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How to shape risk appetite in presence of
franchise value?1

Cecilia Aquila and Giovanni Barone-Adesi

Abstract

We propose a model where risk appetite is determined by the interplay of the default put

option and the down-and-out call (DOC) option, pricing the franchise value, and the market

value of tangible assets. The bank manager takes incremental decisions maximizing his

objective function, i.e. the sum of the two options, adjusting jointly the level of leverage,

assets and franchise value volatility and the policy rate. Risk appetite is given by the �rst

order derivatives. Since the franchise value is non-observable, we consider risk appetite also

as the latent variable in a state space model. Its dynamic moves in line with the previous

estimation and is persistent. We show that regulators should tune their recommendations

depending on the targeted cluster, since the driver of risk appetite alternates between the

two options depending on the cluster and on the underlying variable considered and that the

optimal policy rate is higher with respect to the existing one.

Keywords : risk appetite, risk-free rate, default put option, down-and-out call option, fran-

chise value, assets and franchise' volatility, leverage.

1We acknowledge the �nancial support of the Europlace Institute of Finance
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1 Introduction

The main goal of our research is to understand bank's risk appetite and the role played by

the monetary policy in shaping it. We �nd what are the main drivers for risk appetite and

their impact on the bank market and franchise values. Bank risk appetite is determined

by the interplay of the default put option, PUT def , and the franchise value, i.e. the net

present value of non-observable bank's growth opportunities, priced through a down-and-out

call (DOC) option. The franchise value is not directly observable: how can we evaluate

this �gure? We rely on Barone-Adesi et al. (2014) pricing it through the DOC option and

we propose to estimate it implicitely from the equity market value, extending the standard

structural models. Risk appetite is determined by the manager objective function which we

propose it to be the ratio between the sum of the two options and the market value of the

tangible assets, i.e. DOC+PUT def

MVA
. We propose two ways to reach the goal of shaping risk

appetite. First, we suggest a two steps optimization problem, second, we assess risk appetite

in a state space model.

In the �rst step of the optimization problem, we estimate the non observable quantities,

namely the franchise value and the market value of the assets. We estimate numerically

the optimal value of the franchise value together with the market value of the assets. The

optimization procedure is based on the non-linear least squares estimator. We discriminate

banks with and without franchise value and subsequently we perform a cluster analysis based

on leverage. Given the industry in which we perform our analysis, we de�ne leverage as the

ratio between from one side, the market value of the assets and the franchise value, and on

the other side, the market value of equity, which is the denominator, as in Kalemli-Ozcan

et al. (2012). In the second step, we optimize the objective function, given by the sum of the

two options, evaluating risk appetite simultaneously with respect to leverage, volatility and

the policy rate. The �rst-order derivatives of this function determines bank and monetary

policy risk appetite. The determinant of the hessian matrix tells us in which direction the

manager optimizes this function. In our model, both the bank manager and the monetary

policy have to align their policy optimizing the risk appetite in line with the regulators

prescriptions. The monetary policy has to set the rho2 equal to zero (policy rate-driven risk

appetite) considering also the manager risk management policy. The latter sets the vega3

equal to zero (volatility-driven risk appetite) simultaneously with the derivative with respect

to the leverage (leverage-driven risk appetite). We stress the importance of performing

2Objective function sensitivity with respect to change in the policy rate.
3Objective function pricing sensitivity with respect to change in the implied volatility.
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jointly this optimization, meaning that the monetary policy maker has to cooperate with the

bank manager in order to align their policy and to allow for an e�ective objective function

optimization. This is equivalent to say that also second order and joint derivatives are

considered from a technical point of view and the sign of the determinant of the hessian

matrix gives us the diretion of the bank and monetary policy strategy. The pricing of the

two options is designed to have di�erent impact on the appetite for risk of our bank depending

on the cluster we focus on and the variable we consider. The regulators should tune their

recommendations depending on the targeted cluster in order to be e�ective. This is an

element of primary interest because regulation does not di�erentiate enough in the banking

industry and �at recommendations do not �t all the peculiarities we �nd in clustering the

industry. Furthermore, the impact can be counterproductive, given that di�erences among

clusters are relevant and consequences can go in an opposite direction with respect to what is

intended by the regulator. Our speci�cation of objective function returns a three-dimensional

perspective and addresses the main instruments of regulation and monetary policy. Thus, it

can be a useful instrument for the regulator, allowing for a more comprehensive understanding

of the joint impact of the three optimizing variables.

Our speci�cation for the objective function, and consequently for risk appetite, is not

observable in the market because of the role played by the franchise value. Thus we want to

understand the goodness of our estimation. We propose a state space model, where the state

variable is the objective function of the bank and we model it as an AR(1) with a coe�cient φ

smaller than one in absolute value (|φ| < 1). The observed variable is the implied assets and

franchise value volatility. Conforming to the existent literature, the measurement equation

is non-linear, and for simplicity we adopt a quadratic speci�cation. To accomodate this non-

linearity feature we use a non-linear extension of the Kalman �lter. We perform our �ltering

procedure through the extended Kalman �lter (EKF,Haykin (2001)). The �ltering is used

to estimate the model parameters by pseudo-maximum likelihood (PML) and to understand

the underlying dynamic of the latent state. Regulation sets constraints on leverage assets'

riskiness and the monetary policy plays a role in determining the liquidity. All those elements

impact objective function as de�ned in our framework.

Our empirical sample consists of 1436 listed US banks and the time span considered is

1980-2014. We perform a cluster analysis in order to accomodate for the main di�erences

across the industry. First of all we distinguish between banks with franchise value and

without. We �nd that about the 17% of the banks in the sample do not have franchise value

at least in one year of the time span considered. Second, we cluster our sub-samples into three

cathegories depending on leverage. The main results for the sub-sample of banks without

4



franchise value are easy to predict since the put option is the only player in the objective

function optimization and in determining the shape of risk appetite. More interestingly,

we assess the sub-sample of banks with a portfolio of growth opportunities and we cluster

it as follows: we have (i) 4829 �overcapitalized� banks (cluster 21), with an actual average

leverage of 6.3299; (ii) 3298 �average capitalized� banks (cluster 22), with 12.9144 and (iii)

1117 �undercapitalized� banks (cluster 23) with 22.0996.

We perform a sensitivity analysis with respect to the three optimizing variables in order

to understand the shape of risk appetite moving one of the three variables given the optimal

quantities for the other two. Furthermore, we disentangle which option is the main driver

among the three clusters. Considering leverage, the risk appetite is determined �rst by the

default put option, then by the DOC one. There is a di�erence in the leverage-driven risk

appetite at a cluster level related to the positioning of the peak. On the volatility side, both

the options contribute in shaping the objective function but the default put option is an early

operator with respect to the DOC one. As the leverage increases, the volatility-driven risk

appetite is smaller, since the risk appetite peaks goes to the left-hand side. Concerning the

policy rate, the shape of risk appetite is a concave function in all the three cases, with minor

di�erences among the clusters. The DOC option drives the shape at the beginning leaving

the place to the put one afterwards. In cluster 21, the bell-shape is quite symmetric, instead

in the other two it is right-skewed. Empirically, we always �nd that the estimated policy rate

is higher relative to the actual one. Increasing the leverage, the optimized objective function

naturally increases (since it is partly determined by the franchise value). The risk appetite

is assessed through the behaviour of its three main drivers and the associated shape is quite

di�erent among the clusters.

Considering the state space model, we call the estimation of the state variable, obtained

through the PML, RAPML. We compare it to the volatility-driven estimate for risk appetite

obtained in the two-steps optimization and we call it RAM . We compare the evolution of

our two estimators, the one given in the optimization section and the other one obtained

through the �ltering procedure. The estimations produce coherent results especially at an

aggregate level, in the decade 1997-2007. Some di�erences emerge when looking at cluster

level. The RAPML is very persistent due to a large coe�cient φ in absolute value and,

interestingly, we show that the major driver in the measurement equation is given by the

quadratic term. Looking at clusters, we can see that the RAPML variability is very low

compared to the other one and cluster 23 presents the most similar results with respect to

the agrregate perspective.

The paper proceeds as follows. Section 2 introduces a literature review. Section 3 presents
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the model and the pricing of the options. The two step optimization problem is described in

Section 4. Section 5 analyses the �ltering model and the PML estimation. Section 6 shows

the empirical results. Section 7 concludes. Further material is given in the appendix.

2 Literature review

This paper is related to several di�erent strands of the literature. First of all, the building

blocks of the literature about structural models are considered. Second, regulation issues

are reviewed from both a theorethical and an empirical perspective. Third an overview on

growth opportunities evaluation issues is presented.

Our paper is based on the seminal works by Black and Scholes (1973) and Merton (1973a),

where the liabilities of a company are seen as an European option written on the assets of

a �rm. In the case of Merton (1973a), the capital structure of a �rm is composed by a

zero-coupond bond, as debt, and equity. At the beginning of the period, debtholders hold a

portfolio consisting of the face value of debt and a short position on a European put option.

Instead, equityholders hold a European call option on the market value of assets, with strike

equal to the face value of debt. Under the non arbitrage assumption, the price of this option

is equal to the market value of equity. Default can happen only at maturity and standard

Black-Scholes world assumptions4 hold.

Several studies extend the original model considering the assumptions by Black and Sc-

holes. Black and Cox (1976b) and Longsta� and Schwartz (1995) allows for default also prior

to maturity. Merton (1977, 1978) examines default risk in banks, with several issues that

were addressed by recent literature. In those cases, equity is considered as a barrier option

and the default event is triggered at the �rst hitting time of an exogenously determined

barrier.

The endogenization of the default threshold, proposed by Leland and Toft (1996), provides

alone not a clear improvement with respect to the standard Merton model, unless a jump

component is introduced, as in Leland (2006). Our study is more related to Brockman and

Turtle (2003), who introduce in equity path dependency, i.e. equity can be knocked out

whenever a legally binding barrier is breached.

The model we propose relies on regulatory principles: Basel III indicates a bank is insol-

vent if the common equity tier one (from now on CET1) is below 4.5%. It is true that in

4Such as perfect markets, continuous trading, constant volatility, deterministic and constant interest rates,
in�nite liquidity and Ito dynamics for the process of the market value of the assets in place
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some countries banks, that would be declared insolvent for Basel III, still run their assets.

Thus, a possible extension to this model would consider the interplay between an exogenous

default barrier set by the regulator and the endogenous one chosen by the bank, highlighting

an important weakness in monitoring by the regulator.

Hugonnier and Morellec (2014) propose a dynamic model of banking assessing the impact

of the main instruments in Basel III. From one side, they show that liquidity requirements

impact only on the short run increasing potentially default risk. On the other side, leverage

requirements decrease default risk and increase growth opportunities of the bank, on the

long-run, which is partly in line with our �ndings. Additionally, raising equity requirements

make the loss to be borne by shareholders and the distance to default increases (see e.g.

Admati and Hellwig (2013)).

Berger and Bouwman (2009) provide an empirical application, in order to answer a the-

orethical question on the relationship between capital and liquidity. They study the link

between value and liquidity and this is relevant for our franchise value issue. They �nd that

banks, creating more liquidity, have signi�cantly higher market-to-book and price-earnings

ratio.

From a social point of view, Hugonnier and Morellec (2014) provide a measure for social

bene�ts of regulation, that together with the liquidity dimension could be related to the

present work. DeAngelo and Stulz (2014) show the reasons of an increase in bank leverage

over the last 150 years. They highlight that high bank leverage, per se, does not necessar-

ily cause systemic risk. They warn regulators, putting too high leverage constraints, since

regulated banks loose in terms of competitiveness with respect to unregulated shadow banks.

Looking at regulatory barriers, Episcopos (2008) considers a wealth transfer from stock-

holders to the insurer. He shows that stockholder incentives to perform asset substitution

diminish, when the regulatory barrier is increased. Concentrating on too-big-to-fail banks,

Lucas and McDonald (2006) build their modelling of the public guarantee in a Sharpe (1976)

and Merton (1977) framework, where the insurance is a put option on the assets' value. For a

�rm with guaranteed debt, equity value has another component with respect to the standard

call option on the operating assets: the public guarantee. It is assumed to accrue to equity

holders, since it is equivalent to writing a put option, from the government point of view.

Hovakimian and Kane (2000) assess the e�ectiveness of capital regulation at U.S. commercial

banks on a ten year window (1985-1994). They �nd that capital discipline do not prevent

large banks from shifting risk onto the safety net. Bank capitalization is necessary to make

the franchise value and managerial risk aversion strong enough to cope with the fact that

risk remains mispriced at the margin by the Federal Deposit Insurance Corporation (FDIC)
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as in Gorton and Rosen (1995).

Another main ingredient in our study is franchise value, which is the net present value

of future growth opportunities. Arnold et al. (2013) propose a switching regime framework

for evaluating the growth option. One of their main results consists in showing that growth

opportunities require less leverage and, as we explain in Section 2, this is the case also in our

model. Instead, Marcus (1984) and Li et al. (1996) develop an option-pricing model to show

how charter value can counterbalance moral-hazard-induced risk incentives. Martinez-Miera

and Repullo (2010) individuate a U -shape relation between franchise value and the risk of

bank failure, in case of lower interest rate charged by banks due to a competitive environment.

The underlying framework, for our model, is given by Froot and Stein (1998) who found

the rational for risk management arises from the concavity of the franchise value. The market

value of equity is assessed building on Babbel and Merrill (2005). In their model, the franchise

value and the default put option accrue to equityholders. Barone-Adesi et al. (2014) argue

that the risk appetite of �nancial intermediaries is determined by the interplay of default put

option and growth opportunities.

3 Research methodology

3.1 The model

The subject of our study is a bank held by shareholders who bene�t from limited liability.

They discount cash �ows at a constant interest rate.

The structure of the balance sheet, in book values, is given as follows. The bank owns a

portfolio of risky assets and liquid reserves, and is �nanced by insured deposits, risky debt

and equity. On the left hand side of the balance sheet, risky assets are relative illiquid due to

informational problems (see e.g. Hugonnier and Morellec (2014) and Froot and Stein (1998).

For the while, assuming there are no costs of raising funds, liquidity reserves do not play a

role. On the right hand side of the balance sheet, the focus of the analysis is on risky debt

and equity, instead deposits are seen as a relative stable source of �nancing for the bank (see

Hanson et al. (2014)).

Going to market values, debt is seen as a portfolio of cash plus a short position in a put

option on �rm value as in Merton (1974) and equity as a call option on assets as in Black

and Scholes (1973). In our model, we focus on the interplay between the standard default

put option and the down-and-out call option that accrue to shareholders.
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Main assumptions and model description

In this subsection, we introduce the main assumptions of our model, building on the funda-

mental work of Black and Scholes (1973) and Merton (1974), and the following insights by

Babbel and Merrill (2005) and Barone-Adesi et al. (2014).

The setting of the underlying model deals with continuous time, with initial date t = 0

and terminal date t = T . No frictions, like transaction costs, taxes and costs of raising funds,

nor limits on short sales are considered and no riskless arbitrage opportunities exist. Agents

are risk-neutral and there are no con�icts of interest between shareholders and managers. The

focus of the project is to understand how the regulator should set appropriate risk-taking

incentives, given that the bank is maximizing its end of the period equity market value.

Initially, shareholders contribute the entire equity of the bank and, subsequently, consider

operating a debt-equity swap at t0, where debt has face value FV SD. The proceeds from

debt issue are invested in the assets in place and future growth opportunities that at time T

are worth A (T ) and Fr (T ), respectively.

The default can occurr only at the end of the period, T , in case liabilities exceed assets.

The value of the assets at time t is given by:

A (t) = A (0) exp

(
µAt −

σ2
A

2
t+ σABt

)
, (1)

where Bt is a standard Brownian motion de�ned on (Ω,F , Q), so that

d ln (A (t)) =

(
µAt −

σ2
A

2
t

)
dt+ σAdBt, (2)

where the drift, µt, is time-varying and σ is constant.

For simplicity, we �x the risk-free rate and dividend issues equal to zero. Limited liability

holds, equity is a call option on the value of net tangible assets at maturity, i.e. A (T ).

The option form is the standard one, E (T ) = max
(
A(T )− FV SD, 0

)
, where FV SDis the

face value of standard debt. The default put, that accrues to shareholders, materializes

in case at T the value of the assets are smaller than the face value of debt: Putdef (T ) =

max
(
FV SD − A(T ), 0

)
. In case of TBTF banks, debt becomes riskless and the put value

is provided by public guarantee, acting as subsidy to shareholders. The net present value

of future growth opportunities of the bank at the terminal date is Fr (T ). Future growth

opportunities materialize only at the end of the period, T , but the franchise value might
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vanish previously, as soon as the liabilities exceeds the asset value in 0 ≤ t ≤ T , that is when

τFr=0 = inf
{
t ≥ 0 : MVA (t) ≤MV SD

}
, (3)

where, MVA is the market value of the assets in place and MV SD is the market value

of debt outstanding. This is slightly di�erent with respect toDemsetz et al. (1996) or Jones

et al. (2011), because in their model this value is lost in case of bankruptcy. The franchise

value follows the same dynamics as the assets value:

d ln (Fr (t)) =

(
µFrt −

σ2
Fr

2
t

)
dt+ σFrdBt, (4)

and the two are correlated, with correlation coe�cient ρ, where −1 ≤ ρ ≤ 1.

The bank's balance sheet at time zero can be summarized as follows:
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Assets Liabilities and Net Worth

Deposits: D(0)
Short term liabilities: SL(0)
Long term Liabilities: LL(0)

Tangible Assets: MVA(0)

Default Put Option: PutDef (0)

DOC Option: DOC(0)

Intangible Assets: PutDef (0) +DOC(0) Total Liabilities: D(0) + L(0)

Shareholder Equity: MVE(0)

Total: MVA(0)+PutDef (0)+DOC(0) Total: D(0) + L(0) +MVE(0)

Table 1: Bank balance sheet at time zero.

At time zero, equity market value exceeds the capital supplied by the shareholders and

this di�erence comes from the value at time zero of the franchise value and the option

shareholders have to default, where the value at time zero of those options is given in the

following sections. The terminal claim on the DOC option and equity are respectively:

DOC(T )=

 F (T ) if MV A(T )≥(L(T )+D(T ))

0 otherwise

; (5)
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MVE(T )=

 MVA(T )+Fr(T )+Putdef (T )−L(T )−D(T ) if MV A(T )≥(L(T )+D(T ))

(L(T )+D(T ))−MVA(T ) if MV A(T )<(L(T )+D(T ))

. (6)

In the expressions above, we show that the franchise value come to fruition in case the

tangible value of the assets do not fall below the contemporaneous value of the liabilities and

deposits. We comment on the barrier in the context of the DOC pricing. Furthermore, in case

the franchise value do not vanish, the put option is out of the money and the shareholders

do not exercise the put option and its present value is still given by the option price that can

be potentially exercized in the future. The opposite is true when the tangible value of the

assets is eroded.

3.2 Pricing the default option

Following the reasoning in Barone-Adesi et al. (2014), bank shareholders are long on the

default option, which the manager has to maximize acting on behalf of the shareholders.

The pricing formula for the value of the put option at time zero together with the DOC one

we present in the following section section, considers the franchise value as major ingredient

both in the underlying value and in the volatility. The franchise value, explained subsection

2.3, has to be taken into account in the market value of the assets. This is necessary in

order to prevent potential arbitrage opportunities, that could arise otherwise, buying the

bank and selling short the tangible assets and the franchise value, if this last one would not

be considered. The put option is a convex, decreasing function of the asset value and is

maximized when the value of the liabilities, as well as the riskiness of the assets is magni�ed.

This means it is a a driver for risk-taking. The underlying is given by MVA(0), the value of

the net tangible assets at the beginning of the period, and Fr the franchise value. The strike

price is the market value for straight debt, MV SD5. T is the time to maturity, σA+Fr is the

volatility of both the assets and the franchise value and rf is the policy rate. Our pricing for

the default put option is given by:

5We proxy the market value for the straight debt with the KMV model (KMV corporation).
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Putdef = MV SDN (−d2) +

− (MVA (0) + Fr (0))N (−d1) ,

with {τFr=0 > T},

where d1 =

 ln(MVA(0)+Fr(0)

MV SD
)+

(
rf+

σ2A+Fr
2

)
T

σA+Fr

√
T

 ,

and d2 = d1 − σA+Fr

√
T

(7)

In absence of growth opportunities, the pricing formula goes back to the standard one.

This option push the bank manager to adopt a risk-taking policy. We present further infor-

mation aput the sensitivity of the default put option with respect to volatility, leverage and

policy rate in the optimization section. In the case we are dealing with too big to fail (TBTF)

banks, the default put option value coincide with the government bailout program, since the

government will rescue the bank as a whole. In the case the banks are not considered TBTF,

the option payo� is greater than the government subsidize, since it covers only the deposit

value.

3.3 Pricing the DOC option, in presence of non-observable under-

lying

At time T , F (T ) represents a portfolio of positive NPV growth opportunities. Before matu-

rity, the expected value of Fr(T ) is embedded in the value of the risky assets of the bank

and is the franchise value which is given by the DOC option (see Barone-Adesi et al. (2014)).

This option is a down and out call, with a pricing formula that is slightly di�erent from a

mathemathical point of view with respect to the standard one in Black-Scholes framework

(Merton (1973a)), but it confers a much di�erent economic interpretation, where Fr(0) con-

stitutes the value of potential growth net of investment cost in the case the bank does not

opt for default. Since investment costs are already considered in Fr(0), the strike for this

option is set to zero. The barrier is given by the market value of standard debt. This option

is priced in an european framework given that the franchise value comes to fruition only
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at maturity6, but it is path dependent. In case the barrier is breached before maturity the

option expires and the franchise value is driven immediatly to zero. The relation is given as

follows:

DOC
(
Fr(0),MV A(0),MV SD

)
= Fr (0) [N (v1) +

−
(

MV SD

MVA(0)+Fr(0)

)2λ

N (y1)

]

with {τFr=0 > T} ,

where λ =
rf+

σ2A+Fr
2

σ2
A+Fr

v1 =
ln(MVA(0)+Fr(0)

MV SD
)

σA+Fr

√
T

+ λσA+Fr

√
T

y1 =
ln
(

MV SD

MVA(0)+Fr(0)

)
σA+Fr

√
T

+ λσA+Fr

√
T

(8)

The franchise value, Fr(0), is not directly observable. However, we present below how to

estimate it in the framework of our model. Indeed, the value of the DOC option is a part of

the market value of the assets, where the remaining is given by the tangible assets. The term

in parenthesis gives the "pricing" probability that the intermediary will survive long enough

for the growth opportunities to come to fruition. We show in the following sections when

the DOC prevails over the default put one in determing the shape of objective function and

consequently the one of risk appetite.

4 The optimization problem for risk appetite

Risk appetite is a non-negative real number that describes investor's appetite for risk, with

higher values corresponding to a greater degree of aggression. The reciprocal is risk aversion

that is the attitude of investors toward risk. Risk appetite is commonly de�ned as the level

and type of risk a �rm is able and willing to assume in its exposures and business activities,

given its business objectives and obligations to stakeholders. We build our model in a von

Neumann-Morgenstern utility function framework (Von Neumann and Morgenstern (1944)),

6that is equivalent to say that we can exercise it only at maturity
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where risk aversion is described by a concave utility function, risk-neutral investors have a

linear utility function, and risk prone investors have a convex utility function. We prefer to

understand the appetite for risk of the bank, rather than concentrate on risk-taking, because,

in the de�nition we propose, the default put option promote seeking (convex shape) instead

the DOC one is designed to refrain the bank to undertake excessive risk (concave shape). A

rising risk appetite implies that investors are willing to hold riskier assets. Since it is not

possible to observe directly risk appetite, we need to understand how it is determined and

where to extract information about its manifestation. From both a risk-management and a

regulation point of view, it is a priority to infer some information about objective function

in the banking system.

We de�ne the manager and monetray policy maker objective function (O.f.) as the ratio

between the sum of the two options and assets'market value:

O.f. :=
DOC

(
levi,t, σAi,t+Fri,t , rfi,t

)
+ PUT def

(
levi,t, σAi,t+Fri,t , rfi,t

)
MVA

. (9)

We propose this de�nition for the objective function because the two options accrues to

the bank market value and involves both the bank manager and the monetary policy maker

given that the two options are determined by leverage, volatility and the policy rate. The

bank manager has decision power over the �rst two, instead the monetary policy maker

decides over the third one. The risk appetite is determined in the optimization problem we

present in Section 4.2 and is given by the �rst order derivatives and the determinant of the

hessian matrix.

The optimization problem is twofold because in the �rst step we estimate the franchise

value and the market value of the assets that are not observable in the market, but are

embedded in the equity market value and are key in order to perform the second one, where

we look for the optimal level of leverage, assets' volatility and policy rate that simultaneously

optimize the objective function.

4.1 First step ingredients

In the �rst step, the goal is to estimate the unobservable franchise value and the market

value of the assets. We argue that our unobservable quantities are embedded in the equity
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market value. We model the bank equity market value as the sum of the call option on the

assets, the default put option and the franchise value considering the value of the bank at

the time in which the franchise value comes to fruition.

We solve the following system of equation symultaneously:

 MVEi,T (Fri,T ,MV Ai,T ,σ(A+Fr)i,T )= Call(Fri,T ,MV Ai,T ,σ(A+Fr)i,T )+Fri,T+Putdef (Fri,T ,MV Ai,T ,σ(A+Fr)i,T ),

σMVEi,TMVEi,T= σ(A+Fr)i,T (MVAi,T+Fri,T )N(d1i,T ),

(10)

where N(d1,T ) =
1
2
σ2
(A+Fr)i,T

T+ln( A(0)

MV SD
)

σA,T
√
T

. This extension of the Merton speci�cation allows

us to consider the franchise value both at the underlying and implied volatility level. Since

the equity market value incorporates the information regarding both the assets market

value and the franchise value, consequently the implied volatility estimated in this model

refers to the one considering both the assets and the franchise value. At the beginning of

the period we do not have information regarding the franchise value, so that we consider its

price through the DOC option. We solve this problem through the nonlinear least squares

criterion function, for each bank at any time t on the whole time span considered,

optimizing the distance between the data concerning the equity market value and the

model extended accomodating for both the default put option and the DOC one. We

perform a step by step optimization, building on the Bellman's Principle of Optimality

(Bellman (1952)), applied also in Merton (1973b). In order to perform this, we build on the

following error function:

 e1,i,t= MVEi,t−(Call(Fri,t,MV Ai,t,σ(A+Fr)i,t)+DOC(Fri,t,MV Ai,t,σ(A+Fr)i,t)+Put
def (Fri,t,MV Ai,t,σ(A+Fr)i,t)),

e2,i,t= σMVEiMVEi,t−σ(A+Fr)i,t(MVAi,t+Fri,t)N(d1i,t),

(11)

where {i}n1 is the bank identi�cator and {t}m1 the year considered. In this speci�cation, we

perform our analysis at the beginning of the period, because we needto estimate the major

ingredients for the objective function optimization. The non linear least square function is

the following:

argmin
∑2,n,m

j,i,t=1

[
e2
j,i,t

]
(Fri,t,MV Ai,t,σAi,t)

, (12)

where we have inserted what will be the solution value,
(
Fri,t,MV Ai,t, σ(A+Fr)i,t

)
, that
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optimize the sum of the squared deviations, which are the nonlinear least squares

estimators. Thus, the optimal quantities MVA∗i,t, σ
∗
Ai,t and Fr

∗
i,t are derived and we can

proceed to the next step optimizing the objective function7. At this step, empirically, we

proceed in our �rst clustering distinguishing among banks with franchise value and without.

4.2 Second step

In this step, we optimize the objective function to cope with the regulator standard indica-

tions concerning leverage and assets'volatility. The bank manager and the monetary policy

maker have to cooperate in order to achieve this goal even if standard regulation focuses

only on the bank without caring about monetary issues. In our model instead, we propose

a powerful set of instruments incorporating also the monetary policy perspective. On one

side, the manager has to optimize the objective function of the bank, modifying its exposure

to risky assets and adjusting bank's leverage at time zero, operating always for allowing the

franchise value to come to fruition at time T . The shape of risk appetite is assessed through

the determinant of the hessian matrix in a three-dimensional perspective. We propose a

volatility-driven risk appetite, as well as a leverage-driven one and a policy rate-driven one.

The outline of those optimal quantities di�ers among clusters depeding on which option

drives the behaviour in that speci�c case. This is an element of primary interest because

regulation does not di�erentiate enough in the banking industry and �at recommendations

do not �t all the peculiarities we �nd in clustering the industry. Furthermore, the impact can

be counterproductive, given that di�erences among clusters are relevant and consequences

can go in an opposite direction with respect to what is intended by the regulator.

In our framework, where the objective function is driven by the two options, the monetary

policy maker shapes his risk appetite setting rho equal to zero, focusing on the sensitivity

of the objective function with respect to the policy rate (policy rate-driven risk appetite).

The decision variables over which, instead, the manager has discretionary power at time

zero are volatility and leverage. On the bank manager side, the shape of risk appetite

is determined setting equal to zero vega (volatility-driven risk appetite) and the �rst order

derivative with respect to the leverage (leverage-driven risk appetite) 8. All of those �rst order

derivatives are obtained given optimal values for the other two variables. Our optimization

7As we explain in the following step, we perform the optimization at each time step t, following Bellman
(1952) and Merton (1973b), in order to allow the franchise value of the bank to come to fruition at time T .

8In standard literature, it does not exist a �greek letter� identifying the sensitivity of an option price with
respect to leverage.
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procedure goes beyond what presented till now. We accomodate for a joint optimization,

where the three optimal quantities are estimated simulatenously. The optimization variables

are the leverage, the assets'volatility and the policy rate, so our theta in this case is: Θi,t :=(
levi,t, σAi,t+Fri,t , rfi,t

)
. The optimization problem is:

argmax

(levi,t,σAi,t+Fri,t ,rfi,t)

[
δOfi,t(levi,t,σAi,t+Fri,t ,rfi,t)

δlevi,tδσAi,t+Fri,tδrfi,t

]
(13)

In this framework our three-dimensional risk appetite (R.A.) is given by:

leverage− driven R.A. :

[
δOfi,t(levi,t,σAi,t+Fri,t ,rfi,t)

δlevi,t

]
= 0 |σ∗

Ai,t+Fri,t
,rf∗i,t

volatility − driven R.A. :

[
δOfi,t(levi,t,σAi,t+Fri,t ,rfi,t)

δσAi,t+Fri,t

]
= 0 |lev∗i,t,rf∗i,t

policy − rate− driven R.A. :

[
δOfi,t(levi,t,σAi,t+Fri,t ,rfi,t)

δrfi,t

]
= 0 |lev∗i,t,σ∗

Ai,t+Fri,t

(14)

Numerically, we use the methodology developed by Byrd et al. (1995) which allows box

constraints, that is each variable can be given a lower and/or upper bound. The initial value

must satisfy the constraints. This uses a limited-memory modi�cation of the BFGS quasi-

Newton method (Broyden (1970); Fletcher (1970); Goldfarb (1970); Shanno (1970)). The

algorithm always achieve the �nite convergence.

In presence of interest rate risk, diversi�cation provides an additional risk management

opportunity. Indeed, if the interest rate and asset risk exposures are of similar magnitude,

and if these risks are uncorrelated, then one would expect diversi�cation to be very important,

especially if franchise values are high. In this case we perform a pointwise optimization since

we are interested in the parameters that optimize the objective function of each bank on the

whole time span. The optimal objective function do not have theorethical bounds, but we

focus on 0 ≤ O.f.i,t ≤ 1, since it is hard to �nd empirically a bank having the sum of the two

options greater than the market value of the assets (our normalizing quantity). Although

it is well known what is the behaviour of the default put option with respect to the three

variables assessed, the same is not straightforward for the DOC pricing and, consequently,

for our speci�cation of objective function. In the appendix we show the derivation of both

the �rst order derivatives and the cross ones, taken into account given the simultaneous
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approach. In order to understand which option is the main driver for the objective function

we need to perform a cluster analysis. Section 6 presents the main theorethical results before

showing the empirical ones, thus it will become clearer the shape of the objective function

and the consequent risk appetite one. Our di�erentiation among clusters is crucial for setting

e�ective regulatory recommendations, because �at rules miss the peculiarities of the di�erent

patterns of objective function we could appreciate in the clustering. In section 6 we present

results both aggregated and clustered, pointing out the importance of more accurate analysis

in this domain.

5 Risk appetite in a state space model

The objective function and consequently risk appetite are not directly observable since the

franchise value is the key ingredient but it is not observable in the data. The proposal is to

assess this issue in a state space framework. In general, it is possible to describe a generic

state space model by a state equation and a measurement equation. The �rst one determines

the dynamics of unobserved state variables and the second links the state varibale to some

observables.

In this section, we concentrate on the volatility-driven risk appetite. Thus, we model

risk appetite as the latent driver of assets' volatility that is the most reasonable observable

manifestation, given our de�nition of volatility-driven risk appetite. Due to the non-linear

relation between assets'volatility and risk appetite, that is determined by the default put

option and the unobservable franchise value, priced through the DOC option, we use a non-

linear extension to Kalman �lter. In order to capture this non-linear dynamic, we perform our

�ltering procedure through the extended Kalman �lter (EKF,Haykin (2001)). We propose a

quadratic measurement, for simplicity, in order to accomodate for the non-linearity. Other

techniques are available as the quadratic Kalman �lter (QKF): a new �ltering and smoothing

technique for non-linear state space models developed by Monfort et al. (2013).9 We prefer

the extended Kalman �lter to the quadratic one, due to the �brute force� of imposing a

quadratic relation, because we want to evaluate our measurement speci�cation in a non-

linear way. Further work will consider to compare results with the unscented Kalman �lter

(UKF) Haykin (2001).

9They �nd that the extended and unscented Kalman �lter underperformed the quadratic one by 70%
in terms of higher root mean square errors (RMSEs), in case the transition equation is linear and the
measurement one is quadratic.
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First, we propose a linear-quadratic state space model, where the goal is to address the

non linearity exposed in section 3.

In this work, the linear-quadratic state space model is de�ned by the following two equa-

tions. The transition equation is:

Rt = φRt−1 + εt, (15)

where the objective function {Rt}t=Tt=0 is the unobservable variable and it is modeled as an

AR(1) with a coe�cient φ that has to be smaller than one in absolute value (|φ| < 1). It

is expected to be quite large in absolute value for capturing persistency the bank have in

objective function no matter what is the economic situation. The equation is linear in Rt−1.

The measurement equation is:

σt = α + λ0Rt + λ1R
2
t + ηt, (16)

where σt is the implied assets'volatility. The equation is quadratic in Rt.

The components α, φ, λi could depend on σt−1; the two error terms εt, ηt are Gaussian,

indipendent, zero mean, unit variance-covariance matrix. The �ltering is used to estimate the

model parameters by pseudo-maximum likelihood (PML) and to understand the underlying

dynamic of the latent state.

5.1 Implementation

We test the ability of the �ltering procedure to capture the dynamics of the latent process

with a simulation exercise because we have no information about the true values. We simulate

the objective function according to the transition equation in the time span (1980-2014), then

we perform the simulation on the observation part of the model. Subsequently, we apply the

�ltering technique to recover the process for the risk appetite.

We call X the state vector, which here is univariate and only includes Rt .

We initialize X and its variance at the unconditional mean and variance:

X̄t = 0 (17)
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¯PX t =
σ (εt)

2

(1− φ2)
(18)

The prediction state and its variance are given by the following relations:

X̄t = φX̄t (19)

¯PXt = φ2 ¯PXt + σ (εt)
2 (20)

The �ltered state (Sfilt) at this stage is given by:

Sflitt = X̄t (21)

The update of the measurement (Ȳ ) that for us only includes σt here is called Y obst is

the following:

Ȳt = α + λ0X̄t + λ1X̄2
t (22)

and the model implied values of the measurement (Y mod) is:

Y modt = Ȳt (23)

The prediction error is:

νt = Y obst − Ȳt (24)

Our Jacobian matrix has the following form:

Ct = λ0 + 2λ1X̄t (25)
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St = C2
t

¯PXt + σ (ηt)
2 (26)

The Kalman gain is given by:

Kt =
¯PXtCt
St

(27)

and the update of the state is:

X̄t = X̄t +Ktνt (28)

¯PXt = (1−KtCt) ¯PX t (29)

To estimate model parameters, θ = [φ;α;λ0;λ1;σ (ε) ;σ (η)]′, we de�ne the log-likelihood for

each time t, assuming normally distributed observation errors, as:

lt (θ) = −log (St)−
ν2
t

St
. (30)

where νt and St are the prediction error of the measurement series and the covariance of the

measurement series, respectively, obtained from the EKF. Model parameters are chosen to

maximize the log-likelihood of the data on the time span:

θ̂ ≡ arg max
Θ
L
(
θ, {σt}t=T

t=0

)
, (31)

with

L
(
θ, {Optt}t=T

t=0

)
=

T∑
t=0

lt (θ) , (32)

where T denotes the number of time periods in the sample of estimation, that coincides with

the bank survival period in our dataset.

6 Results
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6.1 Who drives our three-dimensional risk appetite? A simulation

exercise

In our de�nition of the objective function, two options play a role. When the bank does not

have any consistent portfolio of growth opportunities, the DOC option is worthless so that the

default put option is the only determinant of the objective function and of the risk-appetite.

In this case, it is well known what is the impact of the optimizing variables and consequently

what is the shape for risk appetite. But what happens when the bank has an embedded

franchise value? In this case in a theorethical framework it is not clear which option has

the main impact on the objective function, theorethically which is the main driver and also

the optimization procedure is not trivial. We assess this issue for the banks in the sample

having growth opportunities at stake clustered by leverage10. We cluster our sub-sample of

banks with consistent franchise value into three categories: �overcapitalized� banks (cluster

21), with an actual average leverage11 of 6.3299, �average capitalized� banks (cluster 22),

with 12.9144 and �undercapitalized� banks (cluster 23) with 22.0996. Those �gures are in

line with standard literature, given our de�nition of leverage that is the ratio between assets'

market value and franchise value and equity market value.

We simulate the option prices, and consequently risk appetite value, building on win-

sorized average data per cluster. We perform a sensitivity analysis with respect to the three

optimization variables in order to understand the shape of the risk appetite. We assess the

shape of risk appetite moving one variable, given the optimal quantities for the other two. We

can see how the behaviour of risk appetite changes among di�erent clusters when considering

leverage and volatility. Interestingly, when looking at the policy rate, the objective function

shape is similar in the three clusters. The patterns are entirely presented in the Appendix.

Leverage

The put option value is a decresing function of leverage because when assets and franchise

value increase the default put value decreases. The DOC option price is easy to see that is

an increasing function of leverage. In the �rst cluster (21, i.e. �overcapitalized� banks), the

risk appetite is determined �rst by the default put option, then by the DOC one. There is a

di�erence in the leverage-driven risk appetite at a cluster level related to the positioning of

the peak. The smaller values for leverage where we have the peak are in cluster 22.

10We present our clustering empirical analysis in Section 6.3.
11Actual leverage is computed at market values.
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Volatility

When considering volatility, the put options price is an increasing function, instead the DOC

one is �at and relative high for smaller volatility values and decreasing afterwards. The risk

appetite shape is determined for smaller values of sigma by the default put option and by the

DOC one for larger values of our variable. As the leverage increases, going from cluster 21

to 23, the peak for the volatility-driven risk appetite is smaller, since the objective function

peaks goes to the left-hand side.

Policy rate

When assessing the policy rate change impact on the two options prices we show that the

default put one is a decreasing function, instead the DOC option is an increasing function.

Risk appetite shape is a concave function in all the three cases, with minor di�erences. This

is a good news for the monetary policy maker, because, once it is understood our risk appetite

speci�cation, the impact it has changing the rate has a clear direction. In the case of cluster

21, the two options have almost the same impact in determining objective function, the curve

is almost symmetric. In the cluster 22 and 23, the main driver is the default put option since

the risk appetite shape is skewed to the right.

6.2 Empirical results at aggregate level

Our empirical sample consists of 1436 listed US banks and the sample period is 1980-2014.

Balance sheet items are taken from COMPUSTAT and considered on an annual basis. Market

prices from the Center for Research in Security Prices (CRSP). Price data are taken on a

monthly basis to accomodate the constant volatility hypothesis.

Summary statistics for both the input and the results at aggregate level are presented

in the appendix. We perform our optimizations with several initial values in order to check

we have results numerically stable. Furthermore, we calculated the con�dence intervals. We

show those results in the appendix as well. We �nd that the estimate of the risk-free rate

is slightly higher with respect to the actual one on the whole time span. This result is even

stronger looking at banks which can count on a portfolio of growth opportunities (see later,

cluster analysis). The following �gure shows the evolution of both the actual policy rate (on

the right y axis) and the optimal one we estimated (on the left y axis).
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Figure 1: Optimal versus Actual policy rate evolution.

We show in the next �gure that our average evaluation of the objective function aggregated

on the whole sample per year and the optimal average quantities for the policy rate-, volatility-

and leverage-driven risk appetite. Aggregated results loose a lot in terms of interpretability

and meaning. In this aggregate dimension the objective function seems to follow the leverage

and volatility patterns. On the policy rate side, the two move in opposite directions. This

means that during periods of higher interest rates our objective function is relative low and

this is the e�ect of the default put option over the DOC one. Considering periods of lower

policy rates as signaling a crisis, we can see that our measure for risk appetite is driven relative

higher (that is the case after 2010). In our model the manager chooses the optimal level of

leverage, asset's volatility at the beginning of the period on the basis of past information so

the present action has an impact on the following period. Our manager's policy considers

the franchise value in its potential status at time t, but is backward looking, in the sense

that builds on past information. The pattern is not straightforward to be interpreted, but in

the time span considered, especially recently, during periods of lower interest rates optimal

assets' volatility is relative higher because our manager has to shift the bank investments

to riskier assets in order to perform earnings. Viceversa, during periods of relative higher

interest rates we can see a �ight to quality, because the bank investing in the risk-free asset

is already achieving a satisfactory performance. This last consideration becomes clearer and

more evident when considering clusters of banks with growth opportunities.
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Figure 2: objective function versus optimal variables evolution.

6.3 Empirical results in a cluster analysis

Results di�er a lot when considering our clustering analysis. We perform a two step-

clustering, since we �rst distinguish between banks with franchise value and without, second

we cluster the two subsets of banks with respect to the leverage. The sub-sample of banks

without franchise value accounts for about the 17% of the whole sample. It is cathegorized

as follows: (i) �over-capitalized� banks (cluster 11), with an actual average leverage of 5.0644

and the sub-sample is given by 377 banks, (ii) �average capitalized� banks (cluster 12) count-

ing also 377 banks, with 11.4448 and (iii) �under-capitalized� banks (cluster 13) with 22.5164

where we can �nd 426 banks. We cluster our sub-sample of banks with consistent franchise

value into the same three categories: we have (i) 4829 �under-capitalized� banks (cluster

21), with an actual average leverage of 6.3299; (ii) 3298 �average capitalized� banks (cluster

22), with 12.9144 and (iii) 1117 �over-capitalized� banks (cluster 23) with 22.099612. The

12The sum of the number of banks in each cluster exceed the total amount of banks, because some banks
move across di�erent clusters in the time span considered.

26



input variables for our optimization and the results are presented cluster by cluster in the

appendix, here we present the main results and their implications. The population of banks

is not uniformly distributed across the clusters, this has an impact on quality of estimates

of the sub-sample of banks which do not have growth opportunities and the sub-sample

with franchise value present more similar results with respect to the aggregated analysis we

discussed in the previous section. Instead, the clustering analysis performed in a standard

framework provides similar average level of leverage among the clusters.

In the following set of pictures, we can see that our estimates for the policy rate is always

higher than the actual one. The greater spread across the two are present in the sub-sample

of banks which have a portfolio of growth opportunities, because risk appetite in this context

is driven upwards by the franchise value, since a portfolio of growth opportunities is always

risky. The sub-sample of banks without franchise value tracks more the actual risk-free rate

and those more pronounced swings are given by the driving e�ect of the DOC option in the

clusters counting on franchise value. Banks in cluster 23, with the greatest level of leverage,

ask for a remarkably higher optimal policy rate especially in the last �ve years where the

actual risk-free rate set by the regulator was at its minima levels.
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Table 2: Actual risk-free rate vs Optimal policy rate, cluster by cluster.

Anticipating what we show in the following set of �gures, this together with a relative

low volatility lead to a very low objective function, since the bank manager optimizes his
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strategy investing in the risk-free asset.

In the next set of pictures we present the resulting optimal estimates for the optimized

objective function and its correponding variables-driven risk appetite. Clusters 11 and 12

show very similar patterns for the evolution of objective function and the three optimizing

variables. The estimate appears to be slightly higher and stable because only the put option

plays a role in determining the shape of the objective function. Only cluster 13 di�erentiates

from the other two with respect to the optimized objective function. With greater levels

of leverage, we can see that the di�erences among clusters diminishes: clusters 13 and 23

path is more similar. In clusters without the franchise value volatility-driven risk appetite is

relative much higher with respect to the optimal average one present in cluster with franchise

value. This result is not easily interpretable, since the franchise value volatility accrues to the

assets one. Apparently, there is a diversi�cation e�ect that impacts positively on the total

volatility-driven risk appetite. This is con�rmed by the data, since it becomes even more

evident when leverage, and consequently the franchise value, increases. As we stated above,

clusters 21, 22 and 23 point out results much more in line with the aggregated ones, being

the greater sub-sample in terms of number of banks involved. In those clusters objective

function moves a lot and each cluster present its pattern. The objective function optimal

average values increases with the clusters, since we �nd that in cluster 21 the maximum level

of objective function is about 20% instead in cluster 23 it approaches 80%, even if in cluster

22 the objective function decreases along the time span at least till 1997.
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Table 3: optimized objective function evolution against its optimal determinants , cluster by
cluster.
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In this empirical analysis, we show that undercapitalization not always harms pro�table

growth opportunities, it does in cluster 21 and 23, where the optimized objective function

moves in an opposite direction with respect to leverage, instead in cluster 22 they move

together at least before 2000.

6.4 Results from the Extended Kalman Filter

In this section we present the results of the �ltering estimates at an aggregate level and for

cluster 21, 22 and 23. We do not consider the sub-sample of banks without growth opportu-

nities because their volatility is not moving enough to allow signi�cative estimates, anyway

we do not loose much information because the greater majority of banks is assessed. We

plot the evolution of our estimates for the estimated volatility-driven risk appetite, from the

optimization problem, and the estimated coming from the �ltering procedure in the following

�gure. We call the estimation of the state variable, obtained through the PML, RAPML, and

the estimation of the volatility-driven risk appetite, resulting from the optimization problem,

RAM. The estimations produce coherent results after 2000, instead before, at an aggregate

level, they move in opposite directions. Further work will consider hypothesis testing, in

order to understand whether the two estimations produce really similar results, against the

hypothesis they are di�erent.

Figure 3: RA PML estimate vs objective function evolution

The summary statistics, also in this case, are presented in the appendix. As expected,
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objective function appears to be a persistent variable. The �rst quantile for the AR(1)

coe�cient is negative, meaning that for those banks objective function moves in opposite

directions one period after another. The coe�cient α for the measurement present both

positive and negative results showing that we have both convexity and concavity in our point

estimate of RAPML. The other parameters (λ0 and λ1) are also both positive and negative

and interestingly the shape is driven by the quadratic term since the median of λ0 is equal

to zero.

In the majority of crisis years, our risk appetite estimate peaks. This can be explained

partly with the relative higher leverage adopted during those periods. We notice that after a

bust in the economic cycle and a peak in our estimate of risk appetite, our variable decreases

sharply with almost the same intensity with which it increased in the previous period. This

issue becomes clearer with the PML estimation results presented in the following section. At

aggregate level, we �nd the intensity parameter φ of the AR(1) process to be quite large in

absolute values and with negative sign. Future work should consider to understand whether

a negative sign in this parameter is an indicator of a peak or a bust in the economic cycle.

At a cluster level, we show in the following table interesting dynamics. The range of the

objective function estimate through the PML in the �ltering procedure is almost the same

for the three clusters and is in line with the one estimated at aggregate level. However,

the pattern changes signi�cantly among the three clusters. In the �rst cluster we can see

that the outline of the two estimates move together a part from the most recent years where

they go in opposite directions. Cluster 22 shows the most relevant di�erences among the

two estimates. Even if the range where the estimate through PML moves is quite tiny, the

pattern is increasing, instead the one for the objective function estimate obtaine dthrough

the optimization is decreasing. In cluster 21 the dynamics of the two estimates is similar

starting from 2000. In cluster 23, the two estimates move in opposite directions, this is

maybe due to the fact that the RAPML do not embodies the optimal quantities of leverage-

and policy rate-driven risk appetite. However, once again, this cluster analysis adds precious

information with respect to the one proposed at aggregate level. The non-linearity issue

treated with a quadratic perspective in the �ltering procedure at aggregate levels works well

in mimicking the impact of the two options on objective function, but at cluster level it is

not always the case.
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Table 4: Actual risk-free rate vs Optimal policy rate, cluster by cluster.

33



7 Conclusions

In this paper, we investigate the shape of the risk appetite of our bank and the role played

by the monetary policy in framing it. Bank objective function and its risk appetite are deter-

mined by the interplay of the default option and the down-and-out call (DOC) option, pricing

the franchise value, i.e. the net present value of non-observable bank's growth opportunities.

We de�ne the objective function as the ratio between the sum of the two options' prices

and the market value of the tangible assets. Our major contribution consists in assessing risk

appetite in three dimensions, allowing also the monetary policy to play a role on risk appetite

and to work jointly with the bank manager in the optimization of the objective function.

First, we estimate the franchise value, and we discriminate banks with and without fran-

chise value. Second, at the beginning of each period, we optimize the objective function

adjusting simultaneously the level of leverage, volatility and the policy rate. In order to set

the optimal values, we have to consider both the bank manager decisions and the monetary

policy. The monetary policy maker sets rho equal to zero considering also the manager risk

management policy (policy rate-driven risk appetite). The bank manager sets the vega equal

to zero (volatility driven-risk appetite) simultaneously with the derivative with respect to the

leverage (leverage-driven risk appetite), considering also the monetary policy maker strategy.

Those three optimizations are conditional to the other two optimal quantities.

The rsk appetite, volatility driven one, is not directly observable in the market, thus

we want to understand the goodness of our estimation. We propose a state space model,

where the state variable is the risk appetite of the bank and we model it as an AR(1) with

a coe�cient φ that we �nd it to be large in absolute value, indicating a persistency in the

latent variable. The measurement proposed is a non linear function, where the observable

part is given by the implied assets' volatility. We use the extended Kalman �lter, given that

our speci�cation for the measurement is quadratic, and we estimate the model parameters

with pseudo-maximum likelihood (PML). At an aggregate level, we show the major driver

in the measurement equation is given by the quadratic term and the underlying dynamic of

the latent state moves in line with the previous estimation of objective function. Its dynamic

moves in line with the previous estimation and is persistent. Furthermore, the non-linear

shape of the measurement is mainly driven by the quadratic term and works well in mimicking

the impact of the two options on the risk appetite at an aggregate level, but not so well in

the cluster analysis. This is due to the lack of information that we incorporate in the �ltering

procedure.

We test our optimizations on a sample of 1436 banks, listed in the US, over 1980-2014.
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We �nd that the optimal risk-free rate is higher with respect to the existing one in the whole

sample period. A clustering analysis is necessary in order to understand the shape of risk

appetite, which is its underlying main driver and what is the impact of changes in the op-

timizing variables. We show that the impact of the single variable on risk appetite is not

always the same among the clusters, this is a result of both structural di�erences among

the clusters and the joint impact of the other variables that are simultaneously optimized.

Empirically, we always �nd that the estimated policy rate is higher relative to the actual one.

The objective function is magni�ed for higher values of leverage, which is straightforward

given our speci�cations. We �nd di�erent patterns among the clusters and this imposes a

cluster analysis in order to understand risk appetite behaviour. The monetary policy maker

has to cooperate with the bank manager in order to align their policy and to allow for an

e�ective risk appetite optimization. We show that regulators should tune their recommenda-

tions depending on the targeted cluster, since the driver of risk appetite alternates between

the two options depending on the cluster and on the underlying variable considered, given the

other two. Our three dimensional risk appetite speci�cation could be an e�ective instrument

for the regulator because it comprehends the three most important dimensions for shaping

risk appetite in presence of franchise value. It is determined by the joint optimization, thus

we need to condition on two optimal quantities in order to optimize with respect to the third

one.

Furthermore, introducing the franchise value in the speci�cation of risk appetite, we

propose an incentive for the manager to adopt a policy long-term oriented. The choice of the

proper incentives in order to boost this long-term oriented perspective is left to future work.
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Appendix

A: Who drives the risk appetite? A simulation exercise

In the following table we perform a sensitivity analysis to change in the three optimization

variables. We comment in Section 6 how the shape of risk appetite di�ers among the clusters.

Table 5: Cluster 21: Sensitivity to change in leverage.
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Table 6: Cluster 22: Sensitivity to change in leverage.
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Table 7: Cluster 23: Sensitivity to change in leverage.
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Table 8: Cluster 21: Sensitivity to change in volatility.
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Table 9: Cluster 22: Sensitivity to change in volatility.
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Table 10: Cluster 23: Sensitivity to change in volatility.
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Table 11: Cluster 21: Sensitivity to change in policy rate.
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Table 12: Cluster 22: Sensitivity to change in policy rate.
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Table 13: Cluster 23: Sensitivity to change in policy rate.

B: Optimization with di�erent initializations and Con�dence inter-

vals

We perform our optimizations with several initial values13 and we propose a sensitivity anal-

ysis that shows a persistency of our results.

13Those initial values are generated randomly rispectively from the most likely candidate as originating
distributions.
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Figure 4: Boxplot of the optimal leverage that optimizes objective function with six di�erent
initializations.

Figure 5: Boxplot of the optimal assets'vol that optimizes objective function with six di�erent
initializations
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Figure 6: Boxplot of the minimum objective function with six di�erent initializations.

We report in the following table the con�dence intervals for the estimated optimal vari-

ables.
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cluster Lower bounds Upper bounds number of observations

11 0 0 377

12 0 0 377

Average (Franchise Value (NPV)) 13 0 0 426

(in US$) 21 84993572 127005948 4829

22 445654089 1026307845 3298

23 30534603975 53488697248 1117

11 2361739205 3622469328 377

12 2361739205 3622469328 377

Average (Assets (MV)) 13 2388433535 3601983217 426

(in US$) 21 1264784888 1614005232 4829

22 1356303083 2723281243 3298

23 6.1935e+10 107789105918 1117

11 10.11474 10.64324 377

12 10.11474 10.64324 377

Average (Optimal leverage) 13 19.52399 20.94874 426

21 6.393547 6.733862 4829

22 12.82122 13.52006 3298

23 21.30842 21.46068 1117

11 0.883556 1 377

12 0.883556 1 377

Average (Optimal volatility) 13 0.8408021 0.9701865 426

21 0.1646186 0.1899505 4829

22 0.02845392 0.03283247 3298

23 0.0279483 0.03224904 1117

11 0.1004694 0.1170219 377

12 0.1004694 0.1170219 377

Average (Optimal policy rate) 13 0.09923235 0.1198637 426

21 0.1573507 0.1763942 4829

22 0.1946735 0.2118842 3298

23 0.1708415 0.1899149 1117

Table 14: Con�dence intervals for average optimal estimates.
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C: Summary statistics of the optimization �gures at aggregate level

and cluster by cluster

First of all we present summary statistics of our input variables: end-of-year equity market

value, its monthly volatility adjusted on an annual basis, the risk-free rate, existent in the

market in the time span considered, the market value of debt, calculated according to KMV

model in order to account for the value that triggers the franchise value of the bank and the

leverage de�ned as the ratio between the sum of the market value of the assets (MVA) and

the franchise value (Fr)and the equity market value 14(MVE).

Variable\Summary statistics Min. 1st Qu. Median Mean 3rd Qu. Max. sd

Equity market value 1.922e+05 4.324e+07 1.012e+08 1.050e+09 2.784e+08 2.339e+11 7522590845

(in US$)

Equity volatility 0.0610 0.2553 0.3073 0.3484 0.3991 0.4234 0.1474

(annualized)

Risk-free rate 0.0100 0.0700 0.1600 0.1521 0.2200 0.3300 0.0863

Debt market value 3.140e+05 3.971e+08 8.661e+08 1.812e+10 2.263e+09 2.782e+12 124251669021

(in US$)

Leverage 0.07 6.07 8.73 10.79 14.26 42.59 6.17

(MVA + Fr) /MV E

Table 15: Model inputs summary statistics.

Those are the inputs used to estimate the franchise value �rst and consequently to proceed

in our objective function maximization. We provide in the following table, the summary

statistics for the results of our two-steps optimization at aggregate level: the net present

value (NPV) of the franchise value, the market value (MV) of the assets, the parameters

optimizing pointwise the objective function (leverage, assets' volatility and the optimal risk-

free rate).

14Leverage data are in line with �ndings in Kalemli-Ozcan et al. (2012).
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Variable\Summary statistics Min. 1st Qu. Median Mean 3rd Qu. Max. sd

Franchise Value (NPV) 0.000e+00 2.651e+06 6.906e+07 6.155e+09 2.447e+08 1.638e+12 52728416739

(in US$)

Assets (MV) 0.000e+00 3.524e+08 7.620e+08 1.340e+10 1.879e+09 3.275e+12 105383415766

(in US$)

Optimal leverage 0.000237 5.884000 8.579000 9.942000 13.890000 18.410000 5.0767

Optimal volatility 0.00010 0.02489 0.03709 0.21280 0.05910 1.000 0.3756529

Optimal risk-free rate 0.00010 0.07808 0.17000 0.15830 0.23000 0.33000 0.0951796

Table 16: Results summary statistics.

In the table below we present the input variables for our optimization and the results are

presented cluster by cluster.
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Summary statistics/ cluster Min. 1st Qu. Median Mean 3rd Qu. Max. sd

Variable

11 6.314e+05 1.478e+07 3.473e+07 2.318e+08 1.262e+08 2.063e+09 456639609

12 6.314e+05 1.478e+07 3.473e+07 2.318e+08 1.262e+08 2.063e+09 456639609

Equity market value 13 1.922e+05 1.123e+07 3.551e+07 1.441e+08 1.315e+08 2.000e+09 289979782

(in US$) 21 4.015e+06 6.398e+07 1.380e+08 2.697e+08 3.263e+08 2.027e+09 328450812

22 2.409e+06 3.063e+07 6.328e+07 1.970e+08 1.277e+08 1.705e+10 612017210

23 1.420e+06 6.938e+07 2.000e+09 6.169e+09 5.562e+09 1.881e+11 16087635115

11 0.2234 0.3299 0.4292 0.4591 0.5486 0.7000 0.1715

12 0.2234 0.3299 0.4292 0.4591 0.5486 0.7000 0.1715

Equity volatility 13 0.2326 0.3153 0.4179 0.4868 0.5783 0.7125 0.2247

(annualized) 21 0.0610 0.2421 0.2909 0.3247 0.3656 0.5214 0.1346

22 0.1104 0.2612 0.3119 0.3519 0.4106 0.6341 0.1406

23 0.06766 0.26820 0.31300 0.34130 0.36800 0.4582 0.1236

11 0.0200 0.0500 0.0800 0.1151 0.1600 0.3300 0.0831

12 0.0200 0.0500 0.0800 0.1151 0.1600 0.3300 0.0831

Risk-free rate 13 0.0100 0.0300 0.0500 0.1128 0.2200 0.3300 0.1019

21 0.0100 0.0700 0.1600 0.1488 0.2100 0.3300 0.0768

22 0.0100 0.0900 0.1700 0.1649 0.2500 0.3300 0.0907

23 0.0100 0.0600 0.1400 0.1473 0.2400 0.3300 0.0967

11 6.368e+07 8.437e+08 2.600e+09 1.123e+11 3.497e+10 2.353e+12 309739663195

12 6.368e+07 8.437e+08 2.600e+09 1.123e+11 3.497e+10 2.353e+12 309739663195

Debt market value 13 6.294e+07 9.663e+08 3.519e+09 7.738e+10 6.077e+10 2.782e+12 230386133312

(in US$) 21 3.140e+05 3.528e+08 7.269e+08 1.298e+09 1.562e+09 6.722e+10 1983973062

22 3.404e+07 3.432e+08 7.009e+08 2.767e+09 1.520e+09 2.281e+11 10495203151

23 4.025e+07 1.563e+09 1.026e+10 7.460e+10 3.651e+10 2.046e+12 258150800966

11 7.560 9.366 11.490 5.0644 11.5203 15.570 2.378418

12 7.560 9.366 11.490 11.440 13.530 15.570 2.378418

Leverage
15

13 15.66 17.39 20.70 22.52 28.74 30.00 5.440212

(MVA + Fr) /MV E 21 1.004 5.163 6.394 6.330 7.571 9.019 1.540092

22 9.023 10.320 12.090 12.910 15.140 20.110 3.03266

23 20.15 21.00 21.00 22.10 22.71 30.11 1.953871

Table 17: Model inputs summary statistics, cluster by cluster.
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Summary statistics/ cluster Min. 1st Qu. Median Mean 3rd Qu. Max. sd

Variable

11 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0

Franchise Value (NPV) 13 0 0 0 0 0 0 0

(in US$) 21 1.000e+00 4.159e+06 3.963e+07 1.060e+08 1.117e+08 2.708e+09 207429079

22 3.000e+00 8.162e+07 1.686e+08 7.360e+08 3.878e+08 7.116e+10 2866880794

23 3.000e+00 2.401e+08 1.380e+10 4.299e+10 3.893e+10 1.317e+12 112679424840

11 7.617e+06 1.725e+08 3.797e+08 2.992e+09 1.351e+09 2.979e+10 6224644098

12 7.617e+06 1.725e+08 3.797e+08 2.992e+09 1.351e+09 2.979e+10 6224644098

Assets (MV) 13 5.573e+06 2.526e+08 7.431e+08 2.995e+09 2.545e+09 4.312e+10 5991698567

(in US$) 21 0.000e+00 4.004e+08 8.174e+08 1.439e+09 1.754e+09 1.457e+10 1724217036

22 2.648e+07 2.851e+08 5.888e+08 2.040e+09 1.281e+09 1.740e+11 6749226012

23 3.619e+07 1.304e+09 2.926e+10 8.676e+10 7.786e+10 2.634e+12 225098742682

11 0.006045 8.404000 10.400000 10.380000 12.440000 15.450000 2.609345

12 0.006045 8.404000 10.400000 10.380000 12.440000 15.450000 2.609345

Optimal leverage 13 0.01365 14.92000 19.47000 20.24000 27.07000 30.00000 7.034474

21 0.000378 5.306000 6.605000 6.564000 7.925000 11.570000 1.680249

22 0.00285 10.40000 12.24000 13.17000 15.44000 37.23000 3.4504

23 0.0022 21.0000 21.0000 20.7000 22.9600 45.1500 5.919417

11 0.1062 1.0000 1.0000 0.9466 1.0000 1.0000 0.203542

12 0.1062 1.0000 1.0000 0.9466 1.0000 1.0000 0.203542

Optimal volatility 13 0.008906 1.000000 1.000000 0.900800 1.000000 1.000000 0.2891098

21 0.00010 0.03823 0.04861 0.08640 0.10749 1.00000 0.3244621

22 0.00010 0.02282 0.02890 0.03049 0.03609 1.00000 0.04637664

23 0.00010 0.01559 0.01901 0.02833 0.02290 1.00000 0.09868465

11 0.002889 0.043790 0.078350 0.108700 0.157700 0.318600 0.08172531

12 0.002889 0.043790 0.078350 0.108700 0.157700 0.318600 0.08172531

Optimal risk-free rate 13 0.00010 0.02289 0.05228 0.10950 0.20980 0.33000 0.1018636

21 0.0001 0.0900 0.1900 0.1669 0.2400 0.3300 0.0940241

22 0.0400 0.1392 0.2009 0.2033 0.2800 0.3300 0.08497489

23 0.0001 0.1000 0.1900 0.1888 0.2800 0.3300 0.09778638

Table 18: Model results summary statistics, cluster by cluster.

D: Extended Kalman Filter estimates

The table below shows the summary statistics for the model parameters at aggregate level

in the above table and for cluster 21, 22 and 23 in the table below.
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Variable\Summary statistics Min. 1st Qu. Median Mean 3rd Qu. Max. sd

φ -0.9990 -0.5048 0.1750 0.0582 0.5880 0.9990 0.6720

σ (ε) 0.001 0.001 0.0340 0.0531 0.0790 0.2000 0.0605

α -0.1270 0.0060 0.0130 0.0162 0.0220 0.2120 0.0191

λ0 -0.9990 -0.0985 0 0.0062 0.1520 0.9990 0.3686

λ1 -0.9990 -0.2415 0.9000 0.4113 0.9990 0.9990 0.7889

σ (η) 0.001 0.001 0.001 0.0047 0.0070 0.1020 0.0074

Table 19: Results summary statistics at aggregate level.

Variable\Summary statistics cluster Mean

21 -0.076
φ 22 0.5

23 0.5

21 0.38
σ (ε) 22 0.5

23 0.5

21 0.5
α 22 -0.3

23 0.17

21 0.0010
λ0 22 0.5

23 0.69

21 -0.4470
λ1 22 0.9

23 0.5

21 0.5
σ (η) 22 0.9

23 0.5

Table 20: Results summary statistics for cluster 21, 22 and 23.
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E: Rho, vega, derivative with respect to leverage and the joint deriva-

tives
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