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Allocating Systematic and Unsystematic Risks in a Regulatory
Perspective

Abstract

This paper discusses the contributions of financial entities to a global re-
serve from a regulatory perspective. We introduce axioms of decentralization,
additivity and compatibility with risk ordering, which should be satisfied by
the contributions of the entities and we characterize the set of contributions
compatible with these axioms. Then, we explain how to disentangle the sys-
tematic and unsystematic risk components of these contributions. Finally,
we discuss the usual relationship between baseline reserve and reglementary
required capital, and propose alternative solutions to the question of pro-
cyclical required capital.

Keywords : Risk Measure, Allocation, Regulation, Systematic Risk, Pro-
cyclical Effect.
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1 Introduction

The definition of the required capital in Basel regulation is often presented
as an important reason of the development of the recent financial crisis. The
following arguments are in particular invoked :

i) The regulatory capitals, which the banks were required to hold by the
regulator, were not sufficiently large to cover the (extreme) risks.

ii) They did not account for comovement of financial institutions assets and
liabilities, that is, for systematic risk factors.

iii) This regulation had a procyclical effect, instead of the expected counter-
cyclical effect.

These possible drawbacks of the previous regulation explain the recent
changes in both regulation and academic research. Examples are the in-
troduction of additional regulators focusing on systemic risk, the various
stress-testing performed in US as well as in European countries, or the new
measures of systemic risk introduced in the academic literature.

The aim of our paper is to identify more precisely possible deficiencies of
the regulation rules and to propose alternative methods. Let us first recall
how Basel regulation defines the required capital of a given entity. In a first
step each financial entity has to compute a measure of its own risk (and also
such measures for each business line separately.) The standard risk measure
used by these entities is the Value-at-Risk (VaR), which gives the maximum
loss within a α% confidence interval. The level α is fixed by the regulator and
the risk of an individual entity is considered in isolation. Then, in a second
step, the required capital is fixed from the observed individual history of
VaR. A typical formula for required capital at day t is for instance :

RCt = max(V aRt, k
1

60

59∑

h=0

V aRt−h), (1.1)

where V aRt denotes the VaR at horizon 1-year and the trigger parameter
k depends on the technical level of the entity and is generally larger than
3. This nonlinear link function between the risk measure and the required
capital induces two regimes : in a standard risk environment for the bank,
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formula (1.1) reduces to : RCt = k
1

60

59∑

h=0

V aRt−h. The smoothing of risk

measures over 60 opening days, i.e. 3 months, is introduced in order to avoid
an erratic evolution of the reserves. Trigger coefficient k provides an addi-
tional insurance against risk. When the entity becomes suddenly very risky,

that is, when the current risk measure V aRt is larger than
k

60

59∑

h=0

V aRt−h,

the required capital becomes equal to V aRt.

The potential drawbacks of this kind of approach are threefold. First it
seems questionable to consider each entity separately without any reference
to its role in the global system. Our approach is a top-down method focusing
on the way of defining the contributions of the entities to a global reserve
needed for the whole system. The second drawback of the standard approach
is the lack of distinction between systematic and unsystematic components
of the risk, which will be separated in our approach. Third, the usual method
may imply procyclicity that we try to avoid in our framework.

The paper is organized as follows. In Section 2, we explain how to allocate
the global reserve among the entities. We introduce the decentralization, ad-
ditivity and risk ordering axioms, which are relevant for this decomposition,
and characterize the contributions satisfying the three axioms. In Section
3, we discuss the alternatives proposed in the literature to define the contri-
butions from the regulatory perspective, such as the CoVar, Shapley values,
or Euler allocation 3. In Section 4 we derive a disaggregation formula not
only in terms of entities, but also in terms of systematic and unsystematic
risks, both in linear and nonlinear factor models. Section 5 explores the link
between the required capital and the objective measures of systematic and
unsystematic risks. In particular, we explain why the Through The Cycle
(TTC) smoothing treatment of these components have to be performed sepa-
rately to avoid the spurious procyclical effect of the standard regulation and
we propose alternative solutions to avoid this procyclicity of the required
capital. Section 6 concludes. Technical proofs are gathered in appendices.

3The research of an appropriate allocation of capital for a purpose internal to a bank ,
for instance to maximize shareholder value, achieve capital efficiency, or measure concen-
tration risk in a portfolio [see e.g. Patrick et alii (1999), Dhaene, Goovaerts, Kaas (2003),
Sherris (2007), Tasche (2008)] is clearly out of the scope of the present paper.
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2 Disaggregation of a global reserve

Let us denote by Xi, i = 1, . . . , n, the Loss and Profit (L&P) of the entities
(banks). The global L&P, that is the L&P of the whole banking system

is : X =
n∑

i=1

Xi. The global reserve for the system is R(X). It is assumed

to depend on the distribution P of the global L&P only. Thus, this global
reserve can utilize the potential diversification benefits. In other words, the
contribution of an entity in good health can be used to rescue another entity
close to default. At this point, we do not discuss how the global reserve is
computed. It can be a VaR, or a coherent risk measure, such an Expected
Shortfall (ES), or something else (see Section 5). This global reserve has to
be assigned to the different entities :

R(X) =
n∑

i=1

R(X,Xi), (2.1)

say, where R(X,Xi) denotes the contribution of entity i to the total reserve.
Moreover, we would like to decompose the individual contribution into :

R(X,Xi) = Rs(X,Xi) +Ru(X,Xi) +Rs,u(X,Xi), (2.2)

where Rs (resp. Ru) denotes the contribution for marginal systematic (resp.
unsystematic) risk and Rs,u the contribution for the cross effects. We focus
in this section and the following one on decomposition (2.1) and defer the
main discussion on systematic risk to Sections 4 and 5.

2.1 A set of axioms

From an axiomatic point of view, it is important to distinguish the mea-
sure of the regulatory capital for the global risk, that is the function R(.) :
X → R(X), and the contributions to the total reserve, that is, the function
R(X, .) : Xi → R(X,Xi). These contributions are contingent to the total
risk level and should satisfy at least a decentralization axiom, an additivity
axiom and a risk ordering axiom.

i) Decentralization axiom
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A1. Decentralization axiom : The individual contribution R(X,Xi)
of entity i depends on the joint distribution of (X,Xi), but is independent
of the decomposition of X −Xi into Σj 6=iXj.

This axiom has been first introduced in Kalkbrener (2005). In a reg-
ulatory perspective, it has the advantage of allowing for a computation of
R(X,Xi) by entity i, while preserving a minimal confidentiality on the indi-
vidual portfolios of the other entities.

More precisely, let us consider entities invested in stocks. The individual
L&P ′s are : Xi = Y ′γi, where Y denotes the vector of share values of the
stocks, and γi is the portfolio composition of the loss for entity i. The reserves
are usually evaluated for a crystallized portfolio, that is, with the composition
γ−
i existing at the beginning of period t (end of period t−1). With this prac-

tice, the regulator has to provide entity i with the type of measure R(X,Xi)

to consider, the past data on Y , and the sum
n∑

j=1

γ−
j corresponding to the

global crystallized portfolio, without providing the individual information on
competitors’portfolios γ−

j ,∀j 6= i.

ii) Additivity axiom

The additivity axiom has been first introduced in Garman (1997) [see
also Kalkbrener (2005), where it is called linear aggregation axiom].

A2. Additivity axiom :

R(X) =
n∑

i=1

R(X,Xi), for any decomposition of X into X =
n∑

i=1

Xi.

Intuitively, the total reserve should not depend on the number of entities
holding the risk and of their respective sizes, whenever the sum of these
L&P ′s stays the same. The additivity axiom has several consequences.

i) For n = 1, we get : R(X) = R(X,X).
ii) We also have :
R(X) = R(X,X1 +X2) +R(X,X −X1 −X2)

= R(X,X1) +R(X,X2) +R(X,X −X1 −X2),
which implies :
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R(X,X1 +X2) = R(X,X1) +R(X,X2),∀X1, X2. (2.3)

This is the additivity property of the function R(X, .) : Xi → R(X,Xi),
for any given X. By imposing the additivity axiom, any merging, or demerg-
ing of entities without effect on global risk provides no spurious advantage
in terms of contribution to the total reserve.

Note that standard stand-alone risk measures such as the V aR(Xi) or
any other coherent risk measure cannot be chosen for defining contributions.
Indeed, they are subadditive [Artzner et al. (1999), Acerbi, Tasche (2002)],
and thus do not satisfy the axiom of additivity. The main reason is that
the standard measures of individual risk such as the VaR and the expected
shortfall are not contingent to the level of global risk. According to Tasche
(2008) (Remark 17.2), the choice of stand-alone risk measure values as risk
contributions would punish more the banks which improve the diversification
of the global regulatory portfolio.

iii) Risk ordering axiom

The contributions have also to be compatible with an appropriate notion
of stochastic dominance. Intuitively, the contribution has to take into ac-
count not only the individual risk of entity i, but also its hedging potential
with respect to the set of other entities. Thus, we have to introduce a di-
rectional notion of stochastic dominance valid for an individual risk X1, say,
and a given global L&P : X. For this purpose, let us consider the virtual
decomposition of the global portfolio into X1 and X̃2 = X −X1 obtained by
aggregating the L&P of the other entities.

Definition 2.1 : Let us consider the L&P : X,X1, X
∗
1 . We say that X∗

1

stochastically dominates X1 at order 2 with respect to X, if and only if :

E[Ũ(X∗
1 , X −X∗

1 )|X] ≥ E[Ũ(X1, X −X1)|X],

for any concave function Ũ .

This is a second-order stochastic dominance [Rothschild, Stiglitz (1970)],
applied to virtual portfolios X1, X̃2, whose allocations are constrained to sum
up to a given X. The directional stochastic partial ordering is denoted by
ºX .
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The directional stochastic dominance can be characterized in simpler ways
(see Appendix 1).

Proposition 2.2 : We have the following equivalences :
i) X∗

1 ºX X1;
ii) E[U(X∗

1 )|X] ≥ E[U(X1)|X], for any concave function U ;
iii) There exists a variable Z such that :

X1 = X∗
1 + Z, with E(Z|X,X∗

1 ) = 0.

Proposition 2.2 shows that the directional stochastic dominance is equiv-
alent to the standard second-order stochastic dominance applied to the con-
ditional distribution of X1 given X [see Rothschild, Stiglitz (1970)].

The next axiom concerns the compatibility of the contribution with the
directional stochastic dominance.

Risk ordering axiom

We have R(X,X∗
1 ) ≤ R(X,X1) for any pair of entity risks such that

X∗
1 ºX X1.

iv) Restrictions implied by the set of axioms

The decentralization and additivity axioms imply rather strong restric-
tions on the contributions as shown by the next Proposition.

Proposition 2.3 : Under the decentralization and additivity axioms, we
have :

R(X,X1 + Z) = R(X,X1),

for any variable Z independent of (X,X1) with a symmetric distribution.

Proof : We have the equalities :

R(X) = R(X,X1) +R(X,X1) +R(X,X − 2X1)

= R(X,X1 + Z) +R(X,X1 − Z) +R(X,X − 2X1).
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Since the joint distributions of the pairs (X,X1+Z) and (X,X1−Z) are
the same under the assumptions of Proposition 2.3, we deduce :

R(X,X1) = R(X,X1 + Z).

QED

The result in Proposition 2.3 shows the difference between a marginal
measure of risk such as a VaR and a contribution. By passing from X1

to X1 + Z, we increase marginally the risk for the second order stochastic
dominance. However, due to the additivity and decentralization axioms, this
increase has not been taken into account in the contribution. This is due to
the compensation between X1 and the L&P of the other entities.

The next proposition characterizes the contributions satisfying the decen-
tralization, additivity and risk ordering axioms.

Proposition 2.4 : Let us assume that the L&P : X,Xi belong to a space
L2(Y ), where Y is a given set of random variables. If the contribution func-
tion R(X, .) : Xi → R(X,Xi) is continuous with respect to Xi for the L2-
norm, then, the contributions satisfying Axioms A1, A2, A3 are such that

RµP
(X,Xi) =

∫
E(Xi|X = x)µP (dx), where µP is a measure (not necessar-

ily a probability measure), which can depend on the distribution P of X and

is such that

∫
xµP (dx) = R(X).

Proof : See Appendix 2,

The conditionXi ∈ L2(Y ) means that the portfolios of interest are written
on some basic assets Y , possibly including derivatives with nonlinear (square
integrable) payoffs.

When the distribution of X is continuous, with a strictly increasing cu-
mulative distribution function (cdf), the contributions in Proposition 2.4 can
be written in terms of quantiles.

Corollary 2.5 : The contributions satisfying the three axioms are :

RνP (X,Xi) =

∫
E[Xi|X = qα(X)]νP (dα),
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where νP is a measure, which can depend on the distribution P of X and is
such that :

∫
qα(X)νP (dα) = R(X).

Proof : The result is obtained by applying the change of variable x = qα(X).

QED

The equality R(X) =

∫
qα(X)νP (dα) implies that R(X) is a weighted

quantile. νP looks like a distortion measure, except that it can depend on
the distribution of X, since the contribution is contingent to X. It will be
called the allocation distortion measure (ADM) in the rest of the paper.

More precisely, let us assume for illustrative purpose that the global risk
measure is equal to a distortion risk measure (DRM) that is, a weighted
combination of VaR’s [see Wang (2000), Acerbi (2002)] :

R(X) = DRMH(X) =

∫
qα∗(X)H(dα∗),

where H denotes a distortion (or spectral) probability measure on (0, 1).
This measure H is fixed independently of the distribution P of the global
risk. Corollary 2.5 is saying that we do not have necessarily to use the
fixed distortion measure H defining the DRM as the allocation distortion
risk measure. Moreover, a given level of global reserve, 2 billions $, say,
can be seen as the value of a VaR as well as the value of an ES4, and more
generally as the value of an infinite number of alternative DRM, whenever

R(X) =

∫
qα(X)νP (dα).

Corollary 2.6 : The contributions defined in Proposition 2.4 do not de-
pend on µP when (X,X1, . . . , Xn) is Gaussian and are all equal to E(Xi) +
Cov(Xi, X)

V (X)
[R(X)− E(X)].

4Indeed the functions α → V aRα and α → ESα are continuous increasing functions of
the critical value α; therefore, there exist two critical values α1, α2 such that :

V aRα1(X) = ESα2(X) = 2 billions $.
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Proof : it is a consequence of the formula E[Xi|X = x] = E(Xi) +
Cov(Xi, X)

V (X)
(x−Xi).

QED

3 Related literature

There exist three streams of literature for defining risk measures contingent
to the level of global risk. Some authors propose alternative sets of axioms to
be satisfied by the contributions. Other authors focus on the direct introduc-
tion of contingent reserve levels R(X,Xi). The CoVaR or the computation
of the reserve based on the Shapley value belong to this literature. Finally,
it is possible to directly introduce a decomposition formula (2.1) of the total
reserve, and try to interpret ex-post the elements R(X,Xi) in this decom-
position. The Euler allocation provides an example of this approach. Let us
briefly review these approaches.

3.1 Alternative sets of axioms

Other sets of axioms have been considered in the literature. For instance
Kalkbrener (2005) [see also Hesselager, Andersson (2002), Furman, Zitikis
(2008) for a similar approach] proved the uniqueness of the contribution
under an additional continuity assumption and the fact that :

Diversification axiom :

R(X,Xi) ≤ R(X,X) = R(X), ∀Xi.

Under these additional conditions, the global reserve R(.) : X → R(X) =
R(X,X) is necessarily a subadditive function.

We do not introduce this diversification axiom in our approach. Indeed,
since :

R(X) = R(X,X1) +R(X,X2), when X1 +X2 = X,

the diversification axiom implies the nonnegativity of any contribution. It is
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important to leave open the possibility of a negative contribution 5, when a
given entity is more prudential than deemed necessary. Typically, if the entity
portfolio includes mainly a riskfree asset, the contribution will be negative,
which means the authorization for an increased leverage without requiring
positive reserve in liquid riskfree asset.

Moreover, as for the notion of coherent risk measure [see Artzner et al.
(1999)], the axiomatic has to restrict the set of possibilities to easily inter-
pretable allocations, not necessarily to provide a unique solution.

3.2 The CoVaR

Adrian and Brunnermeier (2009) propose to analyze the risk of the entities,
when the system is in distress. More precisely, let us denote by qα(X) the α-
quantile corresponding to the system6. The CoVaR for entity i and confidence
level α when the system is in distress is defined by :

P [Xi < CoV aRi|s,α(X)|X = qα(X)] = α. (3.1)

The CoVar is generally larger than the VaR of the entity. It is implicitly
proposed to choose their difference, called ∆CoVar, as the contribution to
systematic risk :

Rs(X,Xi) = CoV aRi|s,α(X)− qα(Xi), (3.2)

with Ru(X,Xi) = qα(Xi). In this case the contribution of entity i to the total
reserve i is :

R(X,Xi) = CoV aRi|s,α(X).

The ∆CoVar is an interesting measure of systematic risk, but the Co-
VaR itself cannot be used directly for defining the contribution. Even if
the decentralization axiom is satisfied, the CoVaR as the VaR based ap-
proaches are bottom-up approaches. In particular, the associated total re-

5See e.g. Uryasev, Theiler, Serrano (2010) for a practical example of negative contri-
bution.

6A similar approach can be based on another risk measure such as the Expected Short-
fall [see e.g. Kim (2010)].
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serve
n∑

i=1

CoV aRi|s,α(X) is not a function of the distribution of the total risk

only and the additivity axiom is not satisfied.

3.3 The Shapley value

A Shapley value [Shapley (1953)] is a fair allocation of gains obtained by
cooperation among several actors. Let us assume that all actors i = 1, . . . , n
accept to cooperate and introduce a superadditive value function v(S), which
measures the gain of this cooperation for a coalition S ⊂ {1, . . . , n}. The
superadditivity condition :

v(S ∪ T ) ≥ v(S) + v(T ),

expresses the fact that cooperation can only be profitable.
The Shapley value is one way to distribute the total gains of the players,

if they all collaborate, by demanding for each actor i a contribution
v(S ∪{i})− v(S) as a fair compensation to join coalition S. The Shapley

value is defined as a mean of these compensations over all possible coalitions :

Vi =
∑

S⊂{1,...,n}\{i}

{ |S|!(n− |S| − 1)!

n!
[v(S ∪ {i})− v(S)]

}
, (3.3)

where |S| denotes the number of actors in coalition S. Denault (2001),
Koyluoglu, Stocker (2002), Tarashev et alii (2009) (with the Varying Tail
Events procedure) propose the Shapley value as a fair allocation of the reserve
with v(S) = −R(Σi∈SXi), and R(.) a risk measure such as a VaR, or an
expected shortfall.

In a regulatory perspective, the drawback of this approach is twofold :

(*) It assumes a total cooperation of the entities, which are in practice
competitors.

(**) The Shapley allocation does not satisfy the decentralization, i.e. con-
fidentiality, axiom which intuitively is not compatible with a total co-
operation.
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In a regulatory perspective, such a Shapley allocation could only be im-
plemented by the regulator itself due to the confidentiality restriction. This
would lead to a highly centralized computation of the contributions by the
regulator itself, but is clearly not implementable in practice. First, the regu-
lator does not possess the technical departments to make such computations
for all entities. Second, such a centralized approach contradicts the spirit of
the second Pillar of Basel 2 regulation, where the entities have to learn how
to manage and control their internal risks by themselves.

3.4 Euler allocation

As noted in Litterman (1996), p28, and Garman (1997), footnote 2, if the
function R(.) defining the total reserve is homogenous of degree 1, that is,
satisfies the condition :

R(λX) = λR(X), ∀λ > 0, (3.4)

or, equivalently, R∗(λe) = λR∗(e),∀λ > 0,

where R∗(λ1, . . . , λn) = R(
n∑

i=1

λiXi), we get the Euler condition :

R∗(e) =
n∑

i=1

∂R∗(e)
∂λi

, (3.5)

obtained by differentiating both sides of equation (3.4) with respect to λ.
This provides a decomposition of the total reserve as the sum of its sensi-
tivities corresponding to shocks performed separately on each entity. This
justifies the terminology Euler allocation used in McNeil et al. (2005), Sec-
tion 6.3.

Let us consider this decomposition for a global reserve defined by a dis-
tortion risk measure :

R(X) = DRMH(X) =

∫
qα(X)H(dα), (3.6)

where H denotes a distortion (probability) measure on (0,1).

The VaR and more generally any DRM is homogenous function of degree
1. Thus, the total reserve can be decomposed into :
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DRMH(X) =
n∑

i=1

DRMH,i, (3.7)

where the marginal expected distortion risk measures are given by :

DRMH,i =

∫
qα,iH(dα), (3.8)

with qα,i =
∂q∗α(e)
∂λi

and q∗α(λ1, . . . , λn)
′ = qα(

n∑
i=1

λiXi), . (3.9)

The following result has been derived in Gourieroux, Laurent, Scaillet
(2000) (see also the beginning of Appendix 3, formula a.3).

Proposition 3.1 :

qα,i =
∂q∗α(e)
∂λi

= E[Xi|X = qα(X)].

and

DRMH,i =

∫
E[Xi|X = qα(X)]H(dα).

This Euler allocation applied to a DRM satisfies the three axioms of Section
2.1. However, it is rather restrictive, since it assumes that function R(.)
is a DRM and corresponds to the choice of an allocation distortion
measure equal to the distortion measure itself.

The Euler decomposition formula (3.7) is in particular valid for the ex-
pected shortfall, for which the distortion measure is the uniform distribution
on the interval (α, 1) [Wang (2000), Acerbi, Tasche (2002)] :

ESα(X) =
1

1− α

∫ 1

α

qα∗(X)dα∗. (3.10)

It can be checked that the marginal expected shortfall is equal to :

MESi =
1

1− α

∫ 1

α

E[Xi|X = qα∗(X)]dα∗

= E[Xi|X > qα(X)]. (3.11)
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This simplified expression of the marginal expected shortfall has been
first derived by Tasche (2000) [see also Kurth, Tasche (2003) and Appendix
3].

The Euler decomposition of the VaR and the Expected Shortfall above
differ essentially by the conditioning set. They stress that the additive de-
compositions involve both conditioning with respect to system distress [as
in definition (3.4) of the CoVaR] and conditional expectations (instead of
conditional quantiles as in the CoVaR approach) to ensure the additivity
property.

However, the homogeneity assumption of the global risk measure R(.) is
questionable, especially if the regulation is used for economic policy. As an
illustration, let us assume that the portfolios of interest include the different
types of credits. From a macroeconomic point of view, there exists an optimal
level for the global amount of credit to be distributed in the economy. The
global risk measure has to be chosen as an incentive to reach this optimal
level. The cost of the reserve has to be small, if the current amount of credit
is below this optimal level, large, otherwise. Mathematically, we expect
function λ → R(λX)/λ to be increasing in λ, not constant. For instance
Rc(X) = E(X) + E[(X − c)+], where c is the ”optimal level” would satisfy
this condition7.

It is important to note that the condition on function R(.) assumed in
Corollary 2.5 does not imply the homogeneity of degree 1. More precisely,
we have :

R(λX) =

∫
qα(λX)νPλ

(dα)

= λ

∫
qα(X)νPλ

(dα)

6= λ

∫
qα(X)νP1(dα) = λR(X),

since the ADM can depend on the distribution of X and thus on λ.

7The homogeneity assumption is sometimes justified by an invariance of the risk mea-
sure with respect to a change of money unit. Function Rc(X) satisfies this latter condition
which involves the changes X → λX and c → λc, since the optimal level is also written in
money unit, but is not homogenous of degree 1 in X for fixed c.
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4 Contribution to systematic risk

The axiomatic approach of Section 2, or the Euler allocation of Section 3.4
provide contributions of individual entities satisfying the axioms, but do not
try in general to reallocate the global risk between systematic and unsystem-
atic components. The aim of this section is to explain how the allocation
principle can be applied to disentangle the systematic and unsystematic com-
ponents of the risk. For expository purpose, we first consider models with
linear factors driving the systematic risk which are usually considered when
we focus on market risk. Then, the approach is extended to nonlinear fac-
tors. Nonlinear factor models are involved whenever options and/or credit
risks are considered.

4.1 Linear factor model

Let us first consider a linear factor model. The individual L&P ′s can be
decomposed as :

Xi =
K∑

k=1

βikfk + γiui, (4.1)

where f1, . . . , fK are systematic factors and u1, . . . , un idiosyncratic terms
with K < n. These factors are random at the beginning of period t, and
observed at the end of this period. For instance, for fixed income derivatives,
the main risk factors can be the interest rate level, slope and curvature,
the spreads over T-bond rates, the exchange rates... The total L&P can be
decomposed as :

X =
K∑

k=1

βkfk +
n∑

i=1

γiui, (4.2)

with βk =
n∑

i=1

βik.

i) Euler allocation of a VaR global risk measure

For expository purpose, let us first assume that the global risk measure
is a VaR : R(X) = qα(X).
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The α-quantile of X is a function :

qα(X) = q∗α (β1, . . . , βK , γ1, . . . , γn, θ) , (4.3)

where θ denotes the parameters characterizing the joint distribution of
f1, . . . , fK , u1 . . . , un.

The marginal effect of an homothetic change of exposure of the entities

passing from Xi to λXi =
K∑

k=1

λβikfk + λγiui, i = 1, . . . , n gives :

qα(X) =

[
dqα(λX)

dλ

]

λ=1

=
K∑

k=1

(
n∑

i=1

βik)
∂qα(X)

∂βk

+
n∑

i=1

γi
∂qα(X)

∂γi
(4.4)

=
n∑

i=1

qα,i.

where the composite term :

qα,i ≡
K∑

k=1

βik
∂qα(X)

∂βk

+ γi
∂qα(X)

∂γi
, (4.5)

shows how the VaR Euler contribution qα,i of entity i can be decomposed in
order to highlight the effects of systematic factors and idiosyncratic term.

In some sense, decomposition formulas (4.4)-(4.5) explain how to pass
from Euler allocations computed by entity to Euler allocations computed by
”virtual business lines” associated with the different risk factors, as summa-
rized in Table 1. In other words, we propose to treat in a symmetric way the
contributions to global risk of both risk factors and entities.
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Table 1 : Euler decomposition of a global VaR

entity 1 i n risk contribution
risk factor of the factors

f1
...

fk βik
∂qα(X)

∂βk

βk
∂qα(X)

∂βk
...
fK
u1
...

ui 0 γi
∂qα(X)

∂γi
0 γi

∂qα(X)

∂γi
...
un

risk contribution qα,i V aR(X)
of the entities

By applying the expression of the VaR sensitivity (see Proposition 3.1),
we get as a by-product the Euler components associated with systematic and
unsystematic risks, respectively, as :

R(X) = Rs(X) +Ru(X),

with Rs(X) =
n∑

i=1

Rs(X,Xi), Ru(X) =
n∑

i=1

Ru(X,Xi),

Rs(X,Xi) =
K∑

k=1

βik
∂qα
∂βk

(X) =
K∑

k=1

βikE[fk|X = qα(X)], (4.6)

Ru(X,Xi) = γi
∂qα
∂γi

(X) = γiE[ui|X = qα(X)], (4.7)

ii) General case
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The example of Euler allocation of a VaR discussed in Table 1 provides
a principle of allocation between systematic and unsystematic risks valid in
a general framework where function R(.) is not necessarily a DRM, or even
an homothetic function. Indeed, whenever we have R(X) =

∫
qα(X)νP (dα),

we can use the contribution derived in Corollary 2.5, which takes a form
similar to a contribution associated with an Euler allocation. The idea is
to define the new entities by crossing the initial entity and the type of risk.
The L&P for entity i and systematic risk (resp. unsystematic risk) is :

Xs,i =
K∑

k=1

βikfk(resp. Xu,i = γiui). The components of the total L&P are

defined accordingly by : Xs =
n∑

i=1

Xs,i and Xu =
n∑

k=1

Xu,i. Then, for a given

ADM νP , the allocations are defined by :

RνP,s
(X,Xi) = RνP (X,Xs,i),

RνP,u
(X,Xi) = RνP (X,Xu,i),

RνP (X,Xi) = RνP,s
(X,Xi) +RνP,u

(X,Xi),

RνP,s
(X) =

n∑
i=1

RνP,s
(X,Xi) = RνP (X,Xs),

RνP,u
(X) =

n∑
i=1

RνP,u
(X,Xi) = RνP (X,Xu).

with RνP (X, .) =

∫
E[.|X = qα(X)]νP (dα) (see Corollary 2.5).

These contributions correspond to the axiomatic of Section 3 applied to
departments specialized in systematic (resp. unsystematic) risk components.
It is justified whenever there exist on the market financial products intro-
duced to hedge the systematic factor.
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4.2 Nonlinear factor model

The allocation of the global reserve among the entities can be done for both
linear and nonlinear factor models. However, the allocation between system-
atic and unsystematic components is less than obvious if :

Xi = gi(f, ui), (4.8)

where the (multidimensional) factor f and the idiosyncratic term ui are in-
dependent, but function gi is nonlinear, due to the presence of cross effects.

Nevertheless, it is possible to decompose the individual L&P as :

Xi = E(Xi|f) + [E(Xi|ui)− E(Xi)] + [Xi − E(Xi|f)− E[Xi|ui] + E(Xi)]

≡ Xs,i +Xu,i +Xu,s,i, say, (4.9)

where Xs,i, Xu,i, Xs,u,i are the marginal systematic and unsystematic effects,
and the cross effect, respectively 8. Even if the systematic factor f and the
idiosyncratic terms ui are independent, interaction effects will appear in the
risk contributions due to the nonadditive decomposition.

Then, the total contribution of entity i can be decomposed as :

RνP (X,Xi) = RνP ,s(X,Xi) +RνP,u
(X,Xi) +RνP,s,u

(X,Xi), (4.10)

where :

with RνP,s
(X,Xi) = RνP (X,Xs,i)

RνP,u
(X,Xi) = RνP (X,Xu,i)

RνP,s,u
(X,Xi) = RνP (X,Xu,s,i)

and Rνp(X, .) =

∫
E[.|X = qα(X)]νP (dα)

8This type of decomposition can also be used to distinguish the effects of dependent
systematic factors [see Rosen, Saunders (2010), Section 4.5]
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This decomposition does not depend on the selected representations of
the factor and the idiosyncratic term, that is, the decomposition is invariant
when either f , or ui is transformed by a one-to-one transformation.

As an illustration, let us consider a model with stochastic drift and volatil-
ity driven by a same factor f :

Xi = mi(f) + σi(f)ui, i = 1, . . . , n,

where f is independent of u = (u1, . . . , un)
′, and the errors are iid zero mean.

We have, using R(X) = qα(X) :

Rs(X,Xi) = E[mi(f)|X = qα(X)],

Ru(X,Xi) = E[E{σi(f)}ui|X = qα(X)],

Rs,u(X,Xi) = E[(σi(f)− E{σi(f)})ui|X = qα(X)].

This example shows that in a nonlinear model, the effect of the systematic
factor is captured by both Rs and Rs,u. Their relative magnitude can be
highly different for the different entities. For instance in a basic stochastic
volatility model, where mi(f) = 0, only the cross effect matters.

4.3 Large number of entitites

Finally, let us discuss the case of a large number n of similar entities. If n
is large, and the entities of similar sizes, we deduce from the Law of Large
Numbers (LLN) that the idiosyncratic terms can be diversified, whereas the
systematic factors cannot be. For expository purpose, let us consider a single
linear factor model with γi = 1,∀i. We have :

X = (
n∑

i=1

βi)f +
n∑

i=1

ui.

Let us assume that the beta coefficients are i.i.d. with a positive mean
E(β) > 0, and are independent of factor f and idiosyncratic errors ui, i =
1, . . . , n. Let us also assume that these errors are independent with zero
mean E(ui) = 0. The contributions are equal to :
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RνP (X,Xi) =

∫
E[Xi|X = qα(X)]νP (dα)

=

∫
E[Xi|X/n = qα(X/n)]νP (dα),

since the quantile function is homogenous of degree 19.

By the LLN, we deduce that :

lim
n→∞

(X/n) = E(β)f.

Thus, the idiosyncratic part has been diversified, whereas the effect of
systematic risk persists asymptotically.

When n = ∞, we get :

limn→∞E[Xi|X = qα(X)] = limn→∞E[Xi|X/n = qα(X/n)]

= E[Xi|E(β)f = qα[E(β)f ]]

= E[βif + ui|E(β)f = qα[E(β)f ]

= E[βif |E(β)f = qα[E(β)f ]

= limn→∞E[βif |X = qα(X)]

= limn→∞E[Xs,i|X = qα(X)].

In this limiting case, the contribution for entity i and the contribution
for its systematic component coincide, that is, RνP (X,Xi) = RνP,s

(X,Xi).
Moreover, it is equivalent to condition either on X, or on the factor summary
E(β)f , or on factor f itself.

The derivation above helps to understand the contribution for systematic
risk used in Acharya et alii (2010), Brownlees, Engle (2010), which underlies

9The distribution of X depends on size n, but this dependence is not indicated for
expository purpose.
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the daily updated systematic risk ranking published by NYU Stern’s Volatil-
ity Lab. [www.systemicrisisranking.stern.nyu.edu], defined by 10 E[Xi|X =
qα(X)]. This definition is valid under the assumptions above, i.e. when the
unsystematic component can be diversified and when factor f can be identi-
fied to the market portfolio.

For n large, but finite, it is possible by applying granularity theory
[Gagliardini, Gourieroux (2010)], to evaluate at order 1/n the difference be-
tween E[Xs,i|X = qα(X)] = E[βif |X = qα(X)], and E[Xi|X = qα(X)].

5 Required Capital

As mentioned in the introduction, the current regulation defines the required
capital in two steps. A dated measure of individual risk is first computed.
This measure generally features an erratic behavior. Then a partial smooth-
ing is applied to derive the required capital.

This practice does not distinguish the systematic and unsystematic com-
ponents of the risk. We consider this question in Section 5.1, when the dated
risk measures are time independent Euler allocations of a DRM global risk
measure. In particular, we explain why the systematic and unsystematic
components have to be smoothed differently to avoid spurious procyclical
effects. Then in Section 5.2 we discuss how a part of this effect might be
avoided by considering an appropriate path dependent global risk measure.

5.1 Change of link function

The link function [see equation (1.1) for a typical example] is a crucial element
of the regulatory policy. Whereas the trigger parameter is a control variate
for more or less prudential policy, the smoothing can be used to decrease, or
increase the effects of cycles.

The recent financial crisis revealed important drawbacks of a link function
like (1.1) :
i) The trigger parameter k has been fixed, independently of the market envi-
ronment. We would have expected a reduced value during a liquidity crisis.
ii) As already mentioned in the introduction, the link function implies two
regimes that are a smoothed and an unsmoothed regime, the latter one ap-

10Their analysis concerns stock market. Xi is the capitalization in stock i, whereas X
is the market portfolio value.
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pearing with a large increase of the risk of entity i. However, the consequences
are not the same if this risk increase is due to an idiosyncratic shock, or to
a shock on a systematic factor. In the first situation, there is an additional
demand of liquid asset by entity i, which can be easily satisfied by the mar-
ket. In the second situation, there is the demand for liquid asset by several
entities together, which may force financial institutions to deliver at fire-sale
prices, creates the deleveraging spiral, that is, selling assets to reduce the
debt, and accentuates the cycles and the crisis.

Clearly the drawback of the link function (1.1) is the lack of distinction
between systematic and unsystematic risk, that is, of the micro and macro
prudential approaches.

Let us assume that the dated individual risk measures are the Euler allo-
cations of a time independent global DRM. Then functions R(.) and R(X, .)
are time independent and the values R(Xt, Xi,t) are Point-In-Time (PIT)
measures of risk. Instead of a formula of the type :

RCi,t = max[R(Xt, Xi,t), kt
1

60

59∑

h=0

R(Xt−h, Xi,t−h)], (5.1)

an improved formula has to separate the two types of risks, in order to take
into account the fact that the systematic components are highly dependent,
and has to apply the two regime formula to the unsystematic component
only 11. An alternative to formula (5.1) might be :

RCi,t = max[R(Xt, Xi,u,t), ku,t
1

60

59∑

h=0

R(Xt−h, Xi,u,t−h)]

+ ks,t
1

H

H−1∑

h=0

R(Xt−h, Xs,i,t−h) ≡ RCu
i,t +RCs

i,t. (5.2)

The first component concerning the unsystematic risk is sufficient to pe-
nalize the risky investments specific to a given entity, while avoiding a too
volatile evolution of the associated required capital. The second component
is linear to account for the strong serial dependence between the systematic
components. The smoothing window H is introduced for another purpose,

11To simplify the discussion, we assume a linear factor model, therefore a zero cross
term : Rs,u = 0.
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not for avoiding a too volatile required capital, but for obtaining a counter-
cyclical effect. In this respect, the smoothing window for systematic risk has
too be much larger than the usual 3-month (i.e. H = 60), and able to cover
a significant part of the cycle (one year for instance). Finally, the parameter
ks,t should be dependent of the position within the cycle, that is smaller in
the bottom of the cycle, larger in its top, to avoid the spurious creation of a
liquidity gap.

The required capital RCi,t has to be provided to the regulators in liquid,
high rated assets. Intuitively the components RCs

i,t and RCu
i,t have to be

included in different accounts of the Central Bank : the unsystematic com-
ponent should be in an account specific to entity i, but all contributions for
systematic risk might be mutualized at least at the country level. Indeed,
this account will serve to insure the global system and a mutualization is
usual for an unfrequent catastrophic event. If an entity is close to failure due
to a systematic effect, the total reserve for systematic component should be
used to avoid the failure of the entity and also some potential failures of the
other ones by contagion.

Even if the application of different link functions to the systematic and
unsystematic risk components seems relevant, its implementation will en-
counter the same difficulties than the stress testing. Indeed, the systematic
factors have to be defined in a same way for all the entities by the regulators
and there are many common risk factors which can be considered.

5.2 Change of global risk measure

The usual regulatory approach distinguishes the underlying baseline alloca-
tions and the required capital. The aim is to pass from PIT measures of the
type R(Xt, Xi,t), which depend on the dated distribution of (Xt, Xi,t), to the
Through The Cycle (TTC) measures RCi,t, which depend on the current and
lagged dated distributions of risks. However, this two step approach lacks
coherency. For instance, the additivity property satisfied by the baseline
contribution is not satisfied by the required capital, since the link function
is nonlinear. Is it possible to develop a one-step TTC coherent approach ?

A possible answer is to define more precisely the global risk function
Rt(Xt) of date t in a regulatory perspective. Let us consider the framework
of Section 4 with underlying factors driving the systematic risk. These fac-
tors have to be known and observed ex-post by the regulators. Thus, the
regulators have an augmented information set including both the current
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and lagged values of the global L&P,X, and factors F . Their risk measures
should not only take into account the current level of risk X, but also the
comparison of this level with the position in the cycle, function of F . In other
words, the assumption, that the global reserve R(.) is time independent func-
tion of the current distribution of risk Xt only, is likely not appropriate in
a regulatory perspective. This global measure should depend on the joint
distribution of Ft, Xt, and a better notation would be R(F,X). We have
seen that the allocation problem is an hedging problem w.r.t. the global
L&P X. Similarly, the choice of an appropriate level of global reserve is
also an hedging problem, but w.r.t. to a real economic benchmark and not
the problem of controlling the stand alone risk of X only. Typically, for a
mortgage portfolio the optimal amount of mortgage to be distributed should
depend on the real estate cycle. The global reserve might be a quantile
qα(Q)(X), with a critical value α(Q) function of the distribution Q of factor
F , or Rc(F,X) = E(X) + E([X − c(F )]+), that is, the global risk measure
could change along the real estate cycle.

A similar remark can be done for the contributions. The result of Corol-
lary 2.5 is still valid, but with an increased information set. More precisely,
the ADM νP should now be replaced by an ADM νP∗, where P ∗ denotes the
joint distribution of (X,F ).

6 Concluding remarks

The aim of this paper was to survey and complete the current literature on
capital allocation in a regulatory perspective and with special attention to
systematic risk. The main message of this paper is to avoid a crude use of
a coherent risk measure such as a VaR, or an ES for computing the reserve
both at the individual and global levels. More precisely,

i) An allocation problem is different from a risk measurement problem.
The contributions are contingent to the level of global risk and have to satisfy
some basic axioms.

ii) The axioms are not sufficient to define a unique contribution, and it
could be important to distinguish the distortion risk measure underlying the
measure of global risk from the allocation distortion measure explaining how
to allocate the global reserve.
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iii) The allocation by ADM seems applicable to any type of global risk
measure and is also able to disentangle marginal systematic and unsystematic
risk components and cross effects.

iv) If the regulation has a purpose of economic policy, that is, if the mon-
etary policy is not enough for the Central Bank, a time independent coherent
risk measure for the global risk is likely not appropriate. The subadditivity
or homogeneity axiom may be unappropriate for regulatory purpose. The
global risk measure has to be chosen in relation with the economic environ-
ment, especially with the position in the business or real estate cycle. The
regulator faces an hedging problem, not the problem of managing the stand
alone global risk.

The main questions that are still to be solved are the following ones :

i) What is (are) the objective(s) of the regulator ? In particular, is he/she
partly in charge of economic policy ? What is seen in our paper is that the
definition of the required capital is an important instrument to control the
quantity of credits and its distribution among firms, households, real estates,
but also the leveraging among banks... Several Central Banks have for official
objective the control of inflation by means of a prime rate. It seems important
to debate of the control of the credit distribution and leveraging by means
of the required capital [see e.g. Hellwig (2010) for a polemical discussion of
the role of regulation].

ii) Once the objective is well-defined, how to choose the global level of
reserve Rt(Ft, Xt), which will be likely different from a global VaR, or from
the sum of VaR’s of the different entities ?

iii) Once the objective and global level of reserve are well-defined, how to
choose the Allocation Distortion Measure, that is, the way of allocating the
global reserve between the entities, between systematic, unsystematic and
cross components?

To summarize, at a time where the databases, the statistical tools, the
marginal and hedging risk measures, are almost in place, the different possible
objectives of the regulation have now to be debated and their consequences on
the real economy and on the required capitals to be evaluated and compared.
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A P P E N D I X 1

Proof of Proposition 2.2

Equivalence between i) and ii)

First note that the function :

y → Ũ(y, x− y),

where Ũ is concave is itself concave. Therefore ii) implies i).

Conversely, i) implies ii). Indeed let us denote by a a value for which
the one-dimensional concave function U is maximal. If a is finite, U can be
written as :

U(y) = U1(y) + U2(y) + U(a),

with U1(y) = 0, if y ≤ a,
U(y)− U(a), otherwise,

U2(y) = U(y)− U(a), if y ≤ a,
0, otherwise,

U1 (resp. U2) is a decreasing concave (resp. increasing concave) function.
The result is deduced by noting that the function :

Ũ(y1, y2) = U1(y1) + U2(x− y2) + U(a),

is concave, and that

U(y) = Ũ(y, x− y)

If a = +∞ [resp. −∞], the result is deduced by noting that the function :
(y1, y2) → U(y1) [resp. (y1, y2) → U(x− y2)] is concave.

Equivalence between ii) and iii)

This equivalence is given in Rothschild, Stiglitz (1970), Theorem 2.

QED
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A P P E N D I X 2

Proof of Proposition 2.4

The proof is based on two Lemmas.

Lemma A.1 : The contributions : RµP
(X,Xi) =

∫
E[Xi|X = x]µP (dx)

satisfy the three axioms, if

∫
xdµP (dx) = R(X).

Proof : The decentralization axiom is clearly satisfied and we consider below
the two other axioms. i) We have :

n∑
i=1

RµP
(X,Xi) =

n∑
i=1

∫
E[Xi|X = x]µP (dx)

=

∫
xdµP (dx),

= R(X),

which proves the additivity.

ii) Moreover if X∗
1 ºX X1, we have :

E[X1|X = x]

= E[X∗
1 + Z|X = x], with E(Z|X∗

1 , X) = 0, by Proposition 3.2 iii),

= E{E[X∗
1 + Z|X∗

1 , X]|X = x}

= E[X∗
1 |X = x], .

Thus, RµP
(X,X∗

1 ) = RµP
(X,X1).

We deduce the compatibility with the risk preordering, at least in a wide
sense.

QED
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Lemma A.2 : Under the conditions of Proposition 2.4, all the contribu-
tions are necessarily of the form given in Lemma A.1.

Proof : In the Hilbert space L2(Y ), the continuous linear form are neces-
sarily of the type :

R(X,Xi) = E[a(Y )Xi],

where a(Y ) ∈ L2(Y ) [see e.g. Rudin (1966), Chapter 4]. The decentralization
and additivity axioms imply that a(Y ) can be written aP (X).

Moreover, we have :

E[aP (X)Xi] = E[aP (X)E(Xi|X)]

=

∫
E[Xi|X = x]aP (x)P (dx),

where P (dx) is the distribution of global risk X. This expression is of the
form given in Lemma A.1.

QED

Since aP is a measure density, R(X,Xi) is simply a weighted risk alloca-
tion in the terminology of Furman, Zitikis (2008). When aP is positive, the
contribution can be interpreted as the value of Xi obtained by applying the
pricing operator aP function of the distribution of X. This corresponds to
the premium calculation principle introduced in Gerber (1979).
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A P P E N D I X 3

Explicit expression of the marginal expected shortfall

The proof is based on a succession of Lemmas

We have to prove that :

∂E[βX + Y |βX + Y > qα(β)]

∂β
= E[X|βX + Y > qα(β)], (a.1)

where P [βX + Y > qα(β)] = 1− α, ∀β, (a.2)

and qα(β) = qα(βX + Y ), say.

Let us assume that the joint distribution of (X,Y ) is continuous with
probability density function 12 f(x, y). Equality (a.2) can be written as :

∫ [∫ ∞

−βx+qα(β)

f(x, y)dy

]
dx = 1− α, ∀β.

Thus, by differentiating with respect to β, we get :

∫
[x− ∂qα(β)

∂β
]f [x, qα(β)− βx]dx = 0,∀β, (a.3)

which implies
∂qα(β)

∂β
= E[X|βX + Y = qα(β)].

The expected shortfall for βX + Y is :

ES(β)

= E[βX + Y |βX + Y > qα(β)]

=
1

1− α

∫ [∫ ∞

−βx+qα(β)

(βx+ y)f(x, y)dy

]
dx

Its derivative with respect to β is equal to :

12The general proof valid for any type of joint distribution for (X,Y ) has been given in
Tasche (2000), Lemma (5.6).
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∂ES(β)

∂β
=

1

1− α

∫ [∫ ∞

−βx+qα(β)

xf(x, y)dy

]
dx

+
1

1− α

∫ [
x− ∂qα(β)

∂β

]
qα(β)f [x, qα(β)− βx]dx

=
1

1− α

∫ [∫ ∞

−βx+qα(β)

xf(x, y)dy

]
dx [from (a.3)]

= E[X|βX + Y > qα(β)],

with is equation (a.1).
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