additive
and positively homogeneous risk measures, Kalkbrener concluded that the Euler principle is the
only allocation principle to be compatible with the “diversification”-axiom (see also Kalkbrener
et al., 2004; Tasche, 2002; and Section 2.3 below).

• More recently, the Euler allocation was criticized for not being compatible with the decentralized
risk management functions of large financial institutions (Schwaiger, 2006). Gründl and Schmeiser
(2007) even find that capital allocation is not needed at all for insurance companies.

2.3 Contributions to sub-additive risk measures

As risk hedging by diversification plays a major role for portfolio management, we briefly recall the ob-
servations by Kalkbrener (2005) and Tasche (1999) on the relation between the Euler allocation principle
and diversification.

It is quite common to associate risk measures that reward portfolio diversification with the so-called
sub-additivity property (Artzner et al., 1999). A risk measure ρ is sub-additive if it satisfies

ρ(X + Y ) ≤ ρ(X) + ρ(Y ) (2.8)

for any random variables X, Y in its range of definition. Assume the setting of Section 2.1 and that ρ
is a risk measure that is both homogeneous of degree 1 and sub-additive. By Corollary A.1, then the
function fρ that corresponds to ρ via (2.5) fulfills the inequality

n∑
i=1

ui
∂ fρ(u+ v)

∂ ui
≤ fρ(u), i = 1, . . . , n. (2.9a)

With u = (0, . . . , 0, 1, 0, . . . , 0) (1 at i-th position) and v = (1, . . . , 1)− u, (2.9a) implies

ρEuler(Xi |X) ≤ ρ(Xi), i = 1, . . . , n, (2.9b)

where ρEuler(Xi |X) is defined by (2.6). Hence, if risk contributions to a homogeneous and sub-additive
risk measure are calculated as Euler contributions, then the contributions of single assets will never exceed
the assets’ stand-alone risks. In particular, risk contributions of credit assets cannot become larger than
the face values of the assets.

Actually, Corollary A.1 shows that, for continuously differentiable and risk measures ρ homogeneous of
degree 1, property (2.9b) for the Euler contributions and sub-additivity of the risk measure are equivalent.
This is of particular relevance for credit risk portfolios where violations of the sub-additivity property are
rather observed as violations of (2.9b) than as violations of (2.8) (see Kalkbrener et al., 2004).
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Recall the notion of the so-called marginal risk contribution3 for determining the capital required by
an individual business, asset, or sub-portfolio. Formally, the marginal risk contribution ρmarg(Xi |X) of
asset i, i = 1, . . . , n, is defined by

ρmarg(Xi |X) = ρ(X)− ρ(X −Xi), (2.10)

i.e. by the difference of the portfolio risk with asset i and the portfolio risk without asset i. In the case
of continuously differentiable and sub-additive risk measures that are homogeneous of degree 1, it can
be shown that marginal risk contributions are always smaller than the corresponding Euler contributions
(Tasche, 2004a, Proposition 2).

Proposition 2.2 Let ρ be a sub-additive and continuously differentiable risk measure that is homogeneous
of degree 1. Then the marginal risk contributions ρmarg(Xi |X) as defined by (2.10) are smaller than the
corresponding Euler contributions, i.e.

ρmarg(Xi |X) ≤ ρEuler(Xi |X). (2.11a)

In particular, the sum of the marginal risk contributions underestimates total risk, i.e.

n∑
i=1

ρmarg(Xi |X) =
n∑
i=1

(
ρ(X)− ρ(X −Xi)

)
≤ ρ(X). (2.11b)

As a work-around for the problem that marginal risk contributions do not satisfy the full allocation
property, sometimes marginal risk contributions are defined as

ρ∗marg(Xi |X) =
ρmarg(Xi |X)∑n
j=1 ρmarg(Xj |X)

ρ(X). (2.12)

This way, equality in (2.11b) is forced. In general, however, marginal risk contributions according to
(2.12) do not fulfil the RORAC compatibility property from Definition 2.2.

2.4 Measuring concentration and diversification

In BCBS (2006, paragraph 770) the Basel Committee on Banking Supervision states: “A risk concentra-
tion is any single exposure or group of exposures with the potential to produce losses large enough (relative
to a bank’s capital, total assets, or overall risk level) to threaten a bank’s health or ability to maintain
its core operations. Risk concentrations are arguably the single most important cause of major problems
in banks.” In BCBS (2006, paragraph 774) the Basel Committee then explains: “A bank’s framework
for managing credit risk concentrations should be clearly documented and should include a definition of
the credit risk concentrations relevant to the bank and how these concentrations and their corresponding
limits are calculated.” We demonstrate in this section that the Euler allocation as introduced in Section
2.2 is particularly well suited for calculating concentrations.

The concept of concentration index (following Tasche, 2006) we will introduce is based on the idea that
the actual risk of a portfolio should be compared to an appropriate worst-case risk of the portfolio in
order to be able to identify risk concentration. It turns out that “worst-case risk” can be adequately
expressed as maximum dependence of the random variables the portfolio model is based on. In actuarial
science, the concept of co-monotonicity is well-known as it supports easy and reasonably conservative
representations of dependence structures (see, e.g., Dhaene et al., 2006). Random variables V and W are
called co-monotonic if they can be represented as non-decreasing functions of a third random variable Z,
i.e.

V = hV (Z) and W = hW (Z) (2.13a)

3This methodology is also called with-without principle by some authors.
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for some non-decreasing functions hV , hW . As co-monotonicity is implied if V and W are correlated
with correlation coefficient 1, it generalizes the concept of linear dependence. A risk measure ρ is called
co-monotonic additive if for any co-monotonic random variables V and W

ρ(V +W ) = ρ(V ) + ρ(W ). (2.13b)

Thus co-monotonic additivity can be interpreted as a specification of worst case scenarios when risk
is measured by a sub-additive (see (2.8)) risk measure: nothing worse can occur than co-monotonic
random variables – which seems quite natural4. These observations suggest the first part of the following
definition.

Definition 2.3 Let X1, . . . , Xn be real-valued random variables and let X =
∑n
i=1Xi. If ρ is a risk

measure such that ρ(X), ρ(X1), . . . , ρ(Xn) are defined, then

DIρ(X) =
ρ(X)∑n
i=1 ρ(Xi)

(2.14a)

denotes the diversification index of portfolio X with respect to the risk measure ρ.
If Euler risk contributions of Xi to ρ(X) in the sense of Remark 2.1 exist, then the ratio

DIρ(Xi |X) =
ρEuler(Xi |X)

ρ(Xi)
(2.14b)

with ρEuler(Xi |X) being defined by (2.6) denotes the marginal diversification index of sub-portfolio Xi

with respect to the risk measure ρ.

Note that without calling the concept “diversification index”, Memmel and Wehn (2006) calculate a
diversification index for the German supervisor’s market price risk portfolio. Garcia Cespedes et al. (2006)
use the diversification indices as defined here for a representation of portfolio risk as a “diversification
index”-weighted sum of stand-alone risks.

Remark 2.2 Definition 2.3 is most useful when the risk measure ρ under consideration is homogeneous of
degree 1, sub-additive, and co-monotonic additive. Additionally, the function fρ associated with ρ via (2.7)
should be continuously differentiable. Expected shortfall, as considered in Section 3.3, enjoys homogeneity,
sub-additivity, and co-monotonic additivity. Its associated function is continuously differentiable under
moderate assumptions on the joint distribution of the variables Xi (cf. Tasche, 1999, 2002).

Assume that ρ is a risk measure that has these four properties. Then

(i) by sub-additivity, DIρ(X) ≤ 1

(ii) by co-monotonic additivity, DIρ(X) ≈ 1 indicates that X1, . . . , Xn are “almost” co-monotonic (i.e.
strongly dependent)

(iii) by (2.9b), DIρ(Xi |X) ≤ 1

(iv) by Proposition 2.1, DIρ(Xi |X) < DIρ(X) implies that there is some εi > 0 such that DIρ(X +
hXi) < DIρ(X) for 0 < h < εi.

With regard to conclusion (ii) in Remark 2.2, a portfolio with a diversification index close to 100% might
be considered to have high risk concentration whereas a portfolio with a low diversification index might
be considered well diversified. However, it is not easy to specify how far from 100% a diversification index
should be for implying that the portfolio is well diversified.

Conclusion (iv) in Remark 2.2 could be more useful for such a distinction between concentrated and
diversified portfolios, because marginal diversification indices indicate rather diversification potential
than “absolute” diversification. In this sense, a portfolio with high unrealized diversification potential
could be regarded as concentrated.

4For standard deviation based risk measures (2.13b) obtains if and only if V and W are fully linearly correlated (i.e.
correlated with correlation coefficient 1). Full linear correlation implies co-monotonicity but co-monotonicity does not imply
full correlation. Standard deviation based worst-case scenarios, therefore, might be considered “non-representative”.
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3 Practice

On principle, formula (2.6) can be applied directly for calculating Euler risk contributions. It has turned
out, however, that for some popular families of risk measures it is possible to derive closed-form expressions
for the involved derivative. In this section, results are presented for standard deviation based risk measures
(Section 3.1), Value-at-Risk (Section 3.2), and Expected Shortfall (Section 3.3)5. In Section 3.4, we discuss
in some detail how to implement (2.6) in the case of VaR when the underlying distribution has to be
inferred from a sample. A related but somehow different application of Euler’s theorem to the calculation
of single name contributions to the expected loss of CDO tranches is discussed in Section 3.5. Section
3.6 presents another application of Euler allocation to the measurement of risk impacts on non-linear
portfolios. In the following, the notation of Section 2.1 is adopted.

3.1 Standard deviation based risk measures

We consider here the family of risk measures σc, c > 0 given by

σc(X) = c
√

var[X] = c
√

E[(X − E[X])2]. (3.1)

It is common to choose the constant c in such a way that

P[X ≤ E[X]− σc(X)] ≤ 1− α, (3.2)

where α denotes some – usually large – probability (like 99% or 99.95%). Sometimes this is done assuming
that X is normally distributed. A robust alternative would be an application of the one-tailed Chebychev-
inequality:

P[X ≤ E[X]− σc(X)] ≤ 1
1 + c2

. (3.3)

Solving 1/(1 + c2) = 1 − α for c will then ensure that (3.2) obtains for all X with finite variance. Note
that, however, this method for determining c will yield much higher values of c than the method based
on a normal-distribution assumption.

The risk measures σc, c > 0 are homogeneous of degree 1 and sub-additive, but not co-monotonic
additive. For X =

∑n
i=1Xi the Euler contributions according to Remark 2.1 can readily be calculated

by differentiation:

σc(Xi |X) = c
cov[Xi, X]√

var[X]
. (3.4a)

In case that Xi is given as gi − Li (cf. (2.3)), we have σc(X) = σc(L) and

σc(Xi |X) = c
cov[Li, L]√

var[L]
. (3.4b)

3.2 Value-at-Risk

For any real-valued random variable Y and γ ∈ (0, 1) define the γ-quantile of Y by

qγ(Y ) = min{y : P[Y ≤ y] ≥ γ}. (3.5a)

If Y has a strictly increasing and continuous distribution function F (y) = P[Y ≤ y], quantiles of Y can
be expressed by the inverse function of F :

qγ(Y ) = F−1(γ). (3.5b)

5With respect to other classes of risk measures see, e.g., Fischer (2003) for a discussion of derivatives of one-sided moment
measures and Tasche (2002) for a suggestion of how to apply (3.7a) to spectral risk measures.
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For a portfolio-wide profit/loss variable X =
∑n
i=1Xi the Value-at-Risk (VaR) of X at confidence level

α (α usually close to 1) is defined as the α-quantile of −X:

VaRα(X) = qα(−X). (3.6)

VaR as a risk measure is homogeneous of degree 1 and co-monotonic additive but not in general sub-
additive. Under some smoothness conditions (see Gouriéroux et al., 2000, or Tasche, 1999, Section 5.2),
a general formula can be derived for the Euler contributions to VaRα(X) according to Remark 2.1.
These smoothness conditions, in particular, imply that X has a density. The formula for the Euler
VaR-contributions reads

VaRα(Xi |X) = −E[Xi |X = −VaRα(X)], (3.7a)

where E[Xi |X] denotes the conditional expectation of Xi given X. In case that Xi is given as gi − Li
(cf. (2.3)), we have VaRα(X) = qα(L)−

∑n
i=1 gi and

VaRα(Xi |X) = E[Li |L = qα(L)]− gi. (3.7b)

Often, it is not VaR itself that is of interest but rather Unexpected Loss:

ULVaR,α(X) = VaRα(X − E[X]) = VaRα(X) + E[X]. (3.8a)

In terms of Xi = gi − Li, Equation (3.8a) reads

ULVaR,α(X) = VaRα(E[L]− L) = qα(L)− E[L]. (3.8b)

Having in mind that the Euler contribution of Xi to E[X] is obviously E[Xi], the formulae for the Euler
contributions to ULVaR,α(X) are obvious from Equations (3.7a), (3.7b), (3.8a), and (3.8b).

In general, the conditional expectation of Xi given X cannot easily be calculated or estimated. For some
exceptions from this observation see Tasche (2004b) or Tasche (2006). As the conditional expectation of
Xi given X can be interpreted as the best prediction of Xi by X in a least squares context, approximation
of VaRα(Xi |X) by best linear predictions of Xi by X has been proposed. Linear approximation of the
right-hand side of (3.7a) by X and a constant yields

VaRα(Xi |X) ≈ cov[Xi, X]
var[X]

ULVaR,α(X)− E[Xi]. (3.9)

The approximation in (3.9) can be improved by additionally admitting quadratic or other non-linear
transformations of X as regressors (cf. Tasche and Tibiletti, 2004, Section 5). All such regression-based
approximate Euler contributions to VaR satisfy the full allocation property of Definition 2.2 but are not
RORAC compatible. See Section 3.4 for an approach to the estimation of (3.7a) that yields RORAC
compatibility.

3.3 Expected shortfall

For a portfolio-wide profit/loss variable X =
∑n
i=1Xi the Expected Shortfall (ES)6 of X at confidence

level α (α usually close to 1) is defined as an average of VaRs of X at level α and higher:

ESα(X) =
1

1− α

∫ 1

α

VaRu(X) du. (3.10a)

ES as a risk measure is homogeneous of degree 1, co-monotonic additive and sub-additive. Under some
smoothness conditions (see Tasche, 1999, Section.5.3), a general formula can be derived for the Euler
contributions to ESα(X) according to Remark 2.1. These smoothness conditions, in particular, imply
that X has a density. In that case, ES can equivalently be written as

ESα(X) = −E[X |X ≤ −VaRα(X)]. (3.10b)
6The denotation “Expected Shortfall” was proposed by Acerbi and Tasche (2002). A common alternative denotation is

“Conditional Value-at-Risk (CVaR)” that was suggested by Rockafellar and Uryasev (2002).
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The formula for the Euler ES-contributions reads

ESα(Xi |X) = −E[Xi |X ≤ −VaRα(X)]

= −(1− α)−1E[Xi 1{X≤−VaRα(X)}]. (3.11a)

Note that E[Xi |X ≤ −VaRα(X)], in contrast to E[Xi |X] from (3.7a), is an elementary conditional
expectation because the conditioning event has got a positive probability to occur. In case that Xi is
given as gi − Li (cf. (2.3)), we have ESα(X) = 1

1−α
∫ 1

α
qu(L) du−

∑n
i=1 gi and

ESα(Xi |X) = E[Li |L ≥ qα(L)]− gi. (3.11b)

Often, it is not ES itself that is of interest but rather Unexpected Loss:

ULES,α(X) = ESα(X − E[X]) = ESα(X) + E[X]. (3.12a)

In terms of Xi = gi − Li, Equation (3.12a) reads

ULES,α(X) = ESα(E[L]− L) =
1

1− α

∫ 1

α

qu(L) du− E[L]. (3.12b)

Having in mind that the Euler contribution of Xi to E[X] is obviously E[Xi], the formulae for the Euler
contributions to ULES,α(X) are obvious from Equations (3.11a), (3.11b), (3.12a), and (3.12b).

In contrast to Euler contributions to VaR, thanks to representation (3.11a), estimation of Euler contri-
butions to ES is quite straightforward.

3.4 Risk measures for sample data

In most circumstances, portfolio loss distributions cannot be calculated analytically but have to be
estimated from simulated or historical sample data. For a portfolio of n assets, as specified in Section
2.1, the sample data might be given as n-dimensional points

(x1,1, . . . , xn,1), . . . , (x1,N , . . . , xn,N ), (3.13)

where xi,k denotes the profit/loss of asset i in the k-th observation (of N). Each data point (x1,k, . . . , xn,k)
would be interpreted as a realization of the profit/loss random vector (X1, . . . , Xn). The portfolio-wide
profit/loss in the k-th observation would then be obtained as xk =

∑n
i=1 xi,k. If the sample is large and

the observations can be assumed independent, by the law of large numbers the empirical measure

P̂N (A) =
1
N

N∑
k=1

δA(x1,k, . . . , xn,k), A ⊂ Rn measurable,

δA(x1,k, . . . , xn,k) =
{

1, if (x1,k, . . . , xn,k) ∈ A;
0, otherwise

(3.14)

will approximate the joint distribution P[(X1, . . . , Xn) ∈ A] of the assets’ profits/losses Xi.

Denote by (X̂1, . . . , X̂n) the profit/loss random vector under the empirical measure P̂N . Let X̂ =
∑n
i=1 X̂i

be the portfolio-wide profit/loss under the empirical measure P̂N . In the cases of standard deviation based
risk measures and Expected Shortfall, then statistically consistent estimators for the risk contributions
according to (3.4a) and (3.11a) respectively can be obtained by simply substituting X̂, X̂i for X,Xi. This
naive approach does not work for Euler contributions to VaR according to (3.7a), if X has a continuous
distribution. In this case, smoothing of the empirical measure (kernel estimation) as described in the
following can help.

Let ξ be a random variable which is independent of (X̂1, . . . , X̂n) and has a continuous density (or kernel)
ϕ (ξ standard normal would be a good and convenient choice). Fix some b > 0 (the bandwidth). Then
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X̂ + b ξ has the density

f̂b(x) = f̂b,x1,...,xN (x) =
1
bN

N∑
k=1

ϕ
(
x−xk
b

)
. (3.15)

Actually, (3.15) represents the well-known Rosenblatt-Parzen estimator of the density of X. If the kernel
ϕ and the density of X are appropriately “smooth” (see, e.g., Pagan and Ullah, 1999, Theorem 2.5 for
details), it can be shown for bN → 0, bN N → ∞ that f̂bN (x) is a point-wise mean-squared consistent
estimator of the density of X. Whereas the choice of the kernel ϕ, subject to some mild conditions, is
not too important for the efficiency of the Rosenblatt-Parzen estimator, the appropriate choice of the
bandwidth is crucial. Silverman’s rule of thumb (cf. (2.52) in Pagan and Ullah, 1999)

b = 0.9 min(σ,R/1.34)N−1/5 (3.16)

is known to work quite well in many circumstances. In (3.16), σ and R denote the standard deviation and
the interquartile range respectively of the sample x1, . . . , xN . In the case where X is not heavy-tailed (as
is the case for credit portfolio loss distributions), another quite promising and easy-to-implement method
for the bandwidth selection is Pseudo Likelihood Cross Validation. See, for instance, Turlach (1993) for
an overview of this and other selection methods.

In the context of the Euler allocation, a major advantage with the kernel estimation approach is that the
smoothness conditions from Tasche (1999, Section 5.2) are obtained for ξ, X̂1, . . . , X̂n. As a consequence,
it follows from Tasche (1999, Lemma 5.3) that

VaRα(Xi |X) ≈ VaRα(X̂i | X̂ + b ξ)

=
dVaRα

d h
(X̂ + b ξ + h X̂i)

∣∣
h=0

= −E[X̂i | X̂ + b ξ = −VaRα(X̂ + b ξ)]

= −
∑N
k=1 xi,k ϕ

(−VaRα( bX+b ξ)−xk
b

)∑N
k=1 ϕ

(−VaRα( bX+b ξ)−xk
b

) . (3.17)

The right-hand side of (3.17) is just the Nadaraya-Watson kernel estimator of E[Xi |X = −VaRα(X)].
Note that it is clear from the derivation of (3.17) in the context of the empirical measure (3.14) that the
bandwidth b in (3.17) should be the same as in (3.15). By construction, we obtain for the sum of the
approximate Euler contributions to VaR according to (3.17)

n∑
i=1

VaRα(X̂i | X̂ + b ξ) = VaRα(X̂ + b ξ)−VaRα(ξ | X̂ + b ξ)

= VaRα(X̂ + b ξ) + E[ξ | X̂ + b ξ = −VaRα(X̂ + b ξ)]. (3.18)

The sum of the approximate Euler contributions therefore differs from natural estimates of VaRα(X)
such as VaRα(X̂) or VaRα(X̂ + b ξ). Practical experience shows that the difference tends to be small.
Some authors (e.g. Epperlein and Smillie, 2006) suggest to account for this difference by an appropriate
multiplier. Another way to deal with the issue could be to take the left-hand side of (3.18) as an estimate
for VaRα(X).

Yamai and Yoshiba (2002) found that estimates for ES and VaR Euler contributions are very volatile. See
Glasserman (2005) and Merino and Nyfeler (2004) for methods to tackle this problem for ES by impor-
tance sampling and Tasche (2007) for an approach to Euler VaR contribution estimation by importance
sampling.
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3.5 Expected loss decomposition for CDO tranches

In the case of a credit portfolio with loss variable L ≥ 0 given as

L =
n∑
i=1

Li, (3.19a)

or in a dynamic setting with exposure sizes ui

L(u) =
n∑
i=1

ui Li, (3.19b)

the loss variables Li ≥ 0 for single assets represent a natural vertical decomposition of the portfolio-wide
loss L. If the portfolio serves as the underlying of a collateralized debt obligation (CDO), the normalized
(i.e. percentage) portfolio-wide loss 0 ≤ L ≤ 1 is decomposed into tranches in a horizontal manner, via

L =
m∑
j=1

Yj (3.20a)

with

Yj = min(L, cj)−min(L, cj−1), j = 1, . . . ,m (3.20b)

where 0 = c0 < c1 < . . . < cm−1 < cm = 1, m ≥ 2 denote the so-called credit enhancement levels of the
CDO7. Hence, the random variable Yj is associated with the loss suffered with the j-th tranche of the
CDO and is characterized by the credit enhancement levels cj−1 and cj .

According to (3.19a) and (3.20a), in particular, the portfolio expected loss E[L] can be decomposed in
two ways, namely as

E[L] =
n∑
i=1

E[Li] (3.21a)

and

E[L] =
m∑
j=1

E[Yj ]. (3.21b)

Is there any reasonable way to further decompose the vertical and horizontal expected loss components
E[Li] and E[Yj ] respectively into sub-components Ek` such that

E[Li] =
m∑
`=1

Ei` (3.22a)

and

E[Yj ] =
n∑
k=1

Ekj? (3.22b)

This question is of particular interest in the case where a portfolio of assets may contain names both
directly as bonds or loans owed by the names or indirectly by the involvement of the names via CDO
tranches. A decomposition of portfolio expected loss as indicated by (3.22a) and (3.22b) can then yield at

7This is actually a simplifying approach, ignoring in particular timing effects (cf. Bluhm, 2003, Section 4.4).
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least a rough measure of a single name’s impact on the portfolio loss distribution. Interestingly enough,
Euler’s theorem A.1 proves very useful also for answering this question.

Observe first that it suffices to find a decomposition of E[min(L, c)] where c stands for any credit en-
hancement level. If then the decomposition procedure is applied consistently for all enhancement levels
cj , j = 1, . . . ,m − 1, property (3.22a) will be satisfied thanks to definition (3.20b). Consider then the
problem in the dynamic setting as indicated by (3.19b) and assume that the enhancement level c also
depends on the exposure sizes u = (u1, . . . , un), i.e. c = c(u). We are then studying the function F (u)
with

F (u) = E[min(L(u), c(u))]. (3.23)

From (3.19b) follows that F is homogeneous of degree 1 in the sense of Definition A.1 if c as a function of
u is homogeneous of degree 1. Two such choices of c are common in practice: c as a quantile (cf. (3.5a))
of the loss distribution, i.e.

c(u) = qα(L(u)) (3.24a)

for some α ∈ (0, 1), or c as some multiple b > 0 of the portfolio expected loss, i.e.

c(u) = b

n∑
i=1

ui E[Li]. (3.24b)

Homogeneity of degree 1 implies the following solution to the decomposition problem as stated by (3.22a)
and (3.22b).

Proposition 3.1 Let the credit enhancement levels cj = cj(u), j = 1, . . . ,m − 1 be functions that are
homogeneous of degree 1 in the sense of Definition A.1. Let the portfolio loss variable L(u) and the
tranche loss variables Yj = Yj(u), j = 1, . . . ,m be given by (3.19b) and (3.20b) respectively. Assume that
the functions Fj(u) = E[min(L(u), cj(u))], j = 1, . . . ,m− 1 are partially differentiable with respect to all
components of u = (u1, . . . , un). Then the functions Ek`(u), k = 1, . . . , n, ` = 1, . . . ,m with

Ek`(u) =


uk

∂F1
∂ uk

(u), ` = 1;

uk

(
∂F`
∂ uk

(u)− ∂F`−1
∂ uk

(u)
)
, 2 ≤ ` ≤ m− 1;

uk

(
E[Lk]− ∂Fm−1

∂ uk
(u)
)
, ` = m,

(3.25)

satisfy (3.22a) and (3.22b).

In the following, the quantities Ek`(u) will be called tranche loss components. Of course, what makes
(3.25) attractive as the solution to (3.22a) and (3.22b) is the fact that by inclusion of partial derivatives
the resulting contributions to tranche expected losses reflect the potential dynamics from changes in the
weights of the underlying names. This fact is illustrated by the following proposition.

Proposition 3.2 Assume the setting of Proposition 3.1. If for some j ∈ {1, . . . ,m} there is a portfolio
weight vector u∗ such that E[Yj(u

∗)]
E[L(u∗)] is a local minimum or maximum, then for all i = 1, . . . , n follows that

Eij(u∗)
u∗i E[Li]

=
E[Yj(u∗)]
E[L(u∗)]

.

By Proposition 3.2, in particular, there cannot be a local minimum or maximum of the ratio of tranche
expected loss and portfolio expected loss as long as not all of the corresponding ratios of tranche loss
components and expected losses of underlying assets are equal.

Note that F (u) = E[min(L(u), c(u))] from Proposition 3.1 can be represented as follows:

F (u) = c(u) P[L(u) > c(u)] + E[L(u) 1{L(u)≤c(u)}] (3.26a)
= c(u) P[L(u) > c(u)] + P[L(u) ≤ c(u)] E[L(u) |L(u) ≤ c(u)]. (3.26b)
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Figure 2: Ratios of tranche loss components and sub-portfolio expected losses (“tranche EL
ratios”) as function of weight of first sub-portfolio. Definitions of loss variables as in (3.28a)
and (3.28b). Parameter values as in (3.29). Tranches defined by (3.30).
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(3.26a) is suitable for the calculation of the partial derivatives of F in many cases, e.g. when c(u) is
given by (3.24b). If c is given by (3.24a), i.e. as a quantile, and the distribution of L(u) is continuous at
qα(L(u)) for all u, (3.26b) is more useful.

Remark 3.1 If the distribution of L(u) is enough smooth with respect to the variable u, and c from
(3.26a) is partially differentiable, then the partial derivatives of F can be calculated as follows:

∂F

∂uk
(u) =

∂ c

∂ uk
(u) P[L(u) > c(u)]− c(u)

∂ P[L(u) ≤ c(u)]
∂ uk

+
∂ E[L(u) 1{L(u)≤c(u)}]

∂ uk
. (3.27a)

In case of c(u) = qα(L(u)) with qα(L(u)) being the quantile function as defined in (3.5a), we have
P[L(u) ≤ c(u)] = α for all u if the distribution of L(u) is continuous in qα(L(u)) for all u. Taking into
account (3.7a) and (3.11a) then leads to the following simplified version of (3.27a):

∂ E
[
min

(
L(u), qα(L(u))

)]
∂uk

= (1− α) E[Lk |L(u) = qα(L(u))] + αE[Lk |L(u) ≤ qα(L(u))]. (3.27b)

We illustrate8 the notion of tranche loss component and Proposition 3.2 with an asymptotic two-factor
model as in Example 1 of Tasche (2006). Define Li, i = 1, 2 as Vasicek-distributed random variables by

Li = Φ
(
ti +
√
%i Si√

1− %i

)
, (3.28a)

8The R-scripts for the calculations related to the examples in Sections 3.5 and 3.6 can be down-loaded at
http://www-m4.ma.tum.de/pers/tasche/.
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with asset correlations %i ∈ (0, 1), default thresholds ti ∈ R, and systematic factors S1, S2 jointly standard
normal such that corr[S1, S2] = τ ∈ [0, 1]. Let

L(u) = uL1 + (1− u)L2, u ∈ [0, 1]. (3.28b)

L(u) then can be interpreted as the loss (expressed as fraction of total exposure) in a credit portfolio
which consists of two homogeneous sub-portfolios with corresponding loss variables L1 and L2. The
parameters in (3.28a) and (3.28b) are chosen as follows:

t1 = Φ−1(0.01), %1 = 0.2

t2 = Φ−1(0.025), %2 = 0.3 (3.29)
τ = 0.4.

We define four tranche loss variables Y1(u), Y2(u), Y3(u), Y4(u) according to (3.20b) by

c0(u) = 0,
c1(u) = q50%(L(u)),
c2(u) = q55%(L(u)),
c3(u) = q99.9%(L(u)),
c4(u) = 1.

(3.30)

For obvious reasons, in the following we call tranche 1 the “equity tranche”, tranche 2 the “thin mezzanine
tranche”, tranche 3 the “thick mezzanine tranche”, and tranche 4 the “super-senior tranche”. Figure 2
displays for each of the four tranches the ratio of the expected losses of the whole tranche and the
whole portfolio as well as the ratios of the tranche loss components and the expected losses of the two
sub-portfolios. Note the different scales of the four charts. Not surprisingly, the EL ratios are quite
small for the super-senior and thin mezzanine tranches. Compared to the thicknesses of the tranches,
as measured by the differences of the defining confidence levels, the EL ratios of the super-senior and
the thick mezzanine tranches are over-proportional. As stated in Proposition 3.2, in each chart the three
curves intersect in the local extremes of the ratios of whole tranche and whole portfolio expected losses.
The charts demonstrate that both local minima and maxima may occur and that even both kinds of
extremes can be observed in one curve (in the case of the thin mezzanine tranche).

3.6 Measuring non-linear risk impact

In Section 2, we discussed the problem of how to meaningfully define risk contributions in the case of
a linear portfolio as given by (2.1) or (3.19a). By considering the dynamic modification (2.4) of the
problem, we argued that only Euler risk contributions (2.6) can be applied for determining optimal
weights for the assets in the portfolio and, at the same time, making sure that the risk contributions add
up at portfolio-wide risk. The reasoning for this, however, is heavily based on linearity of the portfolio
profit/loss variable with respect to the profit/loss variables of the included assets and on homogeneity of
the risk measure. At first glance, we dealt with a non-linear portfolio in Section 3.5 when we looked at the
tranche loss variables Yj , as defined by (3.20b), which are clearly not linear in the exposure sizes ui from
(3.19b). But we did not solve in full generality the problem of tranche loss decomposition. Instead we
confined ourselves to the case where the credit enhancement levels are defined by functions homogeneous
in the exposure sizes. This way, we essentially re-stated the problem in a shape similar to the setting of
Section 2 and accessible by means of Euler’s theorem.

In order to analyze non-linear impact of a single factor or a set of factors on portfolio-wide risk, Martin and
Tasche (2007) suggested to apply Euler allocation to the decomposition of the portfolio-wide profit/loss
variable into the expectation of portfolio-wide profit/loss conditional on the factor (or set of factors) and
its orthogonal complement. In the rest of the section, we will present this approach in some detail and
illustrate it by an example based on the toy portfolio model as specified by (3.28a) and (3.28b).
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Figure 3: Risk impacts according to Definition 3.1 for factors S1 and S2 of the model given
by (3.28a), (3.28b), and (3.29), as functions of the weight of the first sub-portfolio. Results
for risk impacts based on VaR and ES at 99.9% confidence level and standard deviation.
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Definition 3.1 Let L be a loss variable with finite expectation and ρ be a risk measure that is homo-
geneous of degree 1 in the sense of Definition A.1. Consider a set of risk factors S = (S1, . . . , Sk) and
the expected value E[L |S] of L conditional on S. Assume that the Euler contribution ρ(E[L |S] |L) of
E[L |S] to ρ(L) in the sense of Remark 2.1 is well-defined and that ρ(L) > 0. Then the risk impact of
the factor set S on L (with respect to ρ) is defined as

RIρ(L |S) =
ρ
(
E[L |S] |L

)
ρ(L)

.

A key property of conditional expectation is uncorrelatedness of conditional expected value and residual.
Applied to the situation of Definition 3.1, this means

corr
[
E[L |S], L− E[L |S]

]
= 0. (3.31a)

By the factorization lemma (see, e.g., Stannat, 2008, Remark 1.3 (v)), there is a deterministic function
f(s1, . . . , sk) such that

E[L |S] = f(S1, . . . , Sk). (3.31b)

Hence the first step in determining the risk impact RIρ(L |S) essentially means decomposing the portfolio-
wide loss variable L into a deterministic function of the factors in S and some uncorrelated residual.
Doing so by calculating the expectation of L conditional on S ensures that this decomposition works in
an exhaustive manner that also covers non-linear effects.

What is the relationship between the notion of risk impact from Definition 3.1 when applied to the
components of a linear portfolio as in (2.1) or (3.19a) and the notion of Euler contribution in the sense
of Remark 2.1, i.e. what is (in the context of (3.19a)) the connection between RIρ(L |Li) and ρ(Li |L)?
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Let us assume, without loss of generality, that i = 1. It is instructive to consider the case where L1 and
L2, . . . , Ln are stochastically independent. Then we obtain

E[L |L1] = L1 − E[L1] + E[L] (3.32a)

and hence

ρ
(
E[L |L1] |L

)
= ρ
(
L1 − E[L1] + E[L] |L

)
. (3.32b)

If ρ is a risk measure such that the risk is not changed by adding constants, i.e.

ρ(X + a) = ρ(X), a ∈ R, (3.32c)

then from (2.6) follows that ρ
(
L1 − E[L1] + E[L] |L

)
= ρ
(
L1 |L

)
and therefore

ρ
(
L1 |L

)
ρ(L)

= RIρ(L |Li). (3.32d)

Hence, in the case of an independent asset the risk impact coincides with the relative contribution of the
asset to portfolio-wide risk. In general, without an assumption of independence, one intuitively would
expect ≤ instead of = in (3.32d). Showing this, however, seems non-trivial and presumably would require
additional assumptions. We will not enter into this discussion here, but just conclude that, for reasons of
compatibility of the definitions of risk contributions and risk impact, it makes sense to impose property
(3.32c) on the underlying risk measure or even to require that it is a general deviation measure in the
sense of Rockafellar et al. (2002).

σc from Section 3.1 is a risk measure with property (3.32c). In this case

RIσc(L |S) = RIσ(L |S) =
var
[
E[L |S]

]
var[L]

∈ [0, 1]. (3.33)

According to (3.33), therefore, risk impact as introduced in Definition 3.1 is a generalization of the notion
of “coefficient of determination” or “R2” from regression analysis. As regression models can be ranked
with respect to their R2 values, with values closer to 100% indicating a better predictive power, also risk
factors related to a portfolio can be ranked with respect to their associated RIs. A higher RI will then
reflect a higher impact of the corresponding factor or set of factors that might require stronger attention
of the risk managers.

Thinking of risk impact in similar terms as of a coefficient of determination could suggest to define risk
impact simply by

qRIρ(L|S) =
ρ(E[L |S])
ρ(L)

, (3.34)

with “qRI” standing for quasi-RI. This notion, however, is not compatible with Euler contributions in
the sense of (3.32d). We will show by example that quasi-RI tends to emphasize the impact of a risk
factor, when compared to risk impact RI.

Unexpected loss with respect to VaR and ES as defined in (3.8b) and (3.12b) are further examples of
risk measures that satisfy property (3.32c) and thus define risk impact measures compatible with Euler
contributions in the sense of (3.32d). Based on (3.7b) and (3.11b), we obtain the following formulae for
risk impact with respect to VaR and ES respectively9

RIVaR,α(L |S) =
E
[
E[L |S] |L = qα(L)

]
− E[L]

qα(L)− E[L]
,

RIES,α(L |S) =
E
[
E[L |S] |L ≥ qα(L)

]
− E[L]

E[L |L ≥ qα(L)]− E[L]
.

(3.35)

9For the sake of keeping the notation concise, we do not explicitly mention “UL” in the formulae.
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Martin and Tasche (2007, Eq. (7)) proved that RIES,α(L |S) ≤ 1. To the author’s knowledge, no other
general bounds to RIES,α(L |S) or RIVaR,α(L |S) can be derived. Note that

RIES,α(L |S) = 0, RIVaR,α(L |S) = 0, and RIσ(L |S) = 0 (3.36)

if L and S are independent.

For the two-factor example from Section 3.5, the expectations E[L(u) |Si], i = 1, 2 of the portfolio loss
variable L(u) given by (3.28b) conditional on the systematic factors S1 and S2 can easily be determined.
A short calculation shows that

E[L(u) |S1] = uΦ
(
t1 +

√
%1 S1√

1− %1

)
+ (1− u) Φ

(
t2 +

√
%2 τ S1√

1− %2 τ2

)
,

E[L(u) |S2] = uΦ

(
t1 +

√
%1 τ S2√

1− %1 τ2

)
+ (1− u) Φ

(
t2 +

√
%2 S2√

1− %2

)
.

(3.37)

Based on these representations of E[L(u) |Si], i = 1, 2, formulae (3.33), (3.35), and (3.34) (for ES) can be
numerically evaluated. Figure 3 displays some results for VaR-based, ES-based, and standard deviation-
based risk impacts (VaR and ES at 99.9% confidence level). For the specific example under consideration,
the VaR-based and ES-based curves can hardly be distinguished. The standard deviation-based curves
are somehow flatter than the quantile-based curves, indicating a slightly softer transition from low to high
impact of the factors. For both factors, nonetheless, all curves demonstrate a relatively abrupt transition
from low impact at low weight of the sub-portfolio directly depending on the factor to high impact at high
weight of that sub-portfolio. Not surprisingly, due to the specific choice (3.29) of the model parameters
which renders the second sub-portfolio more risky, the spectrum of low impact weights is much wider for
the first sub-portfolio. Note that, as a consequence of the positive correlation of the two factors, both
factors have positive risk impact even when the weight of their corresponding sub-portfolios is naught.

Figure 4 again displays the RIES,α-curves from Figure 3, but this time together with the corresponding
qRIES,α curves of the two factors. For both factors, the quasi-RI curves suggest significantly higher risk
impacts than the RI curves. As noticed before, however, the ranking of the factors implied by the risk
impact values is more interesting than the values themselves. According to Figure 4, the implied rankings
are essentially identical because both the quasi-RI curves as well as the RI-curves seem to intersect at the
same sub-portfolio 1 weight of roughly 71%. Actually, closer inspection shows that the quasi-RI curves
intersect at a weight not greater than 70.61% while the RI curves criss-cross at a weight of not less than
70.70%. Similar behaviour of the curves appears also to obtain with other values of the parameters in
(3.29). It hence would be interesting to see whether calculations for more realistic portfolios yield similar
results. For the time being, the conclusion might be that the choice between risk impacts and quasi-RIs
should mainly depend on how much numerical effort is required for the different approaches.

4 Summary

Among the many methodologies that financial institutions apply for their internal capital allocation
process the so-called Euler allocation is especially appealing for its economic foundation. There are a lot
of papers that provide partial information on the Euler allocation but a comprehensive overview seems
to be missing so far. In this chapter, we have tried to fill this gap to some extent. In particular, besides
emphasizing the economic meaning of Euler allocation, we have discussed its potential application to the
detection of risk concentrations. We have moreover demonstrated that there is a natural relationship
between Euler contributions to VaR and kernel estimators for conditional expectations.

As two further, somehow different applications of Euler’s theorem, but still in the context of portfolio
risk, on the one hand we have introduced a new approach to the decomposition of CDO tranche expected
losses into loss components that can be associated with the underlying names. On the other hand, we
have revisited a concept introduced by Martin and Tasche (2007) for measuring the impact of systematic
or other risk factors on portfolio-wide risk.
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Figure 4: Risk impacts according to Definition 3.1 and quasi-RIs according to (3.34) for
factors S1 and S2 of the model given by (3.28a), (3.28b), and (3.29), as functions of the
weight of the first sub-portfolio. Results for ES at 99.9% confidence level.
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A Euler’s theorem on homogeneous functions

In this chapter, the focus is on homogeneous risk measures and functions.

Definition A.1 A risk measure ρ in the sense of (2.2) is called homogeneous of degree τ if for all h > 0
the following equation obtains:

ρ(hX) = hτ ρ(X).

A function f : U ⊂ Rn → R is called homogeneous of degree τ if for all h > 0 and u ∈ U with hu ∈ U
the following equation holds:

f(hu) = hτ f(u).

Note that the function fρ corresponding by (2.5) to the risk measure ρ is homogeneous of degree τ if ρ
is homogeneous of degree τ .

In the case of continuously differentiable functions, homogeneous functions can be described by Euler’s
theorem.

Theorem A.1 (Euler’s theorem on homogeneous functions) Let U ⊂ Rn be an open set and f :
U → R be a continuously differentiable function. Then f is homogeneous of degree τ if and only if it
satisfies the following equation:

τ f(u) =
n∑
i=1

ui
∂ f(u)
∂ ui

, u = (u1, . . . , un) ∈ U, h > 0.

Remark A.1 It is easy to show that ∂ f
∂ ui

is homogeneous of degree τ − 1 if f is homogeneous of degree
τ . From this observation follows that if f is homogeneous of degree 1 and continuously differentiable for
u = 0 then f is a linear function (i.e. with constant partial derivatives). Often, therefore, the homogeneous
functions relevant for risk management are not differentiable in u = 0.

Functions f : U ⊂ Rn → R that are homogeneous of degree 1 are convex, i.e.

f(η u+ (1− η) v) ≤ η f(u) + (1− η) f(v), u, v ∈ U, η ∈ [0, 1], (A.1a)

if and only if they are sub-additive, i.e.

f(u+ v) ≤ f(u) + f(v), u, v ∈ U. (A.1b)

Theorem A.1 then implies the following useful characterization of sub-additivity for continuously differ-
entiable functions that are homogeneous of degree 1.
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Corollary A.1 Let U ⊂ Rn be an open set and f : U → R be a continuously differentiable function that
is homogeneous of degree 1. Then f is sub-additive (and convex) if and only if the following inequality
holds:

n∑
i=1

ui
∂ f(u+ v)

∂ ui
≤ f(u), u, u+ v ∈ U.

See Proposition 2.5 of Tasche (2002) for a proof of Corollary A.1.
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