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Abstract

We use the term structure of spreads between rates on interest rate swaps indexed to LIBOR and

overnight indexed swaps to infer a term structure of interbank risk. We develop a dynamic term

structure model with default risk in the interbank market that, in conjunction with information

from the credit default swap market, allows us to decompose the term structure of interbank risk

into default and non-default components. On average, from August 2007 to January 2011, the

fraction of total interbank risk due to default risk increases with maturity. At the short end of the

term structure, the non-default component is important in the first half of the sample and is corre-

lated with various measures of market-wide liquidity. Further out the term structure, the default

component is the dominant driver of interbank risk throughout the sample period. These results

hold true in both the USD and EUR markets and are robust to different model parameterizations

and measures of interbank default risk. The analysis has implications for monetary and regulatory

policy as well as for pricing, hedging, and risk-management in the interest rate swap market.
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“The age of innocence – when banks lent to each other unsecured for three months or longer at only a

small premium to expected policy rates – will not quickly, if ever, return”.

Mervin King, Bank of England Governor, 21 October 2008

1 Introduction

A major issue in the recent financial crisis was the increase in interbank risk and the resulting stress in

the interbank market. This had important real effects since the interbank market is critical for banks’

liquidity management and plays an important role in the implementation and transmission of monetary

policy. In addition, interbank rates, such as LIBOR, are important benchmarks for a wide variety of

fixed income products including interest rate swaps, interest rate futures, mortgages, loan agreements,

and saving accounts. Not surprisingly, therefore, there has recently been a large number of theoretical

and empirical studies on interbank risk. Existing papers, however, focus on short term interbank risk.

In contrast, in this paper we study the term structure of interbank risk, which we show is driven by

multiple factors and provides important new insights on interbank risk.

To understand our approach, consider Figure 1. The solid line shows the spread between 3M

LIBOR, which is a reference rate for unsecured interbank borrowing and lending, and the fixed rate

on a 3M overnight indexed swap (OIS), which is a common risk-free rate proxy. This money market

spread has been used in many recent papers as a measure of interbank risk. It was very small and

stable until the onset of the credit crisis in August 2007 and then suddenly increased substantially and

became highly volatile. At the same time, since Fall 2009 it has more or less reverted back to pre-crisis

levels, except for an increase related to the escalation of the European sovereign debt crisis.

The dotted line shows the spread between the fixed rate on a 5Y regular interest rate swap (IRS)

with floating-leg payments indexed to 3M LIBOR, and the fixed rate on a 5Y OIS. We show in the

paper that this spread essentially reflects expectations about future 3M LIBOR-OIS spreads and,

therefore, provides valuable insights into market participants’ perceptions about future interbank risk.

As such, we can use IRS-OIS spreads at different maturities to infer a term structure of interbank

risk. Importantly, the longer-maturity swap spreads reflect information about interbank risk that is

not contained in money market spreads. For instance, prior to the onset of the credit crisis, the term

structure of interbank risk was essentially flat with swap spreads only a few basis points higher than

money market spreads. Then, at the onset of the financial crisis, swap spreads increased much less than

money market spreads, resulting in a strongly downward-sloping term structure of interbank risk, and

indicating that market participants expected the extremely elevated levels of interbank risk observed

in the money market to be a relatively short-lived phenomenon. Finally, in the most recent time-

period, with money market spreads having reverted to pre-crisis levels, swap spreads remain well above

pre-crisis levels and significantly higher than money market spreads, implying an upward-sloping term

structure of interbank risk, and indicating that market participants expect interbank risk to increase
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in the future (or require a large risk premium for bearing future interbank risk).

Our paper makes both theoretical and empirical contributions to the literature on interbank risk.

We first provide a model for the term structure of interbank risk. We then apply the model to study

interbank risk since the onset of the financial crisis, decomposing the term structure of interbank risk

into default and non-default components, and studying how these components vary over time.

In our model, a LIBOR-OIS spread can arise for two reasons. The first reason is default risk.

LIBOR reflects the rate at which banks that belong to the LIBOR panel can obtain unsecured funding

for longer terms (typically 3M or 6M) in the interbank market. An important feature of LIBOR is that

panel banks are selected based on their credit quality (as well as the scale of their market activities), and

a bank that experiences a significant deterioration in its credit quality will be dropped from the panel

and replaced by a bank with superior credit quality. This implies that the credit quality inherent in

LIBOR is being refreshed over time. Rather than modeling the funding costs of individual panel banks,

we assume a sequence of banks, each of which represents the panel at a given point in time. Then, the

current LIBOR reflects the expected future default risk of the bank that represents the current panel.

An OIS is a swap where the floating-leg payments are indexed to a reference rate for unsecured

overnight funding, which we assume approximately equals the average cost of unsecured overnight

funding for LIBOR panel banks. Then, the reference rate reflects the default risk of the bank that

represents the current panel, and the fixed OIS rate reflects the expected default risks of the respective

banks that represent the future panels. Due to the potential for refreshment of the LIBOR panel, this

is lower than the expected future default risk of the bank that represents the current panel, and the

fixed OIS rate, therefore, is below the corresponding LIBOR. It also follows that the default component

of the LIBOR-OIS spread is increasing in the maturity of LIBOR, since there is an increasing risk of

credit quality deterioration of the bank that initially represents the panel relative to the respective

banks that represent the future panels.

Second, a LIBOR-OIS spread can arise due to factors not directly related to default risk – primarily

liquidity risk. For instance, banks may be reluctant to provide term loans in the interbank market

because they fear that they may not themselves be able to raise funds, or may do so only at elevated

rates, if they are hit by an adverse liquidity shock. This precautionary motive for hoarding cash is

modeled by Allen, Carletti, and Gale (2009) and Acharya and Skeie (2010), among others. Alternatively,

banks may have a speculative motive for hoarding cash in that they anticipate possible fire-sales of assets

by other financial institutions hit by liquidity shocks, in which cases the return on holding cash will be

high; see, e.g., Acharya, Gromb, and Yorulmazer (2007), Acharya, Shin, and Yorulmazer (2010) and

Diamond and Rajan (2010).1 Whatever the motivation, hoarding of liquidity will reduce the volume

of longer term loans and increase the rates on such loans. Rather than modeling these mechanisms

directly, we simply posit a “residual” factor that captures the component of the LIBOR-OIS spread that

1A recent paper by Gale and Yorulmazer (2011) integrates the precautionary and speculative motive for

hoarding cash.
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is not due to default risks. To the extent that liquidity risk is correlated with default risk, for instance

if liquidity hoarding is more prevalent when aggregate default risk is high, the residual component

captures the component of liquidity risk that is orthogonal to default risk.

Since a long-term IRS-OIS spread reflects expectations about future short-term LIBOR-OIS spreads,

the term structure of IRS-OIS spreads reflects the term structures of the default and non-default com-

ponents of the LIBOR-OIS spreads. To identify the default component, we use information from the

credit default swap (CDS) market. At each point in time we construct a CDS spread term structure for

the representative panel bank as a composite of the CDS spread term structures for the individual panel

banks. Assuming that CDS spreads are pure measures of default risk of the underlying entities, the

CDS spread term structure for the representative panel bank allows us to identify the process driving

the default component of LIBOR-OIS spreads.

More specifically, we develop a general affine model. Depending on the specification, two factors

drive the OIS term structure, one or two factors drive the default component of LIBOR-OIS spreads

(i.e., the risk of credit quality deterioration of the bank that represents the panel at a given point in time

relative to the respective banks that represent the future panels), and one or two factors drive the non-

default component of LIBOR-OIS spreads. The model is highly tractable with analytical expressions

for LIBOR, OIS, IRS, and CDS.

We apply the model to study interbank risk from the onset of the financial crisis in August 2007

until January 2011. We utilize a panel data set consisting of term structures of OIS rates, rates on

interest rate swaps indexed to 3M as well as 6M LIBOR, and CDS spreads – all with maturities up to

10Y. The model is estimated by maximum likelihood in conjunction with the Kalman filter.

We first conduct a specification analysis, which shows that a specification with two factors driving

the OIS term structure, two factors driving the default component of the LIBOR-OIS spread, and one

factor driving the non-default component of the LIBOR-OIS spread has a good fit to the data. We then

use this specification to decompose the term structure of interbank risk into default and non-default

components. We find that, on average, the fraction of total interbank risk due to default risk increases

with maturity. At the short end of the term structure, the non-default component is important in the

first half of the sample, while further out the term structure, the default component is the dominant

driver of interbank risk throughout the sample period.2

To understand the determinants of the non-default component of interbank risk, we regress the

residual factor on a number of illiquidity proxies for the fixed-income market including the spread

between the 3M OIS rate and the 3M Treasury bill rate (Krishnamurthy (2010)), the yield spread

2In principle, our analysis also allows us to determine how much of the variation in the term structure

of interbank risk is due to variation in risk premia. In practice, however, risk premia are quite imprecisely

estimated given the short sample, so we refrain from making too strong statements in this regard. It does seem,

however, that participants in the interbank market require a premium for bearing exposure to both default and

non-default (liquidity) risk.
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between 10Y Refcorp bonds and 10Y Treasury notes (Longstaff (2004)), the “noise” measure recently

introduced by Hu, Pan, and Wang (2010), and the notional amount of Treasury delivery fails reported

by primary dealers used by Fleckenstein, Longstaff, and Lustig (2011) and others as a measure of

disruptions in fixed income market liquidity. The factor is significantly related to all four illiquidity

measures and jointly they explain a large fraction (about 70 percent) of the variation in the factor.

This suggests that the non-default component is strongly related to market illiquidity.

We conduct a variety of robustness test which show that the results hold true for alternative model

parameterizations and measures of interbank default risk. By using CDS spreads to identify the default

component of interbank risk, our approach is reminiscent of Longstaff, Mithal, and Neis (2005), Blanco,

Brennan, and Marsh (2005), and Ang and Longstaff (2011), among others, who use CDS spreads as

pure measures of default risk. However, a number of recent papers, including Buhler and Trapp (2010)

and Bongaerts, de Jong, and Driessen (2011), have found that CDS spreads may be affected by liquidity

effects.3 Since we mostly use CDS contracts written on large financial institutions, which are among

the most liquid contracts in the CDS market, and since we aggregate individual CDS spreads, which

reduces the effect of idiosyncratic noise in the individual CDS spreads, we believe it is reasonable to use

the composite CDS spreads to infer the default risks of the representative panel banks. Nevertheless,

we also consider two alternative measures of default risks that correct for possible liquidity effects.

First, we measure default risk by 90 percent of the composite CDS spreads, which, given the results

in Buhler and Trapp (2010), seems to be a reasonable lower bound on the default component of CDS

spreads. And, second, we measure default risk by composite CDS spreads constructed solely from the

banks with the most liquid CDS contracts. None of these alternative measures substantially change

the decomposition of the term structure interbank risk.

Throughout, we also report results for the EUR market. Not only does this serve as an additional

robustness test, but this market is interesting in its own right. First, by several measures, the market is

even larger than the USD market. Second, the main shock to the interbank market in the second half

of our sample emanated from the Eurozone with its sovereign debt crisis. And, third, the structure of

the EUR market is such that the reference overnight rate in an OIS exactly matches the average cost

of unsecured overnight funding of EURIBOR (the EUR equivalent of LIBOR) panel banks providing

a robustness check of this assumption. Interestingly, results for the EUR market are very similar to

those of the USD market.

Our analysis has several practical applications. First, the framework could be a valuable tool for

central banks and regulatory authorities, as it provides market expectations about future stress in

interbank markets. In addition, the decomposition into default and non-default (liquidity) components

can help guide appropriate policy responses (recapitalization of banks, termination/introduction of

3While it is possible that CDS spreads are also affected by counterparty risk, Arora, Gandhi, and

Longstaff (2009) find that this effect is minimal, which is consistent with the widespread use of collateral-

ization and netting agreements.
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central bank lending facilities, etc).4

Second, the model has implications for pricing, hedging, and risk-management in the interest rate

swap market. Since the onset of the credit crisis, market participants have been exposed to significant

basis risk : Swap cash flows are indexed to LIBOR but, because of collateral agreements, are discounted

using rates inferred from the OIS market. Furthermore, swap portfolios at most financial institutions

are composed of swap contracts indexed to LIBOR rates of various maturities creating another layer

of basis risks. Our model provides a useful framework for managing overall interest rate risk and these

basis risks in an integrated way.

Our paper is related to Collin-Dufresne and Solnik (2001), who study the term structure of spreads

between corporate bonds and interest rate swaps, and Liu, Longstaff, and Mandell (2006), Johannes and

Sundaresan (2007), and Feldhutter and Lando (2008), who study the term structure of spreads between

interest rate swaps and Treasuries. Our paper has a different focus and also has the methodological

advantage of not using bonds, the prices of which were heavily influenced by liquidity issues during the

financial crisis. By only considering swap contracts, we expect liquidity to be less of an issue and to be

more uniform across instruments leading to a clean decomposition of the term structure of interbank

risk.

A number of papers have analyzed the 3M LIBOR-OIS spread and attempted to decompose it into

default and liquidity components. These papers include Schwartz (2010), Taylor and Williams (2009),

McAndrews, Sarkar, and Wang (2008), Michaud and Upper (2008), and Eisenschmidt and Tapking (2009).

They all study the early phase of the financial crisis before the collapse of Lehman Brothers and find,

with the exception of Taylor and Williams (2009), that liquidity was a key driver of interbank risk

during this period. We find a similar result for the short end of the term structure of interbank risk.

However, at the longer end of the term structure of interbank risk, default risk appears to have been

the dominant driver even during the early phase of the financial crisis, underscoring the importance of

taking the entire term structure into account when analyzing interbank risk.5

Several papers such as Bianchetti (2009), Fujii, Shimada, and Takahashi (2009), Henrard (2009),

and Mercurio (2009, 2010) have developed pricing models for interest rate derivatives that take the

stochastic swap-OIS spread into account. These models are highly reduced-form in that spreads be-

tween OIS and swaps indexed to different LIBOR rates are modeled independently of each other and

also not decomposed into different components. In contrast, we provide a unified model for all such

4From a regulatory standpoint, the framework could also prove helpful in determining the right discount

curve for the valuation of long-term insurance liabilities, where discount factors are typically allowed to include

a liquidity risk component but not a default risk component.

5Smith (2010) studies LIBOR-OIS spreads of maturities up to 12M within a dynamic term structure model

and attributes the most of the variation in spreads to variation in risk-premia. A somewhat problematic aspect

of her analysis is that the default component of LIBOR-OIS spreads is identified by the spread between LIBOR

and repo rates, which clearly contains a significant liquidity component during much of the period.
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spreads making it possible to aggregate the risks of large swap portfolios and analyze their underlying

determinants.

The rest of the paper is organized as follows: Section 2 describes the market instruments. Section

3 describes the model for the term structure of interbank risk. Section 4 discusses the data and the

estimation approach. Section 5 presents the results. Section 6 considers a variety of robustness tests.

Section 7 concludes, and several appendices contain additional information.

2 Market instruments

We describe the market instruments that we use in the paper. We first consider the basic reference

rates and then a variety of swap contracts that are indexed to these reference rates.

2.1 Reference rates

A large number of fixed income contracts are tied to an interbank offered rate. The main reference rate in

the USD-denominated fixed income market is the USD London Interbank Offered Rate (LIBOR), while

in the EUR-denominated fixed income market it is the European Interbank Offered Rate (EURIBOR).6

Both LIBOR and EURIBOR are trimmed averages of rates submitted by sets of banks. In the case

of LIBOR, each contributor bank bases its submission on the question at what rate could you borrow

funds, were you to do so by asking for and then accepting interbank offers in a reasonable market size.

In the case of EURIBOR, the wording is slightly different and each contributor bank submits the rates

at which euro interbank term deposits are being offered within the euro zone by one prime bank to

another. Therefore, LIBOR is an average of the rates at which banks believe they can obtain unsecured

funding, while EURIBOR is an average of the rates at which banks believe a prime bank can obtain

unsecured funding. This subtle difference becomes important when quantifying the degree of default

risk inherent in the two rates. Both rates are quoted for a range of terms, with 3M and 6M being the

most important and most widely followed. In the following, we let L(t, T ) denote the (T − t)-maturity

LIBOR or EURIBOR rate that fixes at time t.7

6LIBOR is managed by the British Bankers’ Association, while EURIBOR is managed by the European

Banking Federation. There also exists a EUR LIBOR, although this rate has not received the same benchmark

status as EURIBOR.

7During the credit crisis, there was some concern about the integrity of LIBOR and whether certain banks

engaged in strategic behavior to signal information about their credit quality or influence LIBOR to benefit

positions in LIBOR-linked instruments. However, a Bank of International Settlements study by Gyntelberg and

Wooldridge (2008) finds that “if there were any attempts to manipulate fixings during the recent turbulence,

trimming procedures appear to have minimised their impact”. In addition, there are strict governance mecha-

nisms in place that should identify anomalous rates. In the paper, we therefore take the rates as representing

actual funding costs.
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For both LIBOR and EURIBOR, contributor banks are selected based on their credit quality and

the scale of their market activities. During our sample period, the LIBOR panel consisted of 16 banks,

while the EURIBOR panel was significantly larger and consisted of 42 banks.8 An important feature

of both panels is that they are reviewed and revised periodically. A bank that experiences a significant

deterioration in its credit quality (and/or its market share) will be dropped from the panel and be

replaced by a bank with superior credit quality.

An increasing number of fixed income contracts are tied to an index of overnight rates. In the

USD market, the benchmark is the effective Federal Funds (FF) rate, which is a transaction-weighted

average of the rates on overnight unsecured loans of reserve balances held at the Federal Reserve that

banks make to one another. In the EUR market, the benchmark is the Euro Overnight Index Average

(EONIA) rate, computed as a transaction-weighted average of the rates on all overnight unsecured

loans in the interbank market initiated by EURIBOR panel banks. Therefore, in the EUR market, the

benchmark overnight rate reflects the average cost of unsecured overnight funding of panel banks. We

assume that the same holds for the USD market, although the set of banks from which the effective

Federal Funds rate is computed does not exactly match the LIBOR panel.9

For the sake of convenience we will from now on use “LIBOR” as a generic term for an interbank

offered rate, comprising both LIBOR and EURIBOR, whenever there is no ambiguity.

2.2 Pricing collateralized contracts

Swap contracts between major financial institutions are virtually always collateralized to the extent that

counterparty risk is negligible. In this section, we provide the generic pricing formula of collateralized

cashflows that we will use below to price swap contracts.10 Consider a contract with a contractual

nominal cashflow X at maturity T . Its present value at t < T is denoted by V (t). We assume that the

two parties in the contract agree on posting cash-collateral on a continuous marking-to-market basis.

We also assume that, at any time t < T , the posted amount of collateral equals 100% of the contract’s

present value V (t). The receiver of the collateral can invest it at the risk-free rate r(t) and has to pay

an agreed rate rc(t) to the poster of collateral. The present value thus satisfies the following integral

equation

V (t) = EQ
t

[

e−
∫

T

t
r(s)dsX +

∫ T

t

e−
∫

u

t
r(s)ds (r(u) − rc(u))V (u) du

]

, (1)

8After the end of our sample period, the USD LIBOR panel was expanded to 20 banks and the EURIBOR

panel was expanded to 44 banks.

9Participants in the Federal Funds market are those with accounts at Federal Reserve Banks, which include

US depository institutions, US branches of foreign banks, and government-sponsored enterprises.

10Similar formulas have been derived in various contexts by Johannes and Sundaresan (2007), Fujii, Shimada,

and Takahashi (2009), and Piterbarg (2010).
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where EQ
t ≡ EQ[· | Ft] denotes conditional expectation under the risk neutral measure Q.11 It is shown

in Appendix A that this implies the pricing formula

V (t) = EQ
t

[

e−
∫

T

t
rc(s)dsX

]

. (2)

For X = 1, we obtain the price of a collateralized zero-coupon bond

Pc(t, T ) = EQ
t

[

e−
∫

T

t
rc(s)ds

]

. (3)

In the sequel, we assume that the collateral rate rc(t) is equal to an instantaneous proxy L(t, t) of the

overnight rate, which we define as

rc(t) = L(t, t) = lim
T→t

L(t, T ). (4)

In reality, best practice among major financial institutions is daily mark-to-market and adjustment

of collateral. Furthermore, cash collateral is the most popular form of collateral, since it is free from the

issues associated with rehypothecation and allows for faster settlement times. Finally, FF and EONIA

are typically the contractual interest rates earned by cash collateral in the USD and EUR markets,

respectively. The assumptions we make above, therefore, closely approximate current market reality.12

2.3 Interest rate swaps (IRS)

In a regular interest rate swap (IRS), counterparties exchange a stream of fixed-rate payments for a

stream of floating-rate payments indexed to LIBOR of a particular maturity. More specifically, consider

two discrete tenor structures

t = t0 < t1 < · · · < tN = T (5)

and

t = T0 < T1 < · · · < Tn = T, (6)

and let δ = ti − ti−1 and ∆ = Ti − Ti−1 denote the lengths between tenor dates, with δ < ∆.13 At

every time ti, i = 1, ..., N , one party pays δL(ti−1, ti), while at every time Ti, i = 1, ..., n, the other

party pays ∆K, where K denotes the fixed rate on the swap. The swap rate, IRSδ,∆(t, T ), is the value

of K that makes the IRS value equal to zero at inception and is given by

IRSδ,∆(t, T ) =

∑N
i=1 E

Q
t

[

e−
∫ ti

t rc(s)dsδL(ti−1, ti)
]

∑n
i=1 ∆Pc(t, Ti)

. (7)

11Throughout, we assume a filtered probability space (Ω,F ,Ft, Q), where Q is a risk-neutral pricing measure.

12ISDA (2010) is a detailed survey of current market practice. Further evidence for the pricing formula

given in this section is provided by Whittall (2010), who reports that the main clearing-house of interbank

swap contracts now use discount factors extracted from the OIS term structure to discount collateralized swap

cashflows.

13In practice, the length between dates will vary slightly depending on the day-count convention. To simplify

notation, we suppress this dependence.
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In the USD market, the benchmark IRS pays 3M LIBOR floating vs. 6M fixed, while in the EUR

market, the benchmark IRS pays 6M EURIBOR floating vs. 1Y fixed. Rates on IRS indexed to LIBOR

of other maturities are obtained via basis swaps as discussed below.

2.4 Basis swaps (BS)

In a basis swap (BS), counterparties exchange two streams of floating-rate payments indexed to LIBOR

of different maturities, plus a stream of fixed payments. The quotation convention for basis swaps differs

across brokers, across markets, and may also have changed over time.14 However, as demonstrated in

the online appendix, the differences between the conventions are negligible. Consider a basis swap in

which one party pays the δ1-maturity LIBOR while the other party pays the δ2-maturity LIBOR with

δ1 < δ2. We use the quotation convention in which the basis swap rate, BSδ1,δ2(t, T ), is given as the

difference between the fixed rates on two IRS indexed to δ2- and δ1-maturity LIBOR, respectively.

That is,

BSδ1,δ2(t, T ) = IRSδ2,∆(t, T ) − IRSδ1,∆(t, T ). (8)

This convention has the advantage that rates on non-benchmark IRS are very easily obtained via basis

swaps.

2.5 Overnight indexed swaps (OIS)

In an overnight indexed swaps (OIS), counterparties exchange a stream of fixed-rate payments for

a stream of floating-rate payments indexed to a compounded overnight rate (FF or EONIA). More

specifically, consider the tenor structure (6) with ∆ = Ti − Ti−1.
15 At every time Ti, i = 1, ..., N ,

one party pays ∆K, while the other party pays ∆L(Ti−1, Ti), where L(Ti−1, Ti) is the compounded

overnight rate for the period [Ti−1, Ti]. This rate is given by

L(Ti−1, Ti) =
1

∆





Ki
∏

j=1

(1 + (tj − tj−1)L(tj−1, tj)) − 1



 , (9)

where Ti−1 = t0 < t1 < · · · < tKi
= Ti denotes the partition of the period [Ti−1, Ti] into Ki busi-

ness days, and L(tj−1, tj) denotes the respective overnight rate. As in Andersen and Piterbarg (2010,

Section 5.5), we approximate simple by continuous compounding and the overnight rate by the instan-

taneous rate L(t, t) given in (4), in which case L(Ti−1, Ti) becomes

L(Ti−1, Ti) =
1

∆

(

e
∫ Ti

Ti−1
rc(s)ds

− 1

)

. (10)

14We thank Fabio Mercurio for discussions about basis swap market conventions.

15In contrast to an IRS, an OIS typically has fixed-rate payments and floating-rate payments occurring at

the same frequency.

9



The OIS rate is the value of K that makes the OIS value equal to zero at inception and is given by

OIS(t, T ) =

∑n
i=1E

Q
t

[

e−
∫ Ti

t rc(s)ds∆L(Ti−1, Ti)
]

∑n
i=1 ∆Pc(t, Ti)

=
1 − Pc(t, Tn)
∑n

i=1 ∆Pc(t, Ti)
. (11)

In both the USD and EUR markets, OIS payments occur at a 1Y frequency, i.e. ∆ = 1. For OISs with

maturities less than one year, there is only one payment at maturity.

2.6 The IRS-OIS spread

Combining (7) and (11), a few computations yield

IRSδ,∆(t, T ) −OIS(t, T ) =

∑N
i=1 E

Q
t

[

e−
∫ ti−1

t rc(s)dsPc(ti−1, ti)δ
(

L(ti−1, ti) −OIS(ti−1, ti)
)

]

∑n
i=1 ∆Pc(t, Ti)

. (12)

This equation shows that the spread between the rates on, say, a 5Y IRS indexed to δ-maturity LIBOR

and a 5Y OIS reflects (risk-neutral) expectations about future δ-maturity LIBOR-OIS spreads during

the next 5 years.16 To the extent that the LIBOR-OIS spread measures short-term interbank risk, the

IRS-OIS spread reflects expectations about future short-term interbank risks – more specifically, about

short-term interbank risks among the banks that constitute the LIBOR panel at future tenor dates,

which may vary due to the periodic updating of the LIBOR panel. Consequently, we will refer to the

term structure of IRS-OIS spreads as the term structure of interbank risk.

2.7 Credit default swaps (CDS)

In a credit default swap (CDS), counterparties exchange a stream of coupon payments for a single

default protection payment in the event of default by a reference entity. As such, the swap comprises

a premium leg (the coupon stream) and a protection leg (the contingent default protection payment).

More specifically, consider the tenor structure (5) and let τ denote the default time of the reference

entity.17 The present value of the premium leg with coupon rate C is given by

Vprem(t, T ) = C I1(t, T ) + C I2(t, T ),

16Note that (12) only holds true if the fixed payments are made with the same frequency in the two swaps,

which is the case in the EUR market but not in the USD market. For the more general case, suppose that the

payments in the OIS are made on the tenor structure t = T ′

0 < T ′

1 < · · · < T ′

n′ = T , with ∆′ = T ′

i −T ′

i−1. Then

one can show that (12) holds with OIS(ti−1, ti) replaced by w(t)OIS(ti−1, ti), where w(t) =
∑n

i=1 ∆Pc(t,Ti)
∑

n′

i=1 ∆′Pc(t,T ′

i
)
.

In the USD market, where ∆ = 1/2 and ∆′ = 1, w(t) is always very close to one and (12) holds up to a very

small approximation error.

17CDS contracts are traded with maturity dates falling on one of four roll dates, March 20, June 20, September

20, or December 20. At initiation, therefore, the actual time to maturity of a CDS contract will be close to, but

rarely the same, as the specified time to maturity. Coupon payments are made on a quarterly basis coinciding

with the CDS roll dates.

10



where C I1(t, T ) with

I1(t, T ) = EQ
t

[

N
∑

i=1

e−
∫ ti

t rc(s)ds(ti − ti−1)1{ti<τ}

]

(13)

is the value of the coupon payments prior to default time τ , and C I2(t, T ) with

I2(t, T ) = EQ
t

[

N
∑

i=1

e−
∫

τ

t
rc(s)ds(τ − ti−1)1{ti−1<τ≤ti}

]

(14)

is the accrued coupon payment at default time τ . The present value of the protection leg is

Vprot(t, T ) = EQ
t

[

e−
∫

τ

t
rc(s)ds (1 −R(τ)) 1{τ≤T}

]

, (15)

where R(τ) denotes the recovery rate at default time τ . The CDS spread, CDS(t, T ), is the value of

C that makes the premium and protection leg equal in value at inception and is given by18

CDS(t, T ) =
Vprot(t, T )

I1(t, T ) + I2(t, T )
.

3 Modeling the term structure of interbank risk

We describe our model for the term structure of interbank risk. We first consider the general framework

and then specialize to a tractable model with analytical pricing formulas.

3.1 The general framework

Rather than modeling the funding costs of individual panel banks, we assume a sequence of banks

each of which represents the panel at a given point in time. More specifically, we assume the extended

doubly stochastic framework provided in Appendix B below, where for any t0 ≥ 0, the default time of

the bank that represents the panel at t0 is modeled by some random time τ(t0) > t0. This default time

admits an nonnegative intensity process λ(t0, t), for t > t0, with initial value λ(t0, t0) = Λ(t0).

In view of the doubly stochastic property (34), the time t0-value of an unsecured loan with notional

1 to this representative bank over period [t0, T ] equals

B(t0, T ) = EQ
t0

[

e
−
∫

T

t0
r(s)ds

1{τ(t0)>T}

]

= EQ
t0

[

e
−
∫

T

t0
(r(s)+λ(t0,s))ds

]

. (16)

Note that here we assume zero recovery of interbank loans, which is necessary to keep the subsequent

affine transform analysis tractable. Absent market frictions, the (T − t0)-maturity LIBOR rate L(t0, T )

satisfies 1 + (T − t0)L(t0, T ) = 1/B(t0, T ).

In practice, LIBOR may be affected by factors not directly related to default risk. For instance,

banks may hoard cash for precautionary reasons as in the models of Allen, Carletti, and Gale (2009)

18While these “par spreads” are quoted in the market, since 2009 CDS contracts have been executed with a

standardized coupon and an upfront payment to compensate for the difference between the par spread and the

coupon. However, our CDS database consists of par spreads throughout the sample period.
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and Acharya and Skeie (2010), or for speculative reasons as in the models of Acharya, Gromb, and

Yorulmazer (2007), Acharya, Shin, and Yorulmazer (2010), and Diamond and Rajan (2010). Either

way, the volume of longer term interbank loans decrease and the rates on such loans increase beyond

the levels justified by default risk. We allow for a non-default component in LIBOR by setting

L(t0, T ) =
1

T − t0

(

1

B(t0, T )
− 1

)

Ξ(t0, T ), (17)

where Ξ(t0, T ) is a multiplicative residual term that satisfies

lim
T→t0

Ξ(t0, T ) = 1.

It follows from (4) that the collateral rate rc(t0) becomes

rc(t0) = lim
T→t0

1

T − t0

(

1

B(t0, T )
− 1

)

Ξ(t0, T ) = −
d

dT
B(t0, T )|T=t0 = r(t0) + Λ(t0). (18)

Combining (11) (in the case of a single payment) and (17), we get the following expression for the

LIBOR-OIS spread

L(t0, T ) −OIS(t0, T ) =
1

T − t0

([

1

B(t0, T )
−

1

Pc(t0, T )

]

+

[(

1

B(t0, T )
− 1

)

(Ξ(t0, T ) − 1)

])

. (19)

The first bracketed term in (19) is the default component. Due to the periodic refreshment of the credit

quality of the LIBOR panel, the time-t0 expected future default risk of the bank that represents the

panel at time t0, λ(t0, t), is larger than the time-t0 expected initial default risk of the respective banks

that represent the future panels, λ(t, t) ≡ Λ(t). From (16) and (3) in conjunction with (18) it follows

that B(t0, T ) > Pc(t0, T ), which implies that the default component is positive. The second bracketed

term in (19) is the non-default component, which is positive provided that Ξ(t0, T ) > 1.

For the analysis, we also need expressions for the CDS spreads of the bank that represents the panel

at t0. The factors I1(t0, T ) and I2(t0, T ) in the present value of the premium leg given in (13) and (14)

become

I1(t0, T ) =
N
∑

i=1

(ti − ti−1)E
Q
t0

[

e−
∫ ti

t0
rc(s)ds1{ti<τ(t0)}

]

=
N
∑

i=1

(ti − ti−1)E
Q
t0

[

e−
∫ ti

t0
(rc(s)+λ(t0,s))ds

]

(20)

and19

I2(t0, T ) =
N
∑

i=1

EQ
t0

[

e−
∫ τ(t0)

t0
rc(s)ds(τ(t0) − ti−1)1{ti−1<τ(t0)≤ti}

]

=

N
∑

i=1

∫ ti

ti−1

(u − ti−1)E
Q
t0

[

e
−
∫

u

t0
(rc(s)+λ(t0,s))ds

λ(t0, u)
]

du.

(21)

In line with the assumption of zero recovery of interbank loans in the derivation of (16), we shall assume

zero recovery for the CDS protection leg. Its present value (15) thus becomes

Vprot(t0, T ) = EQ
t0

[

e−
∫ τ(t0)

t0
rc(s)ds1{τ(t0)≤T}

]

=

∫ T

t0

EQ
t0

[

e
−
∫

u

t0
(rc(s)+λ(t0,s))ds

λ(t0, u)
]

du. (22)

19Here we use the fact that, using the terminology of Appendix B below, e
−

∫ u
t0

λ(t0,s)ds
λ(t0, u) is the F∞∨Ht0 -

conditional density function of τ (t0), see e.g. Filipović (2009, Section 12.3).
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3.2 An affine factor model

We now introduce an affine factor model for r(t), the intensities Λ(t0) and λ(t0, t), and the residual

Ξ(t0, T ). We assume that the risk-free short rate, r(t), is driven by a two-factor Gaussian process20

dr(t) = κr(γ(t) − r(t)) dt + σr dWr(t)

dγ(t) = κγ(θγ − γ(t)) dt+ σγ

(

ρ dWr(t) +
√

1 − ρ2 dWγ(t)
)

,
(23)

where γ(t) is the stochastic mean-reversion level of r(t), and ρ is the correlation between innovations

to r(t) and γ(t).

For simplicity, we assume that the initial default intensity of the respective representative panel

banks, Λ(t0), is constant

Λ(t0) ≡ Λ.

However, it is straightforward to extend the setting to a stochastic Λ(t0). The default intensity process

of the bank that represents the panel at t0, λ(t0, t), is modeled by

λ(t0, t) = Λ +

∫ t

t0

κλ(Λ − λ(t0, s)) ds+

N(t)
∑

j=N(t0)+1

Zλ,j , (24)

where N(t) is a simple counting process with jump intensity ν(t) and Zλ,1, Zλ,2, . . . are i.i.d. exponential

jump sizes with mean 1
ζλ

. That is, we assume that deterioration in credit quality of the bank that

represents the panel at time t0 relative to the respective banks that represent the future panels occurs

according to a jump process. In particular, the bank that represents the panel at time t0 will represent

the panel on a random time horizon until the first jump of λ(t0, t). Between jumps, we allow for λ(t0, t)

to mean-revert towards Λ.21 The intensity of credit quality deterioration, ν(t), evolves according to

either a one-factor square-root process

dν(t) = κν(θν − ν(t)) dt + σν

√

ν(t) dWν(t), (25)

or a two-factor square-root process

dν(t) = κν(µ(t) − ν(t)) dt + σν

√

ν(t) dWν(t)

dµ(t) = κµ(θµ − µ(t)) dt+ σµ

√

µ(t) dWµ(t),
(26)

where µ(t) is the stochastic mean-reversion level of ν(t).

20The model is equally tractable with r(t) being driven by a two-factor square-root process. While this may

seem more appropriate given the low interest rate environment during much of the sample, we found that the

fit to the OIS term structure is slightly worse with this specification. Nevertheless, the decomposition of the

term structure of interbank risk is almost identical for two specifications.

21In Section 6 below, we explore an alternative specification, where deterioration in credit quality is perma-

nent.
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Finally, the multiplicative residual term, Ξ(t0, T ), is modeled by

1

Ξ(t0, T )
= EQ

t0

[

e
−
∫

T

t0
ξ(s)ds

]

, (27)

where ξ(t) evolves according to either a one-factor square-root process

dξ(t) = κξ(θξ − ξ(t)) dt + σξ

√

ξ(t) dWξ(t), (28)

or a two-factor square-root process

dξ(t) = κξ(ǫ(t) − ξ(t)) dt+ σξ

√

ξ(t) dWξ(t)

dǫ(t) = κǫ(θǫ − ǫ(t)) dt+ σǫ

√

ǫ(t) dWǫ(t),
(29)

where ǫ(t) is the stochastic mean-reversion level of ξ(t).

In the following, we will use the notation A(X,Y, Z) to denote a specification where r(t), ν(t), and

ξ(t) are driven by X , Y , and Z factors, respectively. We analyze three progressively more complex

model specifications: A(2,1,1), where the state vector is given by (23), (25), and (28), A(2,2,1), where

the state vector is given by (23), (26), and (28), and A(2,2,2), where the state vector is given by (23),

(26), and (29). All specifications have analytical pricing formulas for LIBOR, OIS, IRS, and CDS.

These formulas, along with sufficient admissability conditions on the parameter values, are derived in

Appendix C.

For the empirical part, we also need the dynamics of the state vector under the objective probability

measure P ∼ Q. Given our relatively short sample period, we assume a parsimonious market price of

risk process

Γ(t) =
(

Γr,Γγ ,Γν

√

ν(t),Γµ

√

µ(t),Γξ

√

ξ(t),Γǫ

√

ǫ(t)
)⊤

(30)

such that dW (t)−Γ(t) dt becomes a standard Brownian motion under P with Radon–Nikodym density

process22

dP

dQ
|Ft

= exp

(∫ t

0

Γ(s)⊤dW (s) −
1

2

∫ t

0

‖Γ(s)‖2 ds

)

.

4 Data and estimation

We estimate the model on a panel data set that covers the period starting with the onset of the credit

crisis on August 09, 2007 and ending in January 12, 2011. We do not include the pre-crisis period,

given that a regime switch in the perception of interbank risk appear to have occurred at the onset of

the crisis, see Figure 1.

22We charge no explicit premium for the jump intensity and size risk of λ(t0, t) in (24).
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4.1 Interest rate data

The interest rate data is from Bloomberg. We collect daily OIS rates with maturities 3M, 6M, 1Y, 2Y,

3Y, 4Y, 5Y, 7Y, and 10Y.23 We also collect daily IRS and BS rates with maturities of 1Y, 2Y, 3Y, 4Y,

5Y, 7Y, and 10Y as well as 3M and 6M LIBOR and EURIBOR rates. The rates on OIS, IRS, and BS

are composite quotes computed from quotes that Bloomberg collects from major banks and inter-dealer

brokers.

In the USD market, the benchmark IRS is indexed to 3M LIBOR (with fixed-rate payments oc-

curring at a 6M frequency), and the rate on an IRS indexed to 6M LIBOR is obtained via a BS

as

IRS6M,6M (t, T ) = IRS3M,6M (t, T ) +BS3M,6M (t, T ) (31)

Conversely, in the EUR market, the benchmark IRS is indexed to 6M EURIBOR (with fixed-rate

payments occurring at a 1Y frequency), and the rate on an IRS indexed to 3M EURIBOR is obtained

via a BS as

IRS3M,1Y (t, T ) = IRS6M,1Y (t, T ) −BS3M,6M (t, T ) (32)

In the paper, we focus on the spreads between rates on IRS and OIS with the same maturities. There-

fore, for each currency and on each day in the sample, we have two spread term structures given

by

SPREADδ(t, T ) = IRSδ,∆(t, T ) −OIS(t, T ), (33)

for δ = 3M or δ = 6M and ∆ = 6M (1Y) in the USD (EUR) market

Table 1 shows summary statistics of the data. For a given maturity, interest rate spreads are always

increasing in the tenor (the maturity of the LIBOR rate to which an IRS is indexed). This is consistent

with the idea that a 6M LIBOR loan contains more default and liquidity risk than two consecutive 3M

LIBOR loans. For a given tenor, the mean and volatility of spreads decrease with maturity. While

the mean spreads are similar across the two markets, spread volatility tends to be higher in the USD

market.

4.2 CDS spread data

The CDS data is from Markit, which is the leading provider of CDS quotes. Markit collects quotes from

major market participants and constructs daily composite quotes. Since data supplied by Markit is

widely used for marking-to-market CDS contracts, its quotes are closely watched by market participants.

For each bank in the LIBOR and EURIBOR panels, we collect daily spread term structures for CDS

23In Bloomberg, there is no USD 7Y OIS rate. Also, the time series for the USD 10Y OIS rate starts July

28, 2008.
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contracts written on senior obligations. The term structures consist of 6M, 1Y, 2Y, 3Y, 4Y, 5Y, 7Y,

and 10Y maturities.

Tables 2 and 3 shows summary statistics for the CDS spreads of the constituents of the LIBOR

and EURIBOR panels, respectively.24 The tables also show the currency of the CDS contracts25, the

size of the banks’ balance sheets as reported in the 2009 annual reports, a measure of liquidity of the

CDS contracts, and the date from which CDS data is available in the Markit database.

Our measure of liquidity is the average daily trading volume in terms of notional as reported by

the Depository Trust and Clearing Corporation (DTCC), a global repository that records the details of

virtually all CDS trades in the global market. The data covers the period from June 20, 2009 to March

19, 2011 (data was not available prior to this period) and only includes trading activity that involves a

transfer of risk between market participants. Also, the data only covers the top 1000 reference entities

(in terms of the notional of outstanding contracts) and some banks, particularly from the EURIBOR

panel, are not covered (or only covered during parts of the period, in which case we also do not report

numbers).

We see that the LIBOR panel mainly consists of very large banks with significant trading activity

in their CDS contracts, although it also includes some medium-sized banks for which the CDS contracts

are traded less actively. For the EURIBOR panel, there is a larger cross-sectional dispersion of the size

of the member banks and the trading activity in their CDS contracts, which is natural given that the

panel consists of significantly more banks than the LIBOR panel.

4.3 Measures of interbank default risk

To measure interbank default risk, we initially assume that CDS spreads are pure measures of the

default risk of the underlying entities. At each point in time we construct a CDS spread term structure

for the representative panel bank as a composite of the CDS spread term structures for the individual

panel banks. In doing so, we are careful to match as closely as possible the default risk inherent in

LIBOR and EURIBOR.

24As mentioned in Section 2.1, the EURIBOR panel consisted of 42 banks during our sample period. Three of

the smaller panel banks – Bank of Ireland, Banque et Caisse d’Epargne de l’Etat, and Confederacion Espanola

de Cajas de Ahorros – were not in the Markit database.

25For European-based banks, the CDS contracts in the database supplied by Markit are denominated in

EUR and subject to the Modified-Restructuring (MR) clause. For US-based banks, the CDS contracts are

denominated in USD and subject to the MR clause until Dec 31, 2008 and the No-Restructuring (XR) clause,

thereafter. Finally, for Japan-based banks, the CDS contracts are denominated in JPY until Dec 31, 2008

and USD, thereafter, and are subject to the Complete-Restructuring (CR) clause. Even though the currency

denomination differs across CDS contracts, the CDS spreads are expressed as a rate and are, therefore, free of

units of account.
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The LIBOR panel

As discussed in Section 2.1, LIBOR is a trimmed mean of the rates at which banks estimate they

can obtain unsecured funding for a given term. Since the submitted rates depend on the banks’ own

default risks, LIBOR itself presumably reflects a trimmed mean of the default risks of the panel banks.

Therefore, we measure of the default risk of the bank that represents LIBOR at a given point in time

by aggregating the CDS spreads of the individual LIBOR panel banks in the same way that LIBOR is

computed from the submitted rates, namely by removing the top and bottom 25 percent of spreads and

computing a simple average of the remaining spreads. The resulting default risk measure is denoted

CDSTrMean.

The EURIBOR panel

As also discussed in Section 2.1, EURIBOR is a trimmed mean of the rates at which banks estimate

a prime bank (not necessarily themselves) can obtain unsecured funding for a given term. While the

notion of a prime bank is ambiguous, we interpret it as a representative bank among the panel. Since

the median rather than the mean seems to be the appropriate statistics in this case, it is plausible that

the submitted rates reflect what each bank perceives is the median default risk in the panel. Being

a trimmed mean of the submitted rates, EURIBOR itself also reflects the median default risk in the

panel. Therefore, we measure the default risk of the bank that represents EURIBOR at a given point

in time by taking the median of the CDS spreads of the individual EURIBOR panel banks. We denote

this default risk measure CDSMedian.

Liquidity issues

The assumption that CDS spreads are pure measures of default risk is made in several papers, including

Longstaff, Mithal, and Neis (2005), Blanco, Brennan, and Marsh (2005), and Ang and Longstaff (2011).

However, a number of recent papers have found that CDS spreads may be affected by liquidity effects.

For instance, Buhler and Trapp (2010) find that, on average, 95 percent of the observed mid CDS

spread is due to default risk, while the remaining is due to liquidity risk and the correlation between

default and liquidity risk. This implies that the premium due to liquidity is earned by the seller of

default protection and that CDS spreads are upward-biased measures of default risk. Similar results

are reached by Bongaerts, de Jong, and Driessen (2011) and others.

In the case of LIBOR, liquidity may be less of an issue since the panel mainly consists of banks

with relatively liquid CDS contracts, and since we use a trimmed mean of the individual CDS spreads,

which reduces the effect of idiosyncratic noise at the level of the individual spreads. In the case of

EURIBOR, where there is larger cross-sectional dispersion in the liquidity of the banks’ CDS contracts

and where we work with a median spread, liquidity issues may be more important.
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For both panels, we consider two alternative measures of default risks that correct for possible liq-

uidity effects. First, we measure default risk by 90 percent of the composite CDS spreads, corresponding

to a situation where protection sellers earn a significant liquidity premium. Given the results in Buhler

and Trapp (2010), this is likely to be a lower bound on the default component of CDS spreads. Second,

we measure default risk by constructing the composite CDS spreads as described above, but only using

data from those banks where the average daily notional of CDS transactions are larger than 50 million

USD equivalent.26 In each market, the two alternative default risk measures are denoted CDSLIQ1

and CDSLIQ2.

iTraxx Senior Financials index

As an alternative to computing composite CDS spreads from the panel constituents, for the EUR

market we also consider the iTraxx Senior Financials CDS index. This index is quoted directly in the

market and tracks the spreads on CDS contracts written on senior obligations of 25 large European

financial institutions. The index tends to be more liquid than the individual contracts, but clearly

both its construction and the fact that some of the underlying institutions are not part of EURIBOR27

makes it an imperfect measure of the default risk inherent in EURIBOR. Also, it is only available for

maturities of 5Y and 10Y. Nevertheless, it serves as an interesting robustness test.

Table 1 shows summary statistics of the composite CDS spreads. On average, the level of CDS spreads

increase with maturity, while CDS spread volatility decrease with maturity. In the USD market, we

have, on average, CDSLIQ1 < CDSTrMean < CDSLIQ2, while in the EUR market, we have, on

average, CDSLIQ1 < CDSLIQ2 < CDSMedian < CDSiTraxx. The magnitudes of CDSTrMean in the

USD market and CDSMedian in the EUR market are rather similar despite the EURIBOR panel being

composed of significantly more banks than the LIBOR panel.

Our main sets of results will be based on the original default risk measures, while in Section 6 we

investigate the sensitivity of the results to taking possible CDS liquidity effects into account.

4.4 Maximum-likelihood estimation

We estimate the specifications using maximum-likelihood in conjunction with Kalman filtering. Due to

the non-linearities in the relationship between observations and state variables, we apply the non-linear

26To put these numbers into perspective, we computed summary statistics for the trading activity among the

top 1000 reference entities that were not sovereigns. On a quarterly basis, the median varies between 15.0 and

20.8 million USD, while the mean varies between 25.0 and 33.6 million USD. With a cutoff of 50 million USD,

we are clearly focusing on the most liquid segment of the CDS market.

27For instance, for the iTraxx series 14, launched in September 2010, 14 of the 25 financial institutions were

also members of the EURIBOR panel.
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unscented Kalman filter, which is found by Christoffersen et al. (2009) to have very good finite-sample

properties in the context of estimating dynamic term structure models with swap rates. Details on the

estimation approach are provided in Appendix D.

For identification purposes, we fix ζλ at 10, corresponding to a mean jump size in the default

intensity of the bank that represents the panel at t0, λ(t0, t), of 1000 bp. This corresponds to a

significant deterioration in the credit quality of the representative panel bank in the event of a shock.

Furthermore, in a preliminary analysis, we find that it is difficult to reliably estimate the initial

default intensity of the representative panel bank, Λ. Its value is not identified from the OIS term

structure and, in the absence of very short-term CDS rates for the representative panel banks, is

also hard to pin down from the CDS term structures. From (4) and (18), we have that Λ is the

difference between the instantaneous proxy of the overnight interbank rate, L(t, t), and the truly risk-

free rate, r(t). Therefore, one can get an idea about the magnitude of Λ, by examining the spread

between FF or EONIA rates and overnight repo rates, which are virtually riskfree due to the practice

of overcollateralization of repo loans; see, e.g., Longstaff (2000). During our sample, overnight general

collateral (GC) repo rates for Treasury, MBS, and Agency securities were, on average, 15 bp, 2 bp, and

5 bp below the FF rate. In interpreting these numbers, one should keep in mind that the Treasury

GC repo rate at times included a significant convenience yield due to periodic very large demand for

Treasury collateral during the credit crisis, making this rate a less accurate proxy for the risk-free

rate than MBS and Agency GC repo rates.28 In the EUR market, the overnight GC repo rate for

government bonds was, on average, 1 bp below the EONIA rate. Overall, this suggests that there is

very little default risk in the market for overnight interbank deposits. In the following, we fix Λ at 5

bp, but reasonable variations in the value of Λ do not change our results.

5 Results

5.1 Maximum-likelihood estimates

Table 5 displays parameter estimates and their asymptotic standard errors.29 The estimates are strik-

ingly similar across the two market and we, therefore, focus on the USD estimates.

28Indeed, several times during our sample, the Treasury GC repo rate spikes down by more than a hundred

basis points only to spike up again a few days later. The MBS and Agency GC repo rates are much less

susceptible to such downward spikes. As observed by Hordahl and King (2008) “As the available supply of

Treasury collateral dropped, those market participants willing to lend out Treasuries were able to borrow cash

at increasingly cheap rates. At times, this effect pushed US GC repo rates down to levels only a few basis points

above zero”.

29It is straightforward to verify that for all the specifications, the parameter values satisfy the sufficient

admissability conditions in Lemma C.4 in the Appendix.
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Under the risk-neutral measure, the long-run mean of the intensity of credit quality deterioration,

ν(t), varies between 0.23 and 0.46, depending on the specification. This implies an expected jump

arrival time between approximately 2 and 5 years. Obviously the expected jump arrival times are to

be put in relation to our assumed mean jump size of 1000 bp and zero recovery (or 100% loss rate). An

increase in either the mean jump size or the recovery rate would lead to an increase in the expected

jump arrival time.30

In the A(2,2,1) and A(2,2,2) specifications, ν(t) is relatively volatile and displays fast mean-reversion

towards µ(t), which in turn is less volatile and has much slower mean-reversion. Hence, ν(t) captures

transitory shocks to the intensity of credit quality deterioration, while µ(t) captures more persistent

shocks. In the A(2,1,1) specification, the speed of mean-reversion and volatility lie between those of ν(t)

and µ(t) in the more general specifications. Although rather imprecisely estimated, the market prices

of risk Γν and Γµ are negative in all specifications. This implies that under the physical measure, the

long-run mean of credit quality deterioration31 is lower than the risk-neutral long-run mean, indicating

that market participants require a premium for bearing exposure to default risk.32 Between jumps, the

reversion of the default intensity towards Λ occurs relatively fast under the risk-neutral measure, with

κλ estimated between 1.82 and 2.26.

In all specifications, the residual factor, ξ(t), is very volatile, exhibits very fast mean-reversion, and

has a long-run mean of essentially zero. In the A(2,2,2) specifications, ξ(t) is mean-reverting towards

ǫ(t) which is less volatile and has slower mean-reversion. Hence, ξ(t) captures transitory shocks to the

non-default component, while ǫ(t) captures moderately persistent shocks. The market prices of risk Γξ

and Γǫ are mostly negative, although not uniformly so, but very imprecisely estimated. If anything,

this indicates that market participants require a premium for bearing exposure to the non-default risk

factors, such as liquidity risk.

5.2 State variables

Figure 2 displays the state variables for the three specifications estimated on USD data. The corre-

sponding figure for the EUR market is similar and available in the online appendix. It is interesting

to see the reaction of the state variables to the three most important shocks to the interbank market

during the sample period: the Bear Stearns near-bankruptcy on March 16, 2008, the Lehman Brothers

30As a rule of thumb, either doubling the assumed mean jump size or halving the expected loss rate is nearly

the same as doubling the expected jump arrival time.

31In the A(2,1,1) specification, the long-run mean under the physical measure is given by θνκν/(κν − σνΓν),

while in the A(2,2,1) and A(2,2,2) specifications, it is given by θµκνκµ/ [(κν − σνΓν)(κµ − σµΓµ)].

32The long-run mean under the physical measure varies between 0.06 and 0.16, depending on the specification.

This translates into an expected jump arrival time between approximately 6 and 17 years. It is a common finding

in the literature that default risk carries a risk premium; see, e.g., Driessen (2005), Berndt et al. (2008), and

Pan and Singleton (2008).
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bankruptcy on September 15, 2008, and the escalation of the European sovereign debt crisis often

marked by the downgrade of Greece’s debt to non-investment grade status by Standard and Poor’s on

April 27, 2010. The figure shows that ν(t) increases leading up to the Bear Stearns near-default but

quickly decreases after the take-over by J.P. Morgan. If anything, the opposite is true of ξ(t). Immedi-

ately following the Lehman default, ξ(t) spikes while ν(t) increases more gradually and does not reach

its maximum until March 2009. Finally, with the escalation of the European sovereign debt crisis, ν(t)

increases while ξ(t) does not react. These dynamics hold true regardless of the model specification and

suggest that an increase in the risk of credit quality deterioration was the main factor driving interbank

risk around the first and third episode, while an increase in risk factors not directly related to default

risk was the main driver in the aftermath of the Lehman default.

5.3 Specification analysis

For each of the model specifications, we compute the fitted OIS rates, interest rate spreads, and CDS

spreads based on the filtered state variables. For each day in the sample and within each category –

OIS, SPREAD3M , SPREAD6M , and CDS – we then compute the root mean squared pricing errors

(RMSEs) of the available rates or spreads, thereby constructing time series of RMSEs.

The first three rows of Panel A in Table 6 display the means of the RMSE time series in the USD

market. The next two rows report the mean difference in RMSEs between two model specifications

along with the associated t-statistics. Given that all specifications have two factors driving the OIS term

structure, they obviously produce almost the same fit to OIS rates. However, they differ significantly

in their fit to interest rate spreads and CDS rates. A(2,2,1) has a significantly better fit than A(2,1,1)

to the CDS term structure, with the mean RMSE decreasing from 11.6 bp to 6.6 bp. It also appears

to trade off a statistically significant better fit to the term structure of swap spreads indexed to 6M

LIBOR, for a statistically insignificant worse fit to the term structure of swap spreads indexed to 3M

LIBOR. A(2,2,2) improves upon A(2,2,1) with a statistically significant better fit to the term structures

of CDS rates and swap spreads indexed to 6M LIBOR and a marginally statistically significant better fit

to the term structure of swap spreads indexed to 3M LIBOR. Economically, however, the improvement

of A(2,2,2) over A(2,2,1) is modest (about 0.5 bp in terms of average RMSEs) and we do not expect

more elaborate models to perform much better.

Panel B in Table 6 display the results for the EUR market, which are similar to those obtained for

the USD market.33 In general, the model tends to have a slightly better fit to the EUR data than the

USD data. This is also apparent from Table 5 where, for each specification, the estimated variance on

the pricing errors is smaller for the EUR market.34

33The main difference appear to be that for the EUR market, the more elaborate specifications generate an

improvement in the fit to the OIS term structure, which is statistically significant if still economically small.

34In our model, we assume that the OIS reference rate equals the average cost of unsecured overnight funding
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Since we value parsimony, in the following we use the A(2,2,1) specification to decompose the term

structure of interbank risk into default and non-default components. In Section 6, we investigate the

sensitivity of the decomposition to the choice of model specification.

5.4 Decomposing the term structure of interbank risk

We measure the default component as the hypothetical swap spread that would obtain if default risk

were the only risk factor in the interbank market. This is computed by setting the residual term to

one, Ξ(t0, T ) = 1. The non-default component is then given by the difference between the fitted swap

spread and the default induced swap spread.

Table 7 displays, for each maturity, the means and standard deviations of the time-series of the

two components. Consider first the USD market. Panel A1 shows the decomposition of swap spreads

indexed to 3M LIBOR. At the short end of the term structure, the default components is, on average,

slightly smaller than the non-default component. As maturity increase, the default component, on

average, decrease relatively little and in fact increase for maturities beyond 4 years. On the other hand,

the non-default component, on average, decrease rapidly with maturity. The upshot is that, as maturity

increases, default increasingly becomes the dominant component. Panel A2 shows the decomposition

of swap spreads indexed to 6M LIBOR. Both the default and non-default components are larger, on

average. However, the default component increases relatively more than the non-default component.

Otherwise, the overall pattern is the same, with default increasingly becoming the dominant component

as maturity increases.

Panels B1 and B2 display the corresponding results for the EUR market. At the short end of the

term structure, the default component constitute a slightly larger fraction of spreads than is the case

for the USD market, while the opposite is true at the long end of the term structure. But broadly the

results are similar to the USD market.

Another observation from Table 7 is that both components are very volatile, particularly at the

short end of the term structure. For the USD market, Figure 3 displays the time-series of the default

and non-default components of the 3M and 6M LIBOR-OIS spreads (Panels A and B) and the 5Y swap

spreads indexed to 3M or 6M LIBOR (Panels C and D). Consider first the money market spreads. Prior

to the Lehman default, the default component constitutes a relatively small part of spreads, except for

for LIBOR panel banks, which implies that the LIBOR-OIS spread goes to zero as maturity goes to zero. In

principle, an interesting out-of-sample test of the model is the extent to which very short term LIBOR-OIS

spreads implied by the model correspond to those observed in the data. In practice, however, very short-term

LIBOR-OIS spreads are extremely noisy and display little correlation with longer term spreads. For instance, in

the USD market, the shortest LIBOR maturity is overnight and the correlation between changes in the overnight

LIBOR-FF spread and changes in the 3M and 6M LIBOR-OIS spreads are 0.08 and -0.01, respectively. One

would need to add additional factors to the model to capture the largely idiosyncratic behavior at the very

short end of the spread curve.
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a brief period around the Bear Stearns near-default. In the aftermath of the Lehman default, the non-

default component increases rapidly but then declines, while the default component increases gradually.

The result is that by March 2009 and for the rest of the sample period, including the European sovereign

debt crisis, spreads are almost exclusively driven by the default component. Consider next the 5Y swap

spreads. Clearly, default is an overall more important component. Even prior to the Lehman default,

the default component is the dominant driver of spreads. Immediately after the Lehman default both

the default and non-default components increase after which the default component gradually becomes

the exclusive driver of spreads.

Figure 4 displays the time-series of the decomposition of the spreads in the EUR market. The main

difference compared to the USD market is that from mid-2009 until the escalation of the EUR sovereign

debt crisis, the non-default component re-emerges as a driver of spreads, particularly at the short end

of the term structure.

5.5 Understanding the residual component

In our model, ξ(t) and ǫ(t) are residual factors that capture the component of interbank risk that

is orthogonal to default risk. It is tempting to think of these factors as capturing liquidity risk. To

see if this interpretation is justified, we regress ξ(t) inferred from the A(2,2,1) specification on various

illiquidity proxies. Given the over-the-counter nature of interbank borrowing and lending, we do not

have illiquidity measures that are specific to this market.35 Instead, we use four measures of illiquidity at

the level of the broader fixed income market. The first measure, also discussed in Krishnamurthy (2010),

is the spread between the 3M OIS rate and the 3M Treasury bill rate. Both rates are virtually free of

default risk, but Treasury bills are arguably the most liquid debt market instrument making the spread

a good illiquidity proxy.36 The second measure, first analyzed by Longstaff (2004), is the yield spread

between 10Y Refcorp bonds and 10Y off-the-run Treasury notes. Refcorp bonds have the same default

risk as Treasuries, but lower liquidity. The third measure is the “noise” measure recently introduced by

Hu, Pan, and Wang (2010) – henceforth HPW – which is a daily aggregate of Treasury price deviations

from “fair-value”. The final measure is the weekly sum of the notional amount of Treasury delivery

fails reported by primary dealers and published by the Federal Reserve Bank of New York, which

Fleckenstein, Longstaff, and Lustig (2011) and others argue is a good proxy for disruptions in fixed

income market liquidity.

Table 8 displays results from univariate and multivariate regressions of ξ(t) on the illiquidity mea-

35There does exist a trading platform for EUR interbank deposits, e-Mid. However, the maturities of the

traded deposits are almost exclusively overnight (see Angelini, Nobili, and Picillo (2009)), while we are interested

in liquidity measures for longer term deposits.

36Admittedly, OIS rates are not a completely risk-free rate due to the indexation to the unsecured overnight

rate. But as argued in Section 4.4, the default risk component is very small.
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sures. Since the HPW noise measure is only available until December 31, 2009, we run the regressions

using data up to this date. We run the regressions on daily data, except when including the Treasury

settlement fails, in which cases we run the regressions on weekly data.37 Consider first the USD market

(Panel A of Table 8). In the univariate regressions, the coefficients on all the illiquidity measures are

positive. The OIS-Tbill spread has limited explanatory power with a marginally statistically significant

coefficient and an R2 of 0.07. The Refcorp-Treasury spread has somewhat higher explanatory power,

with a statistically significant coefficient and an R2 of 0.18. Finally, the HPW noise measure and

the amount of Treasury fails both have high explanatory power, with strongly statistically significant

coefficients and R2s of 0.59 and 0.41, respectively. In the multivariate regressions, the coefficients on

the OIS-Tbill and Refcorp-Treasury spreads become insignificant, while the coefficients on the HPW

noise measure and the amount of Treasury fails remain positive and significant, and the R2s increase

to about 0.70.

Consider next the EUR market (Panel B of Table 8). The results are generally consistent with

those of the USD market, although the explanatory power of the illiquidity measures are lower. This is

not surprising, given that all our illiquidity measures are USD based. In the multivariate regressions,

only the HPW noise measure remains statistically significant, and the R2s are around 0.36.

Taken together, we believe the results lend support to the conjecture that the non-default component

of interbank risk is strongly related to market illiquidity.

6 Robustness tests

The decomposition in Section 5 is based on the A(2,2,1) specification along with the CDSTrMean

and CDSMedian measures of interbank default risk in the USD and EUR markets, respectively. In

this section, we investigate the robustness of our results to alternative model specifications as well as

interbank default risk measures that correct for possible liquidity effects in CDS spreads. Throughout,

we focus on the USD market and the swap spread term structure indexed to 3M LIBOR. Conclusions

for the spread term structure indexed to 6M LIBOR and for the EUR market are very similar.38

37We convert daily time-series to weekly by summing up the daily observations over the week. This matches

the construction of the time-series of Treasury delivery fails.

38Results for the EUR market are available in the online appendix. Only in the case where we use CDSiTraxx

to measure interbank default risk does the results differ noticeable from the baseline results. To some extent,

this is due to the imperfect overlap between the set of underlying institutions in the iTraxx index and the

EURIBOR panel. But to a large extent it is due to the fact that the index is only available for maturities of

5Y and 10Y leading to a less accurate identification of the term structure of interbank default risk.
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6.1 Alternative model specifications

To investigate the sensitivity to alternative model specifications, we redo the interbank risk decomposi-

tion using the A(2,1,1) and A(2,2,2) specifications along with the original measure of interbank default

risk. These results are reported in Panels A and B in Table 9. In both cases, the decomposition is

very similar to that using the A(2,2,1) (Panel A1 in Table 7). One difference is that for the A(2,1,1)

specification, the default component at the short end of the term structure is somewhat less volatile,

which is not surprising given the one-factor nature of the risk of credit quality deterioration.

Figures 5 and 6 show the time-series of the decomposition at the short and long end (the 5Y

point) of the spread term structure, respectively. In both figures, Panel A corresponds to the A(2,1,1)

specification, while Panel B corresponds to the A(2,2,2) specification. Comparing with Panels A and

C in Figure 3 confirms that the decompositions are very similar to that of the A(2,2,1) specification.

In all the specifications considered so far, we allow λ(t0, t) to mean-revert towards Λ between jumps.

We also explore the effect of assuming that shocks to the credit quality of the bank that represents

the panel at time t0 are permanent, which corresponds to setting κλ = 0 in (24). We reestimate the

A(2,2,1) specification subject to this constraint. A likelihood ratio test strongly rejects the constraint.39

More importantly, the restricted specification has a significantly worse fit to the data with the average

RMSE for SPREAD3M , SPREAD6M , and CDSTrMean increasing to 13.36 bp, 11,72 bp, and 8.55

bp, respectively. Consequently, we do not consider that specification in greater detail.

6.2 Alternative measures of interbank default risk

To investigate the sensitivity to possible liquidity effects in the CDS market, we reestimate the A(2,2,1)

specification with the two liquidity-corrected default risk measures CDSLIQ1 and CDSLIQ2 described

in Section 4.3. Panels C and D in Table 9 report the decomposition of the spread term structure in

these two cases. At the short end of the term structure, the decomposition using CDSLIQ1 (Panel C)

on average attributes a slightly smaller fraction of interbank risk to default risk compared with the

original decomposition, while the the decomposition using CDSLIQ2 (Panel D) on average attributes a

slightly larger fraction of interbank risk to default risk. This is consistent with the fact that, on average,

CDSLIQ1 < CDSTrMean < CDSLIQ2. Further out the term structure, the differences are very small.

Again, Figures 5 and 6 show the time-series of the decomposition at the short and long end of

the spread term structure, with Panel C corresponding to CDSLIQ1 and Panel D corresponding to

CDSLIQ2. Comparing again with Panels A and C in Figure 3 underscores the robustness of the

decomposition to reasonable assumptions about liquidity effects in the CDS market.

39Note that in our setting a likelihood-ratio test is only approximate, since the QML/Kalman filter estimation

approach is not consistent.
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7 Conclusion

In this paper, we contribute to the rapidly growing literature on the interbank market by studying the

term structure of interbank risk. We follow most existing studies by measuring interbank risk by the

spread between a LIBOR rate and the rate on an overnight indexed swap (OIS) of identical maturity.

We show that the spread between the fixed rate on a long-term interest rate swap indexed to, say, 3M

LIBOR, and a similar long-term OIS reflects the risk-neutral expectations about future 3M LIBOR-

OIS spreads. This allows us to infer a term structure of interbank risk from swap spreads of different

maturities. We develop a dynamic term structure model with default risk in the interbank market

that, in conjunction with information from the credit default swap market, allows us to decompose

the term structure of interbank risk into default and non-default components. We apply the model to

study interbank risk from the onset of the financial crisis in August 2007 until January 2011. We find

that, on average, the fraction of total interbank risk due to default risk increases with maturity. At the

short end of the term structure, the non-default component is important in the first half of the sample

and is correlated with various measures of market-wide liquidity. Further out the term structure, the

default component is the dominant driver of interbank risk throughout the sample period. These results

hold true in both the USD and EUR markets and are robust to different model parameterizations and

measures of interbank default risk. we also discuss potential applications of the model framework within

monetary and regulatory policy as well as the pricing, hedging, and risk-management in the interest

rate swap market.
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A Proof of (2)

Discounting the integral equation (1) gives

e−
∫

t

0
r(s)dsV (t) = EQ

t

[

e−
∫

T

0
r(s)dsX +

∫ T

t

e−
∫

u

0
r(s)ds (r(u) − rc(u))V (u) du

]

.

Hence

M(t) = e−
∫

t

0
r(s)dsV (t) +

∫ t

0

e−
∫

u

0
r(s)ds (r(u) − rc(u))V (u) du

is a Q-martingale. We obtain

d
(
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r(s)dsV (t)

)

= − (r(t) − rc(t))
(
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)

dt+ dM(t).

Integration by parts then implies
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(
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Hence e−
∫

t

0
rc(s)dsV (t) is a Q-martingale, and since V (T ) = X we conclude that

e−
∫

t

0
rc(s)dsV (t) = EQ

t

[

e−
∫

T

0
rc(s)dsX

]

,

which proves (2).

B Extended doubly stochastic framework

Here, we briefly recap and extend the standard doubly stochastic framework for modeling default times

in our setting.40 The main aspect of our extension is the fact that we can incorporate arbitrarily many

default times in one framework. Thereto, we assume that the filtered probability space (Ω,F ,Ft, Q)

carries an i.i.d. sequence of standard exponential random variables ε(t0) ∼ Exp(1), for t0 ≥ 0, which

are independent of F∞. For every t0 ≥ 0, we let λ(t0, t) be a nonnegative Ft-adapted intensity process

with the property
∫ t

t0

λ(t0, s) ds <∞

for all finite t ≥ t0. We then define the random time

τ(t0) = inf

{

t > t0 |

∫ t

t0

λ(t0, s) ds ≥ ε(t0)

}

> t0.

40Standard references are Duffie and Singleton (2003) and Lando (2004).
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Note that τ(t0) is not an Ft-stopping time but becomes a stopping time with respect to the enlarged

filtration Gt = Ft ∨ Ht where Ht = ∨t0≥0σ (H(t0, s) | s ≤ t) is the filtration generated by all τ(t0)-

indicator processes H(t0, t) = 1{τ(t0)≤t}. The Gt-stopping times τ(t0) are then Ft-doubly stochastic in

the sense that

EQ
[

Y 1{τ(t0)>T} | Gt0

]

= EQ
t0

[

Y e
−
∫

T

t0
λ(t0,s) ds

]

(34)

for all FT -measurable nonnegative random variables Y , see e.g. Filipović (2009, Lemma 12.2).

C Pricing formulas for the affine model

In this section we derive the pricing formulas for the affine model used in this paper. It is evident from

the system of stochastic differential equations composed of (23), (26), and (29), that the partial state

vectors (r(t), γ(t))⊤, (ν(t), µ(t), λ(t0, t))
⊤, and (ξ(t), ǫ(t))⊤ form independent autonomous affine jump-

diffusion processes. Hence the subsequent exponential-affine expressions (35), (37), (41) follow directly

from the general affine transform formula in Duffie, Filipović, and Schachermayer (2003, Section 2),

and the fact that rc(t) = r(t) + Λ, see (18). The following formulas are for the full A(2, 2, 2) model.

The nested versions, A(2, 2, 1) and A(2, 1, 1), are obtained by setting the respective model parameters,

κǫ, θǫ, σǫ and κµ, θµ, σµ, equal to zero, and setting ǫ(t) ≡ θξ and µ(t) ≡ θν , respectively.

Lemma C.1. The time t price of the collateralized zero-coupon bond maturing at T equals

Pc(t, T ) = EQ
t

[

e−
∫

T

t
rc(s)ds

]

= exp [A(T − t) +Br(T − t)r(t) +Bγ(T − t)γ(t)]
(35)

where the functions A and B = (Br, BΛ)⊤ solve the system of Riccati equations

∂τA(τ) =
σ2

r

2
Br(τ)

2 + ρσrσγBr(τ)Bγ(τ) +
σ2

γ

2
Bγ(τ)2 + κγθγBγ(τ) − Λ

∂τBr(τ) = −κrBr(τ) − 1

∂τBγ(τ) = −κγBγ(τ) + κrBr(τ)

A(0) = 0, B(0) = 0.

(36)

Lemma C.2. The time t0-value of an unsecured loan with notional 1 in (16) equals

B(t0, T ) = EQ
t0

[

e
−
∫

T

t0
(r(s)+λ(t0,s))ds

]

= Pc(t0, T ) exp [C(T − t0) +Dν(T − t0)ν(t0) +Dµ(T − t0)µ(t0) +Dλ(T − t0)Λ]
(37)
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where the functions C and D = (Dν , Dµ, Dλ)⊤ solve the system of Riccati equations

∂τC(τ) = κµθµDµ(τ) + κµΛDλ(τ) + Λ

∂τDν(τ) =
σ2

ν

2
Dν(τ)2 − κνDν(τ) +

Dλ(τ)

ζλ −Dλ(τ)

∂τDµ(τ) =
σ2

µ

2
Dµ(τ)2 − κµDµ(τ) + κνDν(τ)

∂τDλ(τ) = −κλDλ(τ) − 1

C(0) = 0, D(0) = 0.

(38)

Proof. We write

B(t0, T ) = EQ
t0
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]

.

Now the claim follows from the general affine transform formula in Duffie, Filipović, and Schacher-

mayer (2003, Section 2). Note that Dλ(τ) < 0 for all τ > 0. Hence the rational function on the right

hand side of the equation for ∂τDν(τ) is well defined and derived by

∫ ∞

0

(

eDλ(τ)ξ − 1
)

ζλ e
−ζλξ dξ = ζλ
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0

e−(ζλ−Dλ(τ))ξ dξ − 1

=
ζλ

ζλ −Dλ(τ)
− 1

=
Dλ(τ)

ζλ −Dλ(τ)
.

We obtain the following exponential affine expression for the (T−t0)-maturity LIBOR rate L(t0, T ).

Corollary C.3. The (T − t0)-maturity LIBOR rate given in (17) equals

L(t0, T ) =
1

T − t0

(

Pc(t0, T )−1 exp [−C(T − t0) −Dν(T − t0)ν(t0) −Dµ(T − t0)µ(t0) −Dλ(T − t0)Λ] − 1
)

× exp [−E(T − t0) − Fξ(T − t0)ξ(t0) − Fǫ(T − t0)ǫ(t0)]

(39)

with C(T − t0) and D(T − t0) given in Lemma C.2, and where the functions E and F = (Fξ, Fǫ)
⊤ solve

the Riccati equations

∂τE(τ) = κǫθǫFǫ(τ)

∂τFξ(τ) =
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E(0) = 0, F (0) = 0.

(40)
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Proof. In view of (27) and the affine transform formula in Duffie, Filipović, and Schachermayer (2003,

Section 2), the multiplicative residual term is given by

1

Ξ(t0, T )
= exp [E(T − t0) + Fξ(T − t0)ξ(t0) + Fǫ(T − t0)ǫ(t0)] (41)

where the functions E and F = (Fξ, Fǫ)
⊤ solve the Riccati equations (40). The corollary now follows

from (17) and Lemma C.2.

In view of (7) we also need a closed form expression for
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]

for time points t ≤ t0 < T . Using the tower property of conditional expectations we calculate

I = EQ
t

[

e−
∫ t0

t rc(s)dsEQ
t0

[

e
−
∫

T

t0
rc(s)ds

]

(T − t0)L(t0, T )
]

= EQ
t

[

e−
∫ t0

t rc(s)dsPc(t0, T )(T − t0)L(t0, T )
]

=
(

EQ
t

[

e−
∫ t0

t rc(s)ds exp [−C(T − t0) −Dν(T − t0)ν(t0) −Dµ(T − t0)µ(t0) −Dλ(T − t0)Λ]
]

−EQ
t

[

e−
∫ t0

t rc(s)dsPc(t0, T )
])

× EQ
t [exp [−E(T − t0) − Fξ(T − t0)ξ(t0) − Fǫ(T − t0)ǫ(t0)]]

=
(

Pc(t, t0)e
−C(T−t0)−Dλ(T−t0)ΛEQ

t [exp [−Dν(T − t0)ν(t0) −Dµ(T − t0)µ(t0)]] − Pc(t, T )
)

× EQ
t [exp [−E(T − t0) − Fξ(T − t0)ξ(t0) − Fǫ(T − t0)ǫ(t0)]] .

The conditional expectations on the right hand side of the last equality can easily be obtained in closed

form using the affine transform formula in Duffie, Filipović, and Schachermayer (2003, Section 2).

It remains to be checked whether the above conditional expectations are well defined. Sufficient

admissibility conditions on the model parameters are provided by the following lemma, the proof of

which is in the online appendix.

Lemma C.4. (i) Suppose κλ ≥ 0, and define

Θν =

√

κ2
ν + 2

σ2
ν

ζλκλ + 1
, (42)

Cν =

2
ζλκλ+1

(

eΘν(T−t0) − 1
)

Θν

(

eΘν(T−t0) + 1
)

+ κν

(

eΘν(T−t0) − 1
) ,

Θµ =
√

κ2
µ + 2σ2

µκνCν , (43)

Cµ =
2κνCν

(

eΘµ(T−t0) − 1
)

Θµ

(

eΘµ(T−t0) + 1
)

+ κµ

(

eΘµ(T−t0) − 1
) .

If

κν >
1

2
σ2

νCν (44)
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and

κµ ≥ σ2
µCµe

−
κµ
2 τ∗

+
4κ2

νσ
2
µ

κµσ2
ν

(

2F1

(

1,
κµ

2κν

;
κµ + 2κν

2κν

;

(

σ2
νCν − 2κν

)

eκντ∗

σ2
νCν

)

−e−
κµ
2 τ∗

2F1

(

1,
κµ

2κν

;
κµ + 2κν

2κν

;
σ2

νCν − 2κν

σ2
νCν

))

(45)

where 2F1 denotes the Gauss hypergeometric function and

τ∗ =
1

κν

log max











(

2κν − σ2
ν

κ2
µ

2κνσ2
µ

)

2κνσ2
µ

κ2
µ
Cν

2κν − σ2
νCν

, 1











, (46)

then

EQ [exp [−Dν(T − t0)ν(t0) −Dµ(T − t0)µ(t0)]] <∞.

(ii) Define

Θξ =
√

κ2
ξ + 2σ2

ξ ,

Cξ =
2
(

eΘξ(T−t0) − 1
)

Θξ

(

eΘξ(T−t0) + 1
)

+ κξ

(

eΘξ(T−t0) − 1
) ,

Θǫ =
√

κ2
ǫ + 2σ2

ǫκξCξ,

Cǫ =
2κξCξ

(

eΘǫ(T−t0) − 1
)

Θǫ

(

eΘǫ(T−t0) + 1
)

+ κǫ

(

eΘǫ(T−t0) − 1
) .

If conditions (44) and (45) hold for Cν , κν , σν , Cµ, κµ, σµ replaced by Cξ, κξ, σξ, Cǫ, κǫ, σǫ, respec-

tively, then

EQ [exp [−Fξ(T − t0)ξ(t0) − Fǫ(T − t0)ǫ(t0)]] <∞.

Remark C.5. Note that τ∗ = 0 if and only if
κ2

µ

2κνσ2
µ
≥ Cν . In this case, (45) reads as κµ ≥ σ2

µCµ,

which is automatically satisfied as is shown at the end of the proof of Lemma C.4.

For the CDS coupon rate calculations, we need the respective exponential affine expressions for

(20), (21) and (22). For I1(t0, T ) we obtain

I1(t0, T ) =

N
∑

i=1

(ti − ti−1)e
−(ti−t0)ΛB(t0, ti). (47)

In both formulas for I2(t0, T ) and Vprot(t0, T ) the following expression shows up

J(t0, u) = EQ
t0

[

e
−
∫

u

t0
(rc(s)+λ(t0,s))ds

λ(t0, u)
]

.

Lemma C.6. We have

J(t0, u) = (g(u− t0) + hν(u− t0)ν(t0) + hµ(u − t0)µ(t0) + hλ(u− t0)Λ) e−(u−t0)ΛB(t0, u)
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where the functions g and h = (hν , hµ, hλ)⊤ solve the linear inhomogeneous system of ordinary differ-

ential equations

∂τg(τ) = κµθµhµ(τ) + κλΛhλ(τ)

∂τhν(τ) = σ2
νDν(τ)hν(τ) − κνhν(τ) +

ζλhλ(τ)

(ζλ −Dλ(τ))2

∂τhµ(τ) = σ2
µDµ(τ)hµ(τ) − κµhµ(τ) + κνhν(τ)

∂τhλ(τ) = −κλhλ(τ)

g(0) = 0, h(0) = (0, 0, 1)⊤.

(48)

and where the functions D = (Dν , Dµ, Dλ)⊤ are given in Lemma C.2.

Proof. We first decompose J(t0, u) = Pc(t0, u)I(t0, u) with

I(t0, u) = EQ
t0

[

e
−
∫

u

t0
λ(t0,s)ds

λ(t0, u)
]

,

which we can compute by differentiating the respective moment generating function41:

I(t0, u) =
d

dv
EQ

t0

[

e
−
∫

u

t0
λ(t0,s)ds

evλ(t0,u)
]

|v=0. (49)

The affine transform formula in Duffie, Filipović, and Schachermayer (2003, Section 2), gives us

EQ
t0

[

e
−
∫

u

t0
λ(t0,s)ds

evλ(t0,u)
]

= exp [G(u − t0, v) +Hν(u − t0, v)ν(t0) +Hµ(u − t0, v)µ(t0) +Hλ(u− t0, v)Λ]

where the functions G and H = (Hν , Hµ, Hλ)⊤ solve the system of Riccati equations

∂τG(τ, v) = κµθµHµ(τ, v) + κλΛHλ(τ, v)

∂τHν(τ, v) =
σ2

ν

2
Hν(τ, v)2 − κνHν(τ, v) +

Hλ(τ, v)

ζλ −Hλ(τ, v)

∂τHµ(τ, v) =
σ2

µ

2
Hµ(τ, v)2 − κµHµ(τ, v) + κνHν(τ, v)

∂τHλ(τ, v) = −κλHλ(τ, v) − 1

G(0, v) = 0, H(0, v) = (0, 0, v)⊤.

(50)

Hence from (49) we obtain

I(t0, u) = (g(u− t0) + hν(u− t0)ν(t0) + hµ(u− t0)µ(t0) + hλ(u− t0)Λ)

× exp [G(u − t0, 0) +Hν(u− t0, 0)ν(t0) +Hµ(u− t0, 0)µ(t0) +Hλ(u− t0, 0)Λ]

41Note that the change of order of differentiation and expectation is justified by dominated convergence. In-

deed, it follows from Duffie, Filipović, and Schachermayer (2003, Theorem 2.16) that EQ
t0

[

e
−

∫ u
t0

λ(t0,s)ds
evλ(t0,u)

]

is finite for all v in some neighborhood of zero.
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where g(τ) = d
dv
G(τ, v)|v=0, and h = (hν , hµ, hλ)⊤ is given by h(τ) = d

dv
H(τ, v)|v=0. Note that

G(τ, 0) = C(τ) − τΛ and H(τ, 0) = D(τ), see Lemma C.2. Differentiating both sides of the system

(50) in v at v = 0 shows that the functions g and h solve the linear inhomogeneous system of ordinary

differential equations (48). Thus the lemma is proved.

D Maximum likelihood estimation

D.1 The state space form

We cast the model in state space form, which consists of a measurement equation and a transition

equation. The measurement equation describes the relationship between the state variables and the

OIS rates, interest rate spreads, and CDS spreads, while the transition equation describes the discrete-

time dynamics of the state variables.

Let Xt denote the vector of state variables. While the transition density of Xt is unknown, its

conditional mean and variance is known in closed form, since Xt follows an affine diffusion process. We

approximate the transition density with a Gaussian density with identical first and second moments,

in which case the transition equation becomes

Xt = Φ0 + ΦXXt−1 + wt, wt ∼ N(0, Qt), (51)

with Φ0, ΦX , and Qt given in closed form.42

The measurement equation is given by

Zt = h(Xt) + ut, ut ∼ N(0,Ω), (52)

where Zt is the vector of OIS rates, interest rate spreads, and CDS spreads observed at time t, h is the

pricing function, and ut is a vector of iid. Gaussian pricing errors with covariance matrix Ω. To reduce

the number of parameters in Ω, we follow usual practice in the empirical term structure literature in

assuming that the pricing errors are cross-sectionally uncorrelated (that is, Ω is diagonal), and that the

same variance, σ2
err , applies to all pricing errors.

D.2 The unscented Kalman filter

If the pricing function were linear h(Xt) = h0+HXt, the Kalman filter would provide efficient estimates

of the conditional mean and variance of the state vector. Let X̂t|t−1 = Et−1[Xt] and Ẑt|t−1 = Et−1[Zt]

42Approximating the true transition density with a Gaussian, makes this a QML procedure. While QML

estimation has been shown to be consistent in many settings, it is in fact not consistent in a Kalman filter

setting since the conditional covariance matrix Qt in the recursions depends on the Kalman filter estimates of

the volatility state variables rather than the true, but unobservable, values; see, e.g., Duan and Simonato (1999).

However, simulation results in several papers have shown this issue to be negligible in practice.
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denote the expectation of Xt and Zt, respectively, using information up to and including time t−1, and

let Pt|t−1 and Ft|t−1 denote the corresponding error covariance matrices. Furthermore, let X̂t = Et[Xt]

denote the expectation of Xt including information at time t, and let Pt denote the corresponding error

covariance matrix. The Kalman filter consists of two steps: prediction and update. In the prediction

step, X̂t|t−1 and Pt|t−1 are given by

X̂t|t−1 = Φ0 + ΦXX̂t−1 (53)

Pt|t−1 = ΦXPt−1Φ
′
X +Qt, (54)

and Ẑt|t−1 and Ft|t−1 are in turn given by

Ẑt|t−1 = h(X̂t|t−1) (55)

Ft|t−1 = HPt|t−1H
′ + Ω. (56)

In the update step, the estimate of the state vector is refined based on the difference between predicted

and observed quantities, with X̂t = Et[Xt] and Pt given by

X̂t = X̂t|t−1 +Wt(Zt − Ẑt|t−1) (57)

Pt = Pt|t−1 −WtFt|t−1W
′
t , (58)

where

Wt = Pt|t−1H
′F−1

t|t−1 (59)

is the covariance between pricing and filtering errors.

In our setting, the pricing function is non-linear for all the instruments included in the estimation,

and the Kalman filter has to be modified. Non-linear state space systems have traditionally been

handled with the extended Kalman filter, which effectively linearizes the measure equation around

the predicted state. However, in recent years the unscented Kalman filter has emerged as a very

attractive alternative. Rather than approximating the measurement equation, it uses the true non-

linear measurement equation and instead approximates the distribution of the state vector with a

deterministically chosen set of sample points, called “sigma points”, that completely capture the true

mean and covariance of the state vector. When propagated through the non-linear pricing function,

the sigma points capture the mean and covariance of the data accurately to the 2nd order (3rd order

for true Gaussian states) for any nonlinearity.43

More specifically, a set of 2L+ 1 sigma points and associated weights are selected according to the

43For comparison, the extended Kalman filter estimates the mean and covariance accurately to the 1st order.

Note that the computational costs of the extended Kalman filter and the unscented Kalman filter are of the

same order of magnitude.
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following scheme

X̂ 0
t|t−1 = X̂t|t−1 w0 = κ

L+κ

X̂ i
t|t−1 = X̂t|t−1 +

(√

(L + κ)Pt|t−1

)

i
wi = 1

2(L+κ) i = 1, ..., L

X̂ i
t|t−1 = X̂t|t−1 −

(√

(L + κ)Pt|t−1

)

i
wi = 1

2(L+κ) i = L+ 1, ..., 2L,

(60)

where L is the dimension of X̂t|t−1, κ is a scaling parameter, wi is the weight associated with the

i’th sigma-point, and
(√

(L + κ)Pt|t−1

)

i
is the i’th column of the matrix square root. Then, in the

prediction step, (55) and (56) are replaced by

Ẑt|t−1 =
2L
∑

i=0

wih(X̂ i
t|t−1) (61)

Ft|t−1 =

2L
∑

i=0

wi(h(X̂ i
t|t−1) − Ẑt|t−1)(h(X̂

i
t|t−1) − Ẑt|t−1)

′ + Ω. (62)

The update step is still given by (57) and (58), but with Wt computed as

Wt =
2L
∑

i=0

wi(X̂ i
t|t−1 − X̂t|t−1)(h(X̂

i
t|t−1) − Ẑt|t−1)

′F−1
t|t−1. (63)

Finally, the log-likelihood function is given by

logL = −
1

2
log2π

T
∑

t=1

Nt −
1

2

T
∑

t=1

log|Ft|t−1| −
1

2

T
∑

t=1

(Zt − Ẑt|t−1)
′F−1

t|t−1(Zt − Ẑt|t−1), (64)

where T is the number of observation dates, and Nt is the dimension of Zt.
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Maturity

3M 6M 1Y 2Y 3Y 4Y 5Y 7Y 10Y

Panel A: USD market

OIS 1.17
(1.48)

1.17
(1.43)

1.26
(1.35)

1.63
(1.21)

2.06
(1.12)

2.42
(1.03)

2.72
(0.96)

3.17
(0.55)

†

SPREAD3M 58.7
(57.5)

51.2
(34.6)

43.8
(23.2)

39.0
(17.2)

35.4
(14.0)

32.5
(11.9)

28.7
(8.2)

†

SPREAD6M 79.1
(57.4)

70.0
(42.7)

58.0
(28.2)

50.8
(20.8)

45.8
(16.9)

41.9
(14.2)

38.1
(7.7)

†

CDSTrMean 67.8
(46.5)

70.2
(44.9)

78.7
(41.2)

85.3
(37.9)

93.4
(37.0)

99.1
(35.9)

102.1
(34.5)

104.8
(33.3)

CDSLIQ1 61.1
(41.9)

63.2
(40.4)

70.9
(37.1)

76.8
(34.1)

84.1
(33.3)

89.2
(32.3)

91.9
(31.0)

94.3
(30.0)

CDSLIQ2 78.7
(55.1)

82.9
(53.4)

91.2
(48.4)

98.8
(45.0)

106.2
(43.0)

113.1
(42.0)

114.6
(40.7)

116.6
(39.2)

Panel B: EUR market

OIS 1.91
(1.67)

1.93
(1.65)

2.00
(1.58)

2.21
(1.38)

2.45
(1.23)

2.67
(1.13)

2.85
(1.02)

3.14
(0.87)

3.44
(0.74)

SPREAD3M 58.7
(35.6)

49.6
(21.7)

43.0
(15.2)

39.6
(12.2)

36.0
(11.3)

34.3
(10.0)

32.0
(8.6)

29.9
(7.4)

SPREAD6M 73.5
(36.2)

66.3
(24.4)

55.9
(16.1)

50.6
(13.0)

45.7
(12.9)

43.1
(11.8)

39.6
(10.5)

36.2
(9.2)

CDSMedian 70.5
(43.0)

72.9
(40.5)

81.3
(37.7)

88.6
(35.9)

95.8
(35.2)

102.3
(34.8)

104.8
(34.4)

107.3
(33.9)

CDSLIQ1 63.4
(38.7)

65.6
(36.4)

73.2
(33.9)

79.7
(32.3)

86.2
(31.7)

92.1
(31.3)

94.3
(31.0)

96.6
(30.5)

CDSLIQ2 64.9
(39.3)

67.8
(38.6)

76.1
(36.2)

83.8
(35.2)

90.9
(35.0)

97.4
(35.3)

99.6
(34.9)

102.1
(34.5)

CDSiT raxx 104.0
(39.0)

109.0
(37.2)

Notes: The table shows means and, in parentheses, standard deviations of the time series. SPREAD3M

denotes the difference between the fixed rates on an IRS indexed to 3M LIBOR/EURIBOR and an OIS with
the same maturity. SPREAD6M denotes the difference between the fixed rates on an IRS indexed to 6M
LIBOR/EURIBOR and an OIS with the same maturity. CDSTrMean and CDSMedian are the CDS spread term
structures for the representative LIBOR and EURIBOR panel banks, respectively. CDSLIQ1, and CDSLIQ2 are
the CDS spread term structures corrected for possible liquidity effects as described in the main text. CDSiTraxx

is the iTraxx Senior Financials CDS index. OIS rates are measured in percentages, while interest rate spreads
and CDS spreads are measured in basis points. Each time series consists of 895 daily observations from August
09, 2007 to January 12, 2011, except those marked with † which consist of 643 daily observations from July 28,
2008 to January 12, 2011.

Table 1: Summary statistics



Bank Currency Mean CDS Std CDS Balance Liquidity Start date

Bank of America USD 136 62 2230 203 09-Aug-2007

Bank of Tokyo Mitsubishi USD 71 28 1619 17 09-Aug-2007

Barclays EUR 111 46 2227 117 09-Aug-2007

Citigroup USD 201 122 1857 155 09-Aug-2007

Credit Suisse EUR 108 40 997 71 06-May-2008

Deutsche Bank EUR 95 32 2151 159 09-Aug-2007

HSBC EUR 75 29 2364 38 09-Aug-2007

J. P. Morgan Chase USD 92 36 2032 174 09-Aug-2007

Lloyds TSB EUR 122 58 925 58 09-Aug-2007

Rabobank EUR 77 39 871 —— 09-Aug-2007

Royal Bank of Canada USD 75 36 606 —— 09-Aug-2007

Societe Generale EUR 93 34 1467 66 09-Aug-2007

Norinchukin Bank USD 85 41 630 2 09-Aug-2007

RBS EUR 134 53 2739 117 09-Aug-2007

UBS EUR 120 62 1296 81 09-Aug-2007

WestLB EUR 118 41 347 16 09-Aug-2007

Notes: The table displays data on the banks that are members of the LIBOR panel. For each bank, it shows
the currency of the CDS contracts, the mean and standard deviation of the 5Y CDS spread in basis points
per annum, the size of the balance sheet in billion USD equivalent as reported in the 2009 annual report, the
average daily notional of CDS transactions in million USD equivalent as reported by the Depository Trust and
Clearing Corporation, and the date from which the 5Y CDS contract is available in the Markit database.

Table 2: LIBOR panel



Bank Currency Mean CDS Std CDS Balance Liquidity Start date

Erste Bank EUR 186 70 202 8 11-Aug-2008

Raiffeisen Zentralbank EUR 174 93 148 8 09-Aug-2007

Dexia Bank EUR 216 103 578 14 09-Aug-2007

KBC EUR 143 76 324 3 09-Aug-2007

Nordea EUR 74 31 508 —— 09-Aug-2007

BNP-Paribas EUR 71 27 2058 72 09-Aug-2007

Societe Generale EUR 93 34 1024 66 09-Aug-2007

Natixis EUR 161 76 449 5 09-Aug-2007

Credit Agricole EUR 95 37 1557 74 09-Aug-2007

CIC EUR 92 34 236 —— 09-Aug-2007

Landesbank Berlin EUR 108 32 144 —— 14-Aug-2007

Bayerische Landesbank EUR 101 30 339 6 09-Aug-2007

Deutsche Bank EUR 95 32 1501 159 09-Aug-2007

WestLB EUR 118 41 242 16 09-Aug-2007

Commerzbank EUR 88 29 844 91 09-Aug-2007

DZ Bank EUR 106 32 389 —— 09-Aug-2007

Genossenschaftsbank EUR 134 19 68 —— 31-Oct-2008

Norddeutsche Landesbank EUR 99 29 239 —— 09-Aug-2007

Landesbank Baden-Wurttemberg EUR 107 33 412 —— 09-Aug-2007

Landesbank Hessen-Thuringen EUR 111 31 170 —— 09-Aug-2007

National Bank of Greece EUR 342 286 113 —— 09-Aug-2007

Allied Irish Banks EUR 297 265 174 20 09-Aug-2007

Intesa Sanpaolo EUR 83 40 625 117 09-Aug-2007

Monte dei Paschi di Siena EUR 105 57 225 84 09-Aug-2007

Unicredit EUR 121 42 929 114 21-May-2008

ING Bank EUR 91 35 1164 35 09-Aug-2007

RBS EUR 145 20 1912 117 20-Aug-2010

Rabobank EUR 77 39 608 —— 09-Aug-2007

Caixa Geral De Depositos EUR 164 132 121 —— 09-Aug-2007

Banco Bilbao Vizcaya Argentaria EUR 114 62 535 133 09-Aug-2007

Banco Santander EUR 109 52 1111 156 24-Aug-2007

La Caixa EUR 178 87 272 —— 09-Aug-2007

Notes: Continued in Table 4

Table 3: EURIBOR panel



Bank Currency Mean CDS Std CDS Balance Liquidity Start date

Barclays EUR 111 46 1554 117 09-Aug-2007

Danske Bank EUR 87 44 416 9 09-Aug-2007

Svenska Handelsbanken EUR 67 29 207 5 09-Aug-2007

UBS EUR 120 62 904 81 09-Aug-2007

Citigroup USD 201 122 1296 155 09-Aug-2007

J.P. Morgan Chase USD 92 36 1418 174 09-Aug-2007

Bank of Tokyo Mitsubishi USD 71 28 1224 17 09-Aug-2007

Notes: The table displays data on the banks that are members of the EURIBOR panel. For each bank, it shows
the currency of the CDS contracts, the mean and standard deviation of the 5Y CDS spread in basis points
per annum, the size of the balance sheet in billion EUR equivalent as reported in the 2009 annual report, the
average daily notional of CDS transactions in million USD equivalent as reported by the Depository Trust and
Clearing Corporation, and the date from which the 5Y CDS contract is available in the Markit database.

Table 4: EURIBOR panel (cont.)



USD market EUR market

A(2,1,1) A(2,2,1) A(2,2,2) A(2,1,1) A(2,2,1) A(2,2,2)

κr 0.1885
(0.0143)

0.2282
(0.0205)

0.3122
(0.1322)

0.2526
(0.0068)

0.2461
(0.0042)

0.2235
(0.0031)

σr 0.0055
(0.0004)

0.0054
(0.0003)

0.0054
(0.0003)

0.0053
(0.0003)

0.0053
(0.0003)

0.0051
(0.0002)

κγ 0.4667
(0.0278)

0.3864
(0.0303)

0.2836
(0.1234)

0.4703
(0.0156)

0.4663
(0.0097)

0.4566
(0.0076)

θγ 0.1340
(0.0031)

0.1304
(0.0022)

0.1263
(0.0020)

0.0503
(0.0003)

0.0514
(0.0003)

0.0603
(0.0009)

σγ 0.2251
(0.0180)

0.1814
(0.0166)

0.1285
(0.0547)

0.0336
(0.0026)

0.0415
(0.0029)

0.0808
(0.0044)

ρ −0.2115
(0.2365)

−0.2286
(0.1771)

−0.1694
(0.1965)

−0.2564
(0.0831)

−0.3198
(0.0813)

−0.2712
(0.1319)

κν 0.3268
(0.0020)

2.0977
(0.0493)

2.1843
(0.0697)

0.2603
(0.0019)

2.6835
(0.0528)

2.8773
(0.0627)

σν 0.3925
(0.0085)

0.6418
(0.0577)

0.5602
(0.0537)

0.3082
(0.0069)

0.6845
(0.0488)

0.5489
(0.0396)

κµ 0.0499
(0.0067)

0.0340
(0.0072)

0.0156
(0.0046)

0.0152
(0.0079)

θν or θµ 0.2326
(0.0019)

0.3844
(0.0258)

0.4634
(0.0635)

0.2162
(0.0012)

0.6196
(0.1268)

0.6285
(0.2555)

σµ 0.2549
(0.0074)

0.2643
(0.0074)

0.2049
(0.0047)

0.2144
(0.0056)

κλ 2.2595
(0.0149)

2.1878
(0.0113)

1.8242
(0.0159)

2.0701
(0.0086)

1.8452
(0.0083)

1.4773
(0.0083)

κξ 7.1547
(0.2180)

6.2883
(0.1114)

7.2128
(0.1187)

6.0240
(0.2739)

5.7965
(0.1982)

6.7061
(0.1504)

σξ 13.9675
(0.4648)

12.2294
(0.2364)

14.0501
(0.2538)

11.7578
(0.5793)

11.4319
(0.4121)

13.1116
(0.3151)

κǫ 1.3112
(0.0594)

0.4801
(0.0252)

θξ or θǫ 0.0000
(0.0002)

0.0010
(0.0005)

0.0000
(0.0001)

0.0000
(0.0001)

0.0027
(0.0008)

0.0001
(0.0002)

σǫ 1.9325
(0.1089)

0.6564
(0.0415)

Γr −0.1545
(0.1468)

−0.1885
(0.1640)

−0.3023
(0.2932)

−0.0764
(0.1345)

0.0143
(0.0546)

−0.0409
(0.0372)

Γγ −0.2349
(0.1198)

−0.2111
(0.1372)

−0.1731
(0.1160)

−0.1324
(0.0821)

−0.1511
(0.1133)

−0.1191
(0.0727)

Γν −0.3725
(0.3613)

−0.5631
(0.5913)

−0.7185
(0.5389)

−0.5773
(0.4445)

−0.4501
(0.5041)

−0.4010
(0.2847)

Γµ −0.4549
(0.1865)

−0.6938
(0.4232)

−0.1193
(0.1229)

−0.0798
(0.1276)

Γξ 0.0207
(0.0688)

−0.0372
(0.0827)

−0.1474
(0.4261)

−0.0511
(0.1011)

0.0794
(0.2725)

0.0272
(0.1239)

Γǫ −0.1251
(0.1939)

−0.2624
(0.8710)

σerr (bp) 10.4255
(0.0235)

8.6173
(0.0223)

8.1734
(0.0216)

10.0982
(0.0207)

8.1173
(0.0166)

7.3956
(0.0154)

logL ×10−4 -10.0436 -9.5909 -9.4830 -11.1765 -10.5827 -10.3603

Notes: The sample period is August 09, 2007 to January 12, 2011. Outer-product standard errors are in
parentheses. For identification purposes, we fix ζλ at 10 (corresponding to a mean jump size of 1000 bp) and Λ
at 5 bp. σerr denotes the standard deviation of pricing errors.

Table 5: Maximum-likelihood estimates



OIS SPREAD3M SPREAD6M CDS

Panel A: USD market

A(2,1,1) 7.14 7.65 7.63 11.55

A(2,2,1) 7.06 8.12 6.99 6.62

A(2,2,2) 7.02 7.65 6.37 6.19

A(2,2,1)-A(2,1,1) −0.09
(−1.71)

∗ 0.47
(0.99)

−0.63
(−2.51)

∗∗ −4.93
(−4.95)

∗∗∗

A(2,2,2)-A(2,2,1) −0.04
(−0.79)

−0.47
(−1.78)

∗ −0.62
(−5.72)

∗∗∗ −0.43
(−3.26)

∗∗∗

Panel B: EUR market

A(2,1,1) 6.16 7.66 8.23 11.77

A(2,2,1) 5.93 7.83 7.16 7.07

A(2,2,2) 5.59 7.13 6.22 6.34

A(2,2,1)-A(2,1,1) −0.23
(−8.12)

∗∗∗ 0.17
(0.63)

−1.06
(−4.04)

∗∗∗ −4.70
(−4.62)

∗∗∗

A(2,2,2)-A(2,2,1) −0.34
(−3.36)

∗∗∗ −0.70
(−1.57)

−0.95
(−4.08)

∗∗∗ −0.73
(−4.18)

∗∗∗

Notes: The table reports means of the root mean squared pricing error (RMSE) time-series of OIS rates, interest
rate spreads and CDS spreads. SPREAD3M denotes the difference between the fixed rates on an IRS indexed
to 3M LIBOR/EURIBOR and an OIS with the same maturity. SPREAD6M denotes the difference between the
fixed rates on an IRS indexed to 6M LIBOR/EURIBOR and an OIS with the same maturity. Units are basis
points. T-statistics, corrected for serial correlation up to 50 lags using the method of Newey and West (1987),
are in parentheses. ∗, ∗∗, and ∗ ∗ ∗ denote significance at the 10%, 5%, and 1% levels, respectively. Each time
series consists of 895 daily observations from August 09, 2007 to January 12, 2011,

Table 6: Comparing model specifications



Maturity

3M 6M 1Y 2Y 3Y 4Y 5Y 7Y 10Y

Panel A1: SPREAD3M , USD market

Default 28.1
(26.8)

25.2
(17.2)

24.0
(12.5)

23.8
(10.7)

23.9
(9.8)

24.1
(9.2)

28.6
(5.8)

†

Non-default 33.4
(45.2)

20.4
(27.3)

10.6
(14.1)

7.2
(9.5)

5.5
(7.3)

4.5
(6.0)

1.8
(3.5)

†

Panel A2: SPREAD6M , USD market

Default 45.9
(39.7)

43.1
(30.1)

40.9
(21.8)

40.5
(18.5)

40.7
(16.8)

41.0
(15.7)

48.6
(10.0)

†

Non-default 38.3
(53.2)

29.6
(40.5)

15.6
(21.2)

10.6
(14.3)

8.1
(10.9)

6.7
(8.9)

2.9
(5.4)

†

Panel B1: SPREAD3M , EUR market

Default 28.6
(23.1)

24.2
(13.7)

22.5
(10.0)

22.1
(8.8)

22.1
(8.2)

22.2
(7.9)

22.7
(7.5)

23.4
(7.2)

Non-default 30.5
(34.1)

21.9
(22.8)

11.7
(12.0)

8.0
(8.2)

6.2
(6.3)

5.1
(5.1)

3.9
(3.8)

3.0
(2.8)

Panel B2: SPREAD6M , EUR market

Default 46.7
(34.0)

42.4
(24.7)

39.3
(17.9)

38.5
(15.6)

38.5
(14.5)

38.7
(13.8)

39.4
(13.1)

40.8
(12.5)

Non-default 34.1
(36.1)

31.0
(31.2)

17.3
(17.1)

11.9
(11.7)

9.2
(8.9)

7.6
(7.3)

5.8
(5.4)

4.5
(4.0)

Notes: The table shows the decomposition of the spread term structures using the A(2,2,1) specification and
the CDSTrMean and CDSMedian measures of interbank default risk in the USD and EUR markets, respectively.
Each spread is decomposed into a default and a non-default component and the table displays means and, in
parentheses, standard deviations of the time-series of the two components. SPREAD3M and SPREAD6M

denote the spread term structures indexed to 3M and 6M LIBOR/EURIBOR, respectively. Units are basis
points. Each time series consists of 895 daily observations from August 09, 2007 to January 12, 2011, except
those marked with † which consist of 643 daily observations from July 28, 2008 to January 12, 2011.

Table 7: Decomposition of the term structure of interbank risk



OIS-Tbill RefCorp-

Treasury

HPW noise Fails adj. R2

Panel A: USD market

0.016
(1.804)

∗ 0.065

0.025
(2.380)

∗∗ 0.184

0.748
(5.925)

∗∗∗ 0.591

16.859
(7.112)

∗∗∗ 0.409

0.010
(1.768)

∗ −0.017
(−1.126)

0.967
(4.275)

∗∗∗ 0.684

0.007
(0.998)

−0.017
(−0.993)

0.904
(3.183)

∗∗∗ 4.290
(2.166)

∗∗ 0.715

Panel B: EUR market

0.006
(2.129)

∗∗ 0.046

0.008
(1.280)

0.077

0.241
(3.072)

∗∗∗ 0.296

5.267
(3.503)

∗∗∗ 0.188

0.004
(1.299)

−0.007
(−0.951)

0.328
(2.984)

∗∗∗ 0.361

0.003
(0.941)

−0.007
(−0.858)

0.330
(2.295)

∗∗ 0.587
(0.415)

0.366

Notes: The table reports results from regressing ξ(t) inferred from the A(2,2,1) specification on four illiquidity
measures: the 3M OIS-Tbill spread, the 10Y Refcorp-Treasury yield spread, the Hu, Pan, and Wang (2010)
noise measure, and the weekly sum of the notional amount of Treasury settlement fails (average of failure to
deliver and failure to receive) reported by primary dealers. The first three measures are in basis points, while
the forth measure is in USD billions. In each panel, the regressions are run with daily data, except the fourth
and sixth regressions involving Treasury settlement fails, which are run with weekly data (summing up the daily
observations over the week). T -statistics, corrected for serial correlation up to 22 lags in the daily regressions
(4 lags in the weekly regressions) using the method of Newey and West (1987), are in parentheses. ∗, ∗∗, and
∗ ∗ ∗ denote significance at the 10%, 5%, and 1% levels, respectively. Each time series consists of 600 daily
observations (or 125 weekly observations) from August 09, 2007 to December 31, 2009,

Table 8: The non-default component and liquidity



Maturity

3M 1Y 2Y 3Y 4Y 5Y 10Y

Panel A: A(2, 1, 1), CDSTrMean

Default 25.1
(17.2)

25.1
(15.3)

25.0
(13.2)

25.0
(11.5)

24.9
(10.2)

24.9
(9.0)

26.8
(5.2)

†

Non-default 35.8
(45.2)

21.3
(26.4)

10.9
(13.5)

7.4
(9.2)

5.7
(7.0)

4.6
(5.7)

1.9
(3.4)

†

Panel B: A(2, 2, 2), CDSTrMean

Default 27.8
(25.2)

23.3
(15.7)

21.5
(11.2)

21.0
(9.5)

21.1
(8.7)

21.3
(8.2)

25.7
(5.2)

†

Non-default 31.9
(45.1)

22.3
(27.2)

13.8
(14.8)

10.1
(10.2)

7.9
(7.9)

6.5
(6.4)

2.9
(3.8)

†

Panel C: A(2, 2, 1), CDSLIQ1

Default 25.8
(24.9)

24.5
(16.9)

24.0
(12.6)

24.1
(10.9)

24.3
(9.9)

24.6
(9.3)

29.0
(5.9)

†

Non-default 35.7
(46.2)

22.0
(28.0)

11.3
(14.4)

7.7
(9.7)

5.9
(7.4)

4.8
(6.1)

1.9
(3.6)

†

Panel D: A(2, 2, 1), CDSLIQ2

Default 31.0
(28.5)

26.2
(17.8)

24.0
(12.5)

23.3
(10.5)

23.1
(9.5)

23.1
(8.9)

27.1
(5.6)

†

Non-default 31.7
(43.4)

19.7
(26.8)

10.2
(13.8)

7.0
(9.4)

5.4
(7.2)

4.4
(5.9)

1.7
(3.4)

†

Notes: The table shows alternative decompositions, for the USD market, of the spread term structure indexed
to 3M LIBOR, SPREAD3M . Each spread is decomposed into a default and a non-default component and
the table displays means and, in parentheses, standard deviations of the time-series of the two components.
Panels A and B display results using the A(2,1,1) and A(2,2,2) specifications, respectively, combined with the
CDSTrMean measure of interbank default risk. Panels C and D display results using the A(2,2,1) specification
combined with the CDSLIQ1 and CDSLIQ2 measures of interbank default risk, respectively. Units are basis
points. Each time series consists of 895 daily observations from August 09, 2007 to January 12, 2011, except
those marked with † which consist of 643 daily observations from July 28, 2008 to January 12, 2011.

Table 9: Alternative decomposition of the term structure of USD interbank risk
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Figure 1: Money market and swap market spreads

The figures shows time-series of the spread between 3M LIBOR and the 3M OIS rate (solid line) and the spread

between the rate on a 5Y interest rate swap indexed to 3M LIBOR and the 5Y OIS rate (dotted line). Note

that the 3M LIBOR-OIS spread reached a maximum 366 basis points on October 10, 2008. The vertical dotted

lines mark the beginning of the financial crisis on August 9, 2007, the sale of Bear Stearns to J.P. Morgan on

March 16, 2008, the Lehman Brothers bankruptcy filing on September 15, 2008, and the downgrade of Greece’s

debt to non-investment grade status by Standard and Poor’s on April 27, 2010. Both time series consists of

1313 daily observations from January 02, 2006 to January 12, 2011.

45
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Panel A: r(t) and γ(t)
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Figure 2: State variables, USD

The figure shows the state variables for the three model specifications estimated on USD data The vertical

dotted lines mark the sale of Bear Stearns to J.P. Morgan on March 16, 2008, the Lehman Brothers bankruptcy

filing on September 15, 2008, and the downgrade of Greece’s debt to non-investment grade status by Standard

and Poor’s on April 27, 2010. Each time series consists of 895 daily observations from August 09, 2007 to

January 12, 2011.

46



Panel A: 3M spread Panel B: 6M spread

Panel C: 5Y(3M) spread Panel D: 5Y(6M) spread
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Figure 3: Decomposition of USD interbank risk

Decomposing USD interbank risk into default (dark-grey) and non-default (light-grey) components using the

A(2,2,1) specification and the CDSTrMean measure of interbank default risk. Panels A and B display decom-

positions of the 3M and 6M LIBOR-OIS spread, respectively. Panels C and D display decompositions of the

5Y IRS-OIS spread indexed to 3M and 6M LIBOR, respectively. Units are basis points. The vertical dotted

lines mark the sale of Bear Stearns to J.P. Morgan on March 16, 2008, the Lehman Brothers bankruptcy filing

on September 15, 2008, and the downgrade of Greece’s debt to non-investment grade status by Standard and

Poor’s on April 27, 2010. Each time series consists of 895 daily observations from August 09, 2007 to January

12, 2011.
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Panel A: 3M spread Panel B: 6M spread

Panel C: 5Y(3M) spread Panel D: 5Y(6M) spread
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Figure 4: Decomposition of EUR interbank risk

Decomposing EUR interbank risk into default (dark-grey) and non-default (light-grey) components using the

A(2,2,1) specification and the CDSMedian measure of interbank default risk. Panels A and B display decompo-

sitions of the 3M and 6M EURIBOR-OIS spread, respectively. Panels C and D display decompositions of the

5Y IRS-OIS spread indexed to 3M and 6M EURIBOR, respectively. Units are basis points. The vertical dotted

lines mark the sale of Bear Stearns to J.P. Morgan on March 16, 2008, the Lehman Brothers bankruptcy filing

on September 15, 2008, and the downgrade of Greece’s debt to non-investment grade status by Standard and

Poor’s on April 27, 2010. Each time series consists of 895 daily observations from August 09, 2007 to January

12, 2011.
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Panel A: A(2, 1, 1), CDSTrMean Panel B: A(2, 2, 2), CDSTrMean

Panel C: A(2, 2, 1), CDSLIQ1 Panel D: A(2, 2, 1), CDSLIQ2
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Figure 5: Alternative decompositions of USD interbank risk, 3M horizon

Alternative decompositions of the 3M LIBOR-OIS spread into default (dark-grey) and non-default (light-grey)

components. Panels A and B display results using the A(2,1,1) and A(2,2,2) specifications, respectively, com-

bined with the CDSTrMean measure of interbank default risk. Panels C and D display results using the A(2,2,1)

specification combined with the CDSLIQ1 and CDSLIQ2 measures of interbank default risk, respectively. Units

are basis points. The vertical dotted lines mark the sale of Bear Stearns to J.P. Morgan on March 16, 2008,

the Lehman Brothers bankruptcy filing on September 15, 2008, and the downgrade of Greece’s debt to non-

investment grade status by Standard and Poor’s on April 27, 2010. Each time series consists of 895 daily

observations from August 09, 2007 to January 12, 2011.
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Panel A: A(2, 1, 1), CDSTrMean Panel B: A(2, 2, 2), CDSTrMean

Panel C: A(2, 2, 1), CDSLIQ1 Panel D: A(2, 2, 1), CDSLIQ2
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Figure 6: Alternative decompositions of USD interbank risk, 5Y horizon

Alternative decompositions of the 5Y IRS-OIS spread indexed to 3M LIBOR into default (dark-grey) and non-

default (light-grey) components. Panels A and B display results using the A(2,1,1) and A(2,2,2) specifications,

respectively, combined with the CDSTrMean measure of interbank default risk. Panels C and D display results

using the A(2,2,1) specification combined with the CDSLIQ1 and CDSLIQ2 measures of interbank default risk,

respectively. Units are basis points. The vertical dotted lines mark the sale of Bear Stearns to J.P. Morgan on

March 16, 2008, the Lehman Brothers bankruptcy filing on September 15, 2008, and the downgrade of Greece’s

debt to non-investment grade status by Standard and Poor’s on April 27, 2010. Each time series consists of

895 daily observations from August 09, 2007 to January 12, 2011.
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Damir Filipović and Anders B. Trolle

Ecole Polytechnique Fédérale de Lausanne and Swiss Finance Institute



E Proof of Lemma C.4

For the proof of Lemma C.4 we first recall a fundamental comparison result for ordinary differential

equations, which is a special case of a more general theorem proved by Volkmann (1972):

Lemma E.1. Let R(τ, v) be a continuous real map on R+ × R and locally Lipschitz continuous in v.

Let p(τ) and q(τ) be differentiable functions satisfying

∂τp(τ) ≤ R(τ, p(τ))

∂τq(τ) = R(τ, q(τ))

p(0) ≤ q(0).

Then we have p(τ) ≤ q(τ) for all τ ≥ 0.

We only prove the first part of Lemma C.4, the proof of the second part being similar.44 It follows

from Duffie, Filipović, and Schachermayer (2003, Theorem 2.16), see also Filipović (2009, Theorem

10.3), that the affine transform formula

EQ [exp [uνν(τ) + uµµ(τ)]] = exp [φ(τ, u) + ψν(τ, u)ν(0) + ψµ(τ, u)µ(0)]

holds, and the expectation on the left hand side is finite in particular, for u = (uν , uµ)⊤ ∈ R
2 if φ(τ, u),

ψν(τ, u) and ψµ(τ, u) are finite solutions of the corresponding system of Riccati equations

∂τφ(τ, u) = κµθµψµ(τ, u) + Λ

φ(0, u) = 0

∂τψν(τ, u) =
σ2

ν

2
ψν(τ, u)2 − κνψν(τ, u)

ψν(0, u) = uν

∂τψµ(τ, u) =
σ2

µ

2
ψµ(τ, u)2 − κµψµ(τ, u) + κνψν(τ, u)

ψµ(0, u) = uµ.

(E.1)

It is thus enough to show that both, ψν(τ, u∗) and ψµ(τ, u∗), are finite for all τ ≥ 0 and for u∗ :=

(−Dν(T − t0),−Dµ(T − t0))
⊤.

We first provide a bound for u∗. Note that Dλ(τ), defined as solution of (38), is given by Dλ(τ) =

− 1
κλ

(1 − e−κλτ ). This implies − 1
κλ

≤ Dλ(τ) ≤ 0 and thus

−
1

ζλκλ + 1
≤

Dλ(τ)

ζλ −Dλ(τ)
≤ 0.

44Indeed, after replacing 1
ζλκλ+1

by 1 in (E.2), and in the definition of pν(τ ), Θν and Cν below, the proof of

the second part of Lemma C.4 is literally the same.
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In view of (38) and Lemma E.1 we conclude that pν(τ) ≤ Dν(τ) ≤ 0 where pν(τ) solves the Riccati

differential equation

∂τpν(τ) =
σ2

ν

2
pν(τ)2 − κνpν(τ) −

1

ζλκλ + 1

pν(0) = 0.

(E.2)

The explicit solution of (E.2) is well known to be

pν(τ) = −

2
ζλκλ+1

(

eΘντ − 1
)

Θν (eΘντ + 1) + κν (eΘντ − 1)

where Θν is defined in (42), see e.g. Filipović (2009, Lemma 10.12). We thus obtain the estimate

0 ≤ −Dν(T − t0) ≤ −pν(T − t0) = Cν . (E.3)

Similarly, in view of (38), (E.3) and Lemma E.1, we infer that pµ(τ) ≤ Dµ(τ) ≤ 0 where pµ(τ)

solves the Riccati equation

∂τpµ(τ) =
σ2

µ

2
pµ(τ)2 − κµpµ(τ) − κνCν

pµ(0) = 0.

(E.4)

Again, the explicit solution of (E.4) is readily available, see e.g. Filipović (2009, Lemma 10.12):

pµ(τ) = −
2κνCν

(

eΘµτ − 1
)

Θµ (eΘµτ + 1) + κµ (eΘµτ − 1)

where Θµ is defined in (43). Moreover, it follows by inspection that pµ(τ) ↓ P1 as τ → ∞ for the left

critical point

P1 =
κµ −

√

κ2
µ + 2σ2

µκνCν

σ2
µ

of the differential equation (E.4), and we obtain the estimates

0 ≤ −Dµ(T − t0) ≤ −pµ(T − t0) = Cµ ≤ −P1. (E.5)

Next, we give a priori bounds on ψν(τ, u∗) and ψµ(τ, u∗). Denote by P2 = 2κν

σ2
ν

the right critical

point of the homogeneous Riccati differential equation (E.1) for ψν(τ, u), and denote by

qν(τ) =
2κνCν

(2κν − σ2
νCν) eκντ + σ2

νCν

(E.6)

the solution of (E.1) for ψν(τ, u) with initial condition uν = Cν , see e.g. Filipović (2009, Lemma 10.12).

It then follows from Lemma E.1 and by inspection that

0 ≤ ψν(τ, u∗) ≤ qν(τ) and qν(τ) ↓ 0 for τ → ∞ if Cν < P2, (E.7)

which is (44).
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Now suppose that (44) holds, that is, Cν < P2. Combining (E.7) with (E.1), (E.5) and Lemma E.1

implies

0 ≤ ψµ(τ, u∗) ≤ qµ(τ)

where qµ(τ) solves the time-inhomogeneous Riccati equation

∂τ qµ(τ) =
σ2

µ

2
qµ(τ)2 − κµqµ(τ) + κνqν(τ)

qµ(0) = Cµ.

If σµ = 0 then obviously qµ(τ) is finite for all τ ≥ 0, and there is nothing left to prove. So from now

on we assume that σµ > 0 and κµ ≥ 0. Since there is no closed form expression for qµ(τ) available in

general, we are going to control qµ from above by a time-inhomogeneous linear differential equation.

Hereto note the elementary fact that

σ2
µ

2
x2 − κµx+ κνqν(τ) ≤ −

κµ

2
x+ κνqν(τ) for all 0 ≤ x ≤

κµ

σ2
µ

.

Hence, by Lemma E.1, the solution f of

∂τf(τ) = −
κµ

2
f(τ) + κνqν(τ)

f(0) = Cµ

dominates qµ, that is, 0 ≤ qµ(τ) ≤ f(τ) for all τ ≥ 0, if

f(τ) ≤
κµ

σ2
µ

(E.8)

for all τ ≥ 0.

We now claim that (E.8) holds for any fixed τ ≥ 0 if and only if

∫ τ

0

e
κµ
2 s

(

κνqν(s) −
κ2

µ

2σ2
µ

)

ds ≤
κµ

σ2
µ

− Cµ. (E.9)

Indeed, f can be represented by the variation of constants formula

f(τ) = e−
κµ
2 τCµ +

∫ τ

0

e−
κµ
2 (τ−s)κνqν(s) ds. (E.10)

Hence (E.8) is equivalent to

Cµ +

∫ τ

0

e
κµ

2 sκνqν(s) ds ≤
κµ

σ2
µ

e
κµ

2 τ . (E.11)

The right hand side of (E.11) can be rewritten as

κµ

σ2
µ

e
κµ
2 τ =

κµ

σ2
µ

(

e
κµ
2 τ − 1

)

+ e
κµ
2 τ =

κ2
µ

2σ2
µ

∫ τ

0

e
κµ
2 s ds+

κµ

σ2
µ

.

Plugging this in (E.11) and rearrange terms yields (E.9).
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In view of (E.7) we infer that the maximum of the left hand side of (E.9) is attained at τ = τ∗

where

τ∗ = inf
{

τ ≥ 0 | κ2
µ − 2σ2

µκνqν(τ) ≥ 0
}

<∞,

and which by (E.6) can be written as in (46). Hence the bound (E.8) holds for all τ ≥ 0 if and only if

(E.8) holds for τ = τ∗. This again is equivalent to (45), since the integral in (E.10) can be expressed

as45

∫ τ

0

e−
κµ
2 (τ−s)κνqν(s) ds =

4κ2
ν

κµσ2
ν

(

2F1

(

1,
κµ

2κν

;
κµ + 2κν

2κν

;

(

σ2
νCν − 2κν

)

eκντ

σ2
νCν

)

−e−
κµ
2 τ

2F1

(

1,
κµ

2κν

;
κµ + 2κν

2κν

;
σ2

νCν − 2κν

σ2
νCν

))

where 2F1 is the Gauss hypergeometric function. Finally, note that τ∗ = 0 if and only if
κ2

µ

2κνσ2
µ
≥ Cν .

In this case, (E.5) implies

σ2
µCµ ≤

√

κ2
µ + 2σ2

µκνCν − κµ ≤
√

2κ2
µ − κµ ≤ κµ,

so that (45) automatically holds. This finishes the proof of Lemma C.4.
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F Comparing alternative quotation convention for basis swaps

As discussed in Section 2.4, there is no universally accepted quotation convention for basis swaps. The

two most common conventions are the following. In the first convention (I), and the one we use in the

paper, the cash flow in a basis swap is the difference between the cash flows in two IRS indexed to

different floating rates. In the case of a 3M/6M basis swap and with δ = 3M, this implies that one

party pays δL(t− δ, t) quarterly, while the other party pays 2δL(t− 2δ, t) semi-annually, with the fixed

spread payments made semi-annually in the USD market and annually in the EUR market. Given that

our model has an analytical solution to an IRS, it also has an analytical solution to a basis swap defined

according to this convention.

In the second convention (II), all payments occur at the frequency of the longer floating rate with

the shorter floating rate paid compounded. In the case of a 3M/6M basis swap, this implies for both

markets that on a semi-annual basis one party pays δL(t−2δ, t− δ)(1+ δL(t− δ, t))+ δL(t− δ, t) plus a

fixed spread, while the other party pays 2δL(t− 2δ, t). If we assume that payments are made on tenor

structure (5) with ti = ti−1 + 2δ, the basis swap rate according to this convention is given by

BSδ,2δ(t, T ) =
1

∑N
i=1 2δPc(t, ti)

(

N
∑

i=1

EQ
t

[

e−
∫ ti

t rc(s)ds
(

2δL(ti−1, ti) −

(

δL(ti−1, ti−1 + δ)(1 + δL(ti−1 + δ, ti)) + δL(ti−1 + δ, ti)
)

)]

)

, (F.1)

We now quantify the difference between the two market conventions. For a given parameter set

and state vector, we compute 3M/6M basis swap rates implied by conventions (I) analytically, and by

convention (II) via simulation.46 We consider both markets and for each market two state vectors: the

mean state vector and the state vector on the day of the widest 1Y basis swap rate. Table F.1 shows

the spread term structures implied by convention (I). It also shows the differences between the spread

term structures implied by convention (II) and (I) along with the standard errors of the simulated basis

swap rates in parentheses. On a typical day, the differences between the spreads implied by the two

conventions are very small both in absolute and relative terms. Even on the day of the widest 1Y basis

swap rate, the differences between the spreads remain very small in relative terms. We conclude that

our results do not depend on the choice of basis swap convention.

46In principle, one can compute basis swap rates for convention (II) analytically as well. However, the

expressions are fairly involved and as the spreads can be simulated very accurately using a low number of

simulations, we opt for this approach.
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Maturity

1Y 2Y 3Y 4Y 5Y 7Y 10Y

Panel A: USD market, typical day

(I) 22.087 15.449 12.525 10.864 9.791 8.496 7.482

(II)-(I) −0.125
(0.003)

−0.118
(0.004)

−0.121
(0.005)

−0.126
(0.006)

−0.131
(0.007)

−0.143
(0.007)

−0.168
(0.008)

Panel B: USD market, day of widest 1Y spread

(I) 39.629 23.089 16.881 13.865 12.114 10.179 8.759

(II)-(I) −0.601
(0.008)

−0.347
(0.005)

−0.265
(0.005)

−0.233
(0.005)

−0.217
(0.006)

−0.208
(0.006)

−0.219
(0.008)

Panel C: EUR market, typical day

(I) 14.546 12.793 11.862 11.211 10.681 9.788 8.687

(II)-(I) −0.215
(0.002)

−0.202
(0.003)

−0.203
(0.004)

−0.207
(0.005)

−0.209
(0.005)

−0.213
(0.007)

−0.210
(0.008)

Panel D: EUR market, day of widest 1Y spread

(I) 36.655 26.557 22.032 19.435 17.684 15.310 12.996

(II)-(I) −0.836
(0.004)

−0.583
(0.005)

−0.482
(0.006)

−0.431
(0.007)

−0.400
(0.008)

−0.361
(0.010)

−0.322
(0.011)

Notes: In this table, we asses the difference between the 3M/6M basis swap rates implied by market conventions
(I) and (II). The former can be computed analytically within our model, while the latter is computed by
simulation. For the simulation, we use 2000 paths (1000 plus 1000 antithetic) and the basis swap rate implied
by convention (I) as a very efficient control variate. In each panel, the first line shows the term structure of basis
swap rates implied by convention (I). The second line shows the difference between the term structure of basis
swap rates implied by conventions (II) and (I), with standard errors of the simulated basis swap rates reported
in parentheses. Panels A and C show results using the mean state vector, while Panels B and D show results
using the state vector on the day of the widest 1Y basis swap rate (October 14, 2008 in USD and October 13,
2008 in EUR) We use the A(2,2,1) specification, with parameter estimates reported in Table 5. Basis swap
rates are reported in basis points.

Table F.1: Impact of differences in market convention for basis swaps



G Additional tables and figures

Table G.1 shows alternative decompositions of the term structure of EUR interbank risk. Figure G.1

displays the state variables for the three model specifications estimated on EUR data. Figures G.2 and

G.3 show time series of the alternative decompositions of EUR interbank risk at the short end and long

end of the term structure, respectively.
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Maturity

3M 1Y 2Y 3Y 4Y 5Y 7Y 10Y

Panel A: A(2, 1, 1), CDSMedian

Default 24.9
(14.1)

24.8
(12.9)

24.6
(11.4)

24.5
(10.2)

24.3
(9.2)

24.2
(8.3)

24.1
(7.0)

23.9
(5.6)

Non-default 32.0
(34.9)

21.2
(21.7)

11.0
(11.2)

7.5
(7.6)

5.7
(5.8)

4.7
(4.7)

3.5
(3.5)

2.6
(2.6)

Panel B: A(2, 2, 2), CDSMedian

Default 29.3
(21.8)

22.4
(12.5)

19.8
(9.0)

19.1
(7.9)

19.0
(7.3)

19.1
(7.0)

19.5
(6.6)

20.2
(6.3)

Non-default 28.2
(33.7)

22.0
(22.0)

15.0
(13.0)

12.0
(9.7)

10.2
(7.9)

8.9
(6.7)

7.0
(5.2)

5.3
(3.9)

Panel C: A(2, 2, 1), CDSLIQ1

Default 26.6
(22.3)

23.7
(13.6)

22.7
(10.2)

22.5
(9.0)

22.6
(8.5)

22.8
(8.1)

23.3
(7.7)

24.1
(7.3)

Non-default 32.2
(34.8)

22.7
(22.9)

12.0
(12.0)

8.2
(8.2)

6.3
(6.3)

5.2
(5.1)

3.9
(3.8)

3.0
(2.8)

Panel D: A(2, 2, 1), CDSLIQ2

Default 26.4
(22.4)

22.8
(13.3)

21.4
(9.9)

21.2
(8.8)

21.3
(8.3)

21.4
(8.0)

22.0
(7.7)

22.8
(7.4)

Non-default 31.9
(34.0)

23.3
(22.7)

12.7
(12.0)

8.9
(8.2)

7.1
(6.3)

6.0
(5.2)

4.8
(3.9)

4.0
(2.9)

Panel E: A(2, 2, 1), CDSiT raxx

Default 15.6
(13.9)

17.1
(9.1)

17.8
(7.4)

18.1
(6.9)

18.3
(6.7)

18.4
(6.6)

18.5
(6.6)

18.6
(6.6)

Non-default 40.8
(37.3)

29.1
(23.2)

16.7
(12.4)

12.5
(8.6)

10.6
(6.7)

9.5
(5.6)

8.4
(4.2)

7.7
(3.2)

Notes: The table shows alternative decompositions, for the EUR market, of the spread term structure indexed
to 3M LIBOR, SPREAD3M . Each spread is decomposed into a default and a non-default component and
the table displays means and, in parentheses, standard deviations of the time-series of the two components.
Panels A and B display results using the A(2,1,1) and A(2,2,2) specifications, respectively, combined with the
CDSMedian measure of interbank default risk. Panels C, D, and E display results using the A(2,2,1) specification
combined with the CDSLIQ1, CDSLIQ2, and CDSiTraxx measures of interbank default risk, respectively. Units
are basis points. Each time series consists of 895 daily observations from August 09, 2007 to January 12, 2011.

Table G.1: Alternative decompositions of the term structure of EUR interbank risk
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Figure G.1: State variables, EUR

The figure shows the state variables for the three model specifications estimated on EUR data The vertical

dotted lines mark the sale of Bear Stearns to J.P. Morgan on March 16, 2008, the Lehman Brothers bankruptcy

filing on September 15, 2008, and the downgrade of Greece’s debt to non-investment grade status by Standard

and Poor’s on April 27, 2010. Each time series consists of 895 daily observations from August 09, 2007 to

January 12, 2011.
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Panel A: A(2, 1, 1), CDSMedian Panel B: A(2, 2, 2), CDSMedian

Panel C: A(2, 2, 1), CDSLIQ1 Panel D: A(2, 2, 1), CDSLIQ2
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Figure G.2: Alternative decompositions of EUR interbank risk, 3M horizon

Alternative decompositions of the 3M LIBOR-OIS spread into default (dark-grey) and non-default (light-grey)

components. Panels A and B display results using the A(2,1,1) and A(2,2,2) specifications, respectively, com-

bined with the CDSMedian measure of interbank default risk. Panels C and D display results using the A(2,2,1)

specification combined with the CDSLIQ1 and CDSLIQ2 measures of interbank default risk, respectively. Units

are basis points. The vertical dotted lines mark the sale of Bear Stearns to J.P. Morgan on March 16, 2008,

the Lehman Brothers bankruptcy filing on September 15, 2008, and the downgrade of Greece’s debt to non-

investment grade status by Standard and Poor’s on April 27, 2010. Each time series consists of 895 daily

observations from August 09, 2007 to January 12, 2011.
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Figure G.3: Alternative decompositions of EUR interbank risk, 5Y horizon

Alternative decompositions of the 5Y IRS-OIS spread indexed to 3M LIBOR into default (dark-grey) and non-

default (light-grey) components. Panels A and B display results using the A(2,1,1) and A(2,2,2) specifications,

respectively, combined with the CDSMedian measure of interbank default risk. Panels C and D display results

using the A(2,2,1) specification combined with the CDSLIQ1 and CDSLIQ2 measures of interbank default risk,

respectively. Units are basis points. The vertical dotted lines mark the sale of Bear Stearns to J.P. Morgan on

March 16, 2008, the Lehman Brothers bankruptcy filing on September 15, 2008, and the downgrade of Greece’s

debt to non-investment grade status by Standard and Poor’s on April 27, 2010. Each time series consists of

895 daily observations from August 09, 2007 to January 12, 2011.
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