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Abstract

The validation of credit rating systems aims at identifying the quality of their credit
risk estimates. Credit rating systems follow different rating philosophies, ranging
from point-in-time (PIT) systems that reflect all currently available information
to through-the-cycle (TTC) systems whose credit risk estimates are adjusted for
cyclical changes in macroeconomic conditions. Although the terms PIT and TTC
are widely used among credit rating agencies, banks, as well as supervisors, there is
no consensus about their precise meaning.

This paper formalises a probabilistic framework to distinguish between credit scores,
ratings and probabilities of default under PIT and TTC concepts to work out the key
differences between PIT and TTC rating systems. We then analyze the validation of
rating systems under both rating philosophies and conclude that the validation of
TTC systems appears significantly more difficult than the validation of PIT systems.
This finding can have important consequences for the optimal design of prudential
requirements for ratings systems and financial institutions more generally, as cre-
dit rating systems play a key role in the context of micro- and macro-prudential
supervision of the financial system.
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1 Introduction

Financial market participants reuqire accurate measures about an obligor’s ability
to fulfil his financial obligations in the future. Typically, the creditworthiness is
characterised by a credit rating or credit score which is commonly associated with
a probability of default (PD) which describes the likelihood that a firm experiences
a credit event over a given time horizon. Credit events most commonly include
criteria such as bankruptcy, payment delay, or unlikeliness to pay, however, the
exact definition depends on the legal context. One key aspect according to which
different approaches to estimating PDs can be classified is their point-in-time (PIT)
vs. through-the-cycle (TTC) orientation.

Even though the terms PIT and TTC are widely used by practitioners, in academia
and among regulators, a comprehensive literature review leads to the conclusion
that a precise and generally accepted definition for these concepts appears to be
non-existent at present. Unanimity only exists in the sense that PIT credit ratings
make use of all information, both obligor-specific characteristics as well as overall
macroeconomic conditions available at a certain point in time, whereas TTC credit
ratings are adjusted for cyclical effects. Hence, the common understanding is that
PIT ratings provide the most accurate and timely estimates of default probabilities,
whereas TTC ratings provide a higher level of stability over time that comes at the
cost of reduced timeliness and accuracy in predicting default events.

While this basic distinction between PIT and TTC systems is well established the
type of cycle that is underlying TTC rating systems as well as the way it is mea-
sured varies considerably between TTC rating systems, as we will further discuss
in Section 2 below. Moreover, many rating systems argue that they follow a hybrid
approach that lies somewhere between the pure concepts of PIT and TTC. Other
TTC rating systems do not explicitly define the cycle underlying their ratings but
instead argue that the TTC nature of their rating systems implicitly stems from
smoothing the explanatory variables of their rating models over time. The lack of
a precise definition of TTC credit measures and the variety of methodological ap-
proaches towards the concept of TTC default probabilities that are found in practice
make it difficult to interpret and compare ratings from different TTC rating sources.
For the same reason, the validation of these rating systems constitutes a significant
challenge as we will argue in more detail below.

In this paper we develop a simple but general model in which we provide formal defi-
nitions for both PIT and TTC credit scores, probabilities of default (PDs) and credit
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ratings. Based on this model we characterize PIT and TTC credit risk measures and
discuss the key differences between both rating philosophies. We then turn to the
validation of default probabilities under both rating approaches and highlight that
the validation of TTC rating systems is significantly more challenging than that of
their PIT counterparts.

In particular, we stress that due to the lack of a precise definition of TTC default
probabilities, TTC rating system have considerable leeway in choosing the type of
cycle underlying their ratings, and how they measure it. Thus the validation of a
TTC rating system involves assessing the economic validity of the cyclical factor.
If the specific rating methodology of the TTC rating system is not available to the
validator or the cyclical factor is taken into account implicitly, the underlying cycle
of the rating system can be estimated from historical rating and default data based
on the theoretical framework we present in this paper. This estimated cyclical factor
can be compared to benchmark cyclical factors like real GDP growth.

Using the rating methodology of the TTC, we demonstrate how TTC ratings can be
transformed into corresponding PIT ratings. The latter can then be validated using
an assumption on the cyclical factor (e.g. the actual stance of the cycle or a stress
scenario) and tested using the methodological toolkit available for validating PIT
rating systems. This approach introduces significant model risk (and estimation risk
if the parameters need to be derived from historical data) and thus the validity of
the test results is dimished compared to validating a pure PIT rating system.

To sum up, we argue that compared to PIT rating systems, the validation of TTC
rating systems is significantly more challenging from a methodological perspective
as well as regards the amount of information that must be collected about the rat-
ing system. We further argue that the challenges of validating TTC rating systems
together with the difficulties of interpreting and comparing ratings from TTC rating
sources should be taken into account in regulatory decisions regarding the applica-
tion of TTC rating systems.

This paper is structured as follows: In Section 2 we provide an overview of the
current state of the literature about PIT and TTC default probabilities and rating
methodologies. Section 3 establishes a probabilistic framework that allows a formal
definition of PIT and TTC default probabilities and which we use to work out the key
differences between the two rating concepts. In Section 4 we discuss the validation
of both PIT and TTC rating systems. We highlight the challenges and limitations
of validating TTC rating systems and demonstrate the approach using Standard &
Poor’s historical rating and default data. Section 5 summarizes and concludes the

3



paper.

2 Literature Overview

This section gives an overview of the current state of research of PIT and TTC credit
measures in both academia as well as among credit rating agencies and supervisors.
One point that we want to particularly highlight in this section is that despite the
growing literature on TTC credit ratings there is still no consensus on the precise
definition of a TTC credit rating except the general agreement that TTC ratings are
adjusted for cyclical effects: the Basel Committee on Banking Supervision (2005)
describes a PIT rating system as a rating system using all currently available obligor-
specific and aggregate information to estimate an obligor’s PD. On the contrary, a
TTC rating system uses obligor-specific information but tends not to adjust ratings
in response to changes in macroeconomic conditions. However, the types of these
cyclical effects and how they are measured differ considerably in the literature as
well as in practice.

First, a number of studies have come up with a formal definition of the concepts
of PIT and TTC default probabilities and rating systems. These include Loeffler
(2004) who explores the TTC methodology in a structural credit risk model based
on Merton (1974) in which a firm’s asset value is separated into a permanent and
a cyclical component. In this model, building on Carey & Hrycay (2001), TTC
credit ratings are based on forecasting the future asset value of a firm under a stress
scenario for the cyclical component. Kiff et al. (2013) explore the TTC approach
in a structural credit risk model in which the definition of TTC ratings follows the
one applied by Loeffler (2004). They emphasize that “while anecdotal evidence from
CRAs confirms their use of the TTC approach, it turns out that there is no single and
simple definition of what TTC rating actually means”. In contrast to the majority of
studies in the literature that define PIT and TTC credit measures on the basis of a
decomposition of credit risk into idiosyncratic and systematic risk factors, Hamilton
et al. (2011) follow a frequency decomposition view in which a firm’s credit measure
is split up into a long-term credit quality trend and a cyclical component which
are filtered from the firm’s original credit measure by using a smoothing technique
based on the Hodrick & Prescott (1981) filter. Furthermore, Hamilton et al. (2011)
argue that in the existing literature there has been little discussion about whether
the C in TTC refers to the business cycle or the credit cycle and highlight that these
cycles differ considerably from each other regarding their length.

4



Aguais et al. (2008) describe a practical framework for banks for computing PIT and
TTC PDs. They convert PIT PDs into TTC PDs based on sector-specific credit-
cycle adjustments to distance-to-default credit measures of the Merton (1974) model
derived from a credit rating agency’s rating or Moody’s KMV model.4 Furthermore,
they qualitatively discuss key components of PIT-TTC default rating systems and
how these systems can be implemented in banks. Carlehed & Petrov (2012) analyse
PIT and TTC default probabilities of large credit portfolios in a Merton one-factor
model. They define the TTC PD as the expected PIT PD, where the expectation is
taken over all possible states of a systematic risk factor. Cesaroni (2015) proposes
to translate PIT PDs into TTC PD by ex post smoothing the estimated PIT PDs
with countercyclical scaling factors.5

Second, several studies analyse the ratings of major rating agencies as regards their
PIT vs. TTC orientation. These include Altman & Rijken (2004) who find, based
on credit scoring models, that major credit rating agencies pursue a long-term view
when assigning ratings, putting less weight on short-term default indicators and
hence indicating their TTC orientation. Loeffler (2005) shows for Standard & Poor’s
and Moody’s rating data that these agencies have the policy to change a rating
only if it is unlikely to be reversed in the future and argues that this can explain
the empirical finding that rating changes lag changes of an obligor’s default risk,
consistent with the general view of TTC ratings. Altman & Rijken (2006) analyse
the TTC methodology of rating agencies from an investor’s PIT perspective and
quantify the effects of this methodology on the objectives of rating stability, rating
timeliness, and performance in predicting defaults. Among other results they find
that TTC rating procedures delay migration in agency ratings, on average, by 1/2
year on the downgrade side and 3/4 year on the upgrade side and that from the
perspective of an investor’s one-year horizon, TTC ratings significantly reduce the
short-term predictive power for defaults. Several papers such as Amato & Furfine
(2004) and Topp & Perl (2010) analyse actual rating data and show that these
ratings vary with the business cycle, even though these ratings are supposed to be
TTC according to credit rating agencies. Loeffler (2013) estimates long-run trends
in market-based measures of one-year PDs using different filtering techniques. He

4Ingolfsson & Elvarsson (2010) follow a very similar approach to convert PIT PDs to TTC PDs
by using the Kalman filter to estimate the credit cycle adjustment term from a bank’s historically
incurred credit losses.

5Cesaroni (2015) uses the ratio of (i) the long-run average default rate or (ii) the maximum
default rate to the current default rate as scaling factor. The first case leads to PDs similar to
our TTC concept, whereas the second case corresponds to bottom-of-the-cycle PDs, which are
sometimes referred to as TTC PDs.
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shows that agency ratings contribute to the identification of these long-run trends,
thus providing evidence that credit rating agencies follow to some extent a TTC
concept. To summarize, many studies find that the ratings of major rating agencies
show both PIT as well as TTC characteristics, which is consistent with the notion
of hybrid rating systems.

Third, the rating philosophy is important from a regulatory and supervisory perspec-
tive as well as from an accounting perspective, not least because capital requirements
for banks and insurance firms depend on credit risk measures. Studies that discuss
TTC PDs in the context of Basel II or as a remedy for the potential pro-cyclical
nature of Basel II include Repullo et al. (2010). Repullo et al. (2010) compare
smoothing the input of the Basel II formula by using TTC PDs or smoothing its
output with a multiplier based on GDP growth.6 They prefer the GDP growth
multiplier because TTC PDs are worse in terms of simplicity, transparency, cost
of implementation, and consistency with banks’ risk pricing and risk management
systems. Cyclicality of credit risk measures also plays an important role in the con-
text of Basel III,7 which was implemented in the Capital Requirements Regulation
(CRR) in the European Union.8 The CRR states that institutions shall have sound
internal standards for situations where realised default rates deviate significantly
from estimated PDs. According to the CRR, these standards shall take account of
business cycles and similar systematic variability in default experience. In two sep-
arate consultation papers issued in 2016, the European Banking Authority (2016,
p. 52-54) proposes to explicitly leave the selection of the rating philosophy to the
banks, whereas the Basel Committee on Banking Supervision (2016, p.7) proposes
to require banks to follow a TTC approach to reduce the variability in PDs and thus
risk-weighted assets across banks.9

6Repullo et al. (2010) also discard alternative options to reduce the pro-cyclicality of Basel II,
such as an auto-regressive adjustment rule and multipliers based on credit growth, stock-market
prices, banks’ profits or loan loss provisions.

7The Basel Committee on Banking Supervision (2011) introduced a series of measures to make
banks more resilient to pro-cyclical effects. These measures have the objective to dampen excess
cyclicality of the minimum capital requirements, promote more forward looking provisions, conserve
capital to build buffers that can be used in periods of stress, and achieve the broader macro-
prudential goal of protecting the banking sector from periods of excess credit growth.

8Regulation (EU) No 575/2013 of the European Parliament and of the Council of 26 June 2013.
9The “variable scalar approach” to turn PIT PDs into TTC PDs was initially promoted in the

United Kingdom for the implementation of Basel II, see Prudential Regulation Authority (2013) for
a summary and Aguais et al. (2008) or Ingolfsson & Elvarsson (2010) for practical implementations.
However, the PRA now expects banks to no longer use the variable scalar approach for residential
mortgage portfolios because it has found that banks “are unable to distinguish sufficiently between
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The adoption of the International Financial Reporting Standard (IFRS) 9 for the
accounting of financial instruments as of January 2018 has further increased the
relevance of rating philosophies. IFRS 9 requires an impairment allowance for fi-
nancial assets held at amortised cost. The amount is based on the expected credit
loss which shall explicitly be calculated with PIT PDs. IFRS 9 requires to calculate
the expected credit loss for performing loans with PIT 12-month PDs; for under-
performing and non-performing loans, the expected credit loss shall be calculated
with PIT lifetime PDs for the expected life of the financial instrument. Building
on Carlehed & Petrov (2012), Petrov & Rubtsov (2016) develop a methodology to
first construct TTC rating grades and to then obtain PIT PDs needed for,e.g., IFRS
9. Skoglund (2017) is among the first papers to discuss the challenges to calibrate
lifetime PIT PDs required by IFRS 9.

Finally, the rating philosophy should influence the validation of rating systems, but
the challenges to validate TTC models have been largely ignored in the literature.
Already Basel Committee on Banking Supervision (2005) stresses that in order to
evaluate the accuracy of PDs reported by banks supervisors need to adapt their PD
validation techniques to the specific types of banks’ credit rating systems, in partic-
ular with respect to their PIT vs. TTC orientation. However, methods to validate
rating systems have paid very little attention to the rating philosophy or focused
on PIT models. For example, Cesaroni (2015) observes that predicted default rates
are PIT and thus the validation of a rating system “should” operate on PIT PDs
from a theoretical perspective. Petrov & Rubtsov (2016) explicitly mention that
they have not yet developped a validation framework consistent with their PIT-
TTC methodology. A key contribution of our paper is to address this important
gap in the literature in a general and systematic manner.

3 Theoretical Framework

3.1 PIT vs. TTC Credit Risk Measures

In general, lenders face uncertainty about an obligor’s ability to service his obliga-
tions in the future, i.e. lenders face credit risk. Against this background it is common
practice to model the default of a firm as a stochastic event that is captured by a
random indicator variable Yi,∆t which may take the following values:

movements in default rates that result from cyclical factors and those that result from non-cyclical
reasons” (Prudential Regulation Authority, 2017, p. 17).
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Yi,∆t =

1 if obligor i defaults within the time period (t; t+ ∆t),
0 if obligor i survives the period (t; t+ ∆t).

(1)

The realization of the non-degenerated random variable Yi,∆t is governed by an ex
ante default probability:

PDi,t = P (Yi,∆t = 1), (2)

which can take values in the interval (0;1). Hence, at each point in time t and
for any time horizon ∆t a unique, true probability of default exists for each and
every obligor i. This true PD is latent and hence non-observable. In credit risk
measurement it is standard practice to model the true PDi,t on the basis of a true
rating, or henceforth, credit score Si,t via a suitable link function `:10

PDi,t = `(Si,t). (3)

While there exists no agreement on the precise definition of TTC ratings in the
literature (see Section 2), most studies define TTC ratings in the following general
way: They decompose the credit risk of a firm into basic as well as cyclical risk
factors. Based on this decomposition, they then define the TTC credit scores as
the credit scores by setting the cyclical risk factors to their long run average.11 In
contrast, PIT scores are defined by taking into account both types of risk factors,
basic as well as cyclical.

Hence, we model a firm’s credit score Si,t as:

Si,t = αi +Xi,t + βiFt, (4)

where Xi,t represents an idiosyncratic risk factor that captures a firm’s business
fundamentals such as its capital structure or management and Ft is a cyclical risk
factor that represents aggregate information such as macroeconomic conditions.

For simplicity we will in the following assume that: E(Xi,t) = 0, V(Xi,t) = σ2
X ,

E(Ft) = 0, V(Ft) = σ2
F , and that Xi,t and Ft are independent. The parameter βi

10As discussed in Hornik et al. (2010) one of the most commonly used link functions is the
standard normal cumulative distribution function Φ.

11An alternative approach is to assume a stress scenario for the cyclical risk factors, leading to
“bottom-of-the-cycle” credit risk measures.
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captures the sensitivity of the credit score to the cyclical risk factor and αi represents
those parts of the basic and the cyclical risk factors that are constant over time. It
follows that the expectation and variance of a firm’s credit score are given by:

E(Si,t) = αi, (5)
V(Si,t) = σ2

X + β2
i σ

2
F .

We define the PIT and TTC credit scores of firm i as:

SPITi,t ≡ Si,t = αi +Xi,t + βiFt, (6)
STTCi,t ≡ αi +Xi,t.

3.2 PIT vs. TTC Rating Systems

Consistent with Krahnen & Weber (2001) we define a rating system as a function:

R : {companies} → {rating classes}. (7)

This means that a rating system R assigns each element of a set of companies to a
rating class, denoted for example by {A,B+, B,B−, ...}. The assignment of com-
panies to rating classes is based on the credit score and ensures that all companies
within a rating class are reasonably homogeneous with respect to this credit score.
Representing a certain (interval for the) credit score, each rating class is thus also
associated with a corresponding (interval for the) probability of default (by means
of the link function `).

For simplicity we will in the following concentrate on perfect PIT and TTC rating
systems, except the discussion of hybrid rating systems in Section 3.2.3. Hence, we
will assume that the rating system is able to identify the true Si,t for each firm i. We
will later relax this assumption by allowing for measurement errors when discussing
the validation of PIT and TTC rating systems in Section (4).

3.2.1 PIT Rating Systems

In a PIT rating system a firm i is assigned to rating class cPIT if its PIT credit score
is equal to that underlying the rating class, denoted by sPITc credit score of a PIT
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rating class cPIT in the following).12 Hence, at each point in time t, the set of firms
CPIT
t assigned to the rating class cPIT is given by:

CPIT
t = {i | Si,t = sPITc }. (8)

As a consequence, the default probability of each firm i assigned to the rating class
cPIT is given by:

PDi∈{CPITt },t = `(sPITc ). (9)

3.2.2 TTC Rating Systems

In contrast, in a TTC rating system a firm i is assigned to a rating class cTTC on
the basis of its TTC credit score. At each point in time t, the set of firms CTTC

t

assigned to the rating class cTTC , with underlying TTC credit score sTTCc , is given
by:

CTTC
t = {i | STTCi,t = sTTCc }. (10)

Note that while in a PIT rating system, rating changes occur because of both,
changes in the basic risk factor Xi,t as well as changes in the cyclical factor Ft, in a
TTC rating system rating changes occur only due to changes in the basic risk factor.
Hence, a TTC rating system is expected to exhibit fewer rating changes than a PIT
system.

It follows from equations (6) and (10) that the default probability of firm i that is
assigned to rating class cTTC is given by:

PDi∈{CTTCt },t = `(sTTCc + βiFt). (11)

Whereas default probabilities are constant over time for a PIT rating class, they
vary stochastically over time for a TTC rating class due to their dependence on
the cyclical factor Ft. This result stems from the fact that a TTC rating system
ignores the cyclical part of a firm’s credit score when assigning it to a rating class.
Furthermore, note that even though in a TTC rating system firms are assigned to

12Without affecting our main results we assume that all firms within a rating class are not only
reasonably homogenous but identical with respect to their credit scores.
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rating classes on the basis of their TTC credit scores, their observed default processes
are determined by the true default probability PDi,t (see Section 3.3).

3.2.3 Hybrid Rating Systems

In practice many rating system providers argue that they follow a hybrid approach
(see, e.g., European Banking Authority (2013, p. 28). In order to formally introduce
a hybrid rating system and differentiate it from PIT and TTC systems we define
the hybrid credit score of firm i at time t as:

SHY Bi,t ≡ αi +Xi,t + δβiFt, (12)

where δ ∈ [0; 1] denotes the degree to which a hybrid rating system follows a PIT
approach. In a hybrid rating system a firm i is assigned to a rating class cHY B on
the basis of its hybrid credit score. At each point in time t, the set of firms CHY B

t

assigned to the rating class cHY B, with underlying hybrid credit score sHY Bc , is given
by:

CHY B
t = {i | SHY Bi,t = sHY Bc }. (13)

Hence, the default probability of a firm i that is assigned to the rating class cHY B

is given by:

PDi∈{CHYBt },t = `(sHY Bc + (1− δ)βiFt). (14)

Hence, a hybrid rating system represents a compromise between a PIT and TTC
rating system in the sense that only a certain fraction of the cyclical component
of a firm’s credit score is accounted for when it is assigned to a rating class. As a
consequence, as for TTC rating systems the default probability of a rating class of
a hybrid rating system varies stochastically over time.

This section has shown that hybrid rating systems can be easily included in our
framework. For the sake of simplicity, we do not further discuss hybrid systems
below. The challenges to validate TTC systems highlighted in Section 4 become less
relevant the closer δ gets to 1, i.e. a pure PIT system.
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3.3 Default Frequencies in PIT vs. TTC Rating Systems

In this section we explore the characteristics of default frequencies in PIT and TTC
rating systems. In the following we let nct be the number of firms assigned to either
a PIT rating class cPIT or a TTC rating class cTTC . Furthermore, we denote the

default frequency of either a PIT or TTC rating class by Dc
t =

∑nct
i∈{Ct}=1 Yi,∆t

nct
and a

realization of the default frequency by dct . The corresponding default patterns for T
periods and M rating classes are denoted by D = [Dc

t ]T×M and d = [dct ]T×M .

3.3.1 Default Frequencies in PIT Rating Systems

In a PIT rating system, according to equation (9) the default probability of a firm
i assigned to a PIT rating class cPIT is given by PDi∈{CPITt },t = `(sPITc ) and hence
the number of defaults of a PIT rating class, nctDc

t follows a binomial distribution:

P (nctDc
t = nctd

c
t) =

(
nct
nctd

c
t

)
`(sPITc )nctdct (1− `(sPITc ))nct−nctdct . (15)

3.3.2 Default Frequencies in TTC Rating Systems

We next turn to TTC rating systems. According to equation (11) the default prob-
ability of a firm i assigned to a TTC rating class cTTC is given by:

P̃D(Ft) ≡ PDi∈{CTTCt },t = `(sTTCc + βcTTCFt), (16)

where we assumed for simplicity that all firms in the rating class cTTC have the
same sensitivity βi∈{CTTCt } = βcTTC to the cyclical factor and we use the shorthand
notation P̃D(Ft) for the true PD of a firm assigned to a TTC rating class cTTC .

We define the PIT and TTC default probabilities of firm i assigned to a TTC rating
class cTTC as:13

13Note that alternatively the TTC default probability of a firm could be defined on the basis of its
TTC score: PDTTC,alt

i∈{CT T C
t },t = `(E(sTTCc + βcT T CFt)) = `(sTTCc ) which, due to Jensen’s inequality,

will in general differ from the expression given in (17). We choose the former definition since, as
shown below, this ensures that the TTC default probability of a firm assigned to a TTC rating
class equals the expected default rate in that rating class.
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PDPIT
i∈{CTTCt },t ≡ P̃D(Ft), (17)

PDTTC
i∈{CTTCt },t,t ≡ PD ≡ E(PDPIT

i∈{CTTCt },t, t) = E(P̃D(Ft)).

Conditional on a realization of the cyclical factor Ft = ft the random indicator
variables Y1,∆t, ..., Ynt,∆t are independent and each have default probability P̃D(ft).
We can think of a realization of the default frequency Dc

t = dct as being generated in
two steps. First, a cyclical factor Ft = ft and hence a default probability P̃D(ft) is
realized. Second, given the default probability P̃D(ft) the number of defaults nctdct
is drawn from a binomial distribution with nct trials. Conditional on a realization
of the cyclical factor Ft = ft, the probability of observing a number of defaults
nctD

c
t = nctd

c
t is given by:

P (nctDc
t = nctd

c
t | Ft = ft) =

(
nct
nctd

c
t

)
P̃D(ft)n

c
td
c
t (1− P̃D(ft))n

c
t−nctdct (18)

The unconditional distribution is then obtained by integrating over the distribution
of Ft:

P (nctDc
t = nctd

c
t) =

∫ ∞
−∞

P (nctDc
t = nctd

c
t | Ft = ft) g(ft) dft (19)

=
∫ ∞
−∞

(
nct
nctd

c
t

)
P̃D(ft)n

c
td
c
t (1− P̃D(ft))n

c
t−nctdct g(ft) dft,

where g denotes the density of Ft. It can be shown that the unconditional expecta-
tion and variance of the default frequency Dc

t are given by:14

E(Dc
t ) = PD (20)

V(Dc
t ) = PD(1− PD)

nct
+ (nct − 1)

nct
V (P̃D(Ft)).

The unconditional expectation of the default frequency for both the PIT PD and
the TTC PD assigned to firm i is equal to the TTC default probability PDTTC

i∈{CTTCt }
following directly from the definition in equation (17). The unconditional variance
of the default frequency equals the binomial variance around the TTC PD, i.e. the

14We derive equation (20) in Section 6.1 in the appendix.
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expected PIT PD of the TTC class, plus the variance of the PIT PD of the TTC
class triggered only by changes in the cyclical factor Ft.

Table 1 summarises some stylized facts about the differences between PIT and TTC
rating systems. In Section 4 we will address these deviations when we discuss meth-
ods validating both types of rating systems, focusing on the key differences of rele-
vance for this paper.
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Table 1: Summary of differences between PIT and TTC rating systems

Feature PIT model TTC model

Key differences of relevance for this paper

Use of information Reflects all avail-
able information

Abstracts from / re-
moves information on
(business) cycle

Effect of credit quality changes
caused by (business) cycle

Rating migration None (TTC rating con-
stant through the cycle)

Number of rating changes Many (cased by id-
iosyncratic and sys-
tematic factors)

Few (caused only by id-
iosyncratic factors)

True PD of a rating class Constant varies with Ft, negatively
correlated with the (busi-
ness) cycle

Variance of realised default rates Low High

Observed default rates by rating
grade / PD bucket over (business)
cycle

Constant (same as
long-run average
default rate)

Varying: increasing in
downturn, decreasing in
upswing; equal to long-
run average default rate
only in the middle of cy-
cle

Default correlation between
obligors

(Close to) 0 Positive

Other differences implicitly included in the model in this paper

Capital requirements over (busi-
ness) cycle under Basel II (Basel
Committee on Banking Supervi-
sion, 2005, see, e.g.)

Varying: increasing
in downturn, de-
creasing in upswing

Constant (note: in
practice, portfolio ad-
justments will lead to
changes)

PD under stressed macroeco-
nomic conditions (Basel Commit-
tee on Banking Supervision, 2005,
see)

Positively corre-
lated with the
(business) cycle

Constant
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4 Validation of PIT and TTC Rating Systems

So far it has been assumed that a rating system is able to perfectly allocate firms
to rating classes based on their true PIT and TTC scores. In practice, however, the
assignment of obligors to rating classes is subject to measurement error and hence
there is the need to perform ex-post validation of credit rating systems.

Several approaches have been proposed for validating rating systems (for an overview,
see Basel Committee on Banking Supervision, 2005). The most widespread ap-
proach, which is referred to as back-testing, is to compare ex-post realised default
rates with ex-ante estimates of probabilities of default. Other methods include the
assessment of discriminatory power (see, e.g., Lingo & Winkler, 2008) or bench-
marking where ratings from different sources are compared (see, e.g., Hornik et al.,
2007). Based on the theoretical foundations defined in Section 3, we will in the
following provide a framework for back-testing PIT and TTC rating systems.

4.1 Validation of PIT Rating Systems

In the following let for a PIT rating class cPIT , with PD PDPIT
c , the estimated PIT

credit scores be given by Ŝi,t. Hence, the set of firms assigned to a PIT rating class
is now given by:

CPIT
t = {i | Ŝi,t = α̂i + X̂i,t + β̂cTTC F̂t = sPITc }, (21)

and the corresponding estimated default probabilities of firms in rating class cPIT

are given by: P̂DPIT

i∈{CPITt },t = `(Ŝi,t) = `(sPITc ). In the validation of credit rating
systems it is standard practice to apply the assumption of Section 3.2, namely that
firms within a rating class are not only homogeneous but identical with respect to
their credit scores and default probabilities, and to assess the calibration quality of a
rating class by comparing its underlying default probability with the corresponding
observed default frequency.

The most basic and common validation method involves testing whether the rating
system is not underestimating probabilities of default of rating class c using a one-
sided test of the form:

Hc
0 : PDPIT

c ≤ P̂D
PIT

c vs. Hc
1 : PDPIT

c > P̂D
PIT

c , (22)
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where PDPIT
c and P̂DPIT

c denote the true and estimated PIT PD of obligors assigned
to rating class c. Alternatively, one may test for both under- and overestimation of
PDs by employing a two-sided statistical test:

Hc
0 : PDPIT

c = P̂D
PIT

c vs. Hc
1 : PDPIT

c 6= P̂D
PIT

c , (23)

Under the null hypothesis, the observed one-year default frequency for rating class
c follows a binomial distribution defined in equation (15). Hence, in the case of a
PIT rating system the null hypothesis is given by (22) or (23) and the calibration
quality can be tested by using standard tests for binomial distributions.15 For a
one-sided alternative the binomial test is the uniformily most powerful test, for two-
sided alternatives an overview of different approaches is given in Aussenegg et al.
(2011).

4.2 Validation of TTC Rating Systems

Recall from Section 3.2.2 that in a TTC rating system, firms are assigned to a TTC
rating class cTTC based on their TTC credit scores STTCi,t . Hence, the set of firms
assigned to a TTC rating class is given by:

CTTC
t = {i | ŜTTCi,t = α̂i + X̂i,t = sTTCc }, (24)

As a consequence, while all firms in a TTC rating class share the same TTC credit
score (abstracting from measurement error at this point), their actual (PIT) credit
scores, their true (PIT) PDs, and hence the number of defaults observed in each
TTC rating class, will vary over time. This variation is due to the variation of the
cyclic factor Ft and is ultimately the reason why validating a TTC rating system is
more challenging than validating a PIT rating system as described above. Validating
a TTC rating system thus requires to assess both, the idiosyncratic component as
well as the cyclic factor of the rating system. To this end, the validator will make
use of all observable data which may indicate a miscalibration: the realized default
rates per TTC rating class and the realizations of the cyclical factor.

Starting with the cyclical factor we find that by choosing a specific type of cyclical
factor (e.g. business cycle or credit cycle) and the way how it is measured, the

15Note that we assume here that the validator knows the PDs `(sPITc ) for each rating class. If
they are not known they can be estimated as outlined in section (4.2).
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TTC rating system implicitly chooses the amount by which the true (PIT) PDs,
and hence the number of observed defaults, will vary over time in each TTC rating
class. As discussed in Sections 1 and 2 there is no consensus on the exact definition
of a TTC rating system and hence there is also no consensus on the definition and
measurement of the cyclical factor Ft. Thus, in practice, TTC rating systems have
considerable leeway in choosing the type of cyclical factor they employ and hence
they have considerable leeway in choosing the amount of variation they allow in
their true (PIT) PDs over time.

For the validation of the cyclical risk component of a TTC rating system this means
that the validator checks whether the choice of the cyclical factor is in line with
the overall objectives and application of the TTC rating system. More specifically,
she might check how the cyclical factor chosen by the TTC rating system correlates
with standard macroeconomic variables such as real GDP growth, output gap, or
aggregate lending. Alternatively, the validator might compare the cyclical factor
of the TTC rating system with a benchmark cyclical factor (we will discuss this
possibility in more detail below).

The validation of a TTC rating system crucially depends on the amount of informa-
tion that is available to the validator. In this paper we will investigate two boundary
cases. In the first case the validator has full information about the model parameters
and the cyclical factor chosen by the TTC rating system. In the second and more
realistic case, the validator observes only the number of defaults and the number of
obligors in each TTC rating class without any knowledge of the underlying model
parameters and the cyclical factor.

4.2.1 Validation of a TTC Rating System with Full Information

After checking the suitability and plausibility of the cyclical factor employed by the
TTC rating system the validator can validate the TTC rating system by computing
the corresponding PIT PDs for each rating class of the TTC system according to
equation (16) and then test these PIT PDs against observed default rates, in the
same way as outlined in section (4.1). For example, assume that the validator
knows that for a TTC rating class with 1000 rated entities cTTC : sTTCc = −2.5,
βTTCc = 0.45, σF = 0.45, Ft = −1, and that ` = Φ. The validator can then compute
the corresponding PIT default probability for this TTC rating class as according to
equation 16:

18



PDPIT,TTC

i∈CTTCt ,t
= Φ(−2.5− 0.452) = 0.0034 (25)

Given a PIT PD of 34 bp, a standard hypothesis test, for example as represented
in equation (22), can be performed. For a significance level of 5%, the critical value
for rejecting the null hypothesis that the rating class is well calibrated amounts to
7. Hence, observing 7 or more defaults for this rating class would result in rejection
of the null hypothesis. Note, however, that the model parameters as well as the
cyclical factor will typically not be known to the validator and hence this approach
is likely to be of limited relevance for validators in practice.

In practice, however, most validators do not have full information about the model
parameters and the cyclical factor chosen by the TTC rating system. Moreover,
many rating systems do not explicitly estimate a cyclical factor but instead argue
that their TTC (or hybrid) nature is due to the fact that they smooth their explana-
tory variables over the business (or credit) cycle. In this case the approach described
above is not feasible. The validator can, however, infer the model parameters and
the cyclical factor of the TTC rating system from observed default rates. We will
turn to this possibility in the next section.

4.2.2 Validation of a TTC Rating System with Limited Information

If the validator has no information about the underlying model parameters and the
cyclical factor of a TTC rating system she can estimate the relevant model parame-
ters from observed default rates. In the following we show how a TTC rating system
can be validated based on estimating its idiosyncratic and cyclical risk component
in line with the theoretical framework presented in this paper. By using Standard
& Poor’s historical rating and default data we estimate the implied cyclical factor
which can then be compared to a benchmark cyclical factor (e.g. real GDP growth)
or be used as a benchmark factor for the validation of the cyclical components of
other TTC rating systems16 As we will further discuss below, estimating the idiosyn-
cratic and cyclical risk components requires a sufficient time series of data which in
practice will be a significant obstacle for following this approach.

Our data covers the time period ranging from 1981 to 2016. Thus, our dataset
16It is important to note that the TTC nature of Standard & Poor’s ratings has been challenged

in the literature, see Section 2. As a consequence, the difference between PIT PDs at the peak
or bottom of the cycle and a “true” TTC PD would be even greater than based on Standard &
Poor’s data.
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ultimately comprises T = 36 years. For each year we are equipped with the one-
year default rate for the respective grade for corporate entities including financial
institutions on a rating grade level. We pool information on corporates and financials
and further aggregate numbers over the distinct modifiers of the respective major
rating categories to finally obtain data on a rating class level. Since default rates
for rating classes AAA as well as AA have been largely zero we decide to focus only
on rating classes A, BBB, BB, B, and CCC/C. Since, the number of obligors for
each rating class are not published by Standard & Poor’s we set these numbers to
A: 1000, BBB: 1000, BB: 500, B: 500, and CCC/C 100, which roughly reflects the
typical pool observed in the literature.

A summary of the dataset is given in table (4) in the appendix. In line with several
other rating systems, Standard & Poor’s does not publish explicit credit scores
(sTTCc ) (or equivalently TTC PDs PDTTC) for its different rating classes.

Combining equations (16) and (18) the log-likelihood of observing a default pattern
D and obligor pattern n = [nct ]T×M is given by:

L(µ,σ,f | n,d) =
T∑
t=1

M∑
c=1

log
(
nct
nctd

c
t

)
+

T∑
t=1

logHt (26)

Ht = (Φ(µc + σcft))(nctdct ) · (1− Φ(µc + σcft))(nct−nctdct ) ,

where µ = (µ1, ..., µM)′, and σ = (σ1, ..., σM)′, f = (f1, ..., fT )′, µc = scTTC , and
σc = βcTTCσF . Furthermore, as outlined in section 3.3, d = [dct ]T×M denotes the
observed default pattern. It is clear from the specification above that the mean of f :
fm = 1

T

∑T
t=1 ft and the mean of µ: µm = 1

M

∑M
c=1 µc cannot be separately identified.

In the same way the variance Var(ft) and the mean level of σ: σm = 1
M

∑M
c=1 σc

cannot be distinguished.

In order to identify the parameters given in (26) we impose two further restric-
tions: f̂m = 0 and Var(ft) = 1, i.e. we estimate the normalized implied cyclical
factor.17 Maximizing the log-likelihood subject to these restrictions yields param-
eter estimates µ̂ = (µ̂1, ..., µ̂M)′, and σ̂ = (σ̂1, ..., σ̂M)′, f̂ = (f̂1, ..., f̂T )′ as well as
the corresponding standard deviations of the estimated parameters (based on the
Fisher Information Matrix) denoted by sdµ̂c , sdσ̂c , and sdf̂t which are summarized
in Table (2).

17Note that the restriction f̂m = 0 can be justified by observing a sufficiently long time series.
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As expected the parameters µc = scTTC monotonically increase over the different
rating classes, implying that the TTC PD increases when going from rating class
“A” to “CCC/C”. In contrast, the sensitivity parameter σc = βcTTC is fairly stable
over the different rating classes and amounts to 0.30 on average. As mentioned above
Standard & Poor’s does not publish explicit credit scores (sTTCc ) (or equivalently
TTC PDs PDTTC for its different rating classes. In the case where these credit
scores sTTCc are available18, they can be tested against the estimated parameters
µ̂c, which capture the idiosyncratic risk components estimated by the TTC rating
system. This can be done for example by a Wald test: under the null hypothesis,
the test statistics µ̂−x

sd2
µc

asymptotically follows a Chi-squared distribution with one
degree of freedom.

The estimated cyclical factor f̂ = (f̂1, ..., f̂T )′ is presented in figure (1) and shows a
clear cyclical pattern over the sample period. Moreover, comparing the estimated
cyclical factor to US real GDP growth19 for the same sample period, as shown in
figure (1), reveals that the estimated cyclical factor closely tracks US GDP growth
over most of the sample period20.

Table (3) shows the average estimated PIT PDs: 1
T

∑T
t=1 P̂D

PIT

i∈{CTTCt },t = 1
T

∑T
t=1 Φ(µ̂c+

σ̂cf̂t), the average observed default frequencies dc = 1
T

∑T
t=1 d

c
t , as well as the 95%

empirical quantile of the estimated PIT PDs q95 PD
TTC,PIT
c for each rating class.

The table reveals that the estimated PIT PDs closely track the observed default
frequencies in each rating class. Figures (2) and (3) show the estimated PIT PDs
P̂D

PIT

i∈{CTTCt },t = Φ(µ̂c + σ̂cf̂t) (indicated by “estimated”) and observed defaults rates
(indicated by “observed”) for the different rating classes over time. We observe that
implicit factor allows to closely track the realised default rates of all rating classes.

18If the rating system reports TTC PDs for each rating class, the associated TTC credit scores
sTTCc have to computed based on equation (17) and the estimated standard deviations of the
cyclical risk components σc.

19US real GDP growth was taken from the IMF World Economic Outlook 2016 database.
20The plain correlation coefficients between the two time series amounts to -0.26. Note that

US real GDP growth was normalized (Xnormalized = X−µ
σ , where X denotes real GDP growth, µ

denotes the mean of real GDP growth and σ denotes its standard deviation) and that in figure (1)
it was multiplied by (-1) for better comparability.
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Table 2: ML Estimates – Implied Cyclical Factor

ML estimates for historical Standard and Poor’s default data, 1981 - 2016

-A -BBB -BB -B -CCC/C
µ̂c -3.35 -3.10 -2.43 -1.78 -0.74
sdµ̂c -0.08 -0.06 -0.03 0.02 -0.02
σ̂c -0.27 -0.39 -0.25 -0.30 -0.29
sdσ̂c -0.07 -0.05 -0.03 -0.02 -0.02

mean st.dev. min max
f̂t -0.00 -1.00 -1.43 -1.97
sd

f̂t
-0.08 -0.00 -0.07 -0.08

Table 3: ML Estimates – Estimated PIT PDs

Average estimated PIT PDs and observed default frequencies (in %)

-A -BBB -BB -B -CCC/C
PDTTC,PIT

c 0.06 0.20 0.93 4.43 23.94
dc 0.06 0.21 0.93 4.43 23.86

q95 PD
TTC,PIT
c 0.20 0.81 2.34 10.55 40.95

Having estimated the implied cyclicyal factor, the validation of the TTC rating
system then comes down to validating the implied cyclical factor as discussed above.
Hence, the validator might compare the estimated cyclical factor with a benchmark
cyclical factor or she might compare it with a set of macroeconomic variables, as
indicated in Figure (1). However, when the validator has to estimate the cyclical
factor, the validation analysis is now subject to a number of additional limitations.
First, estimation of the cyclical factor requires a sufficient amount of historical data.
Second, the estimation requires the assumption of a model framework. Third, the
estimated cyclical factor will contain possible measurement error in the cyclical
factor.

In our example, US real GDP growth may be a key cyclical indicator for the sample
of rated global corporates, in particular because for most years the majority of the
ratings and the observed defaults in the sample refer to US firms. However, it
may be questionable whether our model fully reflects the influence of the cyclical
factor on S&P ratings, whether US real GDP growth is the right cyclical factor, and
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whether the differences between our estimated cyclical factor and the US real GDP
growth in Figure (1) reflect measurement error or should lead to the rejection of
the hypothesis of a well-calibrated TTC rating model. In the next section we will
compare the validation of PIT and TTC rating systems and discuss the practical
implications of the challenges of validating TTC rating systems.

4.3 Comparison of the approaches

Already the Basel Committee on Banking Supervision (2005) stressed that in order
to evaluate the accuracy of PDs reported by banks, supervisors need to adapt their
PD validation techniques to the specific types of banks’ credit rating systems, in
particular with respect to their PIT vs. TTC orientation. This paper highlights that
validating TTC models by back testing their calibration quality is very challenging.21

We find that PIT systems are relatively easy to validate and require as a minimum
only the time horizon of the PD (usually one year) as data.22 The testing procedures
are based on a small set of assumptions (e.g. independence of defaults) which can be
easily relaxed if necessary. Results are available in timely manner and any significant
deviations from the ex-ante PDs are highly reliable and may therefore be associated
with concrete policy actions.

In view of the discussion of differences between PIT and TTC systems, it is most
important that defaults are usually correlated because of negative realisations of sys-
tematic risk.23 In the words of the Basel Committee on Banking Supervision (2005,

21Mayer & Sauer (2017) explain why tests of discriminatory power are not sufficient to validate
TTC models: first, standard tests of discriminatory power are portfolio-dependent and the results
thus cannot be used for the comparison of models applied to different portfolios. Second, if all firms
have the same sensitivity βcT T C to the systematic factor, two rating systems will rank all debtors
equally if their only difference is that one system follows a PIT approach and the other one is a
TTC system. Both systems will have the same discriminatory power, but the TTC system may
still suffer from poor calibration quality. Third, if banks use TTC models for capital requirements
purposes, the interests of banks and supervisors are likely to be aligned for identifying bad debtors,
i.e. discriminatory power, whereas this is less clear for calibration quality. Banks can benefit from
lower capital requirements if their models systematically underestimate the level of PDs, while
they can systematically correct for this underestimation in their business decisions such as their
average interest rates.

22We ignore here the statistical problems associated with small sample sizes that are particu-
larly pronounced for low-default portfolios, which are not uniquely defined but historically include
exposures to sovereigns, banks, insurance companies or highly rated large corporates.

23An example of default correlation potentially independent of systematic risk is the joint default
of several companies belonging to the same group. Such default correlation based on non-systematic
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p. 51), unconditional defaults are not independent, but defaults are independent
conditional on a realisation of the systematic factor. The concrete value for default
correlation is unknown.24 Since the systematic factor Ft captures all systematic as-
pects, it can be argued that the relevance of default correlation for the validation of
PIT models is significantly reduced or even absent, thus justifying the assumption
of independent defaults in validation tests.25

While TTC systems deliberately correct for the cyclical effects in the final rating
outcome, default events are governed by the true but latent PIT realisations. As
highlighted in the previous section, PIT PDs exceed their corresponding TTC PDs
by a factor of around three at the 95%-quantile (see Table 3). The greater variance
in the realised default rate of TTC systems impacts the validation of calibration
quality because it implies wider confidence bands around TTC PDs than PIT PDs.
Hence, for any given observed difference between the PD and the realised default
rate, the likelihood that this difference indicates that the model is not well-calibrated
is lower for a TTC model than for a PIT model. In other words, it is much easier
to detect a poorly-calibrated PIT model that underestimates PDs than an equally
poorly-calibrated TTC model if the statistical test takes into account the different
confidence bands associated with the different rating philosophies; the poor cali-
bration of the TTC model can then only be detected around the bottom of the
cycle. In addition, estimating confidence bands for TTC rating systems requires a
sufficiently large sample of historical default data and a set of model assumptions
which are very difficult to justify without knowledge of the exact rating model and
the specification of the systematic factor used by the TTC system.

Since the publication of Basel Committee on Banking Supervision (2005), some
additional tests of calibration quality have been developed (see, e.g., Coppens et al.,
2007, 2016). However, also these more recent tests do not address the issue of default
correlation and thus do not properly reflect the nature of TTC models. The challenge
to validate the calibration of TTC models has also been explicitly highlighted by
several credit rating agencies claiming to follow a TTC rating approach towards their
supervisor (see European Securities and Markets Authority, 2015).26 Notably, the

risk should be irrelevant for the back-testing of credit risk models if the sample size is large enough.
24In the Basel framework, default correlation is modelled via asset correlation in the Basel II

one factor model. The asset correlation is in the range between 0.12 and 0.24 in the Basel formula
for risk-weighted assets under the internal ratings-based approach, depending on PD, maturity of
loan etc.

25The (close to) zero (asset) correlation for PIT models is formalised and estimated in Rösch
(2005), for example (see also, e.g., Blümke, 2011).

26According to European Securities and Markets Authority (2015, p. 16), “ESMA has observed
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European Securities and Markets Authority (2015) argues that credit rating agencies
should overcome this challenge given that credit ratings are used not only for the
appropriate rank ordering, but also e.g. for regulatory purposes in the context of the
standardised approach for banks’ or insurance firms’ capital requirements according
to Basel III and Solvency II. In the view of the European Securities and Markets
Authority (2015), it would raise standards in the industry if CRAs consistently use
a minimum standard of statistical measures in demonstrating the predictive power
of their methodologies.

The Basel Committee on Banking Supervision (2005) concluded that statistical tests
alone cannot be sufficient to adequately validate a rating system and need to be
complemented by qualitative assessments. Hence, any application of a statistical
technique has to be supplemented by qualitative checks and banking supervisors
conduct extensive analysis of banks’ internal models under Pillar 2 of the Basel
framework.27 However, qualitative assessments are almost by definition more art
than science, and thus potentially diverging interests between banks and their su-
pervisors become particularly relevant. The interests in having good credit risk
estimates for capital requirements are of course much better aligned between the
bank and the supervisor if the bank uses the IRB output not only for capital re-
quirements purposes, but also for internal purposes, such as the bank’s internal risk
management and reporting, credit decisions and pricing of loans. Hence, a key el-
ement of the qualitative assessment according to the Basel framework is the “use
test”: banks must actually use the IRB output for all purposes; deviations are only
allowed if they are reasonably explained to the supervisor.28

that the majority of the credit rating agencies find assessing the predictive power of their method-
ologies challenging. In certain cases, credit rating agencies state that their ratings are based on an
ordinal rather than a cardinal ranking which limits the extent to which internal expectations are
relevant to the validation of the predictive power of a methodology, given the volatility of these
expectations across the economic cycle.”

27The Basel framework puts the primary responsibility for validation of IRB models on the
bank (see, e.g., Art. 185 of the CRR). Basel Pillar 2 requires that all banks make their own
assessments of capital required, including risks not properly captured in Pillar 1 (minimum capital
requirements) by IRB models. In addition, banking supervisors have the possibility for applying
additional capital charges as the consequence of a variety of tools, including stress tests, under the
“Supervisory Review and Evaluation Process” (SREP) (see, e.g., European Banking Authority,
2014). Such stress tests usually use stressed (PIT) PDs, which can also be considered as bottom-
of-the-cycle PDs.

28Art. 179 of the CRR requires that “Where institutions use different estimates for the calcula-
tion of risk weights and for internal purposes, it shall be documented and be reasonable.” Other
qualitative aspects that supervisors consider include the model design, the data quality and avail-
ability and governance aspects such as the independence of the rating process (see, e.g., Deutsche
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The challenges to validate TTC models can have important consequences regard-
ing their use for regulatory purposes, both from a micro- and a macro-prudential
perspective. Mayer & Sauer (2017) discuss different alternatives to TTC models to
avoid the potential pro-cyclicality of PIT-based capital requirements.

5 Conclusion

This paper analyses the differences between PIT and TTC credit risk measures.
A comprehensive literature review has revealed that there is no consensus about
the precise meaning of the two different rating concepts at present. Assembling
the unambiguous notions from the literature, we have built a formal probabilistic
framework comprising precise definitions for the PIT and the TTC concept. We use
this framework to theoretically analyse the key differences and links between TTC
and PIT PDs, scores and ratings and the corresponding realised default rates.

Furthermore, the literature review shows that there is very limited research on the
validation of TTC rating systems, in contrast to the extensive literature on the
validation of PIT rating systems. We show first that TTC rating systems cannot be
validated in the same way as PIT systems. We then explain how TTC rating systems
can be validated and highlight the methodological challenges involved. We provide a
concrete example for the validation of a TTC system using historical Standard and
Poor’s rating and default data. The significant challenges involved in the validation
of TTC rating systems are amplified in practice due the hybrid nature of many TTC
systems as well as the huge variety of TTC methodologies. These challenges should
be taken into account in the current discussion about the use of TTC rating systems
for regulatory purposes.

Bundesbank, 2003).
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6 Appendix

6.1 Default Frequencies

In this section we derive further characteristics of the default frequency Dt in a TTC
rating system. To simplify notation we write P̃D(Ft) = P̃Dt. By conditioning we
find that:

E(Yi,∆t) = E(E(Yi,∆t | P̃Dt)) = PD, (27)
V(Yi,∆t) = E(Y 2

i,∆t)− (E(Yi,∆t))2 = PD − PD2

= PD(1− PD).

The covariance of the default indicator variables Yi,∆t is given by:

Cov(Yi,∆t, Yj,∆t) = E((Yi,∆t − E(Yi,∆t))(Yj,∆t − E(Yj,∆t))), (28)
= E(E(Yi,∆tYj,∆t | P̃Dt))− PD

2

= E(P̃D2
t )− PD

2

= V (P̃Dt).

From these results we can derive the expectation and variance of the default fre-
quency Dt as:

E(Dt) =
∑nt
i=1 Yi,∆t
nt

= PD (29)

V(Dt) = 1
n2
t

 nt∑
i=1

V(Yi,∆t) + 2
nt−1∑
i=1

nt∑
j=i+1

Cov(Yi,∆t, Yj,∆t)


= PD(1− PD)
nt

+ (nt − 1)
nt

V (P̃Dt).

Note that when the number of firms nt becomes large, the variance of the default
frequency converges to that of P̃Dt:

V(Dt)→ V(P̃Dt) as nt →∞. (30)
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Next consider the average default frequency AD = 1
T

∑T
t=1Dt over a time period

of length T . By the Central Limit Theorem we know that for large T , AD is
approximately normally distributed with:

E(AD) =
∑T
t=1 E(Dt)
T

= PD, (31)

V(AD) =
∑T
t=1 V(Dt)
T 2

= 1
T 2

T∑
t=1

[
PD(1− PD)

nt
+ (nt − 1)

nt
V(P̃Dt)

]
.
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6.2 Tables

Table 4: Descriptive Statistics - Default Frequencies

Default Frequencies (%), 1981 - 2016

-A -BBB -BB -B -CCC/C
Mean 0.06 0.21 0.93 4.43 23.86
Min 0.00 0.00 0.00 0.2 0.00
Max 0.40 1.00 4.20 13.80 49.00

This table shows the average, minimum, and maximum of Standard and Poor’s
historical default rates over the period from 1981 to 2016 as described in Section
4.2.
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a

Figure 1: Implied Cyclical Factor and US real GDP growth (normalized). US
real GDP growth was normalized (Xnormalized = X−µ

σ
, where X denotes real gdp

growth, µ denotes the mean of real gdp growth and σ denotes its standard
deviation) and multiplied by (-1) for better comparability.

Figure 2: Estimated PIT PDs and observed default frequencies (1)
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a

Figure 3: Estimated PIT PDs and observed default frequencies (2)
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