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Abstract

This paper presents a novel method to measure the joint default risk of large financial insti-
tutions (systemic default risk) using information in bond and credit default swap prices. Bond
prices reflect individual default probabilities of the issuers. CDS contracts, which insure against
such defaults, pay off only as long as the seller of protection itself is solvent. Therefore, CDS
prices contain information about the probability of joint default of both the bond issuer and the
protection seller. If we consider the prices of CDSs written by financial institutions against each
other, together with bond prices, we can learn about all pairwise default probabilities across the
financial network. However, this information set does not fully characterize the joint default risk
of multiple institutions. In this paper, I show how to construct the tightest bounds on the prob-
ability of systemic default events given this information set. Using this methodology I track the
evolution of joint default risk of large banks during the financial crisis. I show that an increase
in systemic default risk did not occur until after Bear Stearns’ collapse in March 2008, and that
some of the observed spikes in bond and CDS spreads correspond to spikes in idiosyncratic risk
rather than systemic risk.
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1 Introduction

This paper seeks to measure the probability that several large financial institutions default within

a short time. During periods of financial distress, this probability is not negligible because large

financial intermediaries are highly interconnected and are exposed to common shocks. The central

role of these institutions in the global economy makes this issue especially important. In particular,

in this paper I focus on measuring the probability of default of at least r large financial institutions.

I refer to these joint default events as systemic default risk of degree r.

Measuring systemic risk is a difficult task. On the one hand, measures that are based directly on

the books of financial institutions are mostly backward-looking in nature. They are limited by the

complexity of the balance sheet, the risks involved and the availability of data. On the other hand,

measures based on the historical distribution of returns require estimating joint tail probabilities from

limited time series, which is possible only under strong parametric assumptions.

The most widely used measures of systemic risk, like the one proposed in this paper, are instead

market-based. They try to circumvent the limitations outlined above by aggregating individual default

probabilities of financial institutions obtained from the prices of traded securities like credit default

swaps (CDSs).1 These market-based measures are forward-looking and reflect the information set of

market participants; they measure risk-neutral rather than objective default probabilities.

Figure 1 plots two simple examples of such market-based measures of default risk in the financial

sector: the average 5-year bond yield spread and the average 5-year CDS spread of the largest 15

financial institutions by CDS activity2 between 2004 and 2010. The yield spread (the yield on a

firm’s bonds in excess of the risk-free rate) and the CDS spread (the cost of insuring against the

firm’s default) both reflect the probability that a firm defaults. The idea behind these measures

is that an increase in systemic risk in the financial sector should cause the risk of default of each

institution to increase. This should result in an increase of both the average yield spread and the

average CDS spread. These measures suggest an increase in systemic risk starting in August 2007,

followed by several episodes in which systemic risk spiked (such as around March 2008, September
1A credit default swap is an insurance contract against the default of a firm, for example a financial institution. The

CDS spread corresponds to the yearly insurance premium. See section 2 for details on the contract.
2The Figure replicates the Counterparty Risk Index, produced by Credit Derivative Research. The index was created

to allow buyers of CDS protection to easily hedge their counterparty risk exposures, and therefore includes the spreads
of the most active counterparties in the CDS market. These 15 institutions alone constitute more than 90% of the CDS
protection sold.
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2008 and then March 2009), and a final drop after April 2009.

The existing market-based measures can be misleading for two reasons. First, they involve strong

modeling assumptions in aggregating the individual risks of financial intermediaries into estimates of

systemic risk. For example, the CDS-based measure reported in Figure 1 is only informative about

the joint distribution of defaults under strong assumptions about the relationship between marginal

and joint default probabilities. Second, existing measures based on the prices of securities traded over

the counter (OTC) ignore counterparty risk. As I show below, ignoring counterparty risk introduces

a bias that increases precisely when the financial system is distressed.

In this paper I propose a novel market-based measure of systemic risk, based on a combination

of bond prices and CDS spreads. I exploit the pricing of counterparty risk in CDS contracts to

learn about the joint default risk of pairs of institutions. Because this information set is not rich

enough to completely characterize the full joint distribution function across the network, I use linear

programming to construct the tightest possible bounds on systemic risk consistent with the observed

prices. This allows me to measure systemic risk without making modeling assumptions about the

relationship between risks of individual institutions and joint risks. In addition, it allows me to track

the contribution to systemic risk of each bank over time.

The starting point for the analysis is the presence of counterparty risk in CDS contracts. When

the seller of protection manifests higher risk of default, the value of the default insurance (the CDS

spread) decreases, particularly if the two defaults are correlated. Therefore, the spread of a CDS

written by a financial institution against the default of a bond reflects both the probability of default

of the bond issuer, called the reference entity, and the risk of joint default with the seller of protection.

The price of the bond instead reflects only the marginal probability of default of the firm which issued

the bond.3 Combining bond and CDS prices enables us to infer the joint default probability of the

two entities.

A standard way to see this is to look at the bond/CDS basis. By buying the bond and insuring

it with the corresponding CDS of the same maturity, one obtains a risk-free debt security as long as

there is no counterparty risk in the CDS contract. An approximate arbitrage relation then implies

that in the absence of counterparty risk, the yield spread on the bond issued by i over the risk-free rate

(yi − rF ) should be equal to the corresponding CDS spread zi written on i. That is, the bond/CDS
3Of course, other factors affect bond prices as well. The most important one, liquidity, is explicitly accounted for in

the paper.
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basis, defined as the difference between the two (zi−(yi−rF )), should be zero. Counterparty risk, by

lowering the CDS spread zi without affecting the yield spread of the bond, produces a negative basis.

The bond/CDS basis therefore contains information about the joint default risk of the reference entity

and the protection seller. Figure 1 shows that the average bond/CDS basis for financial institutions

is negative, as expected, and varies significantly over time.

The entire set of bond prices of financial institutions and CDS spreads written on them by other

financial institutions allows us to learn all marginal and pairwise probabilities of default across the

financial network. In general, this information set is not sufficient to completely pin down systemic

default risk. Standard approaches to measuring systemic risk overcome this problem by imposing

modeling assumptions, such as Gaussian or Student-t copulas, that allow them to obtain point esti-

mates of the joint default probabilities.

In this paper, instead, I construct the tightest upper and lower bounds on the average monthly

probability of joint default of at least r financial institutions (for different values of r) consistent

with the observed bond and CDS prices. These bounds are obtained making no assumptions about

the joint default distribution and only use marginal and pairwise default information inferred from

security prices. Yet, because they are constructed to be the tightest possible bounds for systemic

risk, they prove to be quite informative about joint default risk.

Three limitations affect the construction of the bounds. First, the presence of an unobserved

liquidity process in the bond market confounds the filtering of individual default probabilities out of

CDS spreads. Nevertheless, interesting results can be obtained under minimal assumptions on the

liquidity process. In particular, I only impose a lower bound for this process, calibrated from the time

series of bond and CDS prices of each bank, or from the cross-section of financial and nonfinancial

firms of comparable credit rating. Second, for every reference entity, I observe only an average of

the CDS quotes posted by the main counterparties, so my information set is smaller than the ideal

one.4 Third, this paper obtains risk-neutral, not objective, default probabilities.5 The risk-neutral

probabilities are interesting per se because they reveal the perception of the markets about the severity

of these states of the world. In addition, they can be considered upper bounds on the objective default
4This limitation is also the reason I look at the group of dealers who are counterparties to most contracts (more

than 90% of the market). This way, I can be confident I am including most of the dealers from whom the CDS quotes
are obtained.

5Anderson (2009) underlines the differences between the two by comparing risk-neutral default processes obtained
from CDS spreads with objective processes obtained using historical data on defaults.
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probabilities, because default states are bad states with high marginal utility.6 Finally, I show strong

implications for objective probabilities under mild assumptions on the utility function.

This analysis, applied to the period between January 2004 and June 2010, shows that when we

consider the information contained in both bond and CDS prices, we can bound systemic risk to

be much lower than if we used bond prices or CDS spreads alone. Contrary to other measures of

systemic risk, which report a sharp increase in systemic risk already in 2007, we can exclude a large

increase in systemic default risk before Bear Stearns’ failure in March 2008. Moreover, we can show

that observed spikes in CDS spreads and bond yields in the month before Bear’s collapse and in

September 2008, after Lehman’s default, do not correspond to spikes in systemic risk (as standard

measures report), but reflect sharp increases in idiosyncratic default risk of one or a small number

of banks. Instead, systemic risk seems to increase smoothly after an initial jump related to Bear’s

failure.

While the optimal bounds are a complex function of the constraints imposed by the observed

prices, the intuition for the main results is straightforward. If systemic risk had been high in 2007

and early 2008, the price of insurance against large dealers - purchased from other large financial

institutions - should have dropped considerably. But this did not happen. The relatively high

equilibrium spreads during this period impose a tight upper bound on the amount of systemic risk

perceived in financial markets. Equivalently, the bond/CDS basis – which reflects joint default risks

– did not increase enough during 2007 and early 2008 to be consistent with an increase in systemic

default risk. This paper allows for a decomposition between idiosyncratic and systemic default risk

that would be impossible to achieve without the information contained in the basis.

Finally, the methodology presented in this paper allows me to study the configuration of the

financial network over time, as well as the contribution to systemic risk of each institution at the

upper bound on systemic risk. This analysis shows that markets anticipated by more than a month

a sharp increase in the joint default probability of two key institutions, Lehman Brothers and Merrill

Lynch, which in fact ended up facing default on the same weekend (13-14 September 2008). Similarly,

these banks’ contribution to systemic risk (i.e. the probability of a systemic event in which they would

be involved) increased sharply well before their collapse.

The paper proceeds as follows. After a brief literature review, section 2 presents an introduction
6This argument assumes that the marginal investor is risk averse and internalizes the risks of these securities.
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to credit default swaps and counterparty risk. Section 3 presents the theory of the optimal probability

bounds, and section 4 discusses the main issues of implementation and the data. Section 5 presents

the empirical results. In section 6, I explore the robustness of the results. Section 7 concludes.

1.1 Related literature on measuring systemic risk

The literature on measures of systemic risk in the financial sector is large and has grown further

following the financial crisis of 2007-2009. Four categories of papers can be identified, based on

different methods they use to quantify systemic risk and to study the relative contribution of each

bank to this risk.

First, structural approaches look directly at the books of financial institutions in order to learn

about the distribution of joint shocks. Lehar (2005) uses the Merton (1974) model to obtain the time-

series of the market value of banks’ assets, using observed equity prices and balance sheet information.

He produces a measure of joint default risk under the assumption of multivariate normal distribution

of returns. Gray et al. (2008) propose using a similar approach to measure systemic risk not only

within the financial sector but also across sectors and countries.

The structural approach requires strong assumptions about the liability structure of financial in-

stitutions, as well as about the marginal and joint distribution of risks. To overcome these difficulties,

reduced-form approaches look at the historical distribution of returns. For example, Acharya et al.

(2010) compute a measure of individual contributions to systemic risk from individual banks’ equity

returns during periods of negative returns for the financial sector as a whole. Similarly, Adrian and

Brunnermeier (2009) use quantile regression to estimate the VaR of the financial sector as a whole

conditional on each individual bank experiencing a loss in its asset values.

A reduced-form approach looking at historical returns has the disadvantage of trying to learn

about tail events from a limited time series of returns. This requires strong assumptions about the

tail behavior of return distributions. A third branch of the literature tries to avoid this problem by

looking directly at the probabilities of tail risks implied by derivatives whose price is very sensitive to

these precise risks. Lacking a traded security that directly reflects the joint default risk of the largest

financial institutions, papers in this category typically extract marginal default risk information from

CDS spreads, and make inference about joint default risk by aggregating them using a certain copula

together with estimates of correlations. Examples are Huang, Zhou and Zhu (2009) and Avesani,
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Pascual and Li (2006), which assume Normal and Student-t copulas, and Segoviano and Goodhart

(2009), which employs the CIMDO copula (Segoviano (2008)). These papers estimate a time-series of

systemic risk that closely resembles the simple measures plotted in Figure 1, with large spikes around

March and September 2008 and a steep increase in systemic risk starting in August 2007. These

results are in sharp contrast with the ones presented in this paper, which does not need to assume

any specific copula for the joint distribution of defaults but uses all the information in bond and CDS

prices to learn about pairwise default risk.

Finally, several other papers have proposed measures of systemic risk that do not result in esti-

mates of joint default risks. For example, Kritzman, Li, Page and Rigobon (2010) propose using the

fraction of the variance explained by the first principal components of CDS spreads of large financial

institutions as a measure of systemic risk in the financial sector. Other papers, instead, use individ-

ual or aggregated financial indicators to empirically predict financial crises, often in a cross-country

setting. Examples of this approach are Poghoshan and Cihak (2009), Cihak and Schaeck (2007),

Demirguc and Detragiache (1998 and 1999), and Gonzales-Hermosillo (1999).

2 Credit Default Swaps and Counterparty Risk

This section discusses the sources of counterparty risk in CDS contracts. I first describe the main

characteristics of CDS contracts. Then, I discuss why counterparty risk in these contracts arises

mainly from the possibility of double default of the reference entity and the counterparty. This risk

can be sizable if defaults of financial institutions are not independent. Finally, I argue that collateral

provisions, when present, are unlikely to eliminate this risk. Therefore, counterparty risk should be

priced in CDS spreads.

2.1 The Credit Default Swaps Market

Credit default swaps are credit derivatives that allow the transfer of the credit risk of a firm

between two agents for a predetermined amount of time. In a typical CDS contract, the protection

seller offers the protection buyer insurance against the default of an underlying bond issued by a

certain company (the reference entity). In the event of default by the reference entity, the seller

commits to buy the bond for a price equal to its face value from the protection buyer.7 In exchange
7In practice, the terms of the CDS could involve physical delivery of the defaulted bond or cash settlement. In

the former case, usually any bond of equal seniority can be delivered. For example, for the CDS written on a senior
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for the insurance, the buyer pays a quarterly premium, called the CDS spread, quoted as an annualized

percentage of the notional value insured. If default occurs, the contract terminates, and the quarterly

payments are interrupted. If default does not occur during the life of the contract, the contract

terminates at its maturity date.

While in general these contracts are traded over the counter and can be customized by the buyer

and the seller, in the recent years they have become more standardized, following the guidelines of

the International Swaps and Derivatives Association (ISDA). The CDS market is quite liquid, with

low transaction costs to initiate a contract with a market maker on short notice, and with numerous

dealers posting quotes (see Blanco et al. (2003) and Longstaff et al. (2005)). Reliable quotes for the

5-year maturity CDS can be obtained through several financial data firms (Bloomberg, Datastream,

Markit).

The CDS market has grown quickly in the last few years. Notional exposures grew from about

$5 trillion in 2004 to around $60 trillion at its peak in 2007, and despite the financial crisis, the total

notional exposure is still around $40 trillion. The main reason for this growth in gross terms is that,

due to the high liquidity of the CDS market, the easiest way to adjust the exposure to credit risk has

been to enter new CDS contracts (possibly offsetting the existing ones) rather than operating directly

in the bond market or cancelling CDS agreements already in place. At the center of this network of

CDS contracts, a few main dealers operated with very high gross and low net exposures, emerging as

the main counterparties in the market. For example, Fitch Ratings8 states that in 2006 the top 10

counterparties (all broker/dealers) accounted for about 89% of the total protection sold. With the

crisis, the market concentrated even more, after the disappearance of some of its key players.9

2.2 Counterparty Risk

Traded over the counter, a CDS contract involves counterparty risk: the protection seller might

default during the life of the CDS and therefore might not be able to comply with the commitments

implied by the contract.10 In this case, the holders of CDS claims would still recover part of the

unsecured bond, any other senior unsecured bond of the firm could be delivered. In addition, the credit event could
include restructuring or a downgrade of the reference bond. These clauses have a potential effect on the price of the
CDS, discussed in Appendix C.

8Fitch Ratings, 2006, Global Credit Derivatives Survey.
9Fitch Ratings, 2008, Global Credit Derivatives Survey.

10The role of counterparty risk in CDS spreads has been studied by Hull and White (2001), Jarrow and Turnbull
(1995), Jarrow and Yu (2001), and more recently, in the context of rare disaster risk, by Barro (2010). To reduce
counterparty risk - which stems mainly from the OTC nature of the contract - there are now several proposal to create
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expected payments due under the contract. Like other derivatives, CDS claims are treated pari passu

with senior unsecured bonds, but they are also protected by “safe harbor” provisions, which exempt

them from automatic stay of the assets of the firms, so that they can immediately seize any collateral

that has been posted for them. In addition, positions across different derivatives with the same

counterparty can be netted against each other. The latter potentially increases the recovery in case of

counterparty default, but only if the buyer finds herself with large enough out-of-the-money positions

with the seller when the seller defaults, thus hedging counterparty risk.11

In the case of early termination of the contract due to seller default, the seller has to compensate

the buyer for the replacement cost of the contract, i.e. the cost of initiating a new insurance contract

with another protection seller. This claim is small as long as the default risk of the reference entity

does not jump substantially when the seller defaults, relative to the original terms of the contract.

The larger the change in the CDS spread of the reference entity when the seller defaults, the larger

the claim of the buyer against the defaulted counterparty. In the extreme case, where the default of

the seller occurs simultaneously with the default of the reference entity, the payment due under the

contract would be equal to the full insurance payment.

A simple two-period example of the pricing of bonds and CDSs can be useful to understand the

role of counterparty risk. Consider a group of N dealers which have each issued a zero-coupon bond

with a face value of $1 maturing at time 1, and the CDS contract written at time 0 by each of them

against the default of each other dealer. Call Ai the event of default of institution i at time 1. Call

P (Ai) the probability of default of bank i, and P (Ai ∩Aj) the probability of joint default of i and j

at time 1. All probabilities are risk-neutral. Call R the expected recovery rate on the bond in case

of default, and suppose that in the event of joint default the CDS claim recovers a fraction S ≥ R.

Finally, assume that the risk-free rate between periods 0 and 1 is zero.

In this setting, the price of the bond issued by i, pi, is determined as:

pi = (1− P (Ai)) + P (Ai)R (1)

If there is no counterparty risk in the CDS contract, the insurance premium zi, or CDS spread,

a centralized clearinghouse. For a detailed discussion, see Duffie and Zhu (2010).
11The possibility of entering offsetting contracts with the counterparty, rather than canceling existing ones, will work

in this direction.
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paid at time 0 to insure that bond is:

zi = P (Ai)(1−R)

It is easy to see that between the bond and the CDS there is a theoretical arbitrage relation

(Longstaff et al. (2005)): zi = 1 − pi. Consider now the case in which there is counterparty risk in

the CDS contract. Then, the spread paid to buy insurance from j against i’s default will be:

zji = [P (Ai)− P (Ai ∩Aj)] (1−R) + P (Ai ∩Aj)(1−R)S

= [P (Ai)− (1− S)P (Ai ∩Aj)] (1−R) (2)

since the buyer of protection obtains the full payment (1−R) only if the reference entity defaults

alone, otherwise only a fraction S of it. Note that the spread zji decreases with the probability of

joint default P (Ai∩Aj); the arbitrage relation with the bond is broken. It is also important to realize

that the order of magnitude of counterparty risk could in theory be as high as the spread itself.

While in models where defaults are independent we have P (Ai ∩Aj) = P (Ai)P (Aj), most observers

of the crisis would agree that defaults of major dealers are far from independent, and therefore the

probability of the joint default can be of a much larger order of magnitude.

In this simple two-period example, I have considered only two cases of counterparty risk: the

case of simultaneous default of the seller and the reference entity, with the corresponding loss of

(1 − R)(1 − S) to the protection buyer, and the case of default by the seller alone, with no loss to

the protection buyer. In reality, it is possible that the defaults of the seller and the reference entity

do not occur simultaneously, yet the buyer of protection incurs losses of the same order of magnitude

as if they did. This can happen, for example, if the seller’s default triggers a jump in the default

probability of the reference entity, which might end up defaulting only some time later. In this

case, the contract would be highly in the money immediately after the seller’s default. Similarly, the

buyer might suffer a loss if the default of the reference entity triggers the subsequent default of the

counterparty: for example, because the seller did not adequately hedge the credit risk of the reference

entity. In all these cases, the two defaults do not happen simultaneously, but they are connected in

such a way that the protection buyer still suffers a potentially large loss on her claim. I refer to all

these cases as double default cases.12

12Of course, it is also possible that the value of the contract increases when the seller defaults, but the reference entity
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2.3 Collateral Agreements and Pricing of Counterparty Risk

In order to protect the buyers against counterparty risk, some (but not all) CDS contracts involve

a collateral agreement, under which collateral calls are tied mechanically to changes in the value of the

CDS contract, as well as to downgrades of the rating of the protection seller. Typically, margins on

CDSs are adjusted at a daily or weekly frequency. While helpful in reducing counterparty exposure,

standard collateral agreements cannot eliminate the counterparty risk coming from double default.

In this section I discuss the main reasons for this, and I provide additional evidence in Appendix A.

First, according to the ISDA Margin Survey 2008, only about 66% of the nominal exposure in

credit derivatives (of which CDSs are the most important type) had a collateral agreement at all in

2007 and 2008; this number was even lower in the years before. In addition, as reported in the ISDA

Survey, collateral agreements were employed much less frequently when the counterparty was a large

dealer.

Second, several documents reveal that often collateral posted was even lower than the current value

of the position. Even the buyer that most aggressively called for collateral during the crisis, Goldman

Sachs, was not covered completely on its CDS exposures with other large dealers (in particular,

AIG), let alone the potential exposure in case of sudden default of the reference entities.13 As several

documents show, smaller buyers of CDSs had much less collateral posted than the value of their

positions - large dealers were usually able to obtain more collateral than they had to post when

dealing with smaller counterparties.

Third, the nature of collateral posting is such that even for buyers who call enough collateral

to fully cover the current value of their positions, the extent to which counterparty risk is reduced

depends on the jump properties of the default events. As long as defaults are relatively well anticipated

(there are no jumps), adjustment of collateral to the current value of the exposure can remove almost

all counterparty risk. However, especially for financial intermediaries, defaults often occur suddenly

and over very short periods of time (e.g. over the weekend), so that the buyer might not be able to

obtain enough collateral to cover all the losses in time.

does not default for a while, or does not default at all. In some cases, this might still induce a loss to the protection
buyer. However, as long as the default risk of the reference entity remains of the same order of magnitude, the value
of the contract will be sufficiently small that the collateral posted will allow the recovery of most of it. In section 4 I
describe more in detail the exact pricing model I use.

13The documents refer specifically to a large amount ($22bn) of CDS protection bought by Goldman from AIG on
super-senior tranches of CDOs, but arguably similar practices were used on all credit derivatives instruments.

10



The Lehman bankruptcy is an interesting example of this. Until the weekend of September 13th-

14th, during which Lehman collapsed and two other large financial institutions were bailed out (Merrill

Lynch and AIG), the default risk of these financial institutions was deemed to be low, as reflected by

low CDS spreads and high credit ratings. The joint shock to the three institutions happened suddenly,

so that collateral adjustment would have been small. As it turned out, a double default event did

not materialize, because of the government bailout - therefore, buyers of Merrill and AIG CDSs from

Lehman did not experience large losses. However, these events show that the risk of simultaneous

collapse of several banks was relevant, and that standard collateralization practices would not have

prevented large losses to buyers of CDS contracts, had the government decided not to intervene.14

Finally, note that collateral calls themselves, if large enough, can cause the default of the protection

seller. This contributed to the collapse of AIG in September 2008: the government had to step in to

prevent collateral calls from bringing down the firm. The collateral demand can create an additional

channel for joint default of the seller and the reference entity, and thereby increase the possibility of

double default.

Therefore, the presence of collateral agreements – when in place at all – improves but does not

solve the problem of counterparty risk related to double default. Buyers of CDSs were aware of this

residual counterparty risk, as shown in documents reported in Appendix A. For example, Barclays

Capital issued a report15 in February 2008 precisely on the effect of counterparty risk on CDS prices.

Buyers of CDSs frequently believed that the best way to reduce their counterparty exposure was to

buy additional CDSs protection against their counterparty - which directly increased the total cost

of buying CDS protection.16 The presence of counterparty risk even in collateralized CDS contracts

would then lower the value of the CDS insurance and therefore the spread buyers would be willing to

pay for it.

It is worth discussing here a recent study of counterparty risk pricing by Arora, Gandhi and

Longstaff (2009), who have access to quotes posted by different counterparties. They document
14For example, a buyer of a 5-year Lehman CDS a month before its default would have been in the money, on Friday

September 12th, for about 15 cents on the dollar (the present discounted value of the change in spread from about
350bp to 700bp during the previous month). Similarly, a buyer of Merrill CDS would have been in the money for 5 cents
on the dollar. So, even if the buyer did have a collateral agreement, and if she did call for collateral up to the current
value of the contract (both unrealistic assumptions), she would have not had more than 15 and 5 cents of collateral on
those contracts on September 15th.

15Barclays Capital, 2008, “Counterparty Risk in Credit Markets”.
16Of course, the same mechanism would have additional indirect costs related to the residual counterparty risk in

the exposure on the latter CDS.
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that dealers with high default risk (as measured by the spread of the CDS written on them) posted

quotes systematically lower than the other dealers for the same reference entity, and especially so

after Lehman’s bankruptcy. However, they also report that for most reference entities, the difference

is very small, in the order of a few basis points. While at first sight this result seems to imply that

counterparty risk is not priced in CDS contracts, this is not necessarily the case, for several reasons.

First, the study looks at the relation between the price quoted by each dealer and its marginal

default risk. However, what matters for CDS pricing is the joint default risk of the reference entity

and the counterparty; the results I present in the paper show that there can be a significant difference

between marginal and joint default risk17, and this may translate in a weak relation between marginal

default risk and the quotes posted by the dealers. Second, the study looks at the variation of quotes

around the daily average, and therefore it filters out all components of counterparty risk which are

common to all dealers. Given that the financial crisis affected several large financial institutions at

the same time, this effect could be quite large, if not dominant. As discussed in Section 4, the bounds

I construct are based only on the average quote and therefore do not depend on the cross-sectional

variation around it. On this respect, the results obtained in this paper complement those in Arora

et al. (2009): their study focuses on the pricing of counterparty risk around the daily average, while

this paper concentrates on the average level of counterparty risk.18 Finally, in this paper I allow –

but not impose – average counterparty risk to explain part of the difference between bond yields and

CDS spread. So, to the extent that in fact counterparty risk was not priced in these securities, this

should be picked up by my methodology.

3 Probability bounds: theory

This section develops the theory of the probability bounds on systemic default events for a network

of N institutions in which bond prices and CDS spreads are observed. I start with an introductory

example that explains the main ideas. Then, I show how to use linear programming theory to solve
17See for example Figure 7.
18This also implies that if for any reason dealers tend to post quotes that are not too far from the average, the results

of this paper will still hold. If instead only dealers with particularly high counterparty risk tend to post quotes that are
relatively too high – for example to avoid signaling their high risk – the average quote will not reflect the true average
counterparty risk, but will be biased upwards. Note that a higher average reported quote can be mapped into a higher
recovery rate S in case of double default. Section 6 and Appendix D show that the main results of the paper are robust
to implied recovery rates of up to 90% – therefore, they will be robust to a significant bias in the way dealers report
quotes. Essentially, for the main results of the paper to hold, all is required is that some (even only a part) of the
average counterparty risk is reflected in the average CDS spread we observe.
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the general problem, and I derive some properties of the optimal bounds. In this section, I assume

that bond prices are affected only by the default risk of the issuer. I leave for section 4 a detailed

discussion of the implementation of the bounds, including the adjustments needed to take into account

the effect of liquidity on bond prices.

3.1 Probability bounds on systemic risk: an introductory example

Consider a two-period setting, and suppose that the financial sector consists of only three inter-

mediaries - banks 1, 2 and 3. Since they are the only intermediaries in the market, protection against

the default of i ∈ I ≡ {1, 2, 3} must be bought from a bank j ∈ I\i , i.e. one of the other two

intermediaries. As shown by the pricing formulas (1) and (2), if we observe all bond prices pi and all

CDS spreads zji, we can learn the marginal default probabilities of each bank as well as the pairwise

default probabilities for each pair (i, j) of banks (assuming we know the recovery rates). Because this

information set contains the default probabilities of one or at most two institutions, but contains no

direct information on the probability of the default event of all three institutions, call this a probability

information set of order two. As an example, we might infer that

P (Ai) = 0.2 ∀i

P (A1 ∩A2) = P (A2 ∩A3) = 0.07, P (A1 ∩A3) = 0.01

As mentioned above, in this paper I define systemic risk of degree r the probability of joint

default of at least r financial intermediaries, Pr. With only three banks, we obtain the following three

measures of systemic risk:

P1 = P (A1 ∪A2 ∪A3)

P2 = P ((A1 ∩A2) ∪ (A2 ∩A3) ∪ (A1 ∩A3))

P3 = P (A1 ∩A2 ∩A3)

All these definitions involve unions and intersections of the three default events, and therefore for

all values of r these are probabilities of order three (higher than the information set).

At first sight, one might think that if we observed all bond prices and all CDS spreads, thus

learning P (Ai) and P (Ai ∩ Aj) for each i and j, we would be able to completely pin down the

systemic probabilities P1, P2 and P3. However, this is not the case: in general, an information set of

order M cannot determine probabilities of order greater than M . A simple graphical example of this

13



is reported in Figure 2, a Venn diagram in which areas represent probabilities. In that Figure, the

area of each event is the same across the two panels, so that the marginal probabilities of defaults are

the same. The same is true for the pairwise default probabilities. However, it is easy to see that P3,

the intersection of all three events, is positive in the left panel and zero in the right panel.

Knowledge of the low-order probabilities, however, allows us to put bounds on higher-order prob-

abilities, and therefore on systemic default risk. While finding the upper bound for P3 is immediate19

(P3 ≤ 0.01), finding the other bounds is more complicated, and especially so when there are more

than three banks in the financial sector. The exact way to obtain tightest bounds is the object of the

rest of this section. When applied to this example, it yields the following bounds:

0.45 ≤ P1 ≤ 0.46

0.13 ≤ P2 ≤ 0.15

0 ≤ P3 ≤ 0.01

This simple example already shows one of the main points of this analysis: the set of bonds and

CDSs, when counterparty risk is taken into account, represents a rich information set that can be

used to learn about systemic risk even when we make no assumptions on the way these low-order

probabilities aggregate at the higher-order level.

This example can be used to illustrate two additional concepts related to the measurement of

systemic risk. The first one is that simply averaging the CDS spreads of financial institutions can

lead to an erroneous measure of systemic risk. Using the notation introduced above, such a calculation

would measure systemic risk using an index constructed as:

1

6

∑
i

∑
j 6=i

zij =
(1−R)

3

∑
i

P (Ai)− (1− S)
∑
i,j<i

P (Ai ∩Aj)

 (3)

Suppose that banks become more correlated (the joint default probabilities increase) while the

marginal default probabilities remain the same or increase only slightly. Then, this index in fact

decreases. The reason is that, because of counterparty risk, systemic risk reduces the quality of insur-

ance, and therefore the average cost of insurance decreases. At least in some cases, then, this simple

index fails to capture systemic risk properly.
19Because we know P (A1 ∩A2 ∩A3) ≤ P (A1 ∩A3) = 0.01, and it is easy to see using Venn diagrams how this bound

can be attained.
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The second idea that emerges from this example is the importance of using all the different prices

available to construct the bounds, rather than using only the information contained in the average

bond and CDS spreads. While information on average default probabilities is enough to construct

some bounds on the probability of systemic events, the additional restrictions given by the different

prices can significantly tighten these bounds. Later in this section I prove that among all networks

with the same average marginal and pairwise default probabilities, the widest, least informative

bounds on systemic risk are obtained when the network is symmetric, i.e. when all institutions have

the same marginal and pairwise default probabilities. Therefore, asymmetry always results in more

informative bounds.

Following the example above, suppose that instead of observing all the marginal and pairwise

default probabilities we only observe the average probabilities (this is a partially aggregated informa-

tion set): 1
3

∑
i P (Ai) = 0.2, and 1

3

∑
i,j<i P (Ai ∩ Aj) = 0.05. In this case, the upper bound on P3

is P (A1 ∩ A2 ∩ A3) ≤ 0.05. In fact, this bound is attained by a symmetric network configuration in

which P (A1 ∩ A2 ∩ A3) = P (Ai ∩ Aj) = 0.05 for all i and j: all joint default events (of two or three

institutions) perfectly overlap at the upper bound. Using the full information set (that includes all

bond and CDS prices) rather than the partially aggregated one allows us to reduce the upper bound

on P3 from 0.05 to 0.01. Similar improvements are seen in the other degrees of systemic risk.20

3.2 General theory of the probability bounds

In this section, I show how to represent and solve the problem of constructing tightest bounds for

probabilities of high-order events given a low-order information set. For now, I assume that we have

already extracted the probability information set from the observed prices of traded securities.

Consider a finite set of basic events A = {A1, ..., AN}, which in this paper I interpret as the

default events of a set of N financial intermediaries. The relation between low-order probabilities

(probabilities of unions and intersections of a few events in A) and higher-order ones (that involve

many events in A) has previously been explored in mathematics. Two famous results are Boole’s and

Bonferroni’s inequalities, which state that:

P

(⋃
i

Ai

)
≤
∑
i

P (Ai) (4)

20In fact, we can improve on the probabilities of default event of all degrees r = 1, 2, 3. Under average information,
the bounds are 0.45 ≤ P1 ≤ 0.50, 0.05 ≤ P2 ≤ 0.15, and 0 ≤ P3 ≤ 0.05.

15



and

P

(⋂
i

Ai

)
≥
∑
i

P (Ai)− (N − 1) (5)

These bounds are not tight, in the sense that tighter inequalities can be written based on the same

information set (the set of all marginal probabilities of events in A).

As discussed in the introduction, I define a systemic event of degree r to be the default of at

least r out of the N intermediaries. Systemic events defined in this way are all of order N, because

they involve unions and intersections of all the events in A. I employ an estimation method that

allows me to obtain the tightest possible bounds for the probabilities of systemic events given the

available information set, which includes bond prices and CDS spreads. The approach is based on

linear programming (LP), and consists in writing the bounds as the solution to a LP problem.21

While difficult to solve analytically, a LP problem is easy to solve numerically even as the scale of the

problem gets large. Additionally, the linearity of the problem guarantees that the global optimum is

always found when solving it numerically.

To see how the LP approach works, for a sample space Ω consider the finest partition of Ω created

by unions and intersections of the basic events A1, ..., AN ; call it V . Then, the probability of each

union or intersection of the basic events can be expressed as the sum of the probabilities of some

events in V . Since V contains exactly 2N elements, it is possible to represent the probability space

by a vector with 2N elements, each corresponding to the probability of an elementary event in V .

Formally, the following proposition holds (see Boros and Prekopa (1989)):

Proposition 1. Call F the σ-algebra generated by the finite set of events A1, ..., AN on a sample

space Ω. Call V the finest partition of Ω that is included in F . Then, V has 2N elements, and any

probability system on (Ω,F) can be represented by a vector p ∈ R2N , in the sense that ∀A ∈ F ,

∃IA ⊆
{

1, 2, 3, ...2N
}
s.t. P (A) =

∑
i∈IA pi.

In general, there are different vectors p that represent the same probability system. In this paper,

I use the one constructed according to the following Proposition.

21See Kwerel (1975). A LP problem is a constrained maximization problem in which both the objective and the
constraints are linear in the maximization variable.
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Proposition 2. For a set B, call B ≡ Ω\B, the complement of B. For every integer i between 0 and

2N−1, consider its binary representation bi, which consists of a vector of N numbers, each either 0 or

1. Construct pi+1 as follows:

pi+1 = P (A∗1 ∩A∗2 ∩ ... ∩A∗N )

where A∗j = Aj if element j of bi is 1, and A∗j = Aj if element j of bi is 0. Then, p represents a

probability system on F in the sense of Proposition 1.

A simple example can help illustrate this Proposition. In the case of three banks, we have three

basic events, A1, A2 and A3, corresponding to the default of each bank. The finest partition of the

sample space obtained from unions and intersection of these events will have 23 = 8 elements. Figure

3 shows the 8 elements of this partition. From the Figure, it is evident how one can express the

probability of any union or intersection of the Ai’s as the sum of the probabilities of a subset of these

8 elements. These 8 probabilities can be collected in a vector p with 8 elements, and therefore the

probability of any event A′ in F can be represented as a product a′p for a certain vector a. The

consistency of the probability system p is assured by imposing p ≥ 0 and i′p = 1, where i is a vector

of ones.

The ordering of the elements of p is arbitrary, and Proposition 2 shows a way to construct a

vector p that leads to a unique choice for the order of its elements. The ith element of the vector p

is obtained as follows. First, obtain the binary representation of the number i− 1, bi. For example,

b1 = [0 0 0], b2 = [0 0 1], b3 = [0 1 0] and so on up to b8 = [1 1 1].

Each of these vectors can be interpreted as a vector of indicators of one of the three basic events.

For example, [0 1 1] represent the event in which A1 does not occur, A2 and A3 occur. The element

i of pi will then be the probability of the event represented in this way by bi. For example, p3 =

Pr{A1 ∩A2 ∩A3}. This is precisely the ordering represented in Figure 3.

Propositions 1 and 2 imply that bounds on the probability of a (systemic) event A′ in F subject

to constraints on low-order probabilities can be rewritten as a linear programming problem. In

particular, the following Corollary holds:

Corollary. The upper bound for the probability of P (A′), i.e. the solution to:

maxP (A′) (6)
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s.t.
P (Ai) = ai

...

P (Ai ∩Aj) = aij

can be found as the solution to the problem:

maxp c
′p (7)

s.t.
p ≥ 0

i′p = 1

Ap = b

for c, A, b depending only on the available information. The lower bound is obtained by solving the
corresponding minimization problem.

Proof. The corollary is an immediate consequence of the fact that the probability of every union or

intersection of events in A can be expressed as a product a′p for some a.

As mentioned before, the definition of systemic event I employ is indexed by r: “at least r in-

stitutions default” within a specified time period. Since all these events are within the σ−algebra

generated by the basic events A1, ..., AN , their probability can be represented by the product of p

with some vector cr: c′rp.

For the simple case of three banks reported above, it is easy to verify looking at Figure 3 that the

probabilities Pr of at least r institutions defaulting can be expressed as

P1 = [0 1 1 1 1 1 1 1] · p

P2 = [0 0 0 1 0 1 1 1] · p

P3 = [0 0 0 0 0 0 0 1] · p

and that the constraints can be rewritten as:

P (A1) = [0 0 0 0 1 1 1 1] · p = a1

P (A1 ∩A2) = [0 0 0 0 0 0 1 1] · p = a12

and so on. These constraints can then be collected in a matrix A and a vector b, obtaining the

linear representation above. A detailed description of the setup of the LP problem is reported in

Appendix B.
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3.3 Properties of the bounds

In this section I discuss two important properties of the bounds. First, I prove in Proposition 3

that symmetric probability systems attain the widest bounds on systemic risk given average marginal

and pairwise probabilities. Second, I study the uniqueness of the solution. Analytical results for the

width of the bounds, in the special case of symmetric systems, are derived in Appendix B.

3.3.1 Symmetry of the probability system

Definition. Consider the vector p ∈ R2N representing a probability system on the σ-algebra gen-

erated by the basic events A1, ..., AN , as in Propositions 1 and 2. Consider a permutation J of the

indices of the basic events: AJ1 , ..., AJN , and callM the set of permutations. Define pJ ∈ R2N the vec-

tor representing the probability system generated by AJ1 , ..., AJN that corresponds to p, constructed

as in Proposition 2.

For example, take two events A1 and A2. A vector p representing the probability system con-

structed as in Proposition 2 would have four elements: p1 = P (A1 ∩ A2), p2 = P (A1 ∩ A2),

p3 = P (A1 ∩ A2) and p4 = P (A1 ∩ A2). In this case, only one additional permutation of the

generating events is possible, J = {2, 1}, with pJ1 = p1, pJ2 = p3, pJ3 = p2, and pJ4 = p4.

Definition. A linear combination of the elements of p defined by the vector c is symmetric with

respect to the generating events A1, ..., AN if c′p = c′pJ ∀J ∈M.

An example of a symmetric weighting vector c is the one corresponding to the probability of the

union of the events, c = [1 1 0 1]′, since c′p = c′pJ = P (A1 ∪A2).

Definition. A probability system p is symmetric if every event in V (the finest partition of the

sample space generated by the basic events) has the same probability in all permutations of the

generating events.

For example, with three generating events (N = 3), the probability system is symmetric if P (A1) =

P (A2) = P (A3) and P (A1 ∩A2) = P (A1 ∩A3) = P (A1 ∩A3).
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Definition. A linear programming problem

max c′p

s.t. Ap ≤ b

is symmetric if c and all rows of A are symmetric with respect to the generating events A1, ..., AN .

We can now state the following proposition:

Proposition 3. Suppose that the probability bounds correspond to a symmetric LP problem. Then,

the bounds are attained by a symmetric probability system.

Proof: See Appendix B.

Corollary. The bounds on systemic events of the type “at least r institutions default” given a symmet-

ric constraint set (for example, constraints on the average marginal and pairwise default probabilities)

are attained by a symmetric probability system.

The bounds obtained in a symmetric network in which we observe all marginal and pairwise

probabilities will always be at least as wide as those obtained in an asymmetric network with the

same averages of the low-order probabilities. The difference between the bounds obtained in the

two cases captures precisely the extent to which asymmetry in the shape of the network affects the

probability of systemic events.

3.3.2 Uniqueness of the solution

At first sight, it might seem that if a financial network is asymmetric enough (relative to the

observed marginal and pairwise default probabilities), there will be a unique probability system that

attains the upper bound on systemic risk, and similarly a unique one that attains the lower bound.

However, this is in general not the case: several probability systems exist that attain each bound.

The existence of multiple solutions to the maximization problem plays an important role in section

5, where I study the contribution of different institutions to systemic risk.

20



If more than one probability system attains the upper (lower) bound, it is possible that some prob-

ability P (A′) of an event A′ is not completely pinned down at the bound. In this case, we can charac-

terize the range of possible values for this probability by solving a second maximization/minimization

problem of the type:

maxp(minp) v
′p

s.t.
p ≥ 0

i′p = 1

Ap = b

c′rp = cbound

where v is the vector that corresponds to the event A′ (as described in Propositions 1 and 2),

and cbound is the value of the upper or the lower bound on systemic risk. In other words, we look

for the probability system, among those which attain the upper or the lower bound, that maximizes

(minimizes) the particular probability we are interested in, P (A′). Of course, if maxpv′p = minpv
′p,

that particular probability is completely pinned down at that bound on systemic risk.

In addition, we can also try to find a “representative” probability system at the upper (lower)

bound. One way to construct such a system is the “AFROS” procedure described in Appa (2002)

and reported in Appendix B. The “representative” probability system is obtained averaging different

probability systems, chosen from the space of solutions to the bounds that are as distant as possible

from each other. In other words, then, it is an average of solutions that are as different from each

other as possible within the space of solutions to the probability bounds.

4 Implementation

The method presented in section 3 requires conditioning on marginal and pairwise default prob-

abilities for all banks and all pairs of banks. When working with actual data, however, estimating

the bounds requires some additional steps. First, in order to extract marginal and pairwise default

probabilities from observed prices, I need to specify a pricing model for bonds and CDSs that takes

into account not only default risk, but also other important determinants of prices - in particular

liquidity premia, shown to be an important factor by several studies.22 Second, the implementation
22For example, see Bao et al. (2010), Chen, Lesmond and Wei (2007), Collin-Dufresne, Goldstein and Martin (2007),
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of the bounds is affected by the availability of CDS data. Because I only observe, for each bank, the

average CDS spread quoted by its counterparties, the bounds I can estimate condition on a smaller

information set, which captures average counterparty risk. I now discuss each of these issues in turn.

4.1 Pricing bonds

To price bonds, I use a simple pricing model of the reduced-form class with constant risk-neutral

hazard rates of default, as in Lando (1997), Duffie and Singleton (1999), and Hull and White (2000,

2001).

In general, four elements are crucial in determining the price of a bond: credit risk, the recovery

rate, the risk-free rate process and the liquidity premium. Assume that the recovery rate process is

independent of all other processes and call the expected recovery rate R. Call T the maturity of the

bond and short term rFt the riskless rate. The reduced-form approach specifies a risk-neutral default

hazard process ht, the risk-neutral probability of default between t and t+ 1 conditional on survival

until t. Following Duffie (1999), I incorporate a liquidity process γt > 0. This process is modeled as a

per-period proportional cost of holding the bond. Later I discuss how we can interpret this parameter

in light on the theoretical literature on liquidity in asset markets.

I use a simplified pricing model23 that assumes that, for any given firm, the prices of all of its bonds

are determined independently at each time t, under the assumption that from time t onwards ht+s and

γt+s will be constant and equal to ht and γt, respectively. Naturally, this is just an approximation,

because prices do not take into account that at each future date these parameters are going to be

revised, since at every future date t + r prices will be recomputed assuming a constant hazard rate

and liquidity process from t+ r on, at new levels ht+r and γt+r. I discretize the model to a monthly

horizon, and I assume that coupons are paid monthly. The choice of a month is motivated by the

relative reference period for the CDS spreads discussed in section 2.

Theoretically it would be possible to specify and estimate more sophisticated models for hit and

γit : at each time t we observe several bonds outstanding with different maturities, and therefore we

could extract information about the term structure of hit at each point t looking forward. The reason

why I choose a much simpler model as a baseline case comes from limitations in the CDS data.

Because CDS quotes obtained from the main data vendors are reliable only for the contracts of 5 year

Huang and Huang (2003), or Longstaff et al. (2005).
23I report the general discrete-time pricing model in Appendix C.
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maturity, I do not have enough information to identify a corresponding term structure of joint hazard

rates at every time t for CDSs. The assumption of constant hazard rates allows me to identify the

marginal and joint hazard rates directly combining bond and CDS spreads.24

Calling δ(t, T ) the risk-free discount rate between times t and T (the price at time t of a risk-free

zero-coupon bond with maturity T ), the price at time t of a senior unsecured bond j issued by firm

i, with coupon cij and recovery equal to a fraction R of the face value of the bond is:

Bij(t, T ij) = cij

 T ij∑
s=t+1

δ(t, s)(1− hit)s−t(1− γit)s−t
+

+δ(t, T ij)(1− hit)T
ij−t(1− γit)T

ij−t +R

 T ij∑
s=t+1

δ(t, s)(1− hit)s−t−1(1− γit)s−t−1hit

 (8)

Before tackling the problem of calibrating the process γit (later in this section), it can be useful

to discuss a possible interpretation for this variable. The role of γit in the bond pricing formula is to

capture in a reduced-form way all the different elements that result in a liquidity discount in bonds,

which can arise for a variety of reasons (such as funding costs, search costs and other transaction costs,

or asymmetric information). Funding costs, in particular, are an appealing motivation for modeling

the liquidity process because they are known to have been especially relevant during the recent crisis.

Garleanu and Pedersen (2010) present a model in which liquidity discounts arise because some

market participants are required to use part of their own equity in purchasing the assets. In particular,

they are required to post a margin mij
t on security j of firm i at time t. Because this uses up part of

their own capital, they require an additional return that is proportional to the product of mij
t and ψt,

the shadow cost of funds at time t. This, in the presence of a group of traders for which the financing

constraint is binding, leads to an adjusted CCAPM of the form:

Et[R
ij
t+1 −R

f
t+1] = −

Covt(Mt+1, R
ij
t+1 −R

f
t+1)

Et[Mt+1]
+mij

t xtψt (9)

where Mt+1 is the CCAPM stochastic discount factor and Rij
t+1 is the return on the bond, which

includes the potential liquidity discount that might arise in the future. The liquidity discount also

depends on xt, the proportion of liquidity-constrained agents in the economy. Note that since all
24A way to tackle this problem under additional assumptions (essentially imposing that the term structure of joint

default follows the term structure of marginal default hazard estimated from bond prices) is explored in section 6 and
Appendix D.
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bonds I consider have the same seniority, we can assume that mij
t = mi

t for all the bonds issued by

the same firm.

In the simple pricing model presented here, the term γit approximately corresponds to mij
t xtψt.25

In light of this, the liquidity component γit can be interpreted as a time-varying shadow cost of the

capital that needs to be put as margin on the bond issued by firm i. Variation of γit over time

can be attributed to changes in the margin requirements specific to firm i or to variations in the

economy-wide weighted shadow cost of capital, xtψt.

4.2 Pricing CDSs

As explained in section 2, a potentially important component of the spread of a CDS is coun-

terparty risk.26 Counterparty risk arises because in some states of the world the protection seller

cannot pay the buyer the full amount owed. A fraction of that amount can still be recovered thanks

to collateralization and to the seniority of CDS claims in bankruptcy relative to junior claims.

As with bonds, I discretize the model to one month intervals, and I assume that both marginal

and joint hazard rates are constant from the perspective of the time of the pricing until the maturity

of the CDS (5 years). I assume that the payoff of the CDS for the following month is as follows. If the

seller does not default within the month but the reference entity defaults, the payment is made in full.

Therefore, a month is considered an amount of time sufficient for the seller to establish whether to

default or not on the CDS obligation, given that the reference entity defaulted. If the seller defaults

within the month but the reference entity does not, the contract terminates with either a positive or

a negative value (depending on whether the default probability of the reference entity increased or

decreased relative to when the contract was written). Here I assume that the expected value of the

contract conditional on the reference entity surviving until the next month is zero.27

If both the seller and the reference entity default in the same month, I assume that the two

defaults happen in a connected way and only an amount S of the full payment is recovered - this

25Apart from a term Es[Ms+1]−E[Ms+1]

E[Ms+1]
which captures fluctuations in the short-term risk-free rate and should be

relatively small and not very volatile.
26The literature on pricing credit derivatives is very large, and examples include Das and Sundaram (2000) and Duffie

(1999). Hull andWhite (2001) and Jarrow and Turnbull (1995) in particular consider models of credit derivatives subject
to counterparty risk.

27This is consistent with the assumption of constant hazard rates, in which the credit risk of the reference entity is
constant over time as long as it does has not defaulted. The pricing formula remains approximately the same as long
as the hazard rate of default of the reference entity, conditional on surviving until the next month, remains of the same
order of magnitude as it was before the default of the counterparty. In this case, the effect on the price of the CDS is
of the order of magnitude of the square of the CDS spread, which is very small.

24



case corresponds to the double default case, in which counterparty losses are important. The pricing

formula remains approximately the same if, conditional of both firms defaulting in the same month,

the default of the seller induces a jump in the order of magnitude of the probability of default of the

other institution for a certain amount of time; as explained in section 2, double default does not need

exact simultaneity of the defaults. Note that different assumptions about the jump in probability

when the seller defaults conditional on both banks defaulting in the same month can be mapped into

different recovery rates in case of double default, S. Robustness to assumptions about S is explored

in section 6 and Appendix D.

Calling P (Ai) the (constant) monthly default probability of institution i, P (Ai ∩ Aj) the prob-

ability of joint default during each month, and under the assumptions that these hazard rates are

constant over time and independent of the risk-free rate process, the discretized CDS pricing equation

can be written as:

T−1∑
s=t

δ(t, s)(1− P (Ai ∪Aj))
s−tzji = (10)

=

T∑
s=t+1

δ(t, s)(1− P (Ai ∪Aj))
s−t−1 {[P (Ai)− P (Ai ∩Aj)] (1−R) + S [P (Ai ∩Aj)] (1−R)}

where zji is the spread of the CDS written by j to insure against i’s default.

The left-hand side of the formula represents the present value of payments to the protection seller;

they only occur as long as neither a credit event occurred nor the counterparty defaulted. The right-

hand side represents the expected payment in case of default. In each period, conditional on both

firms surviving until then, there is a probability P (Ai)−P (Ai∩Aj) that the reference entity defaults

while the counterparty has not defaulted, so that the payment of (1 − R) is made in full. With

probability P (Ai ∩ Aj), there is a double-default event, and thus only a fraction S of that payment

is recovered. Note that if only the counterparty defaults the contract ends with zero value due to the

assumption of constant hazard rates.

Using a linear approximation derived and discussed in Appendix C, it is possible to rewrite the

spread as:

zji,t = (P (Ai)− (1− S)P (Ai ∩Aj))

[∑T
s=t+1 δ(t, s)

]
(1−R)[∑T−1

s=t δ(t, s)
] (11)

This representation is linear in the event probabilities and can then be imposed directly as a constraint
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in the LP problem.

While the model I use in this paper uses a simple discrete-time framework, it would be possible

to build continuous-time models of CDS prices that take into account the exact dynamics of events

and the timing of defaults. Several models of joint default that appear in the literature assume that

defaults in each (short) period ∆t are independent conditional on the realization of a state vector. In

these models, counterparty risk at short horizons is very small by construction, which makes these

models less suitable to model the case in which joint default is relevant even at short horizons. A valid

alternative are models of correlated default intensities, as introduced by Jarrow and Yu (2001). In

these models, the default of one institution increases immediately the default intensity of the others.

Because of limited availability of CDS pricing data, I do not have enough flexibility to estimate

these models directly. However, my discrete-time pricing formulation is compatible with a model

in which defaults within a month are correlated due to spillovers from one institution to the other,

but, conditional on one institution surviving until the next month, the spillover effect on the default

intensity of other banks is small or negligible.

4.3 Implementation of the bounds: liquidity assumptions

Once the pricing models for bonds and CDSs are specified, the implementation of the bounds

requires dealing with the presence of the bond liquidity process γti , which is unobservable but a

crucial determinant of bond prices. Because γti is unobservable, and because there is no unique way

of interpreting it, estimating the liquidity process directly is extremely difficult. However, it is at least

possible to obtain plausible lower bounds for it, which translate into upper bounds for the marginal

probabilities P (Ai).

I start by assuming that γit can be decomposed into a fixed firm-specific component αi, and a time-

varying component, λt, common to all senior unsecured bonds issued by large financial institutions:

γit = αiλt (12)

where λt is a latent variable normalized to be 1 on average during 2004 (the beginning of the sample),

so that αi captures the average liquidity component of each bank in 2004. This formulation is flexible

enough to capture constant differences among firms in my sample, as well as changes in margins and

other liquidity-related costs that are common to the firms in the sample even though they are different
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from the rest of the economy.

This decomposition, together with the interpretation of γit discussed above, suggests three possible

ways to impose a plausible lower bound on γit for the financial institutions in my sample. The first

approach just requires that the liquidity premium for bonds should not be negative: γit ≥ 0.

The idea behind the second approach is that we can use the early part of the sample (2004) to

identify αi, because in this period counterparty risk was considered to be essentially zero. Then,

using bond prices together with CDS prices allows us to perfectly identify γit during this period: the

average basis in 2004 pins down αi for each i. If we are willing to assume that liquidity premia were

no lower during the crisis than they were in 2004, we can impose an alternative constraint γit ≥ αi.

A third, more sophisticated approach tries to obtain a time-varying lower bound for the liquidity

process, γit , by comparing the financial institutions in the sample to other non-financial institutions

with high credit ratings and therefore likely similar margins and cost of funding. A CDS written by

a financial institution on a safe non-financial firm is much less likely to be affected by the risk of

double default. Under this assumption, I proceed as follows. For a set J of nonfinancial firms with

high credit rating, I estimate γjt using bond yield spreads and CDS spreads together and assuming

no counterparty risk. Note that assuming independence yields very similar results, since the order of

magnitude is the square of the CDS spread and therefore extremely small. I then decompose it as

γjt = αjλ
∗
t (13)

therefore allowing the component common to nonfinancial firms (λ∗t ) to be different from the common

component of financial firms, λt. Assuming that γjt is observed with independent proportional noise

εjt , i.e. we observe:

γ̃jt = γjt ε
j
t (14)

we can then estimate the series λ∗t for each t using OLS (again, normalizing λ∗t to be 1 on average

in 2004). Since this series captures the cost of funds as well as the margin requirement of the bonds

of these non-financial institutions (relative to the pre-crisis level), for a group J of high credit rating

nonfinancial firms it is reasonable to assume that λt ≥ λ∗t . In other words, the liquidity component

common to financial firms was, during the crisis, at least as high as the component common to

nonfinancial firms. We then obtain a third possible constraint on the liquidity process: γit ≥ αiλ∗t .
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Once a lower bound γi
t
is obtained in this way for each i, from the bond pricing equation we

immediately obtain an upper bound on P (Ai), which is the value of P (Ai) that is estimated from

bond prices when γit = γi
t
. This defines an upper bound function hi(γit). We can then modify the

maximization problem to find the bounds on systemic risk by replacing at each t the constraints

P (Ai) = αi with the inequality constraints (one for each i)

P (Ai)t ≤ hi(γit) (15)

This allows to preserve the LP formulation in computing the bounds. On the other hand, it will

result in wider bounds, since equalities have been replaced by inequalities.

A final caveat with the use of these liquidity assumptions is that in some periods, and for some

banks, the upper bound on the marginal default probability hi(γit) might be lower than the CDS-

implied default probability (the one obtained under the assumption that counterparty risk is non-

negative). In other words, after removing the component of the yield spread attributed to liquidity,

the remaining part of the yield spread can be lower than the CDS spread. For example, when the

liquidity process is set so that the average basis in 2004 is zero, in 2004 half of the banks (on average)

will have a positive liquidity adjusted basis. In these cases I reduce the effect of liquidity to the point

where bond-implied probabilities are as high as the CDS-implied probabilities. This in turn means

that the default correlation of such banks with the rest of the financial system is zero: the whole

basis (in fact, even slightly more) is explained by liquidity premia, and therefore there is no room for

counterparty risk. This phenomenon occurs less and less frequently as the financial crisis unfolds and

the basis widens for more banks. Under the calibration of liquidity to the level of 2004, half of the

banks have a zero or positive liquidity-adjusted basis on average between 2007 and Bear’s collapse, a

fifth of the banks between Bear Stearns’ and Lehman’s default, and about 2 banks on average after

that. Under the calibration of liquidity to the basis of nonfinancials, which is higher, we have a zero

or positive liquidity-adjusted basis for two thirds of the banks between 2007 and Bear, about half of

the banks between Bear’s and Lehman’s collapse, and again 2 after that.

4.4 Availability of CDS data and choice of the set of intermediaries

An important factor to take into account in implementing the LP problem is the fact that I do

not observe the various spreads written on a given bond i by every other institution j, but only an
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average of the quotes provided by the N − 1 counterparties:

zi =
1

N − 1

∑
j 6=i

zji (16)

This means that when I compute the bounds, instead of the set of constraints generated from

individual counterparties shown in (11), I can only impose the constraint

zi =

P (Ai)− (1− S)

 1

N − 1

∑
i 6=j

P (Ai ∩Aj)


[∑T

s=t+1 δ(t, s)
]

(1−R)[∑T−1
s=t δ(t, s)

] (17)

for each i.

It is important to note that this constraint assumes that the spread zi is obtained by averaging

across the spreads quoted by all other N − 1 institutions in the group considered. The CDS spreads

I use (obtained from Markit Group) are constructed as an equal-weighted average of the quotes

reported by a set of dealers. Unfortunately I do not observe exactly which dealers contributed quotes

at each point in time. Because of this, I consider a group of dealers that are most likely to represent

the sample from which the quotes come from. Since this market is very concentrated, and the top

10 firms alone account for about 90% of the protection sold by volume, and for at least 2/3 by trade

count, including all the largest dealers according to such measures of activity should ensure that

the average spread reflects the average counterparty risk of these financial institutions. Since all of

these institutions are very active in the CDS market, and therefore approximately equally likely to

contribute quotes, equal weighting seems a reasonable assumption even if not all firms contribute

quotes at all times.

Of course, it is possible that the spread partly reflects quotes obtained from financial institutions

outside the group I consider, or that some of the dealers in the group do not post quotes at all times.

In both cases, I would likely underestimate counterparty risk: in the former case, because quotes

may be obtained from smaller institutions for which the recovery rate of the CDS in case of double

default could be lower; in the latter case, because if the institutions that are not posting a quote are

the riskier ones, the average spread observed would be biased upwards. However, as long as these

problems affect only a few institutions at a time, the effect on the average spread should be small.

To find the most active dealers during the crisis, I employ a list of the Top 15 dealers by activity
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in July 2008 provided by Credit Derivatives Research. While Bear Stearns could not be a part of

that list (it had already been bought by JP Morgan), a report by Fitch Ratings28 shows that it was

an important player in the CDS market in 2006, and therefore I include it in the sample. I drop

HSBC for lack of enough bond data, so that in the end my sample includes 15 banks, 9 American

and 6 European.29 Note that after March 15th 2008 Bear Stearns disappears, and after September

12th 2008 both Lehman Brothers and Merrill Lynch drop out of the group.

The assumption of equal weighting can be relaxed, by allowing the top institutions to be over-

represented in the CDS spread. In particular, because we know the ranking of the top 5 institutions

by number of contracts written for each year between 2006 and 2010, we can compute bounds in

which these institution’s weight in the average CDS spreads is higher than the other banks. Section

6 and Appendix D show that results are robust to this change.

4.5 Feasible bounds

The analysis presented above allows me to reformulate the maximization problem to obtain bounds

on systemic risk that take into account all these factors. The optimal bounds that can be computed

given the assumptions discussed above are as follows:

maxPr

s.t.
P (Ai) ≤ hi(γi) ∀i (18)P (Ai)− (1− S)

 1

N − 1

∑
i 6=j

P (Ai ∩Aj)


[∑T

s=t+1 δ(t, s)
]

(1−R)[∑T−1
s=t δ(t, s)

] = zi ∀i (19)

which can be represented in linear form as:

maxp c
′
rp

s.t.
p ≥ 0

i′p = 1

Cp ≤ d (20)

Ep = f (21)
28Fitch Ratings, 2006, Global Credit Derivatives Survey.
29The banks are: Bank of America, Bear Stearns, Citigroup, Goldman Sachs, Lehman Brothers, JP Morgan, Merrill

Lynch, Morgan Stanley, Wachovia, Abn Amro, Bnp Paribas, Barclays, Credit Suisse, Deutsche Bank, UBS. Note that
AIG does not appear because it was holding large net positions, but was not one of the main dealers in the CDS market
by volume or trade count.
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where the constraint (20) corresponds to the set of constraints (18), and the constraint (21)

corresponds to (19). These bounds can then be computed separately at each t using the cross-section

of bond and CDS prices, as well as the series for γt
i
.

Note that the bond-implied constraint hi(γi) can be computed beforehand using the cross section

of bonds, as explained in the next section. The bounds can then be calculated taking the upper

bound on marginal probabilities, hi(γi), as given. Instead, the equations derived from CDS spreads,

equations (19), do not involve a separate estimation step, and they are directly imposed as a constraint

in the maximization (minimization) problem.

4.6 Data

Before turning to the presentation of the results, I present in this section some information about

the data used and the estimation method for the marginal default probabilities hi(γi). The data

cover, with daily frequency, the period from January 2004 to June 2010.

For each of the 15 institutions considered, I obtain clean closing prices from Bloomberg for senior

unsecured zero and fixed coupon bonds with maturity less than 10 years30. These are indicative

quotes; however, if the bond is TRACE-eligible, Bloomberg reports the closing price from TRACE,

which corresponds to an actual trade31. I exclude callable, putable, sinkable, and structured bonds,

since their prices reflect the value of the embedded options. I remove all bonds for which I have price

information for less than 5 trading days. I consider bonds denominated in five main currencies: USD,

Euro, GBP, Yen, CHF. Since Bloomberg data on European bonds is fairly limited, I integrate it with

bond pricing data from Markit, whenever it adds at least 5 observations to the price series of each

bond.

As the reference risk-free rate, I use government zero-coupon yields, obtained from Bloomberg.32

An alternative would be to use swap rates (see for example Houweling and Vorst (2005)). However,

swap rates contain counterparty risk, and they are indexed to LIBOR (see Sundaresan (1991) and

Duffie and Huang (1996)). Because LIBOR is the rate on unsecured loans between banks, it cannot be

considered risk-free, especially in the context of systemic risk in the financial system. The empirical
30Given that the maturity of CDSs is 5 years, it would make sense to use outstanding bonds of remaining maturity

close to 5 years when comparing bonds and CDSs. The results are robust to other maturity brackets around 5 years -
for example (2,8) and (4,6), even though this would reduce the number of institutions I can use for the estimation.

31Section 6 and Appendix D discuss robustness result based only on TRACE prices.
32I instead bootstrap the Swiss yield curve from the government coupon yield curve, using linear interpolation and

assuming bonds trade at par.
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results are robust to the use of swap rates, as discussed in section 6 and Appendix D.

Using these data, together with a calibration of the lower bound for the liquidity process γi
t
, for

every trading day t I estimate the risk-neutral default probability hit(γ
i
t
) separately for each firm,

using the cross section of bonds issued by firm i which are still outstanding at time t. I employ

the constant hazard rate model described above, and estimate the hazard rate using least absolute

deviations to reduce the impact of outliers. All the results are robust to the use of OLS.

Table 1 reports some statistics on the availability of bond data. In the first column, for each

institution, we can see the average daily number of valid bond prices available for the estimation. For

example, the default probability for Bank of America hit is estimated using on average 32 bonds each

day. The next columns break down this number by year. The Table shows that for some European

dealers, bond data is scarce especially in the early part of the sample.

Turning to CDS data, since credit default swaps are derivatives traded over the counter, they are

not always standardized. However, the 5-year CDS based on the ISDA format (which standardizes

credit event definitions and collateral requirements) has emerged as the reference contract, which

brings high transparency and liquidity. For this CDS contract, Markit reports quotes that are obtained

by averaging the quotes reported by different dealers, after removing stale prices and outliers.33 The

series contain a few missing values, which are filled by interpolation. The CDSs are euro-denominated

for European banks and dollar-denominated for US banks. All the results are robust to the use of

CDS data from Bloomberg - CMA New York.

Table 2 reports summary statistics on CDS spreads. While CDS spreads between 2004 and 2010

are usually quite low, on the order of 50bp, they reach levels higher than 1000bp in some periods.

On the right side of Table 2, I report statistics for the basis zi − (yi − rF ), computed using the

interpolated 5-year bond yield and the 5-year Treasury rate. As the Table shows, the basis is usually

negative, because the CDS spread is lower than the corresponding bond yield spread. In a few cases,

however, the basis becomes positive. This can be due to noise in bond pricing data. It can also occur

when, in response to bad news, CDS spreads jump upwards quickly while bond yields react with a

lag, because of the lower liquidity of the bond market. Of course, as discussed above, one limitation

of the methodology presented in this paper is that all such events will be interpreted as a drop in
33Removing outliers, while helpful to remove noise coming from erroneous prices, can potentially bias the reported

CDS spread away from the average spread if the distribution of quotes is skewed. This in particular can be a concern
if the distribution of quotes is left-skewed, i.e. most dealers have low counterparty risk but a few dealers have higher
counterparty risk, as the observed CDS spread would be biased upwards.

32



counterparty risk to zero, at least until the bond yields adjust. However, since this phenomenon

typically occurs for only a few days, it will not affect the general behavior of the bounds. Smoothing

the bounds will further reduce the problem.

5 Empirical Bounds on Systemic Risk

5.1 Bounds on systemic risk with nonnegative liquidity

In this section, I present results under the assumption that the per-period cost of holding bonds

(liquidity process) is non-negative: γit ≥ 0. Note that because I only impose a lower bound on γit , but

not an upper bound, I allow the bond/CDS basis to be explained by any combination of liquidity and

counterparty risk. The bounds are obtained under the assumption that the recovery rate on bonds

(R) and that on CDSs in case of double default (S) are both equal to 30%. In section 6 and Appendix

D I explore robustness to different assumptions on recovery rates.

Figure 4 plots the bounds for the average monthly probability of default of at least r institutions,

Pr, for r between 1 and 4. To make the graphs more readable, I plot a 3-day moving average of each

bound. It is useful to compare these bounds, that use all available information, to partial-information

bounds obtained using only bond prices or only CDS spreads. This allows one to see the gain from

using the information from all the traded securities.

In Figure 4, the thin lines represent the upper and lower bounds obtained using only bond prices.

These bounds impose only constraints (18) but not constraints (19) in the maximization and mini-

mization problems. The dotted lines, on the contrary, use only CDS data; they impose only constraints

(19) but not constraints (18). Both these sets of bounds ignore the information on counterparty risk

contained in the bond/CDS basis. The thick lines represent the full-information bounds. They are

the optimal bounds conditional on the prices of bonds and CDSs that we observe. Note that the

CDS-only bounds (dotted line) often coincide with the full-information bounds, and that all lower

bounds for r > 1 are zero.

Even under these minimal assumptions on the liquidity process, the bounds are tight enough to

be informative about systemic risk. All the bounds in Figure 4 suggest an increase in the maximum

possible amount of systemic risk during the financial crisis, up to early 2009, followed by a decrease

at the end of 2009. As we can see in the first panel, the probability that at least one bank defaults
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(P1) clearly increased during the crisis. However, the other panels do not clearly pin down whether

a similar increase occurred for the default risk of more than one institution. All bounds on P2 to P4

start to widen in late 2007, which is consistent with an increase in systemic risk, but also with an

increase in uncertainty about systemic risk.

Comparing the bounds obtained using different information sets, an interesting pattern emerges.

The full-information bounds, that use both bond and CDS spreads, are noticeably tighter than the

bounds that only use bond prices, but, in general, do not seem to improve much over the CDS-only

bounds. The reason for this is that the upper bound on marginal default probability derived from

bond prices (hi(0)) is often so high that constraint (18) is not binding at the maximum of systemic

risk. This result arises from the restrictions imposed by the internal consistency of the probability

system. In these cases counterparty risk cannot be so high as to explain the whole bond/CDS basis.

This shows why often the full-information cannot improve over the CDS-only bounds.

When the bond and CDS spreads increase, but the difference between the two does not increase

as much, the constraints imposed by bond prices start to bind. In such situations the full-information

bounds become significantly more informative. In other words, the full-information bounds have more

bite when the basis is small relative to the spreads. This is precisely what happened during the peak

periods of the crisis (Bear Stearns’ and Lehman’s failures), as can be seen in Figure 4.

The optimal bounds also allow an interesting decomposition of the movements in bond yields and

CDS spreads into idiosyncratic and systemic risk. This decomposition emerges clearly if we compare

the top panel to the bottom three panels of Figure 4. The top panel indicates that the probability

that at least one bank would default (P1) spiked during these episodes. However, P2, P3 and P4 do

not show a similar spike (Bear’s case) or show a smaller one (as in the month after Lehman’s default).

This tells us that during these episodes what spiked was idiosyncratic risk rather than systemic risk.

Note that we cannot reach similar conclusions if we look at the bond-only or CDS-only bounds.

These bounds do not capture the difference between the different degrees of systemic risk, and suggest

a story in line with the naive measures of Figure 1.

Looking at Figure 4, one might be tempted to conclude that systemic risk decreased in the Bear

Stearns and Lehman episodes: the lower bound for systemic risk stays at zero while the upper bound

tightens. This, however, is not the correct interpretation. The bounds reveal that systemic risk was

low during these episodes, but they do not establish that it was higher before or after, because at
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those times the bond/CDS basis was too wide to be informative about systemic risk. In other words,

a similar basis is more informative about systemic risk at times when CDS spreads and yield spreads

are high than in times when they are low.

These results were obtained under minimal assumptions on liquidity. In the next section, I show

that imposing stricter assumptions on liquidity makes the basis more informative even in the periods

before and after these peaks, when the levels of the spreads are lower.

5.2 Bounds with other calibrations of liquidity

As explained in section 4, if we assume that the liquidity cost of holding a bond is at least γi
t
, the

upper bound on each of the marginal default probabilities decreases to hi(γit). In other words, the

part of the bond/CDS basis that can be attributed to counterparty risk is reduced by a corresponding

amount. In this section I show how the bounds on systemic risk vary as we make different assumptions

about γi
t
. Note that lowering the upper bound on the marginal probabilities of default has three effects

on the measures of systemic risk. First, it directly rules out high values for the individual default

probabilities of each bank. Second, it indirectly lowers the maximum amount of counterparty risk

present in CDS contracts, by lowering the basis for all banks. Third, to the extent that the effect

of liquidity on the basis is different across dealers, it increases the asymmetry of the network and

therefore leads to a greater benefit from using all the information available. The bounds constructed

using bond prices but not CDS spreads reflect only the first effect. The bounds that use only CDS

data are not affected at all by bond liquidity assumptions. The optimal bounds reflect all three effects,

and therefore become significantly tighter than both the other bounds.34

The first panel of Figure 5 reports the bounds on the monthly probability of at least four insti-

tutions defaulting (P4) when γi
t

= 0 (which corresponds to the last panel of Figure 4). The second

panel plots bounds obtained when γi
t
is calibrated to match the bond/CDS basis of each bank in

2004. This calibration implies a liquidity component of the yield spread of about 50-60% in 2004 - in

line with the calibrations of Huang and Huang (2003) and Longstaff, Mithal and Neis (2005).

The third panel plots the bounds obtained by calibrating the liquidity process to the one that fits
34Note that in order to calibrate the liquidity process, we use some information obtained from both bonds and CDS

spreads, because we use the bond/CDS basis in 2004 to calibrate the liquidity level αi, and because we adjust the
liquidity process so that the bond/CDS basis of each bank never becomes positive (as discussed in section 4). So the
bond-only bounds and the CDS-only bounds, that use either constraints (18) or constraints (19) after such adjustments
for liquidity, will indirectly reflect some information contained in the bond/CDS basis. The bounds look very similar
if the bond/CDS basis is used only to calibrate the liquidity process in 2004 but not used in the following periods.
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the entire basis of nonfinancial firms, as explained in section 4. In particular, I look at the nonfinancial

firms that compose the CDX IG index (a standard index of CDS spreads on investment-grade bonds),

restricting to those with credit rating of A1 or higher (according to Moody’s). For 8 of these firms35

I have enough data to include them in the estimation of λ∗t . This time-varying component stays

approximately constant until 2007, and during the crisis it increases by up to five times.

Once stronger liquidity assumptions are taken into account, we discover that systemic risk was

particularly low before Bear Stearns’ collapse. In particular, the upper bound on P4 does not reflect

a sharp increase in systemic risk at the beginning of 2008, contrary to the other measures of systemic

risk discussed in the introduction. The third panel in Figure 5 shows how that increase was due to

idiosyncratic, not systemic risk. After jumping in March 2008, systemic risk kept increasing in a

relatively smooth way up to April 2009, showing only a small spike immediately following Lehman’s

default. The large spike that during that period we observe in CDS spreads and bond yields, reaching

the highest levels observed in the sample, corresponds to a spike in idiosyncratic default risk rather

than in systemic default risk. This decomposition is only possible using all the information available,

and is not captured when bounds are constructed using only bond prices or only CDS spreads.

The reason for this decomposition between idiosyncratic and default risk during these key episodes

of the crisis is simple. High systemic risk in the financial sector requires low CDS spreads, relative

to bond yields, for contracts written by large dealers against the default of other dealers. Since the

counterparties to those contracts are in fact these same dealers, a high risk of systemic default ought

to reduce the value of insurance contracts bought from them. However, until March 2008, and again

during September 2008, the bond/CDS basis was not wide enough to correspond to such spikes in

systemic risk. This effect is evident especially when liquidity premia explicitly account for part of the

basis.

A final remark concerns the interpretation of this decomposition in terms of objective, rather than

risk-neutral, probabilities. We can reasonably assume marginal utility to be higher, in expectation,

in systemic default events than in idiosyncratic default events. Therefore, a period in which P1 is

particularly high, but P4 is low, is likely to be due to high objective idiosyncratic default risk and

low objective systemic risk. If the large value of P1 was due to high expected marginal utility in

the corresponding idiosyncratic default events, we would expect to find P4 to be high as well, in
35The eight firms are Boeing, Caterpillar, John Deere, Disney, Honeywell, IBM, Pfizer, Walmart.
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contradiction with the empirical findings.

5.3 Full-information bounds and average-information bounds

An interesting question is to what extent one could achieve similar results on systemic risk by

looking only at average bond and CDS spreads. As shown in section 3, bounds obtained using only

average information coincide with bounds obtained in a fully symmetric system. Therefore, this

exercise also reveals the gain in terms of information about systemic risk due to the asymmetry of

the financial network.

The last panel of Figure 5 plots the bounds obtained under the full versus the average information

set. These are derived under the calibration of liquidity to nonfinancial firms, as in the third panel.

The average information set is obtained by replacing the two sets of constraints (18) and (19) with

one constraint each, obtained by averaging each of the two sets across dealers. The Figure shows

that looking at average spreads allows us to distinguish between idiosyncratic risk and systemic risk

in some cases (like the weeks before Bear Stearns’ failure) but not in others (Lehman’s default). The

reason is that in the first episode the spreads and bases of most banks moved in a similar way, but in

the second episode the risks were concentrated in a few banks.

5.4 Individual contributions to systemic risk

The method described in this paper also allows one to study the evolution of the default risk of

each bank and its relation with the rest of the network. In particular, I solve for the probability

systems that attain the upper bound and study the configuration of the financial network in the

scenarios of highest systemic risk. In this section I look at the bounds for P4 obtained by calibrating

the liquidity process to that of nonfinancial firms.

In general, several probability systems attain the upper (and lower) bounds on systemic risk.

This means that there will not be a unique configuration of the network at the bounds in terms of

default probabilities. In this section I follow the procedure described in section 3 and Appendix B

to numerically solve for the “representative” probability system in the space of solutions. This gives

us an idea of the typical configuration of the network at the bounds. I also report the maximum and

minimum values for all the magnitudes of interest (for example, the pairwise probabilities of default)

that can be achieved within the space of solutions whenever these are not completely pinned down

at the bounds.
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I focus on the marginal and pairwise probabilities of default at the upper bound for P4. As an

example, in Figure 6 I plot a partial snapshot of the network as of August 6th 2008, five weeks

before Lehman’s collapse. The nodes of the diagram are associated with the individual banks and

present monthly marginal probabilities of default. The segments that connect the nodes report the

joint default probability of the two intermediaries. Note that the marginal probabilities of default are

completely pinned down at the upper bound for P4. The same is not true for pairwise probabilities.

This should not be surprising, since from CDSs we obtain constraints only on average pairwise proba-

bilities. Figure 6 reports the estimate of pairwise default probability in the “representative” solution.

In parentheses, I report the range of maximum and minimum possible values within the space of

solutions. Even though joint default probabilities are not completely determined, in most cases the

range is relatively tight.

In decreasing order of individual default risk we find Lehman Brothers, Merrill Lynch, Morgan

Stanley, Citigroup, and JP Morgan. In addition, we can see that the pair at highest risk of joint default

is Merrill Lynch with Lehman Brothers, followed by the pair Lehman Brothers and Citigroup. It is

evident from this graph that the prices of bonds and CDSs were consistent with a high joint default

risk of Lehman and Merrill even 5 weeks before the weekend in which both went under (September

13-14th). The rest of the graph shows considerable heterogeneity in the marginal probabilities of

default, but especially so in the pairwise probabilities, which are particularly informative about the

structure of the network. For example, from the graph we learn that even though Citigroup has a

much smaller individual default probability than Morgan Stanley, the two appear equally connected

to Lehman Brothers and Merrill Lynch.

Not plotted in the graph are several banks for which the joint default risk with other banks is zero

or approximately zero (in this day: the European banks and Goldman Sachs). For these banks, the

basis becomes essentially zero after adjusting for liquidity, and therefore they appear disconnected

from the network. Note that the cases of zero joint default probability and independence are difficult

to distinguish because the order of magnitude of the latter is the square of the default probabilities,

which is extremely small. However, this clearly indicates that there is ample heterogeneity across

banks in their maximum possible contribution to systemic risk.

Using a similar approach, for each pair of banks i and j we can track the evolution of P (Ai), P (Aj)

and P (Ai ∩ Aj) over time. Figure 7 plots a 3 day moving average of these probabilities for three
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different pairs (all combinations of Lehman, Merrill Lynch, and Citigroup) - in the “representative”

solution. The upper panel reports the marginal probabilities, and the lower panel reports the joint

probabilities. These graphs confirm the relatively high degree of heterogeneity and variability in

marginal default probabilities across banks, but even more so for joint probabilities. It is particularly

interesting to note that the markets anticipated the joint collapse of Lehman Brothers and Merrill

Lynch for the two months prior to that event.

We can now turn to study how each institution contributed to systemic risk. One way to capture

this is to compute the probability that institution i is involved in a multiple default event:

Pr{at least 4 default ∩ i defaults}

By applying the techniques described in section 3, we can verify that this probability is uniquely

identified at the upper bound on systemic risk. Figure 8 plots this contribution for four banks

(Citigroup, Lehman Brothers, Merrill Lynch and Bank of America) as well as the average across the

other banks.36

As the Figure shows, there is large heterogeneity across dealers, both in the levels and in the

changes. While the contribution to systemic risk increases for all banks after August 2007, the growth

is faster for Lehman and Merrill Lynch than for the other banks. Markets seem to have anticipated the

increased systemic importance of these two institutions before the weekend of September 15th. After

September 2008, Citigroup displayed the largest spike, followed immediately by Bank of America,

that ended with the release of the results of the U.S. government stress test on banks’ capital in May

2009.

6 Robustness

The empirical results described in section 5 are obtained imposing assumptions about the recovery

rates, the pricing models, and the data. In this section I briefly discuss how the results depend on

these assumptions, and I report the full derivation of the robustness tests – as well as their empirical

implementation – in Appendix D.

With respect to recovery rates, it is easy to see from equations (1) and (2) that changes in the
36To improve readability, I plot a two week moving average.

39



recovery rate for senior unsecured bonds, R, scale the implied default probabilities from all prices in

the same direction. Therefore, such changes scale the level of the bounds uniformly for the whole

period, without affecting the main conclusions about the evolution of systemic risk over the crisis. Of

course, an important possibility is time variation in R. In Appendix D, besides reporting the results

for different levels of R, I show that the main conclusions also hold if R decreases during periods of

high distress, as well as if R follows a simple stochastic process that features lower recovery rates if

several banks default.

More interesting is the robustness with respect to the recovery rate in case of double default,

S. The analysis reported in the Appendix shows that the results are very robust to changes in this

parameter (at least up to a recovery rate of 90%). To understand why, note that the effect of changes

in S depends crucially on the liquidity-adjusted bond/CDS basis of each bank. For some banks, the

basis is small enough that it can be completely explained by counterparty risk. For these banks, an

increase in S means that the same basis can account for higher counterparty risk. For other banks,

instead, the basis is large enough that, due to internal constraints of the probability system, it cannot

be completely explained by counterparty risk: even at the upper bound for systemic risk, a part of

the basis must be explained by liquidity. For these banks, Appendix D shows that as S increases,

the maximum joint default risk with other banks has to decrease. The robustness of the results to

changes in S stems precisely from the fact that the effect of changes in S is different and opposite

across banks with large and small basis, so that the increase in systemic risk due to one bank is offset

by a decrease in risk due to another.

Appendix D also discusses the robustness of the results when an alternative pricing model for

bonds and CDSs is used, that features a more flexible specification for the hazard rate process. This

specification allows us to capture periods in which the hazard rate is very high at short horizons but

reverts to lower levels in the long run. In the Appendix I also show that the empirical results still

hold when the swap rate is used as the risk-free rate, when we restrict the sample to US banks only,

and when we only use bond data from large TRACE transactions. Finally, I show what assumptions

are needed to be able to correctly estimate systemic risk when bonds and CDSs expressed in different

currencies are used together, and I show robustness to different assumptions about the weighting

of pairwise default probabilities in equation (16). The latter is important because it shows how

the results are robust to reasonable assumptions about the heterogeneity of recovery rates across
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counterparties (about which unfortunately we do not have any direct information).

7 Conclusion

This paper shows that bond prices and CDS spreads represent a rich information set for learning

about joint default probabilities of intermediaries in the financial network. This information set can

be used to construct bounds on the probability of systemic events, defined as the probability of several

institutions defaulting within a short time horizon. These bounds are the best possible ones given

the available information, and they are obtained as the solution to a linear programming problem.

Even under minimal assumptions on the liquidity premia in bond markets, the bounds obtained

in the paper are significantly tighter than the ones obtained from bond prices alone. They are also

tighter than bounds that only use CDS spreads, particularly when CDS and bond spreads increase

while the bond/CDS basis remains relatively small. Using this methodology to estimate stress in the

financial network helps us to better understand the recent financial crisis. Systemic risk started to

increase in August 2007 but remained relatively low until after Bear Stearns’ collapse. After that,

the bounds widen considerably, which would be consistent both with an increase in systemic risk and

with an increase in uncertainty about the severity of such risks. Finally, the bounds on systemic risk

converge to lower values starting in the second half of 2009.

The bounds presented in this paper allow to decompose the changes in bond and CDS spreads into

an idiosyncratic and a systemic component of default risk, for example showing that was idiosyncratic

risk – and not systemic risk – the cause of high spreads in early 2008. In addition, the methodology

allows to track the contribution to systemic risk of each bank. An interesting result that emerges

from this analysis is that markets seem to have anticipated the possible systemic nature of the risk

exposure of some banks (Lehman and Merrill Lynch), several weeks before these institutions faced a

severe crisis in September 2008.

It is worth noting some limitations of the approach. The bounds capture market perceptions about

probabilities rather than the true probabilities. This means that just as securities can be mispriced, the

bounds can reflect various imperfections and mispricing that happen in financial markets, including

slow incorporation of information and underestimation of risks. In addition, because they are reduced-

form, they do not allow us to distinguish whether the low systemic risk estimated, for example, around

March 2008 was due to the configuration of structural links between the banks or because of the
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expectation of government intervention in case multiple banks defaulted (which is what happened

in September 2008). This also limits their use for policy action. Bond, Goldstein and Prescott

(2010) warn us of the danger of taking actions based on market prices when these prices incorporate

anticipation of the policy response. On the other hand, the bounds rule out some of the accounts

about perceived risks, such as the fear of the government leaving several banks to default in the case

that shocks propagated throughout the system.

The method developed in this paper can easily be extended to incorporate information from

additional securities. The price of any security whose payoff depends on individual or joint defaults

can be added as a constraint in the maximization and minimization problems, thus tightening the

bounds. For example, the prices of CDS baskets and equity index options may enrich the information

set and improve the measurement of systemic risk. In the future, as better data on these and other

similar securities become more easily available, the measurement of systemic risk will become even

more precise.

Because this method allows us to measure not only the aggregate level of systemic risk, but also

the linkages between institutions, it opens the way to new studies of the structure of the financial

system. For example, one can explore which network structures are more robust to financial distress,

or the effect of individual banks’ decisions on the aggregate level of systemic risk.

In addition, since the bounds presented in this paper can be constructed in real time, they can

be used to complement other measures in monitoring the market’s perceptions of systemic risk. Not

only do they track the effect of macroeconomic and financial shocks on perceived systemic risk, but

they also reflect the market’s expectations regarding government intervention in financial markets.

The possibility of measuring in real time the structure of the financial network can be a valuable tool

for identifying the sources of distress among banks at the core of the financial system.
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Tables

Avg valid bonds 2004 2005 2006 2007 2008 2009 2010
Abn Amro 3.3 1.8 2.2 4.0 4.4 3.0 3.5 5.3
Bank of America 32.3 17.5 25.4 29.3 32.9 35.3 41.8 55.8
Barclays 14.8 3.1 3.0 2.4 2.5 9.1 38.5 78.0
Bear Stearns 11.4 7.2 9.8 12.6 15.3 15.4 - -
Bnp Paribas 7.0 0.5 2.0 3.0 3.9 6.7 18.0 22.6
Citigroup 36.5 21.6 24.3 31.7 40.0 43.2 49.5 54.5
Credit Suisse 5.4 1.9 2.3 2.8 2.7 5.0 11.6 17.4
Deutsche Bank 42.1 5.3 10.4 42.3 68.9 54.4 58.8 67.9
Goldman Sachs 39.6 19.3 26.1 34.3 40.4 49.0 57.0 63.0
JP Morgan 17.3 6.6 11.1 14.0 17.4 22.2 27.4 27.9
Lehman Brothers 20.1 10.5 15.2 20.5 26.5 31.4 - -
Merrill Lynch 35.7 22.7 33.0 38.4 43.0 44.0 - -
Morgan Stanley 25.5 12.5 14.6 17.5 22.2 30.0 45.0 49.0
UBS 8.2 0.3 0.7 1.0 3.1 8.3 22.4 36.6
Wachovia 6.1 2.9 3.5 5.7 7.4 9.1 7.7 7.3

Table 1

Note: first column reports average number of bonds for each institution that are used for the 
estimation of marginal default probabilities. Columns 2-8 break this number down by year.

Avg CDS spread Std CDS spread Min spread Max spread Avg basis Std basis Min basis Max basis
Abn Amro 45.8 46.1 5.0 190.5 -46.2 44.4 -248.2 34.6
Bank of America 66.5 71.7 7.4 390.7 -71.9 64.8 -412.5 217.5
Barclays 54.3 60.0 5.5 261.9 -41.2 60.1 -324.8 111.6
Bear Stearns 54.2 69.7 18.0 736.9 -53.6 24.6 -298.0 40.6
Bnp Paribas 33.8 32.2 5.4 163.9 -53.9 49.7 -321.8 86.8
Citigroup 100.4 129.7 6.5 638.3 -76.5 88.1 -804.6 59.2
Credit Suisse 53.0 51.3 9.0 261.4 -50.5 44.0 -276.6 52.6
Deutsche Bank 49.8 45.1 8.9 190.0 -24.4 27.6 -174.2 65.2
Goldman Sachs 84.2 86.4 17.2 579.3 -79.0 91.3 -502.4 75.1
JP Morgan 53.1 42.8 10.9 227.3 -76.5 57.9 -322.2 32.1
Lehman Brothers 70.7 86.9 18.0 701.7 -61.9 44.5 -540.0 10.9
Merrill Lynch 59.9 71.9 14.4 447.7 -51.7 40.4 -200.0 26.2
Morgan Stanley 112.5 144.2 16.6 1385.6 -82.6 107.3 -1256.5 223.2
UBS 59.3 72.4 4.2 357.2 -65.4 58.5 -343.5 34.2
Wachovia 73.9 93.5 9.3 1487.7 -87.2 120.1 -2509.8 88.0

Table 2

Note: table reports descriptive characteristics on the CDS spread and the yield spread for the 15 institutions in the sample, in basis
points per year. The yield spread is computed as the linearly interpolated yield for a 5-year maturity bond in excess of the corresponding
Treasury rate.
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Figure 1: Average 5-year bond yield and CDS spread for the 15 financial intermediaries most active in the
CDS market, together with the (rescaled) difference between the two (the negative bond/CDS basis). The
bond yield is obtained by interpolating bond yields at the 5 year maturity.
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Figure 2: Example of the relation between low-order and high-order probabilities. The sets in the Venn
diagram represent default events, and their areas represents the default probabilities.

Figure 3: Construction of the Linear Programming representation according to Propositions 1 and 2.
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Figure 4: Upper and lower bounds on different systemic events under the assumption of nonnegative liquidity
premia: average monthly probability of at least r banks defaulting, for r = 1, 2, 3, 4. The Figure reports bounds
obtained using only information in bond prices (thin lines), only CDS spreads (dotted lines), and all information
(shaded area). To reduce noise, I plot a 3 day moving average of each bound. Note that all lower bounds are
0 for r > 1, and that the CDS-only bounds often coincide with the full information bounds (that use both
bonds and CDSs).
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Figure 5: Bounds on the average monthly probability of at least 4 banks defaulting under nonnegative
liquidity premia (first panel), liquidity premia at least as high as in 2004 (second panel), liquidity premia
calibrated to the ones of nonfinancial firms (third panel). In the top three panels, I report bounds obtained
using only information in bond prices (thin lines), only CDS spreads (dotted lines), and all information (shaded
area). The last panel reports bounds that use all information (shaded area) and bounds that use only average
information (dotted lines). To reduce noise, I plot a 3 day moving average of each bound.
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Figure 6: Marginal and pairwise average monthly default probabilities for part of the network in the high
systemic risk scenario (max P4) as of 08/06/2008, with the liquidity process calibrated to that of nonfinancial
firms. Nodes report the marginal default probabilities of each banks, edges report pairwise joint default
probabilities. The numbers in bold represent the probabilities in the “representative” solution to the bounds,
as described in section 3. The numbers in parentheses report the possible range of probabilities across all
probability systems that attain the upper bound on P4.
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Figure 7: Marginal and pairwise default probabilities for selected banks, in the “representative” solution to
the upper bound for the monthly probability that at least four banks default, under the liquidity process
calibration to nonfinancial firms. To reduce noise, I plot a 3 day moving average of each series.
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Figure 8: Individual contributions to systemic risk for selected banks, under the calibration of the liquidity
process to that of nonfinancial firms, at the upper bound for the probability that at least 4 banks default. The
Figure plots for each bank j the average monthly probability that a systemic default event occurs (at least 4
banks default) and institution j is one of them. To reduce noise, I plot a two week moving average of each
series.
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Appendix

Appendix A - Collateral agreements and the pricing of counterparty risk

In the text, I argue that the collateral agreements used for CDS contracts during the financial crisis were
unlikely to eliminate counterparty risk. Buyers of CDS protection were aware of this and possibly priced it
into the spreads. Here I report some evidence for the main points of the argument.

An initial question is whether counterparty risk was perceived at all by market participants. The growth
of the percentage of OTC derivative contracts covered by some form of collateral confirms this indirectly: for
credit derivatives, the volume-weighted percentage of collateralized contracts went from 39% in 2004 to 58%
in 2005, to 66% in 2007 and 2008 (ISDA Margin Survey 2006, 2008). Besides, documents and interviews from
practitioners directly confirm that the issue was taken into account by financial participants throughout the
crisis. Robert McWilliam, head of Counterparty Risk management at ABN Amro, reports in January 200837:
“The golden rule is to start early. If you start worrying about the counterparty when they are under duress
your options are fairly limited”. A document from Barclays dated February 200838 states:“While the maximum
potential loss to the seller of protection is the contract spread for the rest of the contract duration, the buyer of
protection could arguably lose the full notional of the contract (in case of simultaneous defaults by counterparty
and the reference credit and zero recovery). Thus, counterparty risk is evidently more of a concern for buyers
of protection.”

Even if agents were aware of counterparty risk, it was standard practice to ask for relatively little collateral,
especially from the largest counterparties. ISDA reports that only about 2/3 of the contracts were covered by a
collateral agreement, up to 2009. Besides, calculations by Singh and Aitken (2009) and Singh (2010) show that,
even at the end of 2009, large financial institutions still carried large under-collateralized derivative liabilities.
In particular, they compute the total value of “residual derivative payables” - liabilities from derivative positions
after netting under master netting agreements and in excess of the collateral posted. For the 5 largest US
dealers this amount was more than $250bn. Even though these numbers include all derivative contracts, and
not only CDSs, they suggest a general under-collateralization of derivative positions from these counterparties.
As an example of this, in 2008 Goldman Sachs had received collateral for 45% of the value of its receivable
OTC derivatives, but posted only 18% of the value of payables. Similarly, JP Morgan in the same year had
received collateral for 47% of receivables, but posted only 37% of the payables39. Finally, as reported in the
main text, even the most active dealer in counterparty risk management, Goldman Sachs, failed to cover the
full value of exposure on its CDS position with AIG.

Even when a collateral agreement is in place and actively managed, residual counterparty risk cannot be
eliminated when the value of the derivative is subject to jumps. While during the crisis we did see gradual
increases in CDS spreads of banks, a crucial episode - the Lehman bankruptcy - shows that correlated jumps
in credit risk (and defaults) are indeed possible. Just before the weekend of the 13th and 14th of September
2008, many institutions were considered at risk, but neither the credit ratings nor the CDS spreads indicated
an extremely high likelihood of immediate default. For example, the Lehman 5 year CDS was trading at
around 700bp per year, Merrill’s at 400bp, and the credit ratings of their debt were still as high as 4 months
before, with an implied default probability of less than 0.25% per annum. A buyer who bought a Lehman or
a Merrill CDS at 350bp per year a month before the default would have seen the value of the contract (the
present discounted value of the difference in spreads) grow to 15 cents and 5 cents on the dollar respectively
on Friday September 12th. Therefore, even if the buyers had called for enough collateral to cover the current

37Reuters,“Banks move to guard against counterparty failures”, Jan 24, 2008.
38Barclays Capital, 2008, “Counterparty Risk in Credit Markets”.
39Bloomberg, “Goldman Sachs Demands Collateral It Won’t Dish Out”, March 15, 2010.
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value of such contracts, they would have improved their recovery rate by only 5% to 15%.
For the reasons explained above, buyers were generally aware that the collateral agreements in place (if

any) would have left them exposed to the risk of double default. In fact, several sources document that in early
2008 buyers of CDS contracts were buying additional CDS contracts against their counterparties to hedge the
residual counterparty risk. For example, from the documents on the AIG bailout (Maiden Lane III) from the
Financial Crisis Inquiry Commission, we see that starting November 2007, Goldman Sachs - which had bought
$22bn of CDS on a super-senior tranche of a CDO from AIG - was adjusting the amount of CDS protection
against AIG together with their margin calls to AIG (which were caused by increases in the default probability
of the underlying asset). Up to June 2008, the nominal amount of protection bought against AIG was of the
same order of magnitude as the total amount of collateral called by Goldman.

In a document issued by Goldman Sachs in 2009 regarding the AIG bailout40, the firm declares: “In mid-
September 2008, prior to the government’s action to save AIG, a majority of Goldman Sachs’ exposure [current
market value] to AIG was collateralized and the rest was covered through various risk mitigants. Our total
exposure on the securities on which we bought protection was roughly $10 billion. Against this, we held roughly
$7.5 billion in collateral. The remainder was fully covered through hedges we purchased, primarily through CDS
for which we received collateral from our market counterparties. Thus, if AIG had failed, we would have had
the collateral from AIG and the proceeds from the CDS protection we purchased.”. Similarly, in an interview
with ABN Amro, Reuter reports41: When counterparties [to OTC derivatives] are large corporations, which do
not usually put up collateral, ABN buys protection in the CDS market against the default of the counterparty
itself. ABN’s trading desk must go into the market constantly to rebalance those CDS holdings so that its
protection equals its counterparty risk profile.”.

This evidence indicates that buyers were understanding the direct and indirect costs of the residual coun-
terparty risk. Note that the fact that collateral was not enough to eliminate counterparty risk does not mean
that buyers were making a bad deal on their contracts. Simply, they would have been compensated by paying
a lower spread for the contracts when the counterparty was at higher risk of double default. In fact, the 2008
Barclays report titles a section: How much should I pay for a higher-rated counterparty? (The analysis then
quantifies this number for generic corporate reference entities of different credit rating).

Appendix B - Implementation of the Linear Programming Problem

This appendix describes in detail the algorithm employed to transform the probability bounds problem into a
linear programming problem. It also describes the bond pricing formula and the linear approximation to the
CDS pricing formula that allows to write the CDS constraints as linear constraints.

B.1 - Linear programming representation in the general case

This section describes the algorithm used to transform the probability problem

maxPr

s.t.
P (Ai) = ai

40Goldman Sachs, “Overview of Goldman Sachs’ Interaction with AIG and Goldman Sachs’ Approach to Risk Man-
agement”, March 2009.

41Reuters, “Banks move to guard against counterparty failures”, Jan 24, 2008.
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...

P (Ai ∩Aj) = aij

into the LP representation
maxp c

′
rp

s.t.
p ≥ 0

i′p = 1

Ap = b

for the general case of N banks.
Start with a matrix B of size (2N , N) whose rows contain the binary representation of all numbers between

0 and 2N − 1. For example, with N=4:

B =



0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

...

1 1 1 1


Each row of this matrix corresponds to a particular element of the partition of the sample space described in
Proposition 2: the event

A∗1 ∩A∗2 ∩ ... ∩A∗N

where A∗j = Aj if element j of the row is 1, and A∗j = Aj if element j of the row is 0. The probability system
p will then be determined as a vector of 2N elements containing the probability of each of the elements of the
partition represented by the 2N rows of the matrix B. For example p1 will be the probability that none of the
Ai events occur, p2 will represent the probability that event AN occurs but none of the other events does, and
so on. Finally, the element p2N will represent the probability that all events occur.

The maximization problem presented above tries to find the vector p that maximizes the probability of
systemic event of degree r (Pr) while satisfying constraints on marginal and pairwise default probabilities,
as well as the constraints implied by the consistency of the probability measure. The latter are immediate:
because the events represented by the rows of B are a partition of the sample space, and p is a probability
measure on these events, all elements of p need to be nonnegative and sum to one:

p ≥ 0

p′i = 1

To obtain in LP form the inequalities and equalities that involve marginal and pairwise default probabilities,
note first that because the elements of the partition are disjoint events, the probability of any union of them
is equal to the sum of their probabilities. Therefore, to find the probability of an event Ai, P (Ai), in terms of
p, one needs to sum the probabilities of all the elements of the partition in which event Ai occurs. But this is
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immediate given the representation in B:

P (Ai) =
∑

j:B(j,i)=1

pj

or:
P (Ai) = ai

′
p

for a vector ai of size (2N , 1) s.t.:
aij = B(j, i)

In other words, to find which elementary events form event Ai one needs to find all the rows of B in
which element i is equal to 1. The union of these events will coincide with Ai, and therefore the sum of their
probabilities will be P (Ai). Given the linearity, this sum is equivalent to the product of the vector p with a
vector ai, whose elements are ones whenever the corresponding elementary event is a subset of Ai.

Similarly, the probability of a joint event:

P (Ai ∩Ak) =
∑

j:B(j,i)=1 andB(j,k)=1

pj

or:
P (Ai ∩Ak) = bik

′
p

for a vector bik of size (2N , 1) s.t.:
bikj = B(j, i)B(j, k)

i.e., the probability of the joint default is obtained summing the elements of p s.t. the corresponding element
of the partition involves both the occurrence of Aj and of Ak. All these constraint can then be collected in the
matrix form Ap = b.

Finally, the probability that at least r events occur can be found as follows:

Pr =
∑

j:(
∑N

h=1 B(j,h))≥r

pj

or:
Pr = cr

′
p

for a vector cr of size (2N , 1) s.t.:

crj = I

[
N∑
h=1

B(j, h) ≥ r

]
where I[] is the indicator function.

Given this decomposition, the LP representation follows immediately.

B.2 - Proof of Proposition 3

Start from a symmetric LP problem
max c′p

s.t. Ap ≤ b

Suppose that p∗ is a solution to the problem. Given the definition of symmetry presented in the text, it is
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clear that p∗J is also a solution to the problem: c′p∗ = c′p∗J and similarly hold for every row of the constraints,
for every J.

Now, construct p∗∗ as follows:

p∗∗ =
1

#J

∑
J

p∗J

where the first J correspond to no permutation, and J cycles across all permutations of indices A1, ..., AN .
Note that it is also possible to construct p∗∗ in the following way, considering the binary representation

introduced in Proposition 2. Every bi vector has Oi ones and N − Oi zeros. Call Hi the set of all vectors of
size N that have Oi ones and N −Oi zeroes in different positions. Call bih the vector corresponding to element
h from Hi. Then, for every i, construct p∗∗ as:

p∗∗i =

(
Oi

N

)−1 ∑
h∈Hi

bih

From the first construction, it is clear why p∗∗ is a solution to the maximization problem, being just an
average of solutions. Additionally, p∗∗ is symmetric, which proves the statement of the Proposition.

An example with N = 3. As explained in Proposition 2, we can construct the probability system p∗ as
follows:

p∗1 = Pr{A1 ∩A2 ∩A3}

p∗2 = Pr{A1 ∩A2 ∩A3}

p∗3 = Pr{A1 ∩A2 ∩A3}

p∗4 = Pr{A1 ∩A2 ∩A3}

p∗5 = Pr{A1 ∩A2 ∩A3}

p∗6 = Pr{A1 ∩A2 ∩A3}

p∗7 = Pr{A1 ∩A2 ∩A3}

p∗8 = Pr{A1 ∩A2 ∩A3}

Suppose p∗ solves the maximization problem, and construct p∗∗ as:

p∗∗1 = p∗1

p∗∗2 = p∗∗3 = p∗∗5 =
p∗2 + p∗3 + p∗5

3

p∗∗4 = p∗∗6 = p∗∗7 =
p∗4 + p∗6 + p∗7

3

p∗∗8 = p∗8

p∗∗ solves the maximization problem and is symmetric.

58



B.3 - Uniqueness of the solution and representative solution

As described in section 3, it is possible to describe the range of possible values for a particular probability
P (A′) = v′p among the probability systems p that attain the solution to the probability bounds problem:

cmax = maxp c
′
rp

s.t.
p ≥ 0

i′p = 1

Ap = b

(and similarly for the lower bound). To find the maximum (minimum) value of v′p at the upper bound on
systemic risk, simply solve the max (or min) problem

maxp(minp) v
′p

s.t.
p ≥ 0

i′p = 1

Ap = b

c′rp = cmax

To find the maximum and minimum value of v′p at the lower bound, replace the last constraint with
c′rp = cmin.

Appa (2002) describes an algorithm (called AFROS) to find a “representative” solution to the bounds. Call
Ep = d the set of all equality constraints in the problem, and note that the original maximization problem
can always be rewritten with a series of equality constraints and a nonnegativity constraint for an expanded
vector p. The algorithm proceeds as follows.

1. Solve P 0 : max c′rp s.t. Ep = d, p ≥ 0. Let p = p0 be the solution to P 0.

2. Solve P 1: max d1p s.t Ep = d, p ≥ 0, c′rp = c′rp
0, where d1 is a row vector with d1j = 1 if p0j = 0,

otherwise d1j = 0. If maximum value of d1p = 0, stop. There is no alternative solution. Otherwise, let
p = p1 be the optimal solution to P 1. Set counter q = 1

3. q = q + 1. While q < s, solve P q: max dqp s.t. Ep = d, p ≥ 0, c′rp = c′rp
0, drp ≥ αr for r = 1, ..., q − 1.

dqj = 1 if pq−1j = 0, 0 otherwise, and αr are positive numbers.

4. After S steps, the “representative solution” is the average of the p from p0 to pS .

The algorithm starts from a solution p0 and looks for another solution that maximizes the sum of all and
only those elements of p that are hitting the constraint p ≥ 0 at p0. This is the sense in which p1 will be as
dissimilar as possible from p0. From p1, it will repeat the same procedure to find another solution p2, and
so on, with additional constraints that ensure that the algorithm never converges back to a previous solution.
The average of these solutions, itself a probability system, is the “representative” solution.
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B.4 Width of the bounds

Given Proposition 3, we can derive the analytical formulation of the bounds derived as a special case of the
bounds presented in Boros and Prekopa (1989), section 8. Here, S1 = Nq1 and S2 = N(N−1)

2 q2. The bounds
are nonlinear functions of S1 and S2 and take the following form, for 3 ≤ r ≤ N − 1. Square brackets indicate
integer part.

Lower bound in the symmetric case

Call
A1 = (r − 1)N − (r +N − 2)Nq1 +N(N − 1)q2

A2 = −(r − 2)Nq1 +N(N − 1)q2

and remember that q2 ≤ q1. Then,

A2 ≤ 0⇐⇒ q2 ≤
(r − 2)

(N − 1)
q1

A1 ≤ 0⇐⇒ q2 ≤
(r +N − 2)q1 − r + 1

N − 1
=

(r − 2)q1
N − 1

+
Nq1 − r + 1

N − 1

The bounds then can be written as follows.
CASE 1: If q1 < r−1

N

• If q2 ≤ (r−2)
(N−1)q1

pr ≥ 0

• If (r−2)
(N−1)q1 ≤ q2 ≤ q1

pr ≥
−(r − 2)Nq1 +N(N − 1)q2

(N + 1− r)N

CASE 2: If q1 > r−1
N

• If q2 ≤ (r−2)q1
N−1 + Nq1−r+1

N−1

i =

[
N(N − 1)q2 − (r − 2)Nq1

Nq1 − (r − 1)

]

pr ≥
(r − 1)(r − 2i− 2) + 2iNq1 −N(N − 1)q2

(i− r + 2)(i− r + 1)
(22)

• If q2 ≥ (r−2)
(N−1)q1 + Nq1−r+1

N−1

pr ≥
−(r − 2)Nq1 +N(N − 1)q2

(N + 1− r)N

Upper bound in the symmetric case

Call
B1 = rN − (r +N − 1)Nq1 +N(N − 1)q2

B2 = −(r − 1)Nq1 +N(N − 2)q2

The key cases are distinguished by whether

(r +N − 1)

N − 1
q1 −

r

N − 1
>

(r − 1)

(N − 2)
q1
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or
(N − 2)(r +N − 1)− (r − 1)(N − 1)

(N − 2)
q1 > r

q1 >
N − 2

N(N − 2)− r + 1
r

Then we have:
CASE 1: If q1 > N−2

N(N−2)−r+1r

• If q2 <
(r+N−1)
N−1 q1 − r

N−1
pr ≤ 1

• If q2 ≥ (r+N−1)
N−1 q1 − r

N−1

pr ≤
(r +N − 1)Nq1 −N(N − 1)q2

rN

CASE 2: If q1 < N−2
N(N−2)−r+1r

• If q2 <
(r−1)
(N−2)q1

pr ≤
i(i+ 1)− 2iNq1 +N(N − 1)q2

(r − i− 1)(r − i)
(23)

where
i =

[
(r − 1)Nq1 −N(N − 1)q2

r −Nq1

]
• If q2 ≥ (r−1)

(N−2)q1

pr ≤
(r +N − 1)Nq1 −N(N − 1)q2

rN

Width of the bounds

The formulation presented above allows us to state the following result. Suppose that the probability system is
symmetric with respect to marginal and pairwise default probabilities, i.e. ∀i P (Ai) = q1 and ∀i, j P (Ai∩Aj) =

q2. Then, for given q1, the upper and lower bounds for Pr, r ≥ 3, have the following properties:

• If q1 < r−1
N , the lower bound is 0 for low q2 and is increasing in q2 for higher q2. If q1 > r−1

N , the lower
bound is first decreasing and then increasing in q2.

• If q1 < N−2
N(N−2)−r+1r, the upper bound is first increasing and then decreasing in q2. If q1 > N−2

N(N−2)−r+1r,
the upper bound is first 1 and then decreasing in q2.

Similar results hold for q2 fixed, when q1 varies. The upper bound is concave and the lower bound is convex.
Both bounds are continuous. The width of the bounds is continuous and concave, and has a maximum in the
interior of the parameter space.

Proof . Because we are maximizing or minimizing a continuous linear function over a convex set which is
a continuous function of q1, and q2, the upper bound will be concave in q1 and q2 and the lower bound will be
convex, and the bounds will be continuous functions of q1 and q2. As shown above, they are piecewise linear.
Note that we can check that equation (22) is decreasing in q2 because each of the linear parts are decreasing
and the function is continuous. Similarly we can show that equation (23) is increasing in q2. Therefore, by
looking at the different combinations of values for r and N , we can check that for given q1, the width of the
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bounds is first increasing and then decreasing in q2 The same is true for fixed q2. This also implies that the
maximum width, a positive concave function, is attained in the interior of the parameter space (q1, q2).

This result implies that the tightness of the bounds on systemic risk varies in a very precise way with changes
in the low-order risks. When pairwise default probabilities q2 are either very high or very low compared to the
marginal default probabilities q1, the structure of the network is pinned down very precisely and there is little
uncertainty about systemic default risk, based on bond and CDS prices alone; different parametric models
that aggregate in different ways this low-order information will agree on an estimate of systemic risk. For
intermediate values of q1 and q2, however, low-order probabilities are less informative about systemic events.
The scope for modeling assumptions in aggregating low-order probabilities is greater.

Appendix C: additional pricing details

C.1 Bond pricing

In this section I show how to obtain the bond pricing formula in the text starting from the general discrete-time
formulation of bond pricing in the reduced form model. Call hit the hazard rate process for i: the probability
of default in month t conditional on survival until then. Call rFt the monthly risk-free process. Call the rFt,T
the realized return of the short-term risk-free security between t and T , s.t.

(1 + rFt,T ) =

T∏
s=t+1

(
1 + rFs

)
The time t price of a risk-free zero-coupon bond of face value $1 at time T is:

δ(t, T ) = EQt

[
1

1 + rFt,T

]

Call Gi(t, s) the probability of survival of firm i up to s under a certain realization of hazard rates of default,
i.e.:

Gi(t, s) =

s−1∏
r=t

(
1− hir

)
where EQ indicates the expectation taken under the risk neutral probability measure.

The price of a liquid bond j issued by firm i of face value $1, maturity T ij , coupon rate cij and recovery
equal to a fraction Rij of the value of a Treasury zero-coupon bond of comparable maturity is:

Bij(t, T ij) = EQt

 T ij∑
s=t+1

Gi(t, s)

1 + rFt,s
cij +

Gi(t, T ij)

1 + rFt,T
+

T ij∑
s=t+1

Gi(t, s− 1)his−1
1 + rFt,s

Rij


In this paper I consider only senior unsecured bonds of different coupons and maturities, so I assume that

the recovery rate is the same for all bonds and that it is also the same for similar bonds of other firms in the
financial industry, i.e. Rij = R.

We can then add a liquidity process γit , assumed to be the same for all bonds of equal seniority of firm i.
Following Duffie (1999), this liquidity cost will appear in the bond pricing equation as a per-period proportional
cost incurred while holding the bond.

In theory, it is possible to write down a parametric version of the (generally not independent) processes
that govern the evolution of rFt ,ht, γt, and additionally a time-varying recovery rate. Examples of this can be
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found in Duffie and Singleton (1997) and Longstaff, Mithal and Neis (2005). In this paper, I use a simplified
pricing model that assumes that, for any given firm, the prices of all of its bonds are determined independently
at each time t, under the assumption that from time t onwards ht+s and γt+s will be constant and equal to
ht and γt, respectively. This is just an approximation, because prices do not take into account that at each
future date these parameters are going to be revised, since at every future date t+ r prices will be recomputed
assuming a constant hazard rate and liquidity process from t+ r on at new levels, ht+r and γt+r. I discretize
the model to a monthly horizon, and I assume that coupons are paid monthly. Further assuming independence
of the risk-free rate process from all other processes (under Q) we obtain:

Bij(t, T ij) = cij

 T ij∑
s=t+1

δ(t, s)(1− hit)s−t(1− γit)s−t
+

+δ(t, T ij)(1− hit)T
ij−t(1− γit)T

ij−t +R

 T ij∑
s=t+1

δ(t, s)(1− hit)s−t−1(1− γit)s−t−1hit


C.2 - Additional details of CDS contracts

Besides those considered explicitly in this paper, there are other elements of CDS contracts that potentially
affect their spreads.

First, liquidity of the CDS market could influence the CDS spreads, just as bond liqudiity is known to
affect bond prices. In this paper, I explicitly take into account liquidity premia in bond prices, but not in
CDS spreads. For the case of CDSs, liquidity is much less likely to be an issue, especially because they require
much less capital at origination and they are not in fixed supply.42

Also, I abstract from restructuring clauses and the cheapest-to-deliver option sometimes present in CDS
contracts. A restructuring clause (under which payment is triggered for simple debt restructuring, in addition
to bankruptcy) is more frequent for European bonds, and this results in the contract being triggered in cases
close to the Chapter 11 for the US. Berndt, Jarrow and Kang (2007) estimate that the presence of such clause
increases the value of the CDSs by 6-8%, and all the results in this paper are robust to an adjustment of CDS
spreads of that magnitude. The value of the cheapest-to-deliver option (which allows the buyer to deliver to
the seller the cheapest of the defaulted bonds of the same seniority as the reference bond) will be small relative
to the CDS spread as long as in default all senior unsecured bonds have similar recovery rates. Additionally, as
observed in the Delphi and Calpine defaults in 2005, the high demand for the cheapest bonds might determine
shortages of such securities and therefore, anticipating this, a reduction in the ex-ante value of the option.43

C.3 - CDS pricing approximation

Start from the discretized pricing equation with constant hazard and risk-free rates, starting from period 0 for
notational simplicity.

T∑
s=1

δ(0, s− 1)(1− P (Ai ∪Aj))s−1zji =

=

[
T∑
s=1

(1− P (Ai ∪Aj))s−1(P (Ai)− (1− S)P (Ai ∩Aj))δ(0, s)(1−R)

]
42For an additional discussion of this and on the supporting evidence, see Blanco, Brennan and Marsh

(2003,2005).
43De Wit (2006).
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We can rewrite the equation as:

zij
(1−R)

=

[∑T
s=1 δ(0, s)(1− P (Ai ∪Aj))s−1(P (Ai)− (1− S)P (Ai ∩Aj))

]
∑T
s=1 δ(0, s− 1)(1− P (Ai ∪Aj))s−1

and then approximate the right hand side around P (Ai) = 0, P (Aj) = 0, P (Ai ∩ Aj) = 0, remembering
that

P (Ai ∪Aj) = P (Ai) + P (Aj)− P (Ai ∩Aj)

To obtain the approximation, note that while we cannot vary P (Ai) and P (Ai∩Aj) independently around
0, we can rewrite the expression in terms of:

πi = P (Ai ∩Aj)

πj = P (Ai ∩Aj)

πij = P (Ai ∩Aj)

which can be varied independently of each other. The right-hand side (call it G, and call G(0) the function at
the approximation point) can then be written as:

G =

[∑T
s=1 δ(0, s)(1− πi − πj − πij)s−1(πi + πij − (1− S)πij)

]
∑T
s=1 δ(0, s− 1)(1− πi − πj − πij)s−1

First, note that G(0) = 0. Second, take Gπi
(0):

Gπi
(0) =

d
dπi

[∑T
s=1 δ(0, s)(1− πi − πj − πij)s−1(πi + πij − (1− S)πij)

] [∑T
s=1 δ(0, s− 1)(1− πi − πj − πij)s−1

]
+[∑T

s=1 δ(0, s− 1)(1− πi − πj − πij)s−1
]2

[∑T
s=1 δ(0, s)(1− πi − πj − πij)s−1(πi + πij − (1− S)πij)

]
d
dπi

[∑T
s=1 δ(0, s− 1)(1− πi − πj − πij)s−1

]
[∑T

s=1 δ(0, s− 1)(1− πi − πj − πij)s−1
]2

Note that the second part is 0 and at the approximation point, and at that point we have:

d

dπi

[
(1− πi − πj − πij)s−1(πi + πij − (1− S)πij)

]
=

d

dπi
(1− πi − πj − πij)s−1 [(πi + πij − (1− S)πij)] + (1− πi − πj − πij)s−1

d

dπi
[(πi + πij − (1− S)πij)] = 1

So we have:

Gπi(0) =

∑T
s=1 δ(0, s)∑T

s=1 δ(0, s− 1)

Similarly:

Gπj
(0) =

∑T
s=1 δ(0, s)

d
dπj

[
(1− πi − πj − πij)s−1(πi + πij − (1− S)πij)

] [∑T
s=1 δ(0, s− 1)

]
[∑T

s=1 δ(0, s− 1)
]2
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with
d

dπj

[
(1− πi − πj − πij)s−1(πi + πij − (1− S)πij)

]
=[

d

dπj
(1− πi − πj − πij)s−1

]
[(πi + πij − (1− S)πij)] = 0

so that
Gπj (0) = 0

Finally we get:

Gπij (0) =

∑T
s=1 δ(0, s)∑T

s=1 δ(0, s− 1)
S

So that:

G '
∑T
s=1 δ(0, s)∑T

s=1 δ(0, s− 1)
[πi + Sπij ] =

∑T
s=1 δ(0, s)∑T

s=1 δ(0, s− 1)
[πi + πij − (1− S)πij ]

=

∑T
s=1 δ(0, s)∑T

s=1 δ(0, s− 1)
[P (Ai)− (1− S)P (Ai ∩Aj)]

The result is:

zij
(1−R)

'

[∑T
s=1 δ(0, s)

]
[∑T

s=1 δ(0, s− 1)
] (P (Aj)− (1− S)P (Ai ∩Aj))

It is important to check the accuracy of the approximation for a realistic range of parameters. For several
different points in time (every 50 days) between 1/1/2007 and 3/31/2009, I compare the correct spread and
the approximated spread, computed using the US yield curve at that time, considering:

• different values of P (Aj): between 0 and the maximum probability implied by bond data under no
liquidity assumptions (maxj{hj(0)}).

• different values of P (Ai ∩Aj): between 0 and P (Aj)

• different values of R and S: between 0.1 and 0.4.

In all these simulations, the approximation error is between 0.2% and 0.3% of the true value of the CDS spread.

Appendix D - Robustness Tests

In this section I study the robustness of the main results of the paper to different assumptions. In Appendix
Table 1, I report the average value of the bounds for different subperiods, chosen to reflect the main events
identified in the Figures. For each robustness test (all performed under the calibration of the liquidity to the
basis of nonfinancial institutions, γi

t
= αitλ

∗
t ) I report in Appendix Table 1 the average value of the bounds, in

basis points per month, during different periods: January to December 2007, January 2008 to March 15 2008
(the run-up to Bear Stearns’ collapse), from Bear’s episode to Lehman’s default (on September 15th 2008), the
month after Lehman’s default (in which CDS spreads and bond yields spiked), the period between September
2008 and April 2009 (the latest peak of the crisis, just before the stress test results were released) and finally
from May 2009 to June 2010. In the three panels, I show values for the lower and upper bound on P1, and
the upper bound on P4 (the lower bound on P4 is always 0).

Besides showing the level and the time series of the bounds, this Table allows us to check that the main
results reported in the paper hold under different assumptions. The bold line in each panel of Appendix Table
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1 reports the baseline case presented in the paper. We can confirm the result, presented in Figure 5 (third
panel), that systemic risk was low in the months preceding Bear Stearns’ collapse, while idiosyncratic risk was
already high. Besides, we can see that during the month after Lehman’s default, idiosyncratic risk spiked (it
increased sharply and then decreased as sharply). The upper bound on P4 increases as well, but does not even
reach the level observed in the following 6 months: systemic risk keeps increasing until March 2009.

D.1 - Assumptions on S

Let us start with robustness with respect to the assumed recovery rate of CDSs when double default occurs,
S ∈ [R, 1]. The effect of changes in this assumption depends crucially on the liquidity-adjusted bond/CDS basis
of each bank. For some banks, the basis is small enough that it can be completely explained by counterparty
risk. For these banks, an increase in S means that the same basis can account for higher counterparty risk.
For other banks, instead, the basis is large enough that, due to internal constraints of the probability system,
it cannot be completely explained by counterparty risk: even at the upper bound for systemic risk, a part
of the basis must be explained by liquidity. For these banks, an increase in S means that the same amount
of counterparty risk - which was already at the maximum possible - will explain an even smaller fraction of
the basis. This means that the marginal probability of default, P (Ai), has to decrease. In turn, this directly
reduces the maximum possible amount of counterparty risk for contracts written by i against other banks,
since for each j we must have P (Ai ∩Aj) ≤ P (Ai).

An increase in S then has a different effect on banks with a relatively small basis and banks with a large
basis. The two effects are also at play for each bank individually, for different starting levels of S: when S

is low enough counterparty risk has a large effect on CDS spreads, and therefore the basis will be relatively
small - it can be completely explained by counterparty risk. When S is large enough, not all the basis can be
explained by counterparty risk, and the second mechanism operates. Typically, because of asymmetry in the
basis across banks, for most values of S the two effects described above will operate for some banks in one
direction and for other banks in the opposite direction. This explains why we see the bounds on systemic risk
being very robust to changes in S (at least up to a recovery rate of 90%), as shown in Appendix Table 1.

To see formally the effect of S on the implied estimate of systemic risk, it is useful to look at a symmetric
network. Remember that the upper bound on systemic risk is attained by the most correlated probability
system that satisfies the constraints:

P (Ai) ≤ hi(γit)

P (Ai)− (1− S)

 1

N − 1

∑
j 6=i

P (Ai ∩Aj)

 = bi

where bi = zi
[
∑T

s=1 δ(0,s−1)]
[
∑T

s=1 δ(0,s)](1−R)

44.

Intuitively, for a given S, one can obtain the most correlated probability system by setting P (Ai) as high
as possible (up to the constraint hi(γit)) for all banks and then increasing the term 1

N−1
∑
i 6=j P (Ai ∩ Aj)

to match the CDS spreads (bi). Counterparty risk would explain the whole bond/CDS basis, and a higher
recovery rate S would imply that a higher joint default probability is needed to match it, increasing the upper

44I focus on the upper bound for the probability of at least r > 1 events occurring. Following the analysis
reported in section 3, the same argument holds for the lower bound for the probability that at least 1 institution
defaults, since that is achieved for a very correlated system. It is easy to see why the results for the lower
bound for r > 1 and the upper bound for r = 1 do not depend on S: these bounds look for the least correlated
system, which can always be obtained by setting the marginal default probabilities at the levels implied by
the CDS spreads and attributing the bond/CDS basis entirely to liquidity.
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bound on systemic risk. This intuitive reasoning, however, does not take into account the internal restrictions
of consistency of the probability system. For a symmetric network, call the marginal probability of default of
each bank q1 and the pairwise joint probabilities of default of each pair q2. The previous constraints become:

q1 ≤ h

q1 − (1− S)q2 = b

where h is the (common) upper bound on the marginal probability of default and b is the (common) bi.
To maximize systemic risk, we would intuitively set q1 = h, and then q2 will be set to match CDS spreads:

q2 =
q1 − b
1− S

(24)

For given q1, q2 is increasing in S, as is systemic risk. This captures the intuition that a higher recovery rate
of CDSs implies that higher counterparty risk is needed to explain the same bond/CDS basis.

In fact, this effect is at play only when S is small enough. As S grows, q2 keeps increasing, and at some
point it will reach the level q2 = q1. At that point, the internal consistency of the probability system kicks in,
preventing further increases: it would violate the implicit constraint that q2 ≤ q1.

What happens then if S increases further? The only way to satisfy the constraints is to lower q1 below
h: for q1 = h there might exist no probability systems able to satisfy both constraints: matching the CDS
spread and satisfying internal consistency. Instead, with a lower q1, it is possible to set q2 to be equal to q1
and satisfy the CDS constraint, so that:

q2 = q1 =
b

S

which is decreasing in S. This means that for large enough values of S, the bond/CDS basis is too large to
be explained by counterparty risk. Even at the upper bound on systemic risk, liquidity has to explain part of
the basis. In a symmetric system, then, the bounds on systemic risk first increase and then decrease with S.

These forces play out in similar but nonlinear ways for asymmetric networks. In that case, the asymmetry
in the bond/CDS basis across banks means that the upper bounds on marginal probabilities (that are obtained
from bond prices) will bind for some banks and not for others, so that the overall effect of a change in S on
the measure of systemic risk will be small.

D.2 - Assumptions on R

The case for the recovery rate of bonds R is different. As shown by equations (8) and (11), R affects the prices
of both bonds and CDSs. A higher expected recovery rate in case of default increases the value of a bond, and
at the same time decreases the value of CDS insurance written on that bond, since the payment from the CDS
seller covers only the amount of bond value not recovered in default. Because this recovery rate multiplies
the marginal and joint default probabilities in the pricing formulas, when R changes all probabilities implied
in bonds and CDSs are scaled up or down by approximately the same amount.45 Therefore, the bounds on
systemic risk will scale in a similar way. However, the main results on the time series of the bounds will not
change, as shown by Appendix Table 1.

D.3 - Time varying recovery rates

Above I have studied robustness to different assumptions about S and R, when these are assumed to be
45The difference between the two comes from differences in the cash flow timing of bonds and CDSs. They

are scaled by exactly the same amount in the simple two-period example of section 2.
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constant during the whole sample period. In theory, it is possible that these recovery rates vary over time
in a way that affects the results on the time-series of systemic risk presented in section 5. Suppose that at
every time t bonds and CDSs are still priced assuming that at all future periods t + s the recovery rates are
constant and equal to St and Rt; however, let now St and Rt vary over time. How will this affect the bounds
on systemic risk?

The tests presented above show that the bounds on systemic risk scale in the same direction as R. If
we believe that, during peak episodes like the one following Lehman’s default, recovery rates R might have
dropped, this would in fact strengthen the result that the spike in systemic risk was then relatively low, because
it would further reduce the bound on P4 during that month.

Another possibility is a reduction in the recovery rate of CDSs, S, in times when systemic risk increases.
However, it is easy to see that this case actually reinforces the main empirical results. If the recovery rate S
becomes smaller during the key episodes of the crisis, then joint default risk has to be smaller as well. This
stems once more from the fact that during these episodes the bond/CDS basis is small relative to CDS and
yield spreads. When S is reduced, the probability of joint default has a greater effect on the basis. To still
match the basis even if S is higher, joint default risk has to decrease. Therefore, the main results in the paper
will be robust to a decrease in the recovery rate S in times of crisis.

D.4 - Stochastic recovery rate on bonds R

Another possibility is that when pricing bonds and CDSs, agents incorporate the possibility that recovery
rates might be stochastic and correlated with the default events in the financial sector. In particular, one
could think that recovery rates of both bonds and CDSs might deteriorate the more defaults happen in the
financial system.

Because of the limited data available, it is difficult to solve explicitly for the case of stochastic recovery
rates. However, it is possible to gain some intuition on the effect of this assumption under simple modeling
assumptions. Suppose that the recovery rate on bonds is RH whenever one bank defaults alone, and RL < RH

whenever two or more banks default. Below I show that we can decompose as follows the change in the bounds
on systemic risk, going from a non-stochastic recovery rate R to the stochastic recovery process described above.
First, we can shift the (constant) recovery rate downwards for both bonds and CDSs to RL. This component
scales down the bond-implied and the CDS-implied probabilities by a similar amount, as discussed above. This
would scale the bounds on systemic risk downwards. Second, we increase the present value of bonds by an
amount Ybond, and decrease the present value of payments of the CDS contract by an amount YCDS ≈ Ybond

(in a first-order approximation with small probabilities of default). This second effect shifts the CDS spread
and the yield spread in the same direction by a similar amount, with minimal effect on the basis and hence on
counterparty risk. We then expect the bounds on systemic risk to become lower if we introduce a stochastic
recovery rate with RL < R. The reason is that for the purpose of systemic risk, the relevant recovery rate is
the one that obtains in states of multiple defaults, or RL in this case. However, as long as the recovery rates
RL and RH themselves do not vary over time, the time series of the bounds should still look as in Figures 4
and 5.

To obtain this decomposition, start by defining Xi ≡ ∪k 6=iAk the event of at least one default among the
banks different from i, and similarly Xij ≡ ∪k 6=i,jAk. Call BR(0, T ) the price of a bond under the assumption
of constant recovery rate R and BRL,RH

(0, T ) the price of a bond with stochastic recovery rate described
above, and similarly for the CDS spreads. Then, it is easy to see that (setting liquidity to 0 for simplicity)

BRL,RH
(0, T ) = c

(
T∑
t=1

δ(0, t)(1− P (Ai))
t

)
+ δ(0, T )(1− P (Ai))

T+
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+RH

(
T∑
t=1

δ(0, t)(1− P (Ai))
t−1P (Ai ∩Xi))

)
+RL

(
T∑
t=1

δ(0, t)(1− P (Ai))
t−1P (Ai ∩Xi)

)
while the CDS spread solves:

T∑
s=1

δ(0, s− 1)(1− P (Ai ∪Aj))s−1zRL,RH ,ji =

=

T∑
s=1

(1− P (Ai ∪Aj))s−1δ(0, s)[P (Ai ∩Aj ∩Xij)(1−RH)

+P (Ai ∩Aj ∩Xij)(1−RL) + P (Ai ∩Aj)(1−RL)S]

Now, rewrite bond prices as:

BRL,RH
(0, T ) = c

(
T∑
t=1

δ(0, t)(1− P (Ai))
t

)
+ δ(0, T )(1− P (Ai))

T+

+(RH−RL)

(
T∑
t=1

δ(0, t)(1− P (Ai))
t−1P (Ai ∩Xi)

)
+RL

(
T∑
t=1

δ(0, t)(1− P (Ai))
t−1 [P (Ai ∩Xi) + P (Ai ∩Xi)

])

Noting that the term P (Ai ∩Xi) + P (Ai ∩Xi) = P (Ai), we can rewrite

BRL,RH
(0, T ) = c

(
T∑
t=1

δ(0, t)(1− P (Ai))
t

)
+

+δ(0, T )(1− P (Ai))
T +RL

(
T∑
t=1

δ(0, t)(1− P (Ai))
t−1P (Ai)

)
+ Ybond

or:
BRL,RH

(0, T ) = BRL
(0, T ) + Ybond

where

Ybond =

T∑
t=1

δ(0, t)(1− P (Ai))
t−1P (Ai ∩Xi)(RH −RL)

The price of the bond is now equal to the price of the bond in case that the recovery rate is constant and
equal to RL plus the last term, which is the present value of the additional recoveries in case i defaults alone.

A similar fromula holds for CDS spreads. Since P (Ai ∩Aj ∩Xij) = P (Ai ∩Xi), we can rewrite the CDS
spread as

T∑
s=1

δ(0, s− 1)(1− P (Ai ∪Aj))s−1zRL,RH ,ji =

=

T∑
s=1

(1− P (Ai ∪Aj))s−1δ(0, s)[P (Ai ∩Aj ∩Xij)(1−RH)− P (Ai ∩Aj ∩Xij)(1−RL)

+P (Ai ∩Aj ∩Xij)(1−RL) + P (Ai ∩Aj ∩Xij)(1−RL) + P (Ai ∩Aj)(1−RL)S]

=

T∑
s=1

(1− P (Ai ∪Aj))s−1δ(0, s)[P (Ai ∩Aj ∩Xij)(RL −RH)
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+(1−RL)
(
P (Ai ∩Aj ∩Xij) + P (Ai ∩Aj ∩Xij) + P (Ai ∩Aj)S

)
]

Since
P (Ai ∩Aj ∩Xij) + P (Ai ∩Aj ∩Xij) + P (Ai ∩Aj)S =

= P (Ai ∩Aj) + P (Ai ∩Aj)S = P (Ai)− (1− S)P (Ai ∩Aj)

we can write:
T∑
s=1

δ(0, s− 1)(1− P (Ai ∪Aj))s−1zRL,RH ,ji =

=

T∑
s=1

(1− P (Ai ∪Aj))s−1δ(0, s)[P (Ai ∩Aj ∩Xij)(RL −RH)

+(1−RL)(P (Ai)− (1− S)P (Ai ∩Aj))]

=

{
T∑
s=1

(1− P (Ai ∪Aj))s−1δ(0, s) (P (Ai)− (1− S)P (Ai ∩Aj)) (1−RL)

}
− YCDS

or:
T∑
s=1

δ(0, s− 1)(1− P (Ai ∪Aj))s−1zRL,RH ,ji =

T∑
s=1

δ(0, s− 1)(1− P (Ai ∪Aj))s−1zRL,ji − YCDS

where

YCDS =

T∑
s=1

(1− P (Ai ∪Aj))s−1δ(0, s)P (Ai ∩Xi)(RH −RL)

Now we can show that when probabilities are small, YCDS and Ybond are approximately the same. To do
this, rewrite the two formulas in terms of the following probabilities: πi = P (Ai ∩ Aj ∩Xij) = P (Ai ∩Xi),
πj = P (Aj∩Ai), πij = P (Ai∩Aj), πk = P (Ai∩Aj∩Xij). Note that these three sets are disjoint and therefore
if the probabilities of the other events are small we can vary them independently of each other.Then,

YCDS =

T∑
s=1

(1− πi − πj − πij − πk)s−1δ(0, s)πi(RH −RL)

Ybond =

T∑
s=1

(1− πi − πij − πk)s−1δ(0, s)πi(RH −RL)

Approximating each of these equations around πi = πj = πij = πk = 0, we note that:

YCDS(0) = 0

d

dπi
YCDS(0) =

T∑
s=1

δ(0, s)(RH−RL)

[(
d

dπi
(1− πi − πj − πij − πk)s−1

)
πi +

(
(1− πi − πj − πij − πk)s−1

) d

dπi
πi

]
0

=

T∑
s=1

δ(0, s)(RH −RL)

and
d

dπj
YCDS(0) =

d

dπij
YCDS(0) =

d

dπk
YCDS(0) = 0

And similarly for Ybond: so, to a first approximation, YCDS = Ybond.
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D.5 - Assumptions about the hazard rate

In this section I allow for a more flexible form for the hazard rate process. In particular, for each institution i,
from the perspective of an agent pricing bonds at time t, the hazard rate at time t+s follows the (deterministic
but time-varying) process

ht+s = (1− ρt)ht + ρtht+s−1 (25)

where parameters ht, ht and ρt are determined at time t. As before, all bonds are priced at every time t
assuming that the hazard rate process is known for all future dates.

At each time t, I can use bond prices to estimate ht, ρt and ht. This representation allows to capture
cases in which the hazard rate is higher at shorter horizons and then reverts to a lower long-term value. I can
therefore construct the bounds on systemic risk using ht, the probability of default in the month after t.

As discussed in section 4, the main problem with this approach is that while it is easy to estimate a
more flexible function for the marginal hazard rate of default using bond prices, CDS data do not contain
enough information to estimate a similarly flexible process for joint default risk (because at each time t we
only observe the spread of one CDS, with maturity of 5 years). To tackle this limitation, I assume that the
joint hazard process replicates the shape of the marginal hazard process of the reference entity: the process
decays at the same rate (ρt) and displays the same ratio between short-term and long-term default hazards
(ht/ht). Appendix Table 1 shows that the main empirical results are confirmed under these assumptions.

The derivation of the constraints of the maximization problem under these assumptions proceeds as follows.
Start by noting that

ht+s = (1− ρt)(1 + ...+ ρs−1t )ht + ρstht

= (1− ρt)
1− ρst
1− ρt

ht + ρstht

= (1− ρst )ht + ρstht

for s ≥ t.
The probability of surviving until t+ r is

Ht(t+ r;ht, ρt) = (1− ht)...(1− ht+r)

From the cross section of outstanding bonds, we can then estimate at each t the three parameters ht, ρt, ht.
Since CDS spreads depend on the process of joint hazard rate of default, but we only observe the price of

the 5-year CDS, I assume that the shape of the joint default hazard rate hijs is similar to that of the marginal
hazard rate of the reference entity i (similar results hold if we assume that it inherits the shape estimated
from the bond prices of the seller, or a combination of both). In particular, after having estimated the three
parameters for the hazard rate of bank i, I define

αit =
h
i

t

hit

so that:
ht+s = (1− ρst )ht + ρstht = (1− ρst )αtht + ρstht = (αt − ρstαt + ρst )ht

Call hit the probability that i defaults, similarly for j and finally hijs the probability of joint default. Assume
that:

hit+s = (αi,t − ρsi,tαi,t + ρsi,t)h
i
t
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hjt+s = (αj,t − ρsj,tαj,t + ρsj,t)h
j
t

hijt+s = (αij,t − ρsij,tαij,t + ρsij,t)h
ij
t

Note that this requires hit > 0 for αi,t to be defined. Therefore, I impose a lower bound on hit of 10−6, or
a hundredth of a basis point.

Define

Hij
t (t+ s;ht, ρt) = (1− hit − h

j
t + hijt )(1− hit+1 − h

j
t+1 + hijt+1)...(1− hit+s − h

j
t+s + hijt+s)

which is the probability of having no credit events until time t+ s, and

Hij
t (t; ρt, ht) = 1

The CDS spread at time t satisfies:

zijt
(1−R)

=

[∑T
s=1 δ(t, t+ s)Hij

t (t+ s− 1; ρt, ht)(h
i
t+s − (1− S)hijt+s)

]
∑T
s=1 δ(t, t+ s− 1)Hij

t (t+ s− 1; ρt, ht)

We now approximate this formula around hit = hjt = hijt = 0. To do this, we rewrite the formula in terms
of probabilities of disjoint events:

πi = hit − h
ij
t

πj = hjt − h
ij
t

πij = hijt

So we have:
hit+s = (αi,t − ρsi,tαi,t + ρsi,t)(πi + πij)

hjt+s = (αj,t − ρsj,tαj,t + ρsj,t)(πj + πij)

hijt+s = (αij,t − ρsij,tαij,t + ρsij,t)πij

Call

G =

[∑T
s=1 δ(t, t+ s)Hij

t (t+ s− 1; ρt, ht)(h
i
t+s − (1− S)hijt+s)

]
∑T
s=1 δ(t, t+ s− 1)Hij

t (t+ s− 1; ρt, ht)

We can start by noting that at the approximation point, πi = πj = πij = 0, we have:

(hit+s − (1− S)hijt+s)|0 = 0

Hij
t (t+ s− 1; ρt, ht)|0 = 1

We then have, for each of the π

d

dπ
G|0 =

d
dπ

[∑T
s=1 δ(t, t+ s)Hij

t (t+ s− 1; ρt, ht)(h
i
t+s − (1− S)hijt+s)

] [∑T
s=1 δ(t, t+ s− 1)Hij

t (t+ s− 1; ρt, ht)
]

[∑T
s=1 δ(t, t+ s− 1)Hij

t (t+ s− 1; ρt, ht)
]2

72



−

[∑T
s=1 δ(t, t+ s)Hij

t (t+ s− 1; ρt, ht)(h
i
t+s − (1− S)hijt+s)

]
d
dπ

[∑T
s=1 δ(t, t+ s− 1)Hij

t (t+ s− 1; ρt, ht)
]

[∑T
s=1 δ(t, t+ s− 1)Hij

t (t+ s− 1; ρt, ht)
]2 |0

The second term, at the approximation point, is always 0. We can reduce the derivative to:

d

dπ
G|0 =

∑T
s=1 δ(t, t+ s)

{[
d
dπH

ij
t (t+ s− 1; ρt, ht)

]
(hit+s − (1− S)hijt+s) +Hij

t (t+ s− 1; ρt, ht)
d
dπ (hit+s − (1− S)hijt+s)

}
∑T
s=1 δ(t, t+ s− 1)

|0

which in turn becomes
d

dπ
G|0 =

∑T
s=1 δ(t, t+ s) d

dπ (hit+s − (1− S)hijt+s)∑T
s=1 δ(t, t+ s− 1)

|0

Now,
hit+s = (αi,t − ρsi,tαi,t + ρsi,t)(πi + πij)

hjt+s = (αj,t − ρsj,tαj,t + ρsj,t)(πj + πij)

hijt+s = (αij,t − ρsij,tαij,t + ρsij,t)πij

d

dπ
(hit+s − (1− S)hijt+s) =

=
d

dπ
((αi,t − ρsi,tαi,t + ρsi,t)(πi + πij)− (1− S)(αij,t − ρsij,tαij,t + ρsij,t)πij)

So that:
d

dπi
(hit+s − (1− S)hijt+s) = (αi,t − ρsi,tαi,t + ρsi,t)

and
d

dπij
(hit+s − (1− S)hijt+s) = (αi,t − ρsi,tαi,t + ρsi,t)− (1− S)(αij,t − ρsij,tαij,t + ρsij,t)

d

dπj
(hit+s − (1− S)hijt+s) = 0

Therefore we have:
d

dπ
G|0 =

∑T
s=1 δ(t, t+ s) d

dπ (hit+s − (1− S)hijt+s)∑T
s=1 δ(t, t+ s− 1)

|0

G '
∑T
s=1 δ(t, t+ s)

[
(αi,t − ρsi,tαi,t + ρsi,t)

]
πi +

[
(αi,t − ρsi,tαi,t + ρsi,t)− (1− S)(αij,t − ρsij,tαij,t + ρsij,t)

]
πij∑T

s=1 δ(t, t+ s− 1)

=

∑T
s=1 δ(t, t+ s)(αi,t − ρsi,tαi,t + ρsi,t)h

i
t − (1− S)(αij,t − ρsij,tαij,t + ρsij,t)h

ij
t∑T

s=1 δ(t, t+ s− 1)

Calling

Gi =

∑T
s=1 δ(t, t+ s)(αi,t − ρsi,tαi,t + ρsi,t)∑T

s=1 δ(t, t+ s− 1)

and

Gij =

∑T
s=1 δ(t, t+ s)(αij,t − ρsij,tαij,t + ρsij,t)∑T

s=1 δ(t, t+ s− 1)

we obtain:
zijt

(1−R)
' Gihit − (1− S)Gijh

ij
t
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Summing over counterparties, we have:

(N − 1)zit
Gi(1−R)

' (N − 1)hit − (1− S)
∑
j 6=i

Gij
Gi

hijt

which is again linear in the marginal and pairwise default probabilities and can be used in the LP formula-
tion. To impose that CDS spreads inherit the shape of the hazard rates estimated from bonds, we can assume
αij,t = αi,t and ρij,t = ρi,t. Note that this reduces the CDS spread to a function of only one parameter: hijt .

D.6 - Using interest rate swaps as the risk-free rate

While swap rates may not be the appropriate rate to discount cash flows under risk neutral probabilities
(because they are indexed to a risky reference, LIBOR, and because they contain counterparty risk), it is
interesting to check how the results change if we use them in place of Treasury rates.46 Because these rates
are higher than the Treasury rates, and therefore result in a lower basis for all banks, we would expect the
upper bounds on systemic risk to decrease noticeably. At the same time, remember that we are calibrating the
time variation in the liquidity process to the basis of non-financial firms, and the level of the liquidity process
to the basis of each bank in 2004. Therefore, the change in the risk-free rate will be offset by a corresponding
decrease in the liquidity process (even though the offset is not exactly one to one). Appendix Table 1 shows
that the change in the bounds is very small.

D.7 - Assumptions about the weighting of contributors in CDS contracts

As discussed in section 4, the bounds are computed under the assumption that the CDS spreads are obtained
by averaging quotes obtained from all the other dealers in the sample. If some dealers do not post quotes
at all times, the average spread observed will, in expectation, overweight dealers which send quotes in more
frequently. In turn, this is most likely related to how active the dealer is in the CDS market.

While we cannot obtain directly estimates of the activity of the dealers (in terms of number of contracts
written and volume of CDS protection sold), Fitch Ratings47 reports a ranking of the top 5 counterparties
by trade count (which in turn is very correlated with gross positions sold), for each year between 2006 and
2010. We might then think that because these dealers are more active, quotes are more likely to be obtained
from them, and therefore the average CDS spread observed will in expectation reflect more their contribution.
Given this, as a robustness test I compute bounds that overweight the top 5 institutions in the formula for
CDS contracts. I consider two relatively extreme weighting schemes. In all of them, institutions ranked below
5 have the same weight (I do not have information about the relative ranking of these dealers). In the first
weighting scheme, I compute the bounds assuming that the top 5 institutions are 5 times more likely than
the other 10 to contribute quotes, and therefore their contribution is weighted 5 times more than the other
institutions in the sample. The second weighting scheme again assumes that all institutions ranked 6-15 have
the same weight, and the top dealer has 10 times their weight, the second dealer 8 times, and so on up to the
5th largest dealer (with a weight twice that of the smaller dealers).

The effect of this overweighting on the bounds of systemic risk is not immediate. Suppose, for example,
that in the bounds computed under equal weighting, systemic risk comes from the joint default risk among
top-5 banks. Then, increasing the weight on these banks will have the effect, everything else constant, of
lowering the weighted CDS spreads. But this is not possible because the CDS spreads were chosen to match

46I bootstrap the zero-coupon yield curve from the par swap rate curve of the different currencies using
linear interpolation.

47Fitch Ratings, 2008, Global Credit Derivatives Survey.
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the observed ones. Therefore, the joint default risk among these banks will have to decrease. At the same
time, joint default risk with smaller banks can increase. But if these smaller banks were contributing little to
default risk before the change in weights, an increase in the possibility of joint default risk with them might
not make up for the reduction in maximum systemic risk coming from the top-5 dealers. In this example,
systemic risk will likely decrease when we overweight top-5 dealers. It is easy to see that the opposite is true
if systemic risk mainly comes from non top-5 dealers.

If instead in both groups (top-5 and non-top-5 dealers) we find dealers with large contribution to systemic
risk as well as dealers with small contribution to systemic risk, under equal weighting, the bounds will be
relatively robust to changes in the weights. In fact, this is the case. The top 5 banks include both banks with
high contribution to systemic risk as well as banks with low contribution to systemic risk, such as one or two
European banks. Appendix Table 1 shows that under both weighting schemes the main results still hold.

This robustness test also allows us to say something about heterogeneity in collateral agreements across
counterparties. All the results in the paper have been derived assuming that the recovery rate in case of
double default, S, is the same for all banks. How do the main results change if instead (because of different
collateral agreements and exposure to other shocks) the recovery rate is different across institutions? While
we have no direct information about the expected recovery rates of each counterparty, it is easy to show that
if the recovery rates Sj are different across counterparties j, the average quote reflects not an equally weighted
average across j’s of the joint default probabilities P (Ai∩Aj), but rather a weighted average

∑
wjP (Ai∩Aj),

where wj =
(1−Sj)

(N−1)(1−S) and S = 1
N−1

∑
j Sj . Therefore, given a certain average recovery rate S, the joint

default risk with counterparty j will be weighted more in the observed quote if j’s recovery rate is lower. Now,
it is reasonable to assume that more important counterparties (that have a larger volume of the business) are
also the counterparties that are able to obtain less stringent collateral agreements – and therefore buyers of
CDSs from them might obtain a lower recovery rate in case of double default. As a consequence, the robustness
test presented in this section can also be interpreted as robustness to this case of heterogeneity in recovery
rates.

D.8 - Assumptions about the exchange rate

The construction of the bounds on systemic risk involves the estimation of risk-neutral probabilities from
bond prices and of joint default probabilities from CDS spreads. Using probabilities obtained from different
securities to obtain risk-neutral probabilities of joint default requires additional assumptions if the securities
are denominated in different currencies. In particular, while most bonds issued by American firms and the
CDSs written on them are denominated in dollars, European firms issue several bonds in Euros and in other
currencies, and the CDSs written on them are denominated in Euros.

To simplify the discussion, consider one-period bonds and CDSs written by banks i and j. Call mse the
stochastic discount factor of a US investor in state (s, e). Here, s indicates the default state of the banks i and
j, so that it can take values i (only i defaults), j (only j defaults), ij (both default), and 0 (none defaults).
e indicates the exchange rate with a foreign currency. Call πs the probability of s occurring, and note that
πsE[mse|s] is the price of a security that pays 1 if default state s happens. The price of a state-contingent
security that pays a unit of foreign currency if default state s happens is then πsE[emse|s].

It is easy to see that a sufficient condition for correctly estimating risk-neutral default probabilities using
bonds and CDSs denominated in different currencies (using the risk-free rates denominated in the respective
currencies to discount cash flows) is that for each s:

E[e ·mse|s]
E[mse|s]

=
E[e ·mse]

E[mse]
(26)
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which requires that the relative price of domestic and foreign risk-free securities is the same as the relative
price of domestic and foreign state-contingent securities that pay off in the various default states. Of course,
it is reasonable to assume that the relative price of dollar-denominated and foreign currency-denominated
default-contingent securities might be different depending on the default state (think for example of a flight-
to-quality to US securities if several banks default). As a robustness test for the validity of the bounds in case
these conditions are violated, I perform the estimation exercise including only American firms, for which all
bonds and CDSs are dollar-denominated. Appendix Table 1 shows that the results still hold for this subset of
banks.

To derive equation (26), we can start by considering the price of a bond issued by i denominated in different
currencies. Consider the variable di which indicates i’s default, and is 1 if s = i or s = ij, and 0 otherwise.
Cal πdi=1 the probability that i defaults.

Note that
πdi=1E[mse|di = 1] + πdi=0E[mse|di = 0] = E[mse]

For a dollar-denominated risky bond (R is the recovery rate), the dollar price is:

p$i = πdi=0
E[mse|di = 0] +Rπdi=1E[mse|di = 1] = E[mse]− (1−R)πdi=1E[mse|di = 1]

Now consider a euro-denominated bond issued by the same firm, and of equal seniority. Calling e0 the
time-0 exchange rate, we obtain:

pEi e0 = πdi=0E[e ·mse|di = 0] +Rπdi=1E[e ·mse|di = 1]

= E[e ·mse]− (1−R)πdi=1E[e ·mse|di = 1]

The prices of the respective risk-free securities are:

t$ = E[mse]

tEe0 = E[e ·mse]

Combining defaultable and risk-free bonds we get:

p$i = t$
(

1− (1−R)πdi=1
E[mse|di = 1]

E[m]

)

pEi e0 = tEe0

(
1− (1−R)πdi=1

E[e ·mse|di = 1]

E[e ·mse]

)
We can then use either bond to estimate the risk-neutral probability of default of firm i

P (Ai) = πdi=1
E[mse|di = 1]

E[mse]

discounting cash flows by the appropriate risk-free rate as long as the following condition holds:

E[e ·mse|di]
E[mse|di]

=
E[e ·mse]

E[mse]
(27)

which requires that the relative price of domestic and foreign risk-free securities is the same as the relative
price of domestic and foreign state-contingent securities that pay off if i defaults.

Now, consider the case of a CDS written by one bank on the default of another bank. The CDS is written
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on a european bank (i) but the counterparty (j) is american. The contract is denominated in euros.
The CDS contract costs zji euros. So we must have

zjie0 = E[e ·mse]

(
(1−R)πi

E [e ·mse|s = i]

E[e ·mse]
+ (1−R)Sπij

E [e ·mse|s = ij]

E[e ·mse]

)
Therefore, as long as the european yield curve is used to discount cash flows for euro-denominated CDSs the
sufficient condition is:

E[e ·mse|s]
E[mse|s]

=
E[e ·mse]

E[mse]
(28)

for every default event in s. Note that equation (28) implies (27) so it is a sufficient condition for both bonds
and CDSs of different currencies.

D.9 - Using only larger transactions from TRACE

A concern with using bond prices from Bloomberg is that they might incorporate stale information (for
European bonds, for which I use quoted prices), or they might depend on very small trades, which might be
less reflective of credit risk (see for example Dick-Nielsen et al. (2010)). To make sure results are robust to
these problems, I compute the bounds for the subset of US firms using only transaction data from TRACE,
and ignoring all trades with nominal amounts of less than $100,000. Of course, this will exclude several bonds
for several days. Appendix Table 1 reports that the bounds change very little.

77



Appendix Tables

2007 Jan 2008 
to Bear

Bear to 
Lehman

Month 
after 

Lehman

Oct 2008 to 
April 2009

After April 
2009

1/1/07 1/1/08 3/16/08 9/15/08 10/16/08 5/1/09

R S 12/31/07 3/15/08 9/12/08 10/15/08 4/30/09 6/10/10
0.10 0.10 50.4 178.0 168.8 298.1 221.7 133.0
0.10 0.30 50.4 178.0 168.8 298.1 221.7 133.0
0.10 0.40 50.4 178.0 168.8 298.1 221.7 133.0
0.10 0.70 50.4 178.0 168.8 298.1 221.7 133.0
0.10 0.90 50.4 178.0 168.8 298.1 221.7 133.0
0.10 1.00 50.4 178.0 168.8 298.1 221.7 133.0
0.30 0.30 64.8 228.9 217.0 383.3 285.0 171.1
0.30 0.40 64.8 228.9 217.0 383.3 285.0 171.1
0.30 0.70 64.8 228.9 217.0 383.3 285.0 171.1
0.30 0.90 64.8 228.9 217.0 383.3 285.0 171.1
0.30 1.00 64.8 228.9 217.0 383.3 285.0 171.1
0.40 0.40 75.6 267.1 253.2 447.1 332.5 199.6
0.40 0.70 75.6 267.1 253.2 447.1 332.5 199.6
0.40 0.90 75.6 267.1 253.2 447.1 332.5 199.6
0.40 1.00 75.6 267.1 253.2 447.1 332.5 199.6

64.8 229.0 217.1 383.6 285.2 171.1
49.4 166.7 156.7 278.7 182.7 102.2
46.5 166.4 156.6 278.7 183.3 96.5
65.0 228.9 217.0 383.3 285.8 171.3
65.0 228.9 217.0 383.3 285.8 171.3
35.2 112.0 162.2 579.0 216.9 51.9

2007 Jan 2008 
to Bear

Bear to 
Lehman

Month 
after 

Lehman

Oct 2008 to 
April 2009

After April 
2009

1/1/07 1/1/08 3/16/08 9/15/08 10/16/08 5/1/09

R S 12/31/07 3/15/08 9/12/08 10/15/08 4/30/09 6/10/10
0.10 0.10 2.2 2.3 15.7 24.3 49.1 30.9
0.10 0.30 2.4 2.5 17.3 25.7 48.8 31.2
0.10 0.40 2.5 2.6 18.2 26.2 48.6 31.2
0.10 0.70 2.8 2.9 20.0 27.7 47.2 30.6
0.10 0.90 3.3 3.3 21.5 28.4 46.0 29.7
0.10 1.00 12.6 44.5 42.2 70.0 55.4 33.3
0.30 0.30 3.3 3.5 24.7 42.1 64.8 40.6
0.30 0.40 3.4 3.7 25.6 42.5 64.2 40.5
0.30 0.70 3.7 4.1 27.9 43.7 62.0 39.6
0.30 0.90 4.1 4.6 29.5 44.3 60.6 38.3
0.30 1.00 16.2 57.2 54.3 90.0 71.2 42.8
0.40 0.40 4.0 4.4 32.0 54.0 76.8 47.5
0.40 0.70 4.3 5.0 34.7 54.0 74.0 46.3
0.40 0.90 4.8 5.7 36.1 53.3 72.0 44.8
0.40 1.00 18.9 66.8 63.3 104.9 83.1 49.9

2.3 2.6 19.3 42.5 58.1 28.0
1.3 0.8 11.3 36.9 36.0 17.0
1.4 1.0 16.6 39.6 42.1 16.6
5.3 5.0 32.4 50.3 74.5 44.7
5.2 5.1 32.9 50.1 75.6 44.8
2.6 4.7 18.7 49.5 36.7 10.1

US banks, larger trans
US banks

Reweight top 5 banks

Appendix Table 1a: max P1

Model

Using swap rates

Alternative bond model

Reweight, decreasing
Alternative bond model

Appendix Table 1b: max P4

Model

Using swap rates
US banks

US banks, larger trans
Reweight top 5 banks
Reweight, decreasing
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2007 Jan 2008 
to Bear

Bear to 
Lehman

Month 
after 

Lehman

Oct 2008 to 
April 2009

After April 
2009

Start 1/1/07 1/1/08 3/16/08 9/15/08 10/16/08 5/1/09

R S End 12/31/07 3/15/08 9/12/08 10/15/08 4/30/09 6/10/10
0.10 0.10 42.6 164.9 121.7 221.9 109.8 62.3
0.10 0.30 42.0 164.3 117.4 217.3 101.3 56.1
0.10 0.40 41.8 163.8 115.0 214.7 97.0 53.0
0.10 0.70 40.9 162.2 107.2 205.8 85.8 44.4
0.10 0.90 39.1 160.6 101.1 202.8 80.6 40.3
0.10 1.00 7.4 27.3 25.1 84.7 41.3 22.6
0.30 0.30 53.9 210.3 146.4 252.2 125.9 71.3
0.30 0.40 53.6 209.5 143.1 248.0 120.4 67.3
0.30 0.70 52.5 206.6 132.9 237.4 106.5 56.6
0.30 0.90 50.9 204.8 125.3 232.8 99.4 51.6
0.30 1.00 9.5 35.1 32.2 108.9 53.1 29.0
0.40 0.40 62.4 243.7 161.9 281.8 135.8 77.9
0.40 0.70 61.2 241.3 149.8 273.5 120.1 65.6
0.40 0.90 59.7 238.9 142.3 268.4 111.1 59.7
0.40 1.00 11.1 40.9 37.6 127.0 61.9 33.8

56.6 217.0 156.1 258.2 141.5 97.8
43.3 157.9 117.0 187.0 110.6 62.3
39.8 154.1 109.8 168.8 100.6 57.4
50.4 204.8 128.2 243.5 121.5 67.5
50.9 204.4 128.2 249.7 121.1 64.6
25.2 92.4 107.5 397.8 121.3 26.6

Appendix Table 1c: min P1

Reweight, decreasing
Alternative bond model

Note: Table reports the average value of the bounds on monthly P1 (probability that at least one bank
defaults) and P4 (probability that at least four banks default) for different nonoverlapping periods, under
different assumptions discussed in the text. The lower bound for P4 is 0 throughout.

Model Average level of the bounds (bp per month)

Using swap rates
US banks

US banks, larger trans
Reweight top 5 banks
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