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Abstract

In the view of many experts, the proper definition of systemic risk is now seen
to comprise two distinct facets. The traditional idea that systemic risk is primarily
the risk of cascading bank defaults, has evolved into the view that it involves both
cascading bank defaults as well as funding liquidity shocks, and that both types of
shocks impair the functioning of the remaining undefaulted banks.

In current models of systemic risk, these two facets, namely illiquidity and insol-
vency, are often treated as two distinct and separate phenomena: The main goal of
the model presented in this paper is to integrate these two facets as two faces of the
same coin. In a default cascade, insolvency of a given bank will create a shock to
the asset side of the balance sheet of each of its creditor banks. Under some circum-
stances, such “downstream” shocks can cause further insolvencies that may build up
to create a global insolvency cascade. The pivotal question one can address concern-
ing default cascades is: in a given financial network, what is the effect of the default
of a single firm on the solvency of other banks in the system? In a stress cascade,
illiquidity that hits a given bank will create a shock to the liability side of the balance
sheet of each of its debtor banks. Under some circumstances, such “upstream” shocks
can cause further illiquidity stresses that may build up to create a global illiquidity
cascade. The pivotal question one can address concerning stress cascades is: in a
given financial network, what is the effect of the illiquidity of a single firm on the
liquidity of other banks in the system?

Our paper will introduce a “deliberately simplified model” of insolvency and illiq-
uidity in financial networks that can provide stylized answers to such questions. To
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get there, a number of issues are addressed. First, this paper proposes a stylized
model of individual bank balance sheets that builds in regulatory constraints, the
most important types of interbank exposures, and collateralization of interbank ex-
posures. Secondly, three different possible states of a bank, namely the normal state,
the stressed state and the insolvent state, are identified with conditions on the bank’s
balance sheet. Thirdly, the paper models the behavioural response of a bank when
it finds itself in the stressed or insolvent states. Importantly, a stressed bank will
seek to shrink its balance sheet, by recalling short term interbank assets. This serves
to protect the bank from the default of its counterparties, but creates stress in the
network by forcing its debtor banks to raise cash, perhaps causing them to become
stressed.

Versions of these proposed models can be designed to have a property we call
“locally tree-like independence” that leads to large-network asymptotic cascade for-
mulas. Details of numerical experiments are given that verify that these asymptotic
formulas yield the expected quantitative agreement with Monte Carlo results for large
finite networks. These experiments illustrate clearly our main conclusion that in fi-
nancial networks, the average default probability is inversely related to strength of
banks’ stress response and therefore to the overall level of stress in the network.

Key words: Systemic risk, banking network, contagion, random graph, cascade
condition, credit risk, financial mathematics, repo haircuts
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1 Introduction

In the view of many experts (for example Schwarcz [2008]), the proper definition of
systemic risk for financial crises is now seen to comprise two distinct facets. The
earlier view1 that systemic risk is primarily the risk of cascading bank defaults, has
evolved into the view that systemic risk involves both cascading bank defaults as
well as liquidity shocks, and that both types of shocks impair the functioning of the
remaining undefaulted banks.

In two seminal papers on modelling systemic risk, Gai and Kapadia [2010] and
Gai et al. [2011], these two facets, namely illiquidity and insolvency, are treated as
two distinct and separate phenomena that can arise in financial networks. These two
models presented are “dual” to one another in a rather strict sense: insolvency shocks
are transmitted from debtor to creditor while illiquidity shocks are transmitted in an
analogous way but in the reverse direction. The main goal of the model we present
is to integrate these two facets as two faces of the same coin.

In Gai and Kapadia [2010], insolvency of a given bank will create a shock to the
asset side of the balance sheet of each of its creditor banks. Under some circumstances,

1A typical definition of systemic risk of this type is given on the website of the Commodity Futures Trad-
ing Commission www.cftc.gov/consumerprotection/educationcenter/cftcglossary/glossary s
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such “downstream” shocks can cause further insolvencies that may build up to create
a global insolvency cascade. In this model, the pivotal question one can address is
this: in a given financial network, what is the effect of the default of a single firm on
the solvency of other banks in the system?

In Gai et al. [2011], funding illiquidity2 that hits a given bank may cause that bank
to “tighten its balance sheet”, thereby creating shocks to the liability side of its debtor
banks’ balance sheets. Under some circumstances, such “upstream” shocks can cause
further illiquidity stresses that may build up to create a global illiquidity cascade.
In this model, the pivotal question one can ask is this: in a given financial network,
what is the effect of the illiquidity of a single firm on the liquidity of other banks in
the system? In both types of cascade, the resultant crisis can have devastating effects
on the functioning of the financial network.

The purpose of the present paper is to construct a deliberately simplified model of
systemic risk, integrating both sides, illiquidity and insolvency, of a single coin. Only
in the full model can one frame the important question: What effect does a bank’s
behavioural response to liquidity stress have on the probable level of eventual defaults
in entire system? One would expect that a stressed bank that reacts to protect itself
from eventual default by shrinking its own balance sheet, will inflict liquidity shocks
to its debtor banks. More significantly, one may also expect a system that reacts
more strongly to stress will be more resilient to defaults. The average strength of
this stress reaction, denoted λ in the following, and the stress buffers, will be the key
parameters that determine the eventual level of default and stress in the network.

Our paper can provide quantitative answers to this question. We find that in
general, the overall level of default in the system is negatively related to the stress
response parameter λ, and hence to the overall level of stress in the system. To
arrive at models where this negative relationship can be quantified, we will need to
address a number of issues. First, we need to create a stylized model of an individual
bank balance sheet that builds in regulatory constraints, the most important types of
interbank exposures, and the possibility of collateralization of interbank exposures.
For this, we adopt the balance sheet framework outlined in Gai et al. [2011]. Secondly,
three possible states of a bank, namely the normal state, the stressed state and the
insolvent state, are defined by conditions on the bank’s default and stress buffers
derived from their balance sheet. Thirdly, we will model the behavioural response of
a bank when it finds itself in the stressed or insolvent states. Importantly, a stressed
bank will seek to shrink its balance sheet by recalling short term interbank assets.
This reaction will reduce its exposure to defaulting counterparties, and therefore will
reduce the overall level of default in the network. However, such a reaction also forces
its debtor banks to raise cash, and if forced to raise too much too quickly, these debtor
banks will themselves become stressed. Therefore it seems intuitively natural that

2Funding illiquidity refers to a situation where an investor has insufficient access to cash to finance
desired positions. It is a distinct concept to market illiquidity that refers to situations where assets become
difficult to sell due to an oversupply in the market. See Brunnermeier and Pedersen [2009] for a detailed
analysis of these concepts.
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the overall level of stress in the network goes up with the stress parameter λ and
down with the overall level of default.

The double cascade picture we present is well justified in light of the new Basel III
regulatory framework. At the heart of the new regulatory changes are two accounting
ratios. The leverage ratio (LR) is the ratio of tier I capital (i.e. equity) to assets, and
it must be kept above 3.5%: this condition can be translated into the existence of a
positive default buffer for each bank. The liquidity coverage ratio (LCR) is a specific
ratio of liquid assets and short term liabilities that must be kept above 100%: this
condition can be translated into the positivity of a stress buffer. It is reasonable to
expect that regulators will act to force banks that violate their LCR constraint to
tighten their balance sheets: this is equivalent to our assumed stress response. It is
also reasonable to explore scenarios under which banks with the minimum LR get hit
by market shocks that may exceed their default buffers: these are our initial default
shocks.

The present paper continues a recent strand of literature that focuses on delib-
erately simplified models of random financial networks that build on the economic
framework proposed by Eisenberg and Noe [2001]. These papers share the aim of
determining the key parameters that most impact the level of systemic risk in such
networks. They also share a philosophy common in the physics literature that true
understanding of complex phenomena should proceed via the numerical and analytic
study of simple “toy models” chosen carefully to exhibit key features. Only after
learning the true impact of various possible mechanisms in such toy models will it
be worthwhile to investigate realistic models that try to represent the intricacies of
observed financial systems. Nier et al. [2007] uses Monte Carlo methods to highlight
how the key network parameters for a stylized network of 25 banks can influence the
total number of defaults in a nonlinear, indeed sometimes nonmonotonic, fashion.
The paper of Gai and Kapadia [2010], and its extension Hurd and Gleeson [2011],
adapt the Watts [2002] model of information cascades to the context of financial
systems, deriving both analytical and Monte Carlo results showing the dependence
of the default cascade on different structural parameters. May and Arinaminpathy
[2010] present analytical formulas for the NYYA and GK models based on a mean
field approximation that can explain some of the main properties of the graphs found
in those papers. Gai et al. [2011] provides a stylized model of liquidity shocks that is
mathematically equivalent to the model of Gai and Kapadia [2010], but with cascades
that flow in the reverse direction from creditor to debtor. An important homogeneity
assumption made in these last two papers is that either a bank’s interbank assets (in
Gai and Kapadia [2010]) or its interbank liabilities (in Gai et al. [2011]) are constant
across its counterparties. When combined into a double cascade model with shocks
acting in opposing directions, such mathematically convenient, but over restrictive,
assumptions would imply the trivial case of exposures that are constant across the
entire network. Amini et al. [2012] develop a simple but general analytical criterion
for resilience to default contagion in random financial networks, based on an asymp-
totic analysis of default cascades in heterogeneous networks. Their criterion can be
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interpreted as a property of the linearization of the nonlinear cascade mapping about
the trivial fixed point at zero.

The key technical innovation of the present paper is to combine and extend the
frameworks of Gai and Kapadia [2010], Gai et al. [2011], Hurd and Gleeson [2011]
to study the intertwining of stress and default cascades, each acting in opposing
directions. In particular, the present paper handles fully random interbank exposure
weights by using the techniques developed in Hurd and Gleeson [2013], thereby going
beyond the type of over restrictive homogeneity assumptions made in earlier works.
The main result of the paper, Theorem 1, provides an exact asymptotic analysis of
default and stress probabilities at each step of the double cascade, in the limit as the
number of banks N goes to ∞.

The remainder of this paper is structured as follows. Section 2 provides the basic
network framework and assumptions underlying the balance sheet structure of banks.
The timing of the crisis and the bank behaviour assumptions are introduced in Section
3. These assumptions lead to rules for the transmission of shocks through the double
stress/default cascade. The precise dynamical rules of the double cascade, including
the conditions for banks to become stressed or defaulted, are provided in Section
4. Section 5 develops our main theorem, which yields an explicit asymptotic analy-
sis of default and stress probabilities in large heterogeneous networks with random
connectivity, balance sheets and interbank exposures. A key technical assumption
needed to prove this result is to assume a condition we call the locally tree-like in-
dependence (LTI) property. Section 6 provides a parallel development of default and
stress probabilities for cascades on finite “real-world” networks, where it is assumed
that the graph of interbank connections is known explicitly, but balance sheets and
exposure sizes are still random. Several specific financial experiments are reported in
Section 7. First we summarize experiments that verify the main theorem by direct
comparison of large N analytics to Monte Carlo simulation results. Secondly, we
investigate the relationship between the stress response parameter and the level of
stress and default, verifying our statement that average stress probability increases
and average default probability decreases as λ increases. A final experiment involves
a detailed specification of the underlying random variables that is consistent with
known heuristics of financial networks and the latest stress testing data on 89 large
banks in the EU system. We observed that the network in this specification is highly
resilient, and only by a very large shock to the average default buffer size will a high
fraction of banks become either stressed or defaulted. The first main conclusion of
the paper, discussed in Section 8, is that the analytic asymptotic results on default
and stress probabilities that stem from the main theorem, when used carefully, are
consistent with results from Monte Carlo simulations on finite random graphs. A
second conclusion is that stress and default are inversely related: as banks respond to
stress more vigorously, creating more network stress, they protect the network from
default.

One critically important effect could be, but is not, addressed in this paper. Space
considerations led us to leave this aspect for future work. This is the impact of

5



financial cascades on the non-financial economy, and the consequent feedback into the
financial markets through “firesales” of assets. The effects of such market illiquidity
on financial networks have been extensively studied, for example in Cifuentes et al.
[2005] and Adrian and Shin [2010], and it is known that these effects will amplify any
cascade after it takes hold in the network.

2 Balance Sheet Assumptions

In the context of our paper, a deliberately simplified model of a bank is a specification
of a bank’s balance sheet and its behavioural rules, at a moment in time. The
characteristics of the bank’s asset and liability classes should be simplified enough
to allow feasible computations of network dynamics, and complex enough to capture
the network effects under study. The deliberately simplified modelling assumptions
we now specify combine elements of the insolvency model of Gai and Kapadia [2010]
and the illiquidity model of Gai et al. [2011] and are designed to capture the dual
effects of illiquidity and insolvency during a financial crisis.

The network of banks consists of a collection of N banks, each structured in a
similar manner. We adopt a labelling system to identify banks and their interbank
counterparties. The banks are labelled by numbers from the set N = {1, 2, . . . , N}.
The set of debtor banks of a bank v ∈ N is called the in-neighbourhood of v, and
is denoted by N−v ; similarly the bank’s creditor banks form a set called the out-
neighbourhood N+

v of v. The basic graph theoretic measure of a bank v’s size is the
degree pair (jv, kv), where the in-degree is the number of debtors jv = |N−v | and the
out-degree is the number of creditors kv = |N+

v |.

Balance Sheet Assumptions: The basic asset and liability classes have the fol-
lowing characteristics:

1. In addition to cash, the bank holds liquid collateral assets in the form of risk-free
government bonds;

2. The retail loan book of the bank is composed of illiquid loans to the retail sector;

3. Interbank loans are always assumed to be overnight so we neglect the term
structure of interbank lending;

4. Repo transactions, short for repurchase agreements, are overnight, and are col-
lateralized by either collateral assets or rehypothecated reverse-repo assets;

5. Bank deposits are insured hence the possibility of a run by depositors can be
ignored;

6. Bank equity is held only by investors that are external to the banking system;

7. Limited liability: no bank may have negative equity;

8. Prior to the onset of a crisis, balance sheet entries are book values reported
quarterly.
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Figure 1: The stylized balance sheet of a bank v with in-degree jv = 3 and out-degree
kv = 2. Banks w1, w2, w3 are debtors of v while w′1, w

′
2 are its creditors. (Based on a figure

from Gai et al. [2011].)

By these assumptions, the balance sheet of a bank v ∈ N has the structure shown
in Figure 1. On the asset side of bank v’s balance sheet we have: fixed assets AFv
which denote illiquid retail loans; collateral assets ACv and reverse-repo assets ARRv
which denote the assets that are allowable collateral for overnight repo borrowing;
AIBv which are interbank loans; and cash ALv . On the bank’s liability side, fixed
deposits are denoted by LDv ; repo liabilities by LRv ; interbank liabilities by LIBv . The
equity is defined to be

∆v = AFv +ACv +ARRv +AIBv +ALv − LDv − LRv − LIBv . (1)

when the right side is positive. When the right side is non-positive, the assumption
of limited liability is taken to mean that the bank must default and ∆v is defined to
be 0. In what follows, we also refer to ∆v as the bank’s default buffer.

The interbank liabilities LIB and assets AIB decompose into bilateral interbank
exposures. For any bank v and one of its creditors w ∈ N+

v , we denote by Ωvw the
total exposure of w to v. Then we have the constraints

AIBv =
∑
w∈N−v

Ωwv; LIBv =
∑
w∈N+

v

Ωvw .
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The information of interbank counterparties is identifiable as a directed random
graph, i.e. a set of nodes or vertices with a collection of directed arrows, called
edges, between pairs of nodes. Each debtor-creditor pair v, w with w ∈ N+

v is de-
noted by an arrow pointing from v to w. The type (jv, kv) of a bank v is its in-degree
jv and out-degree kv. The type (k`, j`) of an edge ` = (vw) is the out-degree k` = kv
of the debtor bank v and the in-degree j` = jw of the creditor bank w.3

Repo transactions are collateralized overnight loans, designed to be free of coun-
terparty risk. At the near date (or inception date), the borrower (who is also the
asset seller) and lender (who is also the asset buyer) enter into a swap of ownership
of a collateral asset valued at $1, either in AC or ARR, in exchange for $ (1 − h).
The haircut h ∈ (0, 1), which we assume in this paper to be constant over time and
across banks, affords the lender a margin of safety: in case the borrower defaults,
the lender’s cost to dispose of the collateral is hoped to be less than h. At the far
date (the end date of the contract, which we assume here to be the next day) the
asset buyer agrees to resell the asset, at the pre agreed price $ (1− h) + r, where the
repo rate r is basically the overnight risk free interest rate. Repos are used by banks
to keep current accounts positive, even during periods of stress and solvency shocks.
The essence of the behaviour assumptions that will be made in the next section is
that the bank’s total capacity to raise cash by repo funding must exceed its total
interbank and repo liabilities. The stress buffer Σ measures this capacity:

Σ = AL + (1− h)[AC +ARR]− LR − LIB . (2)

Banks with a non-positive stress buffer are called stressed and trigger stress shocks
with a magnitude proportional to the stress response parameter λ ≤ 1.

In the next section, we will make additional assumptions about how insolvency and
illiquidity cascade through the network. It turns out that the mechanical cascade rules
will depend on the interbank exposures Ω together with the reduced set of balance
sheet variables (∆,Σ), rather than the full vectorX = (AF , AC , ARR, AIB, AL, LD, LR, LIB).
In what follows we will focus on the variables (∆,Σ) and ignore the impact of cascades
on the banks’ full balance sheets and consequently on the greater economy.

3 Systemic Crisis Assumptions

Prior to the onset of the crisis, all banks are assumed to be in the normal state. Then,
on day n = 0, a random collection of banks are assumed to experience initial shocks
that deplete either their default buffer, causing ∆ = 0 or their stress buffer, causing
Σ = 0.

We suppose that following this initial moment of the crisis, the financial regulator
forces banks to recompute their balance sheets daily, using mark-to-market valuation.
The initial stochastic state of the network is then described by the following random

3The convention that arrows point from debtors to creditors means that default shocks propagate in the
downstream direction. Unfortunately, in some of the systemic risk literature, this convention is reversed.
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elements: the interbank links form a directed random graph E on the set of banks
v ∈ N ; the buffers ∆v,Σv for v ∈ N are random; and the random variables Ωvw for
edges ` = (vw) ∈ E each represent the interbank exposure of a bank w ∈ N+

v to
v. We now make assumptions about the day-by-day cascade dynamics on a general
network. Subsequent sections will provide a probabilistic analysis of the cascade in
both finite and infinite networks.

Crisis Timing Assumptions: Prior to the crisis, all banks are in the normal state,
neither stressed nor insolvent.

1. The crisis commences on day 0 triggered by the default or illiquidity of one or
more banks;

2. Balance sheets are recomputed daily on a mark-to-market basis;

3. Banks respond daily on the basis of their newly computed balance sheets;

4. All external cash flows, interest payments, and asset price changes are ignored
throughout the crisis.

The daily response of banks will also be governed by simple rules:

Bank Behaviour Assumptions: On each day of the crisis, banks respond as
follows:

1. An insolvent bank, characterized by ∆ = 0, is forced by the regulator into
receivership. At this moment, each of its creditor banks are obliged to write
down their defaulted exposures to zero thereby experiencing a solvency shock.

2. Solvency shocks reduce a bank’s default buffer.

3. An illiquid or stressed bank, defined to be a non-defaulted bank with Σ = 0,
reacts by shrinking its assets. Specifically, it reduces its interbank assets AIB

to (1− λ)AIB. It does so by terminating a constant fraction λ of its interbank
loans. In doing so, it transmits a stress shock to the liabilities each of its debtor
banks. λ is taken to be a constant across all banks during the crisis.

4. A newly defaulted bank also triggers maximal stress shocks (i.e. with λ = 1) to
each of its debtor banks as its bankruptcy trustees recall all its interbank loans,
reducing AIB to 0;

5. Stress shocks reduce a bank’s stress buffer Σ.

This framework admits many variations and extensions. In the type of model
specification we consider in this paper, we ignore the possibility of market illiquidity
and changes in the underlying asset valuations during the short crisis period. In this
case, the above rules apply mechanistically starting on day 0. The crisis evolves in
a deterministic manner starting from the initial random state characterized by the
quintuple (N , E ,∆,Σ,Ω).
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4 Double Cascade Dynamics

We now specify the precise dynamics of the double cascade on a financial network
that on day n = 0 of the crisis consists of a random directed graph E ⊂ N × N ,
random buffers ∆v and Σv for each bank (node) v ∈ N and random exposure sizes
Ω` for each edge ` ∈ E .

The set Dn contains all the defaulted banks after n cascade steps, the set Sn
comprises the undefaulted banks that are under stress after n steps, and Un = Dcn∩Scn
contains the remaining undefaulted, unstressed banks.4 In our model, banks do not
recover from either default or stress during the crisis, so the sequences {Dn}n∈N and
{Dn ∪ Sn}n∈N are non-decreasing. We provide an inductive characterization of the
sequence of random sets Dn and Sn. We use the notation that an event defined by
some condition P is written {P}, for example {v ∈ Dn}, and the indicator random
variable for that event is written 1{P}.

To say that a bank v is defaulted at step n means that default shocks to step n−1
exceed its default buffer:

Dn :=


{∆v = 0} for n = 0

{
v |

∑
w∈N−v Ωwvξ

(n−1)
wv ≥ ∆v

}
for n ≥ 1

(3)

where the random variables ξ indicate the fractional sizes of the various default shocks
impacting v. Similarly, to say that a bank v is stressed at step n means both that it
is not yet defaulted and the stress shocks to step n − 1 exceed the stress buffer, i.e.
Sn = Dcn ∩ S̃n where

S̃n :=


{Σv = 0} for n = 0

{
v |

∑
w∈N+

v
Ωvwζ

(n−1)
vw ≥ Σv

}
for n ≥ 1

(4)

where the random variables ζ indicate the fractional sizes of the stress shocks impact-
ing v.

Accounting for the fact that when v becomes stressed it reduces its interbank
exposures, one can see that for n ≥ 1 the fractions ξ(n−1) are

ξ(n−1)wv :=


0 when w ∈ Dcn−1
1 when w ∈ ∆Dm and v ∈ S̃cm,m = 0, . . . , n− 1

1− λ when w ∈ ∆Dm and v ∈ S̃m,m = 0, . . . , n− 1

(5)

In formulas such as this, we use notation

∆Dj = Dj \ Dj−1, D−1 = ∅; ∆Sj = Sj \ Sj−1, S−1 = ∅ . (6)

4For any set B, Bc denotes its complement.
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Note that in this definition, “fictitious” default shocks with fraction ξ = 1−λ continue
to impact after the default of v. Similarly, accounting for the assumption that de-
faulted creditors have a maximal impact on the bank’s stress buffer, whereas stressed
creditors only shock its stress buffer by a portion λ of the interbank exposure, one
has for n ≥ 1

ζ(n−1)vw :=


0 when w ∈ S̃cn−1 ∩ Dcn−1
λ when w ∈ S̃n−1 ∩ Dcn−1
1 when w ∈ Dn−1

. (7)

At this point a subtle feedback effect arises that if not resolved will create difficul-
ties in the subsequent probabilistic analysis. Similar to a situation discussed in Hurd

and Gleeson [2013], there is dependence between the random variables Ωvw and ζ
(n−1)
vw

that appear in (4). This is because the condition w ∈ Dn−1 in the definition of ζvw
is not independent of Ωvw. The difficulty can be resolved by considering properties
that hold “without regarding” (WOR) a fixed bank. To this end, we will say “bank v
is defaulted at step n, without regarding a bank w ∈ N−v ”, and write {v ∈ Dn 6r w},
if the default condition is true without including an in-link from w to v. That is, for
any w ∈ N

Dn 6r w :=


{∆v = 0} ∩ N+

w for n = 0

{
v ∈ N+

w |
∑

v′∈N−v \w Ωv′vξ
(n−1)
v′v ≥ ∆v

}
for n ≥ 1

(8)

Using this definition, we can equivalently express the stress sets as Sn = Dcn ∩ Ŝn
where

Ŝn :=


{Σv = 0} for n = 0

{
v |

∑
w∈N+

v
Ωvwζ̂

(n−1)
vw ≥ Σv

}
for n ≥ 1

(9)

with

ζ̂(n−1)vw :=


0 when w ∈ Ŝcn−1 ∩ Dcn−1 6r v

λ when w ∈ Ŝn−1 ∩ Dcn−1 6r v

1 when w ∈ Dn−1 6r v

(10)

The reason is that for v ∈ Dcn, the 6r v condition is redundant and thus Dcn ∩ S̃m =
Dcn ∩ Ŝm for any m ≤ n.

We need to check that the definition (5) of ξ remains essentially unaffected if S̃
is replaced by Ŝ on the right hand side, i.e. that ξ can change only in a way that
leaves the default set unchanged. This is true because the sets Ŝm∩Dcm and S̃m∩Dm
are equal, while the sets Ŝm ∩ Dm cannot be larger than the sets S̃m ∩ Dm. Thus
the fraction ξwv won’t change if v hasn’t yet defaulted, and may change but cannot
decrease if v has already defaulted.
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The next two sections are devoted to the probabilistic analysis of the double
cascade in two distinct settings: the case of infinite networks and the case of finite
real-world networks.

5 Infinite Networks

Our model of a financial network has three layers of random structures: the skeleton
graph (a random directed graph (N , E)); the buffer random variables ∆v,Σv, v ∈ N
and the exposure weights Ω`, ` ∈ E .

The skeleton graph (N , E) is a random assortative directed graph as characterized
by a construction developed in Hurd and Gleeson [2011] of an assortative extension
of the well-known configuration random graph model of Bollobãs [2001]. The fol-
lowing formulation of infinite directed assortative graphs combines this assortative
construction with a method developed for infinite undirected graphs in Hurd et al.
[2013]:

Definition 1. The infinite directed configuration graph model should be considered
as an infinite sequence (ΩN ,FN ,P) of random graphs of expected size N , and asymp-
totically consistent with compatible probability laws P,Q for the degree types of nodes
and edges. More specifically:

1. For each N = 1, 2, . . . we have a random directed graph such that: the number
of nodes of degree type (j, k) for j, k ∈ K = {0, 1, . . . ,K} is a random integer dNjk
with expected value NPjk; the number of edges of degree type (k, j) is a random
integer eNkj with expected value NQkj.

2. For each feasible realization of the integer random variables {dNjk, eNkj}, the as-
sortative configuration graph construction of Hurd and Gleeson [2011] is applied;

3. The normalized random sequences converge in probability to P and Q uniformly
in j, k:

dNjk/N = Pjk + o(1); eNkj/N = Qkj + o(1)

where XN = Y + o(1) for a sequence of random variables XN means for each
ε > 0, P[|XN − Y | > ε] has the limit 0 as N →∞.

4. For each j, k ∈ K, Pjk := P[Njk] is the asymptotic probability of a random
node having type (j, k) . This distribution has marginals P+

k :=
∑

j Pjk, P
−
j :=∑

k Pjk and mean in and out degree z =
∑

j jP
−
j =

∑
k kP

+
k .

5. For each j, k ∈ K, Qkj := P[Ekj ] is the asymptotic probability of a type (k, j)
edge. This distribution has marginals Q+

k :=
∑

j Qkj , Q
−
j :=

∑
kQkj that are

subject to the feasibility constraints Q+
k = kP+

k /z,Q
−
j = jP−j /z.

6. To simplify the analysis that follows, we fix a finite set of possible degrees K =
{k1, k2, . . . , kK} and assume that P−j , P

+
k > 0 for all j, k ∈ K.
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The non-negative random variables ∆v have point masses at x = 0 that represent
their initial default probability p0v. We assume that the distribution functions of ∆v

depend only on the type (j, k), and have the following form:

Djk(x) = P[∆v ≤ x|v ∈ Njk] ;
d

dx
Djk(x) := p0jkδ0(x) + djk(x) . (11)

where djk(x) ≥ 0 is a specified function with
∫∞
0 djk(x)dx = 1 − p0jk. Similarly, Σv

has a point mass at x = 0 that represents this bank’s initial stress probability q0v and
a distribution function that depends only on its node type (j, k). Thus the stress
buffer distribution functions of nodes v ∈ Njk have the following form:

Sjk(x) = P[Σv ≤ x, v /∈ D0|v ∈ Njk] ;
d

dx
Sjk(x) := q0jkδ0(x) + sjk(x) . (12)

where sjk(x) ≥ 0 is a specified function with
∫∞
0 sjk(x)dx = 1− p0jk − q0jk. The edge

weight random variables Ω` are positive (i.e. there is zero probability to have a zero
weight) and have distributions that depend only on the edge type (k, j). These can
be specified by the distribution functions

Wkj(x) = P[Ω` ≤ x|` ∈ Ekj ];
d

dx
Wkj(x) = wkj(x) (13)

Finally, conditional on the random skeleton graph (N , E), the collection of random
variables {∆v,Σv,Ω`} is assumed to be mutually independent.

It was argued in Hurd and Gleeson [2011], and proved in Hurd et al. [2013],
that the above construction of a probability measure on random networks implies
a property called locally tree-like independence (LTI) extending the locally tree-like
property of random graphs that cycles of any fixed finite length occur in an infinite
configuration graph only with zero probability. The probabilistic analysis to follow
rests on this extended type of independence:

The locally tree-like independence (LTI) property: Consider a double cascade
model on N defined by a collection of random variables (N , E ,∆,Σ,Ω). Let N1,N2 ⊂
N be any two subsets that share exactly one node N1 ∩ N2 = {v} and let X1, X2

be any pair of random variables where for each i = 1, 2, Xi is determined by the
information on Ni. Then, conditioned on information located at the node v, that is
conditioned on ∆v,Σv, jv or kv, X1 and X2 are independent.5

We are now in a position to derive exact formulas for the probabilistic cascade
dynamics in infinite networks. We first define (here Un = N \ (Sn ∪ Dn) are the
undefaulted and unstressed nodes):

5More precisely, to any subset of nodes N ′ ⊂ N we associate the sigma-algebra G′ generated by the
balance sheets and degrees of nodes in N ′ and edges in N ′ ×N ′. Let the sigma-algebras corresponding to
N1,N2, {v} be denoted G1,G2,Gv. Then G1 and G2 are statistically independent, conditioned on Gv.
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p
(n)
jk = P [v ∈ Dn|v ∈ Njk] ,

q
(n)
jk = P [v ∈ Sn|v ∈ Njk] ,

u
(n)
jk = P [v ∈ Un|v ∈ Njk] .

(14)

as well as additional probabilities

p̂
(n)
jk = P

[
v ∈ Dn 6r w|v ∈ Njk ∩N+

w

]
,

q̂
(n)
jk = P

[
v ∈ Ŝn|v ∈ Njk

]
,

∆q̂
(n)
jk = P

[
v ∈ ∆Ŝn|v ∈ Njk .]

(15)

Recall that ∆Ŝn = Ŝn \ Ŝn−1, n ≥ 1 and ∆Ŝ0 = Ŝ0. Finally, we define conditional
probabilities for 0 ≤ m ≤ n:

p
(n,m)
jk =

P
[
v ∈ Dn|v ∈ Njk ∩∆Ŝm

]
m = 0, . . . , n− 1 ;

P
[
v ∈ Dn|v ∈ Njk ∩ Ŝcn−1

]
m = n ,

(16)

p̂
(n,m)
jk =

P
[
v ∈ Dn 6r w|v ∈ Njk ∩∆Ŝm ∩N+

w

]
m = 0, . . . , n− 1 ;

P
[
v ∈ Dn 6r w|v ∈ Njk ∩ Ŝcn−1 ∩N+

w

]
m = n .

(17)

In terms of these quantities, we have the relations:

p
(n)
jk =

n−1∑
m=0

p
(n,m)
jk ∆q̂

(m)
jk + p

(n,n)
jk (1− q̂(n−1)jk ) , (18)

p̂
(n)
jk =

n−1∑
m=0

p̂
(n,m)
jk ∆q̂

(m)
jk + p̂

(n,n)
jk (1− q̂(n−1)jk ) . (19)

u
(n)
jk = (1− p(n,n)jk )(1− q̂(n)jk ) , (20)

q
(n)
jk = 1− u(n)jk − p

(n)
jk . (21)

In (20), we use the fact

P
[
v ∈ Dcn|v ∈ Njk ∩ Ŝcn

]
= P

[
v ∈ Dcn|v ∈ Njk ∩ Ŝcn−1

]
= (1− p(n,n)jk ) .

Inductively over n, it will be sufficient to compute the quantities p
(n)
jk , q̂

(n)
jk , p

(n,m)
jk , p̂

(n,m)
jk

for m = 0, 1, . . . , n. Implementing these computations will require two important
facts. The first is that if X,Y are two independent random variables with probability
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density functions (PDFs) fX(x) = F ′X(x), fY (y) = F ′Y (y), then

〈
P [X ≥ Y ] = E

[
1{X≥Y }

]
=

∫
R

∫
R
1{X≥Y }fX(x)fY (y) dxdy

=

∫
R
FY (x)fX(x) dx =

〈
FY , fX

〉
.

(22)

In general, the Hermitian inner product on R is defined as 〈f, g〉 =
∫∞
−∞f̄(x)g(x) dx,

but here, both operands are real functions and the conjugate operator disappears.
A second result from probability tells us that if X1, X2, · · · , Xn are n independent
random variables with PDFs fXi , then the PDF of the sum X = X1 +X2 + · · ·+Xn

is the convolution
fX = fX1 ∗ fX2 ∗ · · · ∗ fXn = ~n

k=1fXk
(23)

where the convolution product of two functions is the function defined by (f ∗g)(x) =∫
R f(y)g(x− y)dy. For convolution powers, we write ~n

k=1fX = f ~n
X .

The following induction over n ≥ 1 is our main theorem.

Theorem 1. For any n ≥ 1, suppose p
(m)
jk , q̂

(m)
jk , p

(n−1,m)
jk , p̂

(n−1,m)
jk are known for

m = 0, 1, . . . , n− 1. Define the quantities

p
(m)
k = P[v ∈ Dm|kv = k] =

∑
j

p
(m)
jk

Pjk

P+
k

, (24)

q
(n−1)
j = P[v ∈ Sn−1|jv = j] =

∑
k

q
(n−1)
jk

Pjk

P−j
, (25)

u
(n−1)
j = P[v ∈ Un−1|jv = j] =

∑
k

u
(n−1)
jk

Pjk

P−j
, (26)

p̂
(n−1)
j = P[v ∈ Dn−1 6r w|jv = j, v ∈ N+

w ] =
∑
k

p̂
(n−1)
jk

Pjk

P−j
(27)

as well as PDFs

g
(n−1,m)
j (x) =

∑
k′

[
(1− p(n−1)k′ )δ0(x) + p

(m−1)
k′ wk′j(x)

+(p
(n−1)
k′ − p(m−1)k′ ) · 1

1− λ
wk′j(x/(1− λ))

]
·
Qk′j

Q−j
, (28)

h
(n−1)
k (x) =

∑
j′

[
(1− p̂(n−1)j′ − q(n−1)j′ )δ0(x) + p̂

(n−1)
j′ wkj′(x)

+q
(n−1)
j′ · 1

λ
wkj′(x/λ)

]
·
Qkj′

Q+
k

(29)

In terms of these quantities, we can compute the quantities p
(n)
jk , q

(n)
jk by equations

(18), (21) where we compute p
(n,m)
jk , p̂

(n,m)
jk , q̂

(m)
jk for m = 0, 1, . . . , n by the following
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equations

p
(n,m)
jk =

〈
Djk,

(
g
(n−1,m)
j (x)

)~j〉
, (30)

p̂
(n,m)
jk =

〈
Djk,

(
g
(n−1,m)
j (x)

)~j−1〉
, (31)

q̂
(n)
jk =

〈
Sjk,

(
h
(n−1)
k

)~k〉
. (32)

Proof: To verify (30) for m ≤ n, we use (3), (16) and (22) to give the formula

p
(n,m)
jk =

 P[∆v ≤
∑

w∈N−v Ωwvξ
(n)
wv |v ∈ Njk ∩∆Ŝm] m < n ,

P[∆v ≤
∑

w∈N−v Ωwvξ
(n)
wv |v ∈ Njk ∩ Ŝcn−1] m = n

=

〈
Djk,

(
g
(n−1,m)
j (x)

)~j〉
where

g
(n−1,m)
j (x) =


d
dxP[Ωwvξ

(n)
wv ≤ x|v ∈ Njk ∩∆Ŝm, w ∈ N−v ] m < n ,

d
dxP[Ωwvξ

(n)
wv ≤ x|v ∈ Njk ∩ Ŝcn−1, w ∈ N−v ] m = n .

To verify (28) note that when m < n we can write

g
(n−1,m)
j (x) =

∑
k′

d

dx
P[Ωwvξ

(n)
wv ≤ x|v ∈ Njk∩∆Ŝm, w ∈ N−v , kw = k′]P[k` = k′|j` = j] .

Under the conditions v ∈ Njk ∩∆Ŝm, w ∈ N−v , kw = k′, the events {ξ(n−1)wv = 0},
{ξ(n−1)wv = 1},{ξ(n−1)wv = 1−λ} are equivalent to the events {w /∈ Dn−1}, {w ∈ Dm−1},
{w ∈ Dn−1 \ Dm−1} and hence have conditional probabilities 1 − p

(n−1)
k′ , p

(m−1)
k′ ,

p
(n−1)
k′ −p(m−1)k′ respectively. These latter three events are conditionally independent of

Ωwv by the LTI property. Also by the LTI property, the collection of random variables

Ωwvξ
(n)
wv for different w ∈ N−v are mutually conditionally independent, justifying the

use of formula (22). Similarly, when m = n, and under the conditions v ∈ Njk∩Ŝn−1,
w ∈ N−v , kw = k′ the events {ξ(n−1)wv = 0}, {ξ(n−1)wv = 1} are equivalent to the events

{w /∈ Dn−1}, {w ∈ Dm−1} while {ξ(n−1)wv = 1 − λ} cannot occur. Hence the events

have conditional probabilities 1 − p(n−1)k′ , p
(n−1)
k′ and 0 respectively, and the mixture

CDFs g
(n−1,m)
jk (x) for all m ≤ n are given by (28).

To verify (30), we use (8) instead of (3) and follow these same steps. To verify
(32), we use (9), (15) and (22) to give the formula

q̂
(n)
jk = P[Σv ≤

∑
w∈N+

v

Ωvwζ
(n)
vw |v ∈ Njk] =

〈
Sjk,

(
h
(n−1,m)
k (x)

)~k〉
(33)
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where

h
(n−1)
k (x) =

∑
j′

d

dx
P[Ωvwζ

(n)
vw ≤ x|v ∈ Njk, w ∈ N+

v , jw = j′] P[j` = j′|k` = k] .

To verify (29), note that under the conditions v ∈ Njk, w ∈ N+
v , jw = j′, the events

{ζ̂(n−1)vw = 0}, {ζ̂(n−1)vw = 1}, {ζ̂(n−1)vw = λ} are equivalent to the events {w ∈ Un−1},
{w ∈ Dm−1 6r v}, {w ∈ Sn−1} and hence have conditional probabilities

1− p̂(n−1)j′ − q(n−1)j′ , p̂
(n−1)
j′ , q

(n−1)
j′ respectively.

Remark 2. This theorem is in a non-Markovian form, as indicated by the sum over
m in equations (18) and (19). This sum will pose a difficulty in situations where we
need to compute a very large number of cascade steps before converging to the fixed
point. It is possible to reformulate the theorem in a Markovian form that avoids such
a sum over m.

6 Real-World Networks

The goal of the present section is to derive approximate probabilistic formulas describ-
ing the double cascade on a real-world network where the skeleton graph is actually
known (deterministic) and finite, while the buffers and weights are random. This
analysis will allow us to address systemic risk in tractable models of real observed
financial networks, without the need for Monte Carlo simulations.

Let A = Avv′ , v, v
′ ∈ N be the nonsymmetric adjacency matrix of the fixed

directed graph E . We number the nodes in N by v = 1, 2, . . . , N and the links by
` = 1, 2, . . . , L where L =

∑
1≤v,v′≤N Avv′ . The buffer random variables ∆v,Σv at

each node are assumed to have a mass p
(0)
v , q

(0)
v at 0 (representing the initial default

and stress probabilities) and continuous support with density functions d(x), sv(x) on
the positive reals. The edge weights Ω`, ` ∈ E have continuous support with densities
w`(x) on the positive reals but no mass at 0. The random variables {∆v,Σv,Ω`}, v ∈
N , ` ∈ E are assumed to be an independent collection.

The aim of this section is to use the LTI property as an approximation to derive

approximate formulas for the marginal likelihoods p
(∞)
v , q

(∞)
v for the eventual default

and stress of individual nodes, as well as the possibility to compute formulas for more
detailed systemic quantities. This approximation is not exact whenever there are
cycles in the skeleton graph. In general, when the skeleton graph is a single random
realization from a configuration graph ensemble, we expect the LTI approximation
to get better with increasing N . The LTI property will be exactly true in the special
case of skeleton graphs that are trees: This fact will be used in Section 7.3 to verify
the consistency of our numerical implementations.

We now present an approximate analysis, paralleling the N = ∞ analysis of the
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previous section, of the sequence of probabilities

p(n)v = P[v ∈ Dn] ,

q(n)v = P[v ∈ Sn] ,

u(n)v = P[v ∈ Un]

for each node v. For the same reasons as before we need in addition to track

q̂(n)v = P[v ∈ Ŝn] ,

p(n,m)
v =

P
[
v ∈ Dn|v ∈ ∆Ŝm

]
m = 0, . . . , n− 1 ;

P
[
v ∈ Dn|v ∈ Ŝcn−1

]
m = n

and the WOR probabilities

p̂(n)wv = P[v ∈ Dn 6r w] ,

p̂(n,m)
wv =

P
[
v ∈ Dn 6r w|v ∈ ∆Ŝm ∩N+

w

]
m = 0, . . . , n− 1;

P
[
v ∈ Dn 6r w|v ∈ Ŝcn−1 ∩N+

w

]
m = n

for each in-link of v. Note that

p(n)v =
n−1∑
m=0

p(n,m)
v ∆q̂(m)

v + p(n,n)v (1− q̂(n−1)v ) , (34)

p̂(n)wv =

n−1∑
m=0

p̂(n,m)
wv ∆q̂(m)

v + p̂(n,n)wv (1− q̂(n−1)v ) , (35)

u(n)v = (1− p(n,n)v )(1− q̂(n)v ) , (36)

q(n)v = 1− u(n)v − p(n)v . (37)

Inductively, we have

p(n,m)
v =

〈
Dv,~v′∈N−v

(
g
(n−1,m)
v′v

)〉
, (38)

p̂(n,m)
wv =

〈
Dv,~v′∈N−v \w

(
g
(n−1,m)
v′v

)〉
, (39)

q̂(n)v =
〈
Sv,~v′∈N+

v

(
h
(n−1)
vv′

)〉
, (40)

(41)

where

g(n,m)
wv (x) =


d
dxP[Ωwvξ

(n)
wv ≤ x|v ∈ ∆Ŝm ∩N+

w ] m = 0, . . . , n− 1 ;

d
dxP[Ωwvξ

(n)
wv ≤ x|v ∈ ∆Ŝcn−1 ∩N+

w ] m = n
(42)

h(n)vw (x) =
d

dx
P[Ωvwζ

(n)
vw ≤ x|v ∈ N−w ] . (43)
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These PDFs can be computed using the LTI approximation by following the logic of
the proof of Theorem 1:

g(n,m)
wv (x) = (1− p(n)w )δ0(x) + p(m−1)w wwv(x)

+ (p(n)w − p(m−1)w ) · 1

1− λ
wwv(x/1− λ) , (44)

h(n)vw (x) = (1− p̂(n−1)vw − q(n−1)w )δ0(x) + p̂(n−1)vw wvw(x) + q(n−1)w · 1

λ
wvw(x/λ) .(45)

7 Numerical Experiments

In this section, we report briefly on several numerical experiments that illuminate the
methods developed in this paper. The primary aims of our three experiments are:
Firstly, to convince the reader that the LTI method correctly computes the double
cascade in stylized networks with large values of N ; Secondly, to show how the LTI
method can lead to answers to questions about the nature of systemic risk; Thirdly,
to show how the method performs in a challenging stylized network specified to reflect
the complex characteristics of a 2011 dataset on the network of 89 most systemically
important banks in the European Union.

To validate the LTI method, we developed a Monte Carlo (MC) implementation of
the double cascade model, and compared the final fraction of defaulted and stressed
nodes generated from the LTI and MC implementations. Before we present the results
of the comparison, we mention two fundamental modifications that are necessary to
implement these methods. First, implementation of the LTI method uses an FFT
method sketched in Appendix A, which requires that the edge weight and buffer
random variables take values on a common discrete lattice {mδ}m=0,1,...,M−1. The
second modification is that rather than the infinite configuration graphs assumed in
the LTI method, the MC implementation generated finite configuration graphs with
N = 20000 nodes, with the specified P and Q matrices.

7.1 Experiment 1: Verifying the LTI Method

This experiment aims to verify that the LTI method performs as expected when
applied to a stylized financial network whose specification is similar to that given
in Gai and Kapadia [2010]. It consists of a random directed Poisson skeleton graph
with mean degree6 z = 10, where each node v can be viewed as a bank with a default
buffer ∆v = 0.04 and stress buffer Σv = 0.02. Unlike the deterministic weights used
in Gai and Kapadia [2010], the edge weight Ω` of an edge `, representing the exposure
between two banks, is taken from a log normal distribution with mean µ = 0.2 ∗ j−1` ,
and standard deviation 0.383 ∗ µ`. Note that this specification makes the exposure
size dependent on the lending bank. An initial shock is applied to the network that
causes each bank to default with a 1% probability.

6The mean degree is the average number of ”in” edges per node, which equals the average number of
”out” edges per node.
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We compare the final fraction of defaulted bank and stressed banks as computed
using MC simulation with 1000 realizations and the LTI analytic formulas. Directed
Poisson random graphs are particularly amenable to study by Monte Carlo: To gen-
erate a random graph of size N with mean degree z > 0 from this class, one simply
selects directed edges independently from all N(N − 1) potential edges, each with
probability p = z/(N − 1). The resultant bi-degree distribution is a product of inde-
pendent binomials, P[v ∈ Njk] = Bin(N − 1, p, j) × Bin(N − 1, p, k), which for large
N nodes is approximately a product of independent Poisson(z) distributions.

Figure 2 plots the results as functions of the stress response parameter λ, with
error bars that represent the 10th and 90th percentile of the Monte Carlo result. It
shows the expected agreement between MC and LTI analytics, with discrepancies
that can be attributed to finite N effects present in the MC simulations.

One fundamental property of our model is clearly shown in this experiment: Stress
and default are negatively correlated. This fact can be explained by the stress reaction
which enables banks to react to liquidity shocks before they default, by reducing
their interbank exposures. This response creates yet more stress, but leads to a more
resilient network. The “knife edge” property of default cascades is also clearly shown:
in the model parametrization we chose, a very small increase in λ dramatically alters
the stability of the network. In the next experiment, we explore these two properties
in more detail.
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Figure 2: A comparison of MC implementation vs the analytical results using the LTI
formulation.
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7.2 Experiment 2: A Stylized Poisson Network

This experiment focusses again on random Poisson networks, but now explores how
a network susceptible to a default cascade can be made resilient by requiring banks
to manage stress. We shall investigate how the default cascade varies as the stress
response λ and stress buffer Σ change. In general, we continue to find confirmation
that the LTI results accurately reflect what is observed in MC simulations.

7.2.1 Experiment 2A: Effects of Default and Stress Buffers

We consider the stylized financial network of the previous experiment, but this time
we study the parameters that can make this network resilient to random shocks.
As before, the skeleton graph is a random directed Poisson graph with mean degree
z = 10, the edge weights are chosen from a lognormal distribution with mean µ =
0.2 ∗ j−1, and standard deviation σ = 0.383 ∗ µ where j is the number of in links
for the receiving node, and the initial shock causes each bank to default with 1%
probability. The stress buffers are 0.02, the default buffers are 0.04, and the stress
response is λ = 0.25.

Figure 3(a) imagines what happens if regulators require all banks to increase their
default buffers without seeking to change their stress behaviour. Then we observe a
very fast transition to a stable network as ∆ increases over the interval [0.04, 0.045].
This knife edge property is observable in both the LTI analytics and in the MC
simulations. Note that the error bars, representing the 10th and 90th percentiles of
the Monte Carlo results, again become very large near the knife edge.

If banks reduce their stress buffers, they will react more quickly to stress shocks:
This can also reduce default cascade risk in the network. Figure 3(b) shows that
default cascade risk can be dramatically reduced if banks choose to reduce their
stress buffers below 0.02, while maintaining λ = 0.25 and their default buffer at 0.04.
Taken together, these two plots show that there may be many different approaches
to dealing with network resilience.

7.2.2 Experiment 2B: Effects of Graph Connectivity and Stress Re-
sponse

In this experiment, we observed the systemic risk in the directed Poisson network
as a function of the connectivity parameter z and λ, the stress response. In this
network, each node has a random default buffer from a log normal distribution with
mean 0.18 and standard deviation 0.18 and a stress buffer from an independent log
normal distribution with mean 0.12 and standard deviation 0.12. The edge weights
come from a lognormal distribution with mean and standard deviation proportional
to (jk)−0.5, with the average edge weight on the entire network equal to 1. Figure
4(a) is a surface plot of the mean default cascade size in the network as a function of
z and λ. Figure 4(b) shows the corresponding stress level of the network. Again, we
notice the strong anti-correlation between stress and default probabilities, and the
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Figure 3: The effects of the (l) default buffer and (r) stress buffer levels on the resilience
of the network to random default shocks.

effect of increasing the stress response. It is interesting to observe that the level of
stress is not monotonic in the connectivity parameter z.

7.3 Experiment 3: A real-world Network with 89 Nodes

While the above experiments on hypothetical financial networks demonstrate the
range of options available to use for this model, we are of course very interested in
having a rough picture of the systemic risk of actual networks. In Experiment 3 we
use the “real-world” method of Section 6 to compute the cascade dynamics on a single
realization of an 89 node graph.

As pointed out in the previous section, the LTI property is exactly true for real-
world tree networks. We used this fact to verify that the real-world network software
used in Experiment 3 is correct on a number of tree networks, which provides a strong
independent validation of the method.

Numerous studies of real-world financial networks, notably Bech and Atalay [2010]
and Cont et al. [2010], have concluded that their in and out degrees have fat tailed
distributions, as do the exposure sizes, and presumably the buffers. We addressed
these “stylized facts” by specifying a schematic model that intends to capture some
key statistical features of data published on the 2011 ECB stress testing of 89 sys-
temically important banks in the European Union. Our stylized model is specified as
follows.

1. The skeleton graph, shown in Figure 5, is the subgraph of the 89 most connected
nodes of a single realization with N = 1000 nodes of a scale-free directed random
graph drawn from the family of preferential attachment models introduced in
Bollobãs et al. [2003]. Following that paper’s notation, the parameters defining
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Figure 4: Stress and default cascade sizes on a multitude of Poisson networks sorted by
connectivity and recovery rate.

the skeleton graph are given by

α = 0.169, β = 0.662, γ = 0.169

and lead to fat-tailed marginal in and out degree distributions with Pareto
exponents γ+, γ− = 4. Self loops are removed. The mean connectivity of the
subgraph containing the 89 most connected nodes is 10.

2. The buffer random variables ∆v are defined by

∆v = (kvjv)
β1 exp[a1 + b1Xv];

3. The exposure random variables Ω` are defined by

Ωv = (kvjv)
β2 exp[a2 + b2X`];

4. The collection {Xv, X`} consists of independent standard normal random vari-
ables.

5. The above parameters are determined by matching moments of the aggregated
interbank exposure data 7

β1 = 0.3, a1 = 8.03, b1 = 0.9, β2 = −0.2, a2 = 8.75, b2 = 1.16

7Data found at
http:+
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Figure 5: A representation of the undirected skeleton graph of the 89 bank network of
Experiment 3. The nodes are plotted with total degree decreasing in the counterclockwise
direction, with the maximally connected bank being the rightmost node.

Figure 6(a) presents the default and stress levels that results in a numerical ex-
periment that shocked one bank at random to default. The “real-world network”
analytical computations used follow on the method of Section 6, and comparable
MC computations were also performed. This graph shows that the MC and analytic
computations agree on the resilience of the EU network in 2011 to such a shock.

The parametrized network turns out to be highly resilient: to create a large scale
double cascade triggered by a single bank default, we found it was necessary to
imagine a dire crisis where the T1 capital of all institutions is reduced to 1/10th of
their initial amount. Figure 6(b) shows the behaviour of the resultant cascade as a
function of the stress response parameter λ. This graph also shows limitations of the
LTI approximation: in this specification of the network, the LTI and MC methods
disagree strongly on the mean default cascade size. This discrepancy is an example
of a general tendency we observed: LTI and MC tend to agree most strongly when
the network is far from the critical surface where the cascade is intermediate in size.
In Figure 6(b), both LTI and MC agree that the double cascade is intermediate in
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size, that is, that the probability of banks becoming either stressed or defaulted is
not close to either 0 or 1. However, they disagree strongly on the precise size of the
cascade.
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(a) The resilience of the EU system under normal
circumstances.
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(b) A cascade in the EU during an extreme crisis.

Figure 6: The effects of changing the stress response on a finite network that represents a
stylized EU financial system.

Finally, in real-world networks, we can get a picture of which banks are most
susceptible to the default of the single bank. Figure 7 shows the stress and default
probabilities bank by bank, in increasing order of the LTI estimated default probabil-
ity. We see that LTI analytics and MC agree quite well on which will be the stressed
banks, but not well on default.

8 Conclusions

The double cascade model we present in this paper is a natural extension of the
previous systemic risk research that studies deliberately simplified models which build
in either default or stress cascades, but not both. Only by combining the default
and stress mechanisms into a single model, a non-trivial accomplishment given their
fundamentally opposing natures, can one determine quantitatively the intuitively
obvious effect of banks using the stress response to reduce their risk of default.

Developing a feasible and reliable computation framework for a model as complex
as our double cascade model is a difficult undertaking. We have demonstrated how
computations can be done by two complementary approaches: the Monte Carlo (MC)
method and the locally tree-like independence (LTI) analytic method. In general,
having these two approaches allows us to independently cross validate both methods.
This validation capability leads to a dramatic increase in confidence in the results
one obtains.
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Figure 7: A look at default and stress probabilities of individual banks after a severe crisis
in the stylized EU financial system. The banks are numbered in increasing order of their
default probability as computed by the real-world LTI method.

As to the pros and cons of MC versus LTI, we mention some of the key issues.
To counter the natural flexibility of MC methods, the LTI method, where it applies,
adds the possibility to better understand the flow of the cascade. For example,
using LTI one can determine sensitivities to changing parameters through explicit
differentiation. A con for the MC method is that simulating general assortative
(P,Q) configuration models has not to our knowledge been studied while the LTI
method handles this generality without difficulty. On the other hand, relevant random
graphs such as preferential attachment models have a straightforward MC simulation
algorithm, but are not LTI. Another pro for MC is that the LTI approximation
is uncontrolled for finite N configuration graphs, meaning we can only learn how
accurate it is by comparing to MC results. Through experience, we are learning rules
of thumb for when LTI gives acceptable results, for example when N is large and
the cascade is far from critical. Apart from the graph generation step, MC is usually
easier to program than LTI. But in some situations where the MC method leads to
unacceptably long run times, LTI can be computed in seconds. Ultimately what is
important is that both methods have complementary strengths and weaknesses, and
when used in combination we can arrive at robust and reliable conclusions about a
wide range of network effects.

Future theoretical work must proceed by improving and extending both the MC
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and LTI methods. For example, we need better MC algorithms for simulating different
random graph models and we would like to find computable analytical methods for
networks that are not LTI.

Time and space limitations prevented this paper from exploring many promising
specifications of financial networks. While the systemic importance of parameters
such as network connectivity, mean buffer strength, and the size of the interbank
sector have been studied previously, other parameters such as the stress response,
the buffer and exposure variances, and graph assortativity, remain almost completely
unexplored. The effect of market illiquidity and asset fire sales has been omitted
from the present paper, but its impact on the cascade and consequently the greater
economy merits careful investigation. Financial network databases, and the statistical
methods for matching such data to the model, are still in an underdeveloped state,
but are needed to tie down the wide range of parameters in our model. We hope the
reader will be convinced that the double cascade model developed in this paper has
the potential to realistically represent observed financial networks, and be motivated
to investigate the range of complex systemic phenomena that can emerge.
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A Discrete Probability Distributions and the

Fast Fourier Transform

Numerical implementation of these models follows the methods outlined in Hurd and
Gleeson [2013]. In this section, we analyze the case where the random variables
{∆v,Σv,Ω`} all take values in a specific finite discrete set M = {0, 1, . . . , (M − 1)}
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with a large value M . In such a situation, the convolutions in (23) can be performed
exactly and efficiently by use of the discrete Fast Fourier Transform (FFT).

Let X,Y be two independent random variables with probability mass functions
(PMF) pX , pY taking values on the non-negative integers {0, 1, 2, . . . }. Then the
random variable X + Y also takes values on this set and has the probability mass
function (PMF) pX+Y = pX ∗pY where the convolution of two functions f, g is defined
to be

(f ∗ g)(n) =

n∑
m=0

f(m)g(n−m) (46)

Note that pX+Y will not necessarily have support on the finite set M if pX , pY have
support on M. This discrepancy leads to the difficulty called “aliasing”.

We now consider the space CM of C-valued functions on M = {0, 1, . . . ,M − 1}.
The discrete Fourier transform, or fast Fourier transform (FFT), is the linear mapping
F : a = [a0, . . . , aM−1] ∈ CM → â = F(a) ∈ CM defined by

âk =
∑
l∈M

ζklal , k ∈M .

where the coefficient matrix Z = (ζkl) has entries ζkl = e−2πikl/M . The “inverse FFT”
(IFFT), is given by the map a→ ã = G(a) where

ãk =
1

M

∑
l∈M

ζ̄klal , k ∈M .

If we let ā denote the complex conjugate of a, we can define the Hermitian inner
product between

〈a, b〉 :=
∑
m∈M

āmbm

We also define the convolution product of two vectors:

(a ∗ b)(n) =
∑
m∈M

a(m) b(n−m modulo M), n ∈M

Note that this agrees with (46) if and only if the sum of the supports of a and b is inM.
Otherwise the difference is called an aliasing error: our numerical implementations
reduce or eliminate aliasing errors by taking M sufficiently large.

The following identities hold for all a, b ∈ CM : (i) Inverse mappings:
a = G(F(a)) = F(G(a)); (ii) Conjugation: G(a) = 1

MF(ā); (iii) Parseval Identity:

〈a, b〉 = M〈ã, b̃〉 = 1
M 〈â, b̂〉; (iv) Convolution Identities: ã ·∗b̃ = (̃a ∗ b), â ·∗b̂ = (̂a ∗ b),

where ·∗ denotes the component-wise product.
As an example to illustrate how the above formulas help, we observe that a typical

formula (30) can be computed instead by the formula

p
(n,m)
jk =

1

M
〈F(D),

(
ĝ
(n−1,m)
j

)j
〉
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where D̂ = F(D), ĝ
(n−1,m)
j = F(g

(n−1,m)
j ) and the power is the component-wise vec-

tor multiplication. Such FFT-based formulas can be computed systematically, very
efficiently, if the discrete probability distributions for ∆,Σ,Ω are initialized in terms
of their Fourier transforms.
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