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Abstract 

Asset allocation models assume decision-makers are unbiased processors of information and, therefore, make 

decisions in a manner consistent with utility maximization. In reality, portfolio managers often exhibit behavioral 

biases when diversifying portfolios. For example, it is well-known that ESG sustainability bias (i.e., affinity bias) 

and loss-aversion bias implicate the portfolio decision-making process. Behavioral portfolio management (BPM) 

models aim to correct for these emotional biases. In addition to expressing behavioral biases, it is also likely that 

behavioral portfolio managers experience multiple, hierarchical, and conflicting investment performance objectives. 

The complex multiple objective BPM process thus extends to a multiple BPM (MBPM).  In this study, we study the 

MBPM decision-problem using a nonlinear goal programming (NLGP) algorithm to diversify the complex 

behavioral portfolio. Firstly, the current research addresses the affinity for ESG sustainability by algorithmically 

computing three new pervasive ESG factors. Secondly, we augment the Fama and French asset valuation model to 

include the network of new ESG factors. After formulating a six-factor Fama and French asset valuation model, the 

study follows evolving research by using a shallow Bayesian neural network to estimate ESG scale effects on the 

production of asset returns. Lastly, we deploy the NLGP algorithm to enumerate behaviorally-inspired portfolios 

under alternate layered goal scenarios. Our results confirm extant findings based on mean-variance optimization 

while providing new insights into the range and depth of how layered goals for ESG sustainability and loss-aversion 

impact risk-adjusted portfolio performance.  

Keywords: Behavioral Portfolio Management, ESG Factor Estimation, Multiple Objective Optimization, Option-

theoretic Shortfall, and Network Produced Asset Returns 
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1. Introduction 

Traditional asset allocation models assume economic agents act as rational and unbiased 

processors of relevant information. These agents can make decisions in a manner consistent with 

individual utility maximization. Conventional academic promotes an emphasis on standard 

theories such as modern portfolio theory (MPT) and the efficient market hypothesis (EMH). But, 

under the traditional approach, market puzzles and anomalies are not readily explained. 

Behavioral finance has emerged as a way to describe the interaction of psychology with financial 

decision-making.  
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Stylized findings on how the wealth management process is mostly driven by investors who 

make decisions based on emotions and context-sensitive heuristics endure in the literature (Das, 

Markowitz, Scheid, & Statman, 2010; Howard, 2014). More recent contributions to the literature 

seek to explain how beliefs shape portfolio choice directly within the context of a layered bias in 

the asset allocation process (Giglio, Maggiori, Stroebel, & Utkus, 2019). Other extensions link 

the multiple goal wealth management models of Das and Ostrov (2018) to the Chang, Young, 

and Diaz (2018) three-part behavioral portfolio management optimization that balances return 

estimation, return weighting, and different mental accounts. Extant research contributed by 

Shefrin and Statman (2000) initially viewed behavioral portfolio management (BPM) theory as 

an alternative to MPT. Byrne and Brooks (2008) advanced a layered view of the investment 

process. Under the layered view, investors build portfolios as pyramids of assets, layer by layer 

such that each layer is associated with a specified prioritized hierarchy of risk management 

goals.  

Behavioral finance believes human behavior is driven by four key factors: values, personality, 

propensity for risk, and decision dissonance. For finance professionals – planners and advisors, 

portfolio managers, and institutional investors – these factors can lead to behavioral biases in 

investment decision-making (Baker, Filbeck, & Ricciardi, 2017). Of particular importance to this 

study is decision-maker susceptibility to the following biases: affinity, loss aversion (aka 

prospect theory), and cognitive dissonance. Affinity bias refers to the tendency to make irrational 

investment decisions based on beliefs and values (i.e., selecting sustainable investments when 

there is a strong belief that such investments are likely return-compromised). Investors who 

express loss aversion bias demonstrate a strong desire to avoid absolute reference point losses by 

prioritizing the avoidance of risk. Cognitive dissonance in investment decision-making describes 

the process where the decision-maker faces conflicting beliefs (i.e., investment performance 

goals). In the presence of multiple and possibly hierarchical beliefs, investors require a method to 

prioritize goal attainment with the understanding that all goals cannot be entirely and 

simultaneously achieved. The process of treating multiple and layered behavioral factors during 

the construction of an efficient investment portfolio is referred to as a multicriteria, or multiple 

objective behavioral portfolio model (MBPM). 

The goal programming (GP) optimization method is commonly used to model multicriteria 

decision problems (Ogryczak, 2002). GP shifts the modeling focus from constraint limitations to 

prioritized goal attainment. For example, it is widely understood that there is a positive affinity 

bias for environmental, social, and governance (ESG) factors (Oehmke & Opp, 2020). 

Traditional portfolio optimization methods control for this affinity by either constraining the 

optimal asset diversification or reweighting asset-level metrics. The GP alternative does not 

require asset rescaling, and, more importantly, binding constraints are replaced with goal under-

/over-achievement deviations. By layering the priority of the under-/over-achievement 

deviations, the investment professional can control how ESG targeting impacts returns-based 

performance (Pastor, Stambaugh, & Taylor, Forthcoming 2020).  
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The primary objective of the current study is to extend MBPM to encompass MPT with layered 

goal hierarchy related to both financial and behavioral investment targets. To achieve the 

proposed extension to MBPM, we introduce a nonlinear goal programming model (NLGP) as a 

solution method.  NLGP makes it possible to add behavioral bias goal-constraints to the uni-

objective Sharpe single-index portfolio model (SSIM). Compared to the traditional Markowitz 

mean-variance model (MV), the SSIM faithfully replicates the maximum rate of return (MRP) 

portfolio and closely replicates the global minimum variance portfolio (GMVP) (Frankfurter, 

Phillips, & Seagle, 1976; Sharpe, 1971). But, unlike the MV approach, the extensibility of the 

SSIM allows for the incorporation of multiple and layered objectives (Xidonas, Hassapis, 

Mavrotas, Staikouras, & Zopoundis, 2018). However, juxtaposing prevalent behavioral biases 

(e.g., affinity and loss-aversion) onto the MBPM necessitates a secondary aim for this study – to 

operationalize cognitive investor biases as a set of engineered asset valuation factors for 

generalized goal-target expression. 

By way of example, the importance of the ESG affinity bias in portfolio construction is provided 

by Melas, Nagy, and Kulkarni (2017). In their study, the authors examined ESG impact by 

augmenting and re-sorting asset-level relationships across risk-factors. Among other findings, 

return-level improvements in the order of 30% were observed for ESG profile adjustments with 

relatively modest impact on previously targeted factor exposure. We achieve an NLGP 

formulation of the portfolio construction method by taking an optimization model approach. The 

approach relies upon estimating three new pervasive ESG factors for inclusion in specific goal-

target constraint equations that are differentiated by investor priorities.  

The paper proceeds as follows. In section 2, we estimate three new pervasive ESG factors to 

proxy ESG sustainability impact on portfolio diversification. Section 3 investigates whether 

these three new factors address the ‘factor zoo’ puzzle. This section deploys a well-followed 

factor disentanglement algorithm to estimate the ubiquitous standing of the newly derived ESG 

factors. Section 4 estimates asset returns in a networked market economy by extending recent 

findings on the use of shallow neural networks and production-theoretic asset pricing. Section 4 

also provides an option-theoretic approach to estimate asset-level shortfall. Section 5 

encapsulates the results provided in sections 3 and 4 to form the normative multiple-objective 

behavioral portfolio model (MBPM). Conclusions are provided in section 6. 

2. Pervasive ESG Factor Estimation 

The substantial literature on the creation of factor portfolios is in agreement with findings on 

how factor models provide three pillars of support in asset allocation models. The pillars are 

stated as the identification of risk premia, the identification of behavioral pricing biases, and the 

identification of structural impediments to efficient diversification. However, the number of 

relevant studies has made it difficult to pin down the economic benefit of the investigated 

factors. In a comprehensive examination of over 300 factors (i.e., the factor zoo), Harvey, Liu, 

and Zhu (2016) argue that risk factors must exhibit two characteristics. One is unpredictable 
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variation through time. The other is the ability of the factor to explain cross-sectional return 

patterns. Cochrane (2011) previously argued for methods to identify prevalent and dominating 

risk factors. To test whether factors are priced efficiently and to overcome a data-mining bias in 

error specification, Ang, Liu, and Schwarz (2009) refined the factor quest by arguing for the use 

of stocks over portfolios. Using an augmented projection approach and principal components 

analysis (PCA), Lettau and Pelger (2018) successfully estimate latent factors to explain 

covariance and expected returns structures in equity data. The first contribution of their paper is a 

method to control time-variation in PCA loadings of individual stocks. A second contribution is 

evidence that an augmented PCA technique can lead to a superior enumeration of the optimal 

portfolio.  

The consequences of factor identification are addressed by Pukthuanthong, Roll, and 

Subrahmanyam (2018), aka PRS. The PRS study presents a best practice approach for factor 

identification by developing a protocol for palpable risk factor extraction. The protocol takes into 

consideration a factor’s relationship to the covariance matrix of asset returns, the priced 

relationship in the cross-section of returns, and the overall reward-to-risk ratio. As previously 

stated, a subsidiary aim of our research is to identify pervasive ESG factors. To this end, it is 

useful to summarize the findings of Lettau and Pelger and PRS by stating the following two 

assumptions supporting the research effort. 

Assumption 1. Assume that excess returns follow the standard approximate factor model where 

the assumptions of arbitrage pricing theory are satisfied. In this case, excess return, 𝑅𝑖,𝑡, has a 

systematic component captured by K factors and a nonsystematic, idiosyncratic component that 

captures asset-specific risk. Excess returns of N assets over T periods are thus described as 

𝑅⏟
𝑇𝑥𝑁

= 𝐹⏟
𝑇𝑥𝐾

Ʌ𝑇⏟
𝐾𝑥𝑁

+ ɛ⏟
𝑇𝑥𝑁

        (1) 

Where F is the matrix of unknown latent factors, and Λ is the matrix of loadings. 

Assumption 2. The factors and residuals are uncorrelated; hence, the covariance matrix of the 

returns consists of a systematic and idiosyncratic part. 

𝑉𝑎𝑟(𝑅𝑡) = Ʌ𝑉𝑎𝑟(𝐹𝑡)Ʌ𝑇 + 𝑉𝑎𝑟(ɛ𝑡), 𝑤ℎ𝑒𝑟𝑒, 𝑡 = 1, … , 𝑇    (2) 

The factors drive the largest eigenvalues of 𝑉𝑎𝑟(𝑅𝑡) ; hence, PCA is available to estimate 

loadings and factors. In the next section, we estimate the unknown latent factors, F, and loadings 

Ʌ, from the Refinitiv/S-Network constitutive ESG portfolios.  

2.1 Portfolio Data 

We refer to the three uniquely separated ESG portfolios maintained as part of the Refinitiv/S-

Network ESG Best Practices Ratings and Indices (https://bit.ly/Refinitiv-SNetworks). These 

https://bit.ly/Refinitiv-SNetworks
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Indices are designed to provide a benchmark of companies exhibiting best corporate social 

responsibility practices as measured by Refinitiv/S-Network’s ratings schema. The ratings 

dynamically rank the constituent companies on Environmental, Social, and Governance 

performance.  

In this study, we collect the company list for the three ESG large-cap portfolios, which are 

identified as TRENVUS, TRSCUS, and TRCGVUS, respectively. Each portfolio contains P 

vetted securities such that 𝑃 = {𝑃𝐸 , 𝑃𝑆, 𝑃𝐺}. Tickers with incomplete data were removed to create 

a research sample set 𝑁 ⊆ 𝑃, 𝑁 = {𝑛𝐸 , 𝑛𝑆, 𝑛𝐺} where 𝑛𝐸 = 245, 𝑛𝑆 = 245, and 𝑛𝐺 = 243. For 

the market proxy, S&P 500, and all securities in N, we compute daily log-differenced returns (rM 

= market returns; and ri = security returns for ith security) from January 2015 through March 

2018, inclusive (𝑇 = 816). 

Following extant literature, we choose an enhanced beta estimate to capture systematic market 

variation in equity returns. Across all N securities, we implement the Vasicek (1973) adjusted 

market beta (𝑖. 𝑒. , 𝛽𝑖
𝑉, 𝑖 = 1. . 𝑁). Although Hollstein and Prokopczuk (2016) find that option-

implied estimators of systematic risk consistently outperform all other approaches tested on both 

daily and monthly datasets, Sarker (2013) and Cloete, de Jonah, and de Wet (2002) report on the 

efficiency and robustness of Vasicek estimators compared to using unfiltered OLS methods. In a 

follow-up study, Wang, Huang, and Hu (2017) demonstrate improved stock return predictability 

using Vasicek-adjusted betas in both the CAPM and Fama-French three-factor model (Fama & 

French, 1993). Accordingly, for all securities, aftermarket residuals are formed by equation (3).  

휀𝑖,𝑡 = 𝑟𝑖,𝑡 − 𝛼𝑖,𝑡 − 𝛽𝑖
𝑣 𝑟𝑀,𝑡 where, t=1..T, i=1..N (3) 

2.2 Latent ESG Factor Identification 

Latent factors are extracted by applying PCA to the matrix of residuals for each of the three 

domains of securities in N. We begin by testing the individual residual matrix for PCA 

suitability. That is, we test the hypothesis that the correlation matrix for each 𝜺𝑛𝐸
, 𝜺𝑛𝑆

, 𝑎𝑛𝑑 𝜺𝑛𝐺
 is 

an identity matrix. The results of applying Bartlett’s test of sphericity are shown in table 1.  

Table 1: Results from Bartlett’s Test and the KMO Test  

Domain 

Bartlett’s Test of Sphericity 

Ho: No Common Factors; 

Ha: At least one common factor 

KMO 

Measure of 

Sampling 

Adequacy 

Environmental 𝜒29890
2 = 109690.280, 𝑝 < 0.001 0.85349 

Social 𝜒29890
2 = 105587.052, 𝑝 < 0.001 0.85222 

Governance 𝜒29403
2 = 99281.5095, 𝑝 < 0.001 0.83165 

 

Based on these results, the null hypothesis of no common factors is rejected at the 1% level. We 

conclude that an exploratory factor analysis (EFA) is statistically supportable. The Kaiser-
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Meyer-Olkin (KMO) measure is also applied to the three residual matrices. The results of the 

KMO test indicate a high proportion of the variance in the variables is caused by the underlying 

factors. 

Following Han (2002), we calibrate the arbitrage return-generating framework using an 

exploratory factor analysis (EFA) model applied to the aftermarket residuals (Jackson, 2005). 

Subsequently, we subject the extracted factors to an orthogonal rotation. The results obtained 

from the rotation corroborated extant literature as far back as the mid-1970s (Fertuck, 1975). The 

end-product industry effects were clearly separated (see Figure 1). To the aim of this study, we 

observed, for example, that the factor labeled Banks and Bank Hldg accounts for 46% of the 

aftermarket variation in the residuals. Extending these results to consider the ESG effects, we 

point to identifiable E- S-, and G sub-domains within the Banks and Bank Hldg domain. The E-, 

S-, and G-domains account for 16-, 16-, and 15-percent of the aftermarket variation, respectively. 

Similarly, for the second orthogonal factor (Energy), which accounts for 22% of the total 

aftermarket residual return variation, the ESG contribution is 8-, 8-, and 6-percent, respectively. 

 
Figure 1: Percent of industry-wide aftermarket 

variation explained by the E, S, & G domains. 

Invoking the Kaiser-Guttman criteria leads us to retain 36 factors in each of the individual 

domains, CE, CS, and CG. The percent total aftermarket variation explained is 81.14%, 80.66%, 

and 79.99%, respectively. 

2.3 Factor Scores as Reproducible Factor Proxies 

The next step in the algorithmic process is to create E, S, and G factor-based proxy variables. 

The index creation process requires transforming the rotated factors into hypothetical, but 

genuine, factor-policy variables. We compute a refined regression-based factor score estimates 

using SAS 9.4. The regression method proposed by Thurstone (1935) assures “maximum 

validity” or “highly determinate” estimates for a given analysis (Grice, 2001). Additionally, as 

shown by Beauducel (2007), Thurstone’s calculations can reproduce the same covariance matrix. 
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Although the problem of indeterminacy is resolved by the Thurston method, the scores are not 

correlation preserving. As amplified by Grice, the factor score estimates may be contaminated 

with variance from other orthogonal factors within the analysis. However, the ESG factor 

creation process is predicated on summing individual scores. Hence, we proceed with computing 

the index using the matrix of factor score estimates, f. The formulae to calculate each domains 

index value at time t is as shown below: 

 FSIt
E =  

∑ 𝑓ti

CE
 , i = (1, … , CE)  (4) 

 FSIt
S =  

∑ 𝑓ti

CS  , i = (1, … , CS)  (5) 

 FSIt
G =  

∑ 𝑓ti

CG  , i = (1, … , CG)  (6) 

2.4 Stationarity Conditions 

Continuing with the Lettau and Pelger (2018) procedure introduced in section 2.1, we evaluate 

the stationarity condition of the three new hypothetical factors using the Philips-Perron (PP) test. 

The null hypothesis for the PP test states that the series has a unit root. When applied to the 

factor score indices, 𝐹𝑆𝐼𝐸 , 𝐹𝑆𝐼𝑆, and 𝐹𝑆𝐼𝐺, we reject the respective hypotheses for trend, single 

mean, and zero mean. Specifically, reported results are as follows: trend (E: τ = -7.88, S: τ = -

7.60 and G: τ = -9.29; all p < 0.001); single mean (E: τ = -7.96, S: τ = -7.65 and G: τ = -9.41; all 

p < 0.002); and zero mean (E: τ = -8.06, S: τ = -7.75 and G: τ = -9.53; all p < 0.001). By 

implication, when applied to each factor index, there is a high probability no unit root exists, a 

finding that each index is stationary with a zero mean. 

3. The Augmented PRS Algorithm for Disentanglement 

This section of the study is devoted to the disentanglement of embedded ESG factors in an 

investor-formed portfolio. To accomplish the task, we invoke the PRS protocol. The PRS 

protocol identifies factors associated with risk premia as well as ‘pervasive’ factors. Pervasive 

factors are unobserved and are extracted from the asset returns of portfolios.  

3.1 Derive Pervasive ESG Factors  

The pervasive factor score variables computed above utilized daily residual returns data across 

the three E-, S- and G-domains. As the remainder of the analysis is focused on the behavior of 

investor portfolios, we follow the literature and use monthly returns from this point forward 

(Zibri & Kukeli, 2015). Accordingly, for each ESG domain derived in section 2.3, we average 

the daily factor score indices, 𝐹𝑆𝐼𝐸 , 𝐹𝑆𝐼𝑆, and 𝐹𝑆𝐼𝐺 , observations into monthly observations. 

The remainder of the paper relies on the monthly values of these indices.  
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3.2 The Investor Portfolio 

The naively diversified investor portfolio in this study is owned and managed by a regional unit 

of the national non-profit The Girl Scouts of the United States of America (GSUSA). The 

national office transmits public policy and investment goals to its subordinate councils. In 

addition to earnings from current year operations, regional councils are expected to make 

investment decisions in a manner that is consistent with the organization’s socially responsible 

narrative. The investor portfolio used in this study is naively diversified and is comprised of 

n=65 instruments representing 41 industries across 12 sectors. 

3.3 Investor Portfolio Heterogeneity 

The first step in the PRS algorithm is to identify an equity portfolio representing different 

industries with a ‘good’ level of heterogeneity. For the subject investor portfolio used in this 

research, the Yahoo! industry and sector classifications are as shown in figure 2.  

 
Figure 2: Diversification of investor portfolio 

 

Next, we test the heterogeneity of the portfolio by conducting a test on the average correlation, �̅�, 

of the monthly log-differenced returns for the 65-instruments in the investor portfolio from 

January 2015 through March 2018, inclusive (T=39). Pollet and Wilson (2010) report that �̅� has 

predictive power for stock market returns. In their study, the authors find returns predictability 

from average correlation over the periods 1963-1974, 1974-1985, and 1996-2007. With some 

exceptions noted, the authors report that average correlations from the late 1980s forward are 

between 0.15 and 0.55. For the investor portfolio of this study, the average correlation is 0.28. 

This finding lies within the bounds of previously reported research results. 

As a further test of heterogeneity, we subject the correlation of asset returns to a Fruchterman-

Reingold (FR) network analysis (Fruchterman & Reingold, 1991). The FR analysis is a force-

directed network graph that distributes vertices evenly in a frame. As such, it is a useful method 

to examine the correlation structure. In the FR network, edges are similar in length and cross 

each other as little as possible. Nodes represent electrically charged particles that repulse each 
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other when they get too close. The edges act like springs that attract connected nodes closer 

together. As a result, nodes are evenly distributed through the graph, and the layout is intuitive in 

that nodes that share more connections are closer to each other. A review of the FR network, 

figure 3, demonstrates the high intercorrelations among assets in the subject portfolio.  

 
Figure 3: FR Network of Security Correlations 

 

3.4 Extract L Principal Components 

Step two of the PRS algorithm requires the extraction of L principal components from the asset 

return series computed from the investor portfolio. With T time-series units, we calculate the 

𝑇𝑥𝑇 matrix, Ω𝑡 = (
1

𝑇
) 𝑅𝑅′, where 𝑅⏟

𝑇𝑥𝑛

 is the return matrix. As suggested by PRS, the cutoff point 

for the cumulative variance explained by the principal components is set to 90%. From this 

procedure, 16 principal components (PC) are retained. By way of example, figure 4 displays the 

cross-loading of the first three principal components (PC-1, PC-2, and PC-3). The 16 

eigenvectors will form the dependent domain for subsequent canonical correlation analysis. 

 
Figure 4: Excess Returns across Time.  

Legend: PC-1=Green; PC-2=Blue; PC-3=Lime  
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3.5 The Canonical Correlation between Pervasive Factors and the Investor Portfolio 

The third step in the PRS protocol requires the identification of what is expected to be pervasive 

factor candidates. This step was completed and discussed in sections 2.2 and 2.3. Our aim to 

disentangle the latent aftermarket effects due to firm investments in sustainability (E, S, and G) 

are represented by the previously constructed factor-policy variables (i.e., equations (4) - (6)). 

The final step of the PRS algorithm, step four, requires conducting a canonical correlation 

analysis (CCA) between the set of pervasive ESG factors and the corresponding 16 eigenvectors 

of the investor portfolio. Using CCA, we investigate if a factor exhibits a significant canonical 

correlation with the investment portfolio’s best linear combination of eigenvectors. Specifically, 

we examine the null hypothesis that the surrogate E, S, G pervasive factors systematically 

influence the movement of portfolio asset prices.  

The results from the CCA analysis of the first approximate F-value indicate that as a group, the 

factor candidates are conditionally related to the covariance matrix of market returns (Wilk’s λ = 

0.6411, F48, 63.253 = 2.0, p < 0.05). The inference from the second approximate F-value (F=1.63; p 

< 0.1) is that the second and the third canonical correlations are equal to zero (not statistically 

significant). Lastly, the third approximate F-value (F=1.18, p-value > 0.1) suggests that the third 

canonical correlation is not significant. 

The standardized canonical coefficients for the three-factor candidates (E = -1.1622; S = -0.5230; 

and G = 1.0375) indicate that the contribution to the first component (eigenvector of returns) is 

primarily due to the E and G domains but, in an inverse relationship. The social factor also has 

an inverse relationship and, comparatively, at a much smaller level. To clarify, consider the 

following scenario. When all other variables in the model are held constant, an asset 

experiencing a one standard deviation increase in monthly returns in the environmental policy 

area (factor) would expect a -1.1622 standard deviation decrease in the score on the first 

canonical variate. 

In a manner consistent with the PRS algorithm, this application of CCA yields statistical 

evidence that the multivariate E, S, and G, factor set is pervasive and linearly correlated with the 

set of asset returns in the investor portfolio. In the next section, we demonstrate how pervasive 

factors produce asset returns.  

4. Network Theory and Cognitive Biases 

Powered by an array of data science methods, evolutionary financial network theory seeks to 

provide new insights into asset valuation interconnectedness as a source of uncertainty in 

systematic risk (for reviews, see Priestley and McGrath (2019) and Roukny, Battiston, and 

Stiglitz (2018)). For example, Erdõs, Ormos, and Zibriczky (2011) contribute evidence on how 

the betas of both the single- and three-factor models based on nonparametric kernel regression 
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can explain a cross-section of stock returns. Huh (2019) eschews the use of feature engineering 

to estimate systematic risk parameters by deploying a deep-learning neural network. Using a 

bottleneck architecture, the Huh’s study finds how the deep-learning network equaled but did not 

exceed estimation results generated by parametric factor models.  

This section of the study presents a novel extension to the nonparametric estimation of asset 

returns1. First, we augment the three-factor asset pricing model to include pervasive ESG factors. 

Second, we estimate the parameters of the asset pricing equation by use of an interconnected 

information network. The extant literature provides evidence of collective, or networked, 

behavior among fund managers (Hong, Kubik, & Stein, 2004) as well as among individual 

investors (Ivkovic & Weisbenner, 2007). More recent evidence on network cross-predictability 

of asset returns introduces the concept of a prediction-matrix (Kelly, Malamud, & Pedersen, 

2020). Based on the burgeoning literature using machine learning techniques, there is a new 

cornerstone for the deployment of a ‘shallow’ neural networks in asset valuation models. The 

nonparametric kernel estimation method can be used to analyze the production of return 

predictability in an interconnected features-model in a manner that supports behavior modeling 

(Ozsoylev & Walden, 2011) and belief bias (Ghosh & Roussellet, 2019).  

The progression of network-based pricing models is summarized in a comprehensive study of 

financial institutions. Monica  Billio, Caporin, Panzica, and Pelizzon (2016) extend the classic 

factor-based asset pricing model to include network linkages of exogenous lagged and 

contemporaneous links across assets. Closely related is a study by Horrace, Liu, and Patacchini 

(2016) in which the authors provide evidence that peer effect networks interact with production 

functions to transform inputs into outputs. Herskovic (2018) added to these asset valuation 

models by uncovering a link between equilibrium asset prices and the two network attributes that 

drive systematic risk – network concentration and network sparsity. Herskovic observes how a 

sparse asset network has fewer but stronger linkages. Under the assumption that firms experience 

a Cobb-Douglas shaped production technology, the Herskovic study reports innovations in the 

network factors are priced. Specifically, he finds the pricing factors of sparsity and concentration 

account for annual return spreads of 4.6% and -3.2%, respectively.  

4.1 Cobb-Douglas Production Functions 

A production function is a heuristic construct that describes the maximum output from 

alternative combinations of input factors using a given technology. The novel model we propose 

is a Cobb-Douglas inspired double-log estimation of asset returns based on an input mix of the 

three Fama-French return-generating factors along with the three FSI proxies (ESG input 

factors). In part, the efficient production of asset returns depends on the ability of firm managers 

to disaggregate noisy ESG input factors.  

 
1 E,S, and G pervasive factor time series and computations provided in sections 4 (K4-RANN) and 5 (NLGP) are 

obtained via the WinORSe-AI Software environment (for more information, see:The NKD Group, 2020). 
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4.1.1 ESG Factors and the Double-Log Production of Asset Returns 

For all j firms in the investor portfolio, we expect each jth firm to combine capital (k) and labor 

(l) to produce output using a Cobb-Douglas production technology, 

𝑦𝑗 = 𝐴𝑗𝑘𝑗
𝛼𝑙𝑗

1−𝛼       (7) 

Without considering a firm’s age or its learning rate, we further assume 𝐴𝑗 = 𝑒𝛽𝑗∆𝑎, where ∆𝑎is a 

common interconnected ESG shock that affects the returns productivity of all firms and 𝛽𝑗is the 

firm-specific exposure to the common shock ∆𝑎. Before implementing a firm-specific production 

decision, firm j observes a noisy ESG signal that is unique to the firm’s market exposure: 𝑠𝑖𝑔𝑗 =

𝛽𝑗 + 𝜖𝑗 where 𝜖𝑗~𝑖. 𝑖. 𝑑. , 𝑁(0,
1

Δ𝑎
𝜏2). In this abstraction, the amount of noise in a firm’s signal is 

captured by parameter 𝜏2. Perfect information occurs when τ = 0, whereas as τ →∞ the signal to 

firm j is not informative, or firm management is numb to ESG factors. When observed and 

controlled for, the ESG signal, 𝑠𝑖𝑔𝑗, helps firm j make efficient input factor choices. 

We define the model as, 

𝐸(𝑟𝑗) = 𝑓(𝜲) + 휀𝑗 ,       (8) 

where X denotes the input mix (𝑋 = 𝑋1, … , 𝑋𝑑), d is the dimensionality of the factor inputs, and 

휀𝑗  is a symmetric random noise term 휀𝑗  ~𝑖. 𝑖. 𝑑. , 𝑁(𝜇, 𝜎). For the ESG-enhanced asset returns 

estimation in a Cobb-Douglas framework, d = 6. We derive factor elasticity estimates under the 

assumption that ESG signals are fully incorporated in firm production decisions (i.e., τ → 0): 

𝐸(𝑟𝑗) = 𝛼𝑗 + 𝛽1𝑙𝑛(1 + (𝑟𝑀 − 𝑟𝑓)) + 𝛽2𝑙𝑛(1 + 𝐹𝑆𝐼𝐸)  + 𝛽3𝑙𝑛(1 + 𝐹𝑆𝐼𝑆) + 

𝛽4𝑙𝑛(1 + 𝐹𝑆𝐼𝐺) +  𝛽5𝑙𝑛(1 + 𝑆𝑀𝐵) +  𝛽6𝑙𝑛(1 + 𝐻𝑀𝐿) + 𝜖𝑗   (9) 

In equation (9), 𝑟𝑀 is the total market portfolio return; 𝑟𝑓 is the risk-free rate; FSIE, FSIS, and 

FSIG, express the average monthly score for each pervasive ESG factor, respectively; SMB is the 

size premium, and HML is the value premium. 

4.1.2 Artificial Neural Network and the Double-Log Production Function 

Arreola and Johnson (2016) argue for new estimators based on modern machine learning 

algorithms for studies of complex observed (and statistically enumerated) datasets. In a 

comprehensive and comparative analysis across alternative machine learning methods, Gu, 

Kelly, and Xiu (2019) find that ‘shallow’ learning networks perform best in studies of asset 

return estimation. Artificial neural networks have previously provided a viable nonparametric 

alternative to fit nonlinear production functions and to describe the estimated technical efficiency 

(Santín, Delgado, & Valiño, 2007; Vouldis, Michaelides, & Tsionas, 2010). Specifically, we 

employ an augmented radial basis function artificial neural network (RANN) known as the K4-

RANN (Dash, Kajiji, & Vonella, 2018; Kajiji, 2001). The generalization ability of the RANN for 

nonlinear regression is provided by Krzyẑak, Linder, and Lugosi (1996). Accordingly, this study 
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performs kernel estimation using a RANN to map asset returns weights within the double-log 

framework of features. 

In a generalized RANN regression, the optimal weighting values are generally extracted by 

applying a supervised least-squares method to a subset (training set) of the data series. The 

supervised learning function is stated as y = f(x) where y, the output vector, is a function of the 

input vector x with p number of inputs. The function can be restated as: 

1

( ) ( )
m

k ki

k

f x xw h
=

=       (10) 

where m is the number of basis functions (centers), h is the number of hidden units, w is the 

weight vector, and i = 1...p where p is the number of input vectors. As shown in equation (11) the 

K4-RANN minimizes a modified sum of squared error (SSE) cost function. 

 
argmin

𝜆
(∑ (𝑦𝑡

𝑇
𝑡=1 − 𝑓(𝑥)𝑡)2 + ∑ 𝜆𝑘𝑤𝑘

2𝑚
𝑘=1 )    (11) 

Where, 𝑓(𝑥)𝑡 is the model’s prediction at w for all T observations. The result of applying the 

nonlinear K4-RANN of equation (11) is the extraction of a set of weights such that SSE is 

minimized while simultaneously optimizing the accuracy of the predicted fit (smoothness). The 

accuracy of the predicted fit is increased due to the application of a regularization parameter, λ, 

often termed as the weight decay parameter. The weight decay parameter is added to the error 

function to penalize mappings that are not smooth. When applied to the networked production 

function stated in equation (9), for all j in n (securities in the investor portfolio), the procedure 

maps the production of monthly returns, 𝑟𝑗, for all j-firms.  

4.2 RANN Estimated ESG Returns-to-Scale  

The K4-RANN weights derived from solving equation (10) are interpreted as the factor elasticity 

coefficients. The next section identifies the parameter settings applied to the K4-RANN 

algorithm. Following the discussion on parameter settings, a review of the model weights and the 

associated production returns-to-scale is presented in section 4.2.2. 

4.2.1 Algorithmic Control Parameters 

The K4-RANN2  algorithm requires several algorithmic parameters. In this study, the model 

parameters were identically applied to all j pricing models. Before invoking the algorithm, all 

data were standardized. The underlying transfer function chosen for the K4-RANN was 

Gaussian. The RANN radius was uniformly set to 1.0. The error minimization rule was set to 

‘generalized cross-validation’ (GCV). The GCV rule is known to perform well for both smooth 

and rough functions (Wahba, 1985). 

 
2 Observe a visual of the K4-RANN computation and solution in WinORSe-AI 2020 at 

http://bit.ly/K4SampleSolution.  

http://bit.ly/K4SampleSolution
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4.2.2 Factor Elasticity Network Connectedness 

The degree of asymmetric ESG connectedness among sectors and firms is shown in figure 5. The 

commonality in findings between the sector-limited Granger-causality networks reported by 

Monica Billio, Getmansky, Lo, and Pelizzon (2012) is evident. The network graph depicts the 

interrelated production of a standard ESG signal that binds the firms within the investor 

portfolio.  

To understand the change in a firm’s returns given a unit change in an E, S, or G factor, we 

interpret the K4-RANN weights as quasi-factor elasticity metrics or returns to scale (RtS). Before 

explaining the K4-RANN network weights, it is useful to view a graphical representation of the 

network weights. The left-side diagram (figure 5) presents an overall view of interconnectedness 

among the ESG pervasive factors. The right-side network chart (figure 6) shows the unique 

directional impact on return production from each pervasive ESG factor.  

 

 

 

 

 

Figure 5: Interconnectedness of E, S, & G  Figure 6: Directional impact of E, S, & G 

Further evidence of the proportional impact of ESG features on asset returns is provided by the 

K4-RANN elasticity weights (see figure 7; and table 2). For brevity, the following discussion is 

restricted to the asymmetric connectedness of firms in three sectors: financial services, energy, 

and an ETF for oil equipment and services (Appendix B provides complete results). 

 
Figure 7: Network Elasticity Weights for ExxonMobil  
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Table 2: RANN Estimated Returns to Scale for Selected Assets 

 Ticker RtSE RtSS RtSG RtS 

Banks – Global 

(Financial 

Services) 

JPM 0.0101 0.3325 0.3058 0.6484 

WFC -0.1957 0.2673 0.2562 0.3278 

BAC 0.0808 0.2226 0.1862 0.4896 

C -0.2620 -0.0870 -0.1650 -0.5140 

Oil&Gas 

(Energy) 
XOM -0.0943 -0.0388 0.7870 0.6538 

CVX -0.2114 0.5529 0.7629 1.1045 

COP 0.4275 0.3749 0.7556 1.5580 

iShares Oil Equip 

& Services ETF 
IEZ 0.1224 0.0645 0.7072 0.8942 

For Bank of America (BAC), the weights for E, S, and G are each positive (0.0808; 0.2226; and, 

0.1862, respectively). Conversely, each weight for Citicorp (C) is negative (-0.2620; -0.0870; -

0.1650). There is clear evidence of how the common ESG signal is decomposed into a unique 

‘Financial Services’ signal that is asymmetrically differentiated among individual sector-related 

firms. Given changes in sustainability performance, the expectation is for BAC to experience a 

positive increase in returns. While for the same change in sustainability investments, Citicorp 

will likely experience depreciated returns. Of further interest is the G dimension. Except for 

Citicorp, all firms displayed in table 2 are expected to benefit by firm responses to government 

sustainability changes. The asymmetric ESG weights within this sector offer further evidence of 

the need to understand the contribution of pervasive ESG factor variation to the returns 

producing process. In the next section, we extend the MBPM to include a dynamic loss-aversion 

metric. 

4.3 Dynamic Option-Theoretic Shortfall Estimation 

The layered bias premise of this research requires a dynamic risk measure to proxy for ‘loss 

aversion’ bias. We limit our focus to the popular frequency-based conditional value-at-risk 

(CVaR) metric of Rockafeller and Uryasev (2002). CVaR captures the conditional expectation of 

losses in top (100 – β)% over a given investment horizon (e.g., β = 0.95 or 0.99).  

𝐶𝑉𝑎𝑅𝛼(𝑋) =
1

𝛼
∫ 𝑉𝑎𝑅𝛽𝑑𝛽

𝑋

−∝
       (12) 

CVaR is a coherent risk measure (Artzner, Delbaen, Eber, & Heath, 1999). When CVaR is used 

in the context of portfolio risk minimization, the metric can be expressed as a continuous and 

convex function with respect to the optimization variables in a convex program (Krokhmal, 

Palmquist, & Uryasev, 2002; Rockafellar & Uryasev, 2002; Rockafellar, Uryasev, & 

Zabarankin, 2006). CVaR in linear and multiple goal optimization models is also in evidence. 

Ogryczak (2002) was one of the first to contribute evidence on the incorporation of CVaR in a 
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goal constraint. Kaminski, Czupryna, and Szapiro (2009) extended this line of research by 

providing a CVaR-based goal programming portfolio selection method to account for investor 

risk attitudes.  

The implementation of CVaR (and VaR) is dependent on knowing the exact statistical 

distribution of market parameters. Often, these parameters are characterized by sampling error. 

There is a significant strain of literature devoted to the calculation of CVaR and its associated 

sensitivities. For example, Hong, Jeff, and Liu (2011) provide a detailed review of the 

performance of Monte Carlo methods used to estimate VaR and CVaR (including sensitives). 

Hsieh, Liao, and Chen (2014) extend the use of Monte Carlo methods by providing a fast 

algorithm to estimate VaR and CVaR. By contrast, Yao, Li, and Lai (2013) employ 

nonparametric estimation of CVaR when applied to the portfolio selection problem.  

In this paper, we adopt the put-option market algorithm of Barone-Adesi (2016). Under the 

Barone-Adesi plan, for a given 𝛼, we estimate CVaR for an optionable asset by capturing the 

instantaneous spot price (S), the risk-free rate (r), and time to expiration (T). Then for a given 

near-the-money strike (Xput), the algorithm calculates p = BSOPM(put) using the Black-and-

Scholes price approximation. The algorithm proceeds by restating CVaR as the expected dollar 

loss beyond VaR given S. As such, it is affected by fatness in the tail of the distribution of S. In 

the Barone-Adesi model CVaR for a given security is stated as:  

𝐶𝑉𝑎𝑅 =
1

𝛼
∫ 𝐿(𝑆)𝑓(𝑆)𝑑𝑆

𝑋𝑝𝑢𝑡

−∝
       (13) 

𝐶𝑉𝑎𝑅 = 𝑒𝑟𝑇 𝑝

𝛼
+ 𝑉𝑎𝑅       (14) 

5. Modeling the Goal-Directed and Behaviorally-Biased Investor Portfolio 

In this section, we formalize a nonlinear goal programming (NLGP) model to formulate the 

MBPM. Multiobjective optimization methods are naturally extensible and capable of handling 

hierarchical and conflicting objectives simultaneously. Solution algorithms for multiobjective 

models embrace a wide variety of methodologies, from evolutionary algorithms (Kapiamba, 

Ulungu, & Mubenga, 2015) to goal programming. When the NLGP decision problem states no 

more than two hierarchical goals, the solutions generated can form a Pareto optimal front. But, 

by design, NLGP scalability permits hierarchical goals to exceed two (i.e., a complex GP 

model); hence, choosing an optimal compromise solution is no longer a trivial task 

(Ruotsalainen, 2010). 

Upon surveying over 40 articles on heuristic and exact solution methods, Mokhtar, Shib, and 

Mohamad (2014) reported that GP applications dominated applications applied to portfolio 

optimization. Extant examples of alternative NLGP 
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 applications across various disciplines appear in Saber and Ravindran (1993) and Miettinen 

(1998). A recent application to portfolio optimization appears in Dash and Kajiji (2014). In this 

study, NLGP is used to dynamically solve a two-stage stochastic model that invokes the 

minimum variance (stock-index) hedge ratio to stabilize returns of a diversified equity portfolio. 

The first-stage solution exploited function separability to achieve mean-variance efficiency. The 

second-stage solution invoked a binary control of hedging based on first-stage outcomes.  

The question naturally arises about the fitness of NLGP to model financial cognitive dissonance. 

We provide perspective in the next section. 

5.1 Layered Goal Optimization and Financial Cognitive Dissonance 

We adapt the separable-based hierarchical goal program of Dash and Kajiji (2014) as the method 

to model the real-valued MBPM.  

𝑁𝐿𝐺𝑃 = 𝑀𝑖𝑛 𝑍 =  ∑ 𝑃𝑘[𝛿ℎ−, 𝛿ℎ+]

𝐾

𝑘=1

 

 

S.T. 𝐴𝑥 + 𝐼ℎ− − 𝐼ℎ+ = 𝑏 

𝑥, 𝑏, ℎ−, ℎ+ ≥ 0, 
 

where Z quantifies k prioritized objectives. That is, resource allocations must be achieved in a 

prioritized sequence, or layers, where 𝑃1 > 𝑃2 > ⋯ > 𝑃𝐾. Within goal k, 𝛿 is a constant term to 

indicate scale preference; A is an m x n matrix of technological coefficients; x is the n-component 

column vector of decision variables; b is an m-component vector of goal targets; and, 

ℎ−𝑎𝑛𝑑 ℎ+are m-component column vectors of goal over- and under-achievement, respectfully. 

Lastly, define 𝑥∗ as the solution that satisfies all hierarchical priority levels as much as possible.  

Specifically, the layered goals-based algorithm seeks to solve for the lexicographically smallest 

goal vector (𝑎1𝑥1, 𝑎2𝑥2, … , 𝑎𝑛𝑥𝑛) give 𝛤𝑘 = {𝑥|𝐴𝑥 + ℎ− − ℎ+ = 𝑏;  𝑥 ≥ 0}. The goal program 

proceeds by solving the first linear program (LP), 𝐿𝑃1 ≡ 𝑀𝑖𝑛{𝑍1𝑥|𝑥 ∈ 𝛤1}, with optimal solution 

at x*. Each K-1 program with its associated immediately follows the solution 𝑥∗ . Stated 

succinctly, the LP seeks to satisfy all hierarchical priorities as much as possible such that 

𝑀𝑖𝑛 𝑍 ≡ 𝑀𝐿𝑃𝑘 = 𝑀𝑖𝑛[𝐴𝑥|𝑥 ∈ Γ], implying ∀𝑥 ∈ 𝛤𝑘 = {𝑥 ∈  Γ𝑘|𝐴𝑘𝑥 = 𝐴𝑘−1𝑥∗, 𝑘 = 1,2, … 𝐾}. 

5.2 Financial Cognitive Dissonance and Multiobjective Portfolio Efficiency 

In behavioral finance, the theory of cognitive dissonance explains why, as decision-makers, 

investors feel internal tension and anxiety when subjected to conflicting investment beliefs. 

According to Sharma (2014), cognitive dissonance is a psychological phenomenon that is not 

easily measurable; hence, to reduce financial cognitive dissonance, the decision-maker should 

ladder (aka bridge) thoughts across two or more goals (models). One approach to lowering 
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dissonance is to change behavior. However, because this is often very difficult to achieve, a more 

common approach seels to spread-apart-alternatives – a process of increasing the attractiveness 

of one alternative while decreasing the attractiveness of other options (Jedryka & Szapiro, 2002; 

McLeod, Feb 05, 2018). In pre-emptive GP using constraints, goals are ranked (i.e., spread-

apart) from most important to least important. The method satisfies the first-order goal then 

comes as close as possible to fulfilling the second-order goal. The procedure continues in this 

fashion until all lower-order goals are satisfied as much as possible; or, stated differently, a set of 

non-dominated solutions is achieved. 

Before developing the spread-apart goal hierarchy of the MBPM, it is useful to cite extant 

literature to establish the ability of the SSIM to approximate the Pareto optimal solutions of the 

traditional Markowitz mean-variance model.3 Historical confirmations provide evidence on how 

SSIM generated solutions consistently replicate the maximum rate of return portfolio but 

produce slightly inefficient asset diversification outcomes for the global minimum variance 

portfolio (GMVP) (Frankfurter et al., 1976; Sharpe, 1971). Following these models, we begin the 

current NLGP application using the SSIM by stating a bi-objective quadratic goal programming 

model. Priority one (𝑃1) is set to minimize deviations from the expected portfolio return level 

and priority two (𝑃2) targets the minimization of portfolio variance through efficient 

diversification of assets.  

Building upon the bi-objective SSIM, we examine five alternative models where each is 

formulated as a complex GP. To position the models, we use a two-step approach. The first step 

is to define the structural goal equations of the bi-objective asset diversification model. The 

second step is to tie the model together by introducing the goal constraints that express cognitive 

dissonance as such conflict relates to investment tastes and beliefs. 

5.2.1 Canonical Bi-objective MBPM  

The canonical goal constraint equations for the traditional MBPM follow.  

 𝑁𝐿1: ∑ 휀𝑗
2𝑥𝑗

𝑛+1
𝑗=1 − ℎ1

+ = 0  (15) 

 𝐵𝑒𝑡𝑎: ∑ 𝛽𝑗
𝑉𝑛

𝑗=1 𝑥𝑗 = 𝛽𝑀  (16) 

 𝐹𝑢𝑙𝑙 𝐼𝑛𝑣: ∑ 𝑥𝑗 = 1.0𝑛
𝑗=1   (17) 

 𝐸(𝑟): ∑ 𝑟𝑗
𝑛
𝑗=1 𝑥𝑗 + ℎ4

− − ℎ4
+ = 𝑅𝑅𝑝

  (18) 

 
3 It is well known that Markowitz mean-variance optimization often leads to unbalanced portfolios that are optimal 

in-sample but perform poorly out-of-sample. Our study does not attempt to circument this problem. For recent 

comments on out-of-sample mean-variance performance, see Fernandes et al. (2020). 
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Here, ∑ 𝑟𝑗𝑥𝑗
𝑛
𝑗=1  is the fraction of the available capital invested in the expected return of asset j. 

Equation (15) and (16) frame the unsystematic and systematic risk goals. Equation (15) 

expresses the variance of the idiosyncratic risk (휀𝑗) for the n investment securities as well as the 

variance of returns for the market proxy, 𝜎2, as the n+1 security. The canonical form of the 

SSIM requires the portfolio beta to equal the weighted sum of the individual security beta 

coefficients as represented by equation (16). Equation (17) forces the portfolio to be fully 

invested. Equation (18) is a goal constraint. 𝑅𝑅𝑝
, is used to set the required return for the efficient 

portfolio. 

5.2.2 ESG Affinity Bias 

Individual security responses to pervasive ESG systemic risk production factors are modeled in 

equations (19) through (21). These goal constraints equate the j-th securities contribution to 

sustainable investing in return-to-scale units. 

 𝐸𝐹𝑆𝐼 : ∑ 𝑅𝑡𝑆𝑗
𝐸𝑛

𝑗=1 𝑥𝑗 + ℎ5
− − ℎ5

+ = 𝑅𝑡𝑆𝑝
𝐸   (19) 

 𝑆𝐹𝑆𝐼 : ∑ 𝑅𝑡𝑆𝑗
𝑆𝑛

𝑗=1 𝑥𝑗 + ℎ6
− − ℎ6

+ = 𝑅𝑡𝑆𝑝
𝑆  (20) 

 𝐺𝐹𝑆𝐼 : ∑ 𝑅𝑡𝑆𝑗
𝐺𝑛

𝑗=1 𝑥𝑗 + ℎ7
− − ℎ7

+ = 𝑅𝑡𝑆𝑝
𝐺  (21) 

Here 𝑅𝑡𝑆𝑝
𝐸, 𝑅𝑡𝑆𝑝

𝑆 𝑅𝑡𝑆𝑝
𝐺= 1.0; or, constant returns-to-scale for each sustainable dimension. 

5.2.3 Loss-Aversion Bias and CVaR 

The goal expression of the dynamically estimated option-priced CVaR for each j-th security is 

expressed in equation (22). 

 𝐶𝑉𝑎𝑅: ∑ 𝐶𝑉𝑎𝑅𝑗
𝑛
𝑗=1 + ℎ8

− − ℎ8
+ = 0.0  (22) 

Here, 𝐶𝑉𝑎𝑅𝑗 is as computed in equation (14). 

5.2.4 Layered Goals and the MBPM 

This section of the study demonstrates the NLGP’s domain of applicability as an efficient 

MBPM processor. Specifically, we tie the structural equations to various model characterizations 

of the following behavioral biases – mean-variance (M1); loss-aversion bias (M2); ‘brown’ ESG 

affinity bias targeting (M3); ‘green’ affinity bias targeting; and mean-variance with low-priority 

loss-aversion targeting (M5).  

𝑀1: 𝑀𝑖𝑛 𝑍 = {𝑃1[ℎ4
−], 𝑃2[ℎ1

+]}  (23) 

𝑀2: 𝑀𝑖𝑛 𝑍 = {𝑃1[ℎ4
−], 𝑃2[ℎ8

+], 𝑃3[ℎ1
+]}  (24) 
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𝑀3: 𝑀𝑖𝑛 𝑍 = {𝑃1[ℎ4
− + ℎ5

−], 𝑃2[ℎ1
+ + ℎ6

−], 𝑃3[ℎ8
+ + ℎ7

−]}  (25) 

𝑀4: 𝑀𝑖𝑛 𝑍 = {𝑃1[ℎ4
− + ℎ5

− + ℎ6
− + ℎ7

−], 𝑃2[ℎ1
+], 𝑃3[ℎ8

+]}  (26) 

𝑀5: 𝑀𝑖𝑛 𝑍 = {𝑃1[ℎ4
−], 𝑃2[ℎ1

+], 𝑃3[ℎ8
+]}  (27) 

Mean-Variance Targeting. Equation (23) presents the mean-variance targeting model, M1. The 

first two priority levels state the bi-objective mean-variance optimization. Although there are no 

other prioritized goals, the goal statements in equations (18) through (22) continue to bind the 

model decision space. 

ESG Affinity and confirmation biases. Scalability across more than two goals makes choosing an 

optimal compromise solution a non-trivial task. The best available evidence implicates a need to 

seek layered goals and efficiently diversified ESG-focused funds for risk mitigation, alpha 

production, resilience to negative exogenous shocks (Cerqueti, Ciciretti, Dalò, & Nicolosi, 

2020). 4  To this end, models M3 and M4, equations (25) and (26), are crafted from the 

equilibrium analysis of (Pastor et al., Forthcoming 2020). Among other findings, this study 

reports a fund separation effect based on investor risk aversion. That is, strongly aggressive ESG 

investors adopt portfolios with a green tilt (e.g., model M4) and investors with weaker ESG goal 

taste angle for a brown tilt (e.g., model M3). In equilibrium, the tilts are larger when risk 

aversion tends towards risk tolerance. The study surmises that stronger ESG tastes can lead to 

riskier expected returns, especially when risk aversion is low, and the average ESG taste is high.  

The common structure across M3 and M4 is prioritized attainment for network scale bias in ESG 

portfolio returns; or ESG goal taste. Model M3 prioritizes ESG affinity as sub-goals across two-

different priority levels. The first-priority goal has two sub-goals. One is to minimize deviation 

from the portfolio expected rate of return target. The second sub-goal within priority one is an 

environment returns-to-scale target (E). The second-level priority level also states two sub-goals 

– portfolio variance and the returns-to-scale objective for the social policy impact (S). The third 

priority accounts for sub-goals on governance (G) and CVaR. Because the ESG goal targets 

spread across three hierarchical priorities, the model is considered ‘brown.’ 

Model M4 is decidedly representative of the ESG ‘green’ investor. As with model M3, deviation 

from portfolio expected return is expressed within priority one. However, this priority level also 

includes sub-goals for all three ESG targets. Following the traditional model statement, priority 

two minimizes portfolio expected variance. Added to the structure is a third priority to control 

for the CVaR deviation ‘loss-aversion’ goal target. 

 
4 For additional evidence on confirmation bias, see US SIF (The Forum for Sustainable and Responsible Investing) 

Foundation’s 2018 Report on US Sustainable, Responsible and Impact Investing Trends. 

https://www.ussif.org/trends . 

https://www.ussif.org/trends
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Loss-Aversion Targeting. After the prioritization of the portfolio return objective, model M2 

prioritizes the loss aversion bias goal after seeking portfolio return as a priority one goal. The 

third priority goal seeks the traditional efficient diversification of assets. M2 is stated in a manner 

that is consistent with the Rickenberg (2020) representation of the ‘tail risk targeting’ strategy. 

Rickenberg provides evidence that higher Sharpe ratios, better drawdown protection, and higher 

utility gains for loss-averse investors are achievable by risk-targeting and switching between 

volatility and CVaR targeting during periods of a bear-market regime. In the context of this 

study, the Rickenberg strategy would imply risk-averse investors should implement model M2 

(equation (24)) or model M5 (equation (27)) based on investor’s alternating risk attitudes. As 

risk aversion alternates to risk tolerance, the investors should consider rebalancing their portfolio 

by following model M1 diversification strategies. 

5.3 Efficient Portfolios 

As a prelude to the analysis of goal hierarchy across models and for consistency in our 

discussion, we utilize extant terminology for efficient portfolio features from Sanghvi and Dash 

(1978).  

Corner Portfolio: An efficient set is comprised of corner portfolios. A corner portfolio is 

delineated whenever there is a change to the slope of the efficient set. Alternatively, an observed 

characteristic of adjacent corner portfolios is the addition, deletion, or significant asset 

rebalancing across two adjacent corner portfolios.  

Maximum Rate-of-Return Portfolio: The corner portfolio with the highest expected rate of return 

is referred to as the ‘maximum-rate-of-return’ portfolio (MRP).  

Global Minimum-Variance-Portfolio: The portfolio with the smallest expected risk is the ‘global 

minimum variance portfolio’ (GMVP).  

Core Securities: Core securities are those individual assets that appear in corner portfolios. 

5.4 Core Security Attributes  

Table 3 presents the market metrics for the core securities of the client portfolio. Return and risk 

serve as inputs to the MBPM quadratic optimization problem. CVaR is obtained from section 4.3 

above. Market ESG elasticity estimates and the associated return-to-scale are from section 4.2. 
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Table 3: Market Characteristics of Core Securities 

Tickers  Return Risk CVaR RtSE RtSS RtSG RtS 

NEE NextEra Energy, Inc. 1.24% 3.27% 18.79% 0.196 0.140 -0.272 0.064 

DUK Duke Energy Corp. 0.08% 3.84% 11.00% 0.096 -0.318 -1.059 -1.281 

TJX The TJX Co, Inc. 0.53% 3.01% 9.84% -0.081 -0.021 -0.157 -0.258 

CVS CVS Health Corp -0.82% 4.59% 8.09% -0.778 0.387 1.128 0.737 

KO Coca-Cola Co. 0.19% 2.33% 5.13% -0.217 -0.160 0.103 -0.274 

PG Procter & Gamble Co. -0.36% 3.61% 9.07% -0.575 0.760 -0.341 -0.155 

PEP PepsiCo, Inc. 0.39% 2.58% 11.24% 0.408 0.828 0.058 1.294 

DPS Dr. Pepper Snapple 1.33% 4.34% 14.96% -0.193 1.192 0.734 1.733 

F Ford Motor Co. -0.77% 5.10% 2.87% -0.081 -0.021 -0.157 -0.258 

EBAY eBay, Inc. 1.23% 5.57% 4.54% -0.553 0.043 0.234 -0.276 

HBI Hanesbrands, Inc. -0.92% 6.07% 3.45% -1.949 0.691 0.561 -0.696 

WMT Walmart, Inc. 0.11% 4.44% 10.02% 1.781 1.094 1.057 3.931 

VZ Verizon Comm. Inc. 0.30% 4.43% 5.48% -0.725 1.795 0.157 1.227 

BA The Boeing Co. 2.74% 5.25% 33.80% 0.105 0.981 1.007 2.093 

QCOM Qualcomm, Inc. -0.99% 6.83% 7.46% 2.315 0.037 0.524 2.876 

V Visa, Inc. 1.55% 3.20% 13.32% 0.400 0.243 1.043 1.685 

LOW Lowe’s Companies 0.56% 5.16% 9.89% -0.363 1.187 1.689 2.513 

CTAS Cintas Corp. 1.96% 3.50% 17.06% -0.243 0.445 0.169 0.371 

 

5.5 Comparative Efficient Sets  

For comparative purposes, we also enumerate an equally weighted client portfolio (aka, EqWG). 

As shown by equation (28), the equally weighted portfolio requires adding n additional 

constraints: 

 ∑ 𝑥𝑗
𝑛
𝑗=1 = (1/𝑛) 𝑤ℎ𝑒𝑟𝑒 𝑥𝑗 {

1
0

𝑖𝑓(𝑖 = 𝑗)
𝑖𝑓(𝑖 ≠ 𝑗)

. (28) 

Reference is made to figure 8. The traditional mean-variance (dark blue) and SSIM (maroon) 

efficient sets are obtained by application of Lemke’s complementary slackness algorithm (Cottle, 

Pang, & Stone, 1992). For reference, corner portfolio solutions are displayed on the mean-

variance efficient set. As expected, the material difference between the mean-variance and SSIM 

efficient set occurs at and around the expected return level of the GMVP. For comparative 

purposes, superimposed are efficient sets for five alternative layered goal priority structures. The 

MBPM efficient sets are color-coded as follows: M1-light blue; M2-green; M3-black; M4 red; 

and M5-light green. Lastly, the gray parabola with zero risk tangency provides a theoretical 

visual for all efficient set solutions5.  

 

 
5 Observe a visual of the MBPM/NLGP computation and solution in WinORSe-AI 2020 at 

http://bit.ly/NLGPSampleSolution.  

http://bit.ly/NLGPSampleSolution
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Figure 8: Comparative Efficient Frontiers  

As previously stated, the mean-variance efficient set, M1, dominates the other MBPM efficient 

sets. This finding reinforces simulation-based findings provided by Pfiffelmann, Roger, and 

Bourachnikova (2016). This study demonstrates how most BPM portfolios and BPM portfolios 

with diminishing sensitivity and loss-aversion targets are mean-variance efficient but with a 

higher level of risk. Given the structural goal equations, the efficient set traces out a conic curve 

beyond the GMVP point. Model M5 is model M1 with a third-priority goal targeting loss-

aversion, and, as expected, model M5 is dominated by model M1. 

Moreover, as implicated by the Rickenberg (2020) study, there is a cross-over effect from CVaR 

targeting to variance targeting. As investors exhibit higher levels of risk tolerance, they should 

adopt the diversification plans offered by model M1. We offer support for this observation by 

comparing Sharpe ratios for portfolios with an expected return of 0.70% across the efficient 

alternative sets. The ratios are presented in tables 4 – 8. For model M1, the Sharpe ratio at this 

return level is 31.69% versus 28.70% for model M5. For the corresponding GMVP portfolios 

(expected return of 0.01%), the respective Sharpe ratios are the same at 0.41%. 

By contrast, loss-aversion risk targeting, model M2, produces an efficient set that is dominated 

by all other MBPM efficient sets. The shape of the conic curve for this model is consistent with 

the risk-averse investor seeking portfolio opportunities from its MRP to the respective GMVP. 

Comparative Sharpe ratios enable further confirmation. For the GMVP, the Sharpe ratio is lower 

compared to models M1 and M5 at 0.27%. For the portfolio with an expected return of 0.70%, 

we find a lower Sharpe ratio (15.23%) compared to those produced for models M1 and M5. 

The two alternate ESG affinity bias efficient sets, M3 and M4, provide empirical confirmation of 

the hypotheses offered in the contemporary literature. The ‘green’ investor model, M4, 
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demonstrates that higher portfolio returns are available, albeit with higher risk levels, for the 

strongly aggressive ESG investor. By contrast, the ‘brown’ ESG investor only earns higher 

portfolio returns at low rates of expected return. 

The Sharpe ratio analysis supports observational findings for models M3 and M4. Both models 

produce an identical Sharpe ratio of 37.50%. At an expected return level of 0.70%, green model 

M4 renders a Sharpe ratio of 25.04%. At the same return level, the ‘brown’ ESG portfolio 

produced a Sharpe ratio of 23.85%. However, for the GMVP portfolios, the ‘brown’ ESG 

portfolio generated a higher Sharpe ratio (0.29%) versus the lower ‘green’ ESG targeted 

portfolio (0.26%). 

Table 4: M1 Efficient Set: Mean-Variance Targeting  

Tickers M1-1 M1-2 M1-3 M1-4 M1-5 M1-6 M1-7 

NEE   20.00% 20.00% 20.00% 25.00% 25.00% 28.26% 

DUK   20.00% 20.00% 20.00% 25.00% 25.00% 25.00% 

TJX   7.78% 19.65% 20.00% 8.63%  2.02% 

CVS   12.22% 0.35%     

KO 67.08% 20.00% 20.00% 20.00% 25.00% 8.75%  

PG 32.92% 20.00% 20.00%     

PEP     18.42%    

DPS     1.58% 6.89% 24.62% 25.00% 

F         

EBAY         

HBI         

WMT         

VZ         

BA         

QCOM         

V         

LOW         

CTAS      9.48% 16.63% 19.72% 

Portfolio 

Return 
0.0100% 0.1700% 0.3300% 0.5000% 0.7000% 1.0000% 1.1000% 

Portfolio 

Risk 
2.4651% 2.4230% 2.2982% 2.1742% 2.2090% 2.2868% 2.3200% 

Sharpe 

Ratio 

0.41% 7.02% 14.36% 23.00% 31.69% 43.73% 47.41% 

Model-1: P1=Return; P2=Risk 
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Table 5: M2 Efficient Set: Loss-Aversion Targeting 

Tickers M2-1 M2-2 M2-3 M2-4 M2-5 M2-6 

NEE        
DUK        
TJX        
CVS        
KO        
PG        
PEP        
DPS        
F 31.62% 26.55% 21.49% 16.11% 9.78% 0.29% 

EBAY 40.97% 48.77% 56.56% 64.84% 74.58% 89.19% 

HBI 27.41% 24.68% 21.95% 19.05% 15.64% 10.52% 

WMT        
VZ        
BA        
QCOM        
V        
LOW        
CTAS        
Portfolio 

Return 
0.0100% 0.1700% 0.3300% 0.5000% 0.7000% 1.0000% 

Portfolio 

Risk 
3.7200% 3.8440% 4.0213% 4.2603% 4.5972% 5.1907% 

Sharpe 

Ratio 
0.27% 4.42% 8.21% 11.74% 15.23% 19.27% 

Model-2: P1=Return; P2=CVaR; P3=Risk 
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Table 6: M3 Efficient Set: Brown Tilt ESG Affinity Targeting 

Tickers M3-1 M3-2 M3-3 M3-4 M3-5 M3-6 M3-7 

NEE     2.26% 11.80% 8.18%   

DUK          

TJX   20.00% 20.00% 20.00%     

CVS          

KO          

PG 26.27%        

PEP 7.34% 13.56% 21.30% 5.59%     

DPS    5.45% 20.00% 25.37% 12.03%   

F          

EBAY          

HBI          

WMT 63.92% 43.08% 48.47% 51.39% 57.28% 55.10% 53.42% 

VZ 2.07% 15.09% 4.78%      

BA     0.76% 5.55% 24.69% 46.58% 

QCOM   8.27%       

V          

LOW          

CTAS          

Portfolio 

Return 
0.0100% 0.1700% 0.3300% 0.5000% 0.7000% 1.0000% 1.3400% 

Portfolio 

Risk 
3.4432% 2.8571% 2.5877% 2.6113% 2.9347% 3.0486% 3.5733% 

Sharpe 

Ratio 
0.29% 5.95% 12.75% 19.15% 23.85% 32.80% 37.50% 

Model-3: P1=Return & E; P2=Risk & S; P3=CVaR & G 
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Table 7: M4 Efficient Set: Green Tilt ESG Affinity Targeting 

Tickers M4-1 M4-2 M4-3 M4-4 M4-5 M4-6 M4-7 

NEE          

DUK          

TJX   19.77% 20.00% 14.74%     

CVS 12.74% 8.13% 4.30%      

KO          

PG          

PEP 5.29%        

DPS    10.05% 15.04% 23.22% 13.97%   

F          

EBAY          

HBI          

WMT 80.54% 58.13% 55.53% 54.07% 56.11% 54.21% 53.42% 

VZ 1.43% 4.25%       

BA      3.55% 21.93% 46.58% 

QCOM          

V    0.70% 7.16% 13.64% 9.77%   

LOW   9.73% 9.42% 8.99% 3.48% 0.12%   

CTAS          

Portfolio 

Return 
0.0100% 0.1700% 0.3300% 0.5000% 0.7000% 1.0000% 1.3400% 

Portfolio 

Risk 
3.8165% 3.1279% 2.8945% 2.7747% 2.7954% 2.9460% 3.5733% 

Sharpe 

Ratio 
0.26% 5.43% 11.40% 18.02% 25.04% 33.94% 37.50% 

Model-4: P1=Return, E, S, G; P2=Risk; P3=CVaR 
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Table 8: M5 Efficient Set: Mean-Variance with Loss Aversion Targeting 

Tickers M1-1 M1-2 M1-3 M1-4 M1-5 M1-6 

NEE   13.24% 29.50% 48.63% 77.32% 

DUK       

TJX       

CVS       

KO 67.08% 96.10% 86.76% 70.50% 51.37% 22.68% 

PG 32.92% 3.90%     

PEP       

DPS       

F       

EBAY       

HBI       

WMT       

VZ       

BA       

QCOM       

V       

LOW       

CTAS       

Portfolio Return 0.0100% 0.1700% 0.3300% 0.5000% 0.7000% 1.0000% 

Portfolio Risk 2.4651% 2.3302% 2.2808% 2.2980% 2.4387% 2.8392% 

Sharpe Ratio 0.41% 7.30% 14.47% 21.76% 28.70% 35.22% 

Model-5: P1=Return; P2=Risk; P3=CVaR 

5.6 Quantifying Dissonance across Layered Goal Attainment 

Quantifying financial cognitive dissonance is made possible by a review of layered goal 

achievement. Goal target achievement is a study of the under- and over-achievement levels as 

captured by the variables ℎ− and ℎ+, respectively. Table 9 presents model comparisons of goal 

attainment across the five study models. When considering the impact of loss-aversion bias, the 

focus is placed on models M2 and M5. We note that model M2 – a model designed to target loss-

aversion bias as the top-level goal – overachieved the CVaR goal of 0.0 by 0.0421 units. By 

contrast, model M5 expressed the loss-aversion goal at the third priority level. When compared 

to model M2, the M5 model experienced higher overachievement at 0.1175 units. 

ESG affinity goal targets solve with a zero level of under- and over-achievement for both the 

‘green’ model (M4) and the ‘brown’ model (M3). Table 10 data provides insight into the 

performance of these two models. Recall, model M3 spread the ESG sustainability targets over 

three different priority levels, whereas M4 expressed all sustainable ESG targets within the first-

priority layer. Model M3 experienced third-priority underachievement of 18.49. Comparably, 

underachievement for model M4 – the green model – is zero. Priority layer two exposes a 

negligible amount of underachievement for models M3 (0.0010) and M4 (0.0012). 
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Table 9: Goal Attainment by Model 

  M1-5 M2-5 M3-5 M4-5 M5-5 

Constraints RHS 
Under 

(h-) 

Over 

(h+) 

Under 

(h-) 

Over 

(h+) 

Under 

(h-) 

Over 

(h+) 

Under 

(h-) 

Over 

(h+) 

Under 

(h-) 

Over 

(h+) 

NL1 0.0000 n/a 0.0005 n/a 0.0032 n/a 0.0010 n/a 0.0012 n/a 0.0005 

Beta 0.0000 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

Full Inv 1.0000 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

E(r) 0.0070 0.0000 n/a 0.0000 n/a 0.0000 n/a 0.0000 n/a 0.0000 n/a 

EFSI 1.0000 1.0159 0.0000 1.7251 0.0000 0.0000 0.0000 0.0000 0.0000 1.0159 0.0000 

SFSI 1.0000 1.0143 0.0000 0.8618 0.0000 0.0000 0.0000 0.0000 0.0000 1.0143 0.0000 

GFSI 1.0000 1.0793 0.0000 0.7527 0.0000 0.1849 0.0000 0.0000 0.0000 1.0793 0.0000 

CVaR 0.0000 0.0000 0.1175 0.0000 0.0421 0.0000 0.1363 0.0000 0.1246 0.0000 0.1175 
Note: The constraints are defined in equations (15) through (22) 

 

Table 10: Underachievement of Priorities 

Tickers M1-5 M2-5 M3-5 M4-5 M5-5 

Priority 1  None None None None None 

Priority 2  0.0003 1.7251 0.0010 0.0012 0.0005 

Priority 3  n/a 0.0032 0.1849 None 1.0159 
Note: The priorities for each model are as defined in equations (23) through (27) 
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6. Summary and Conclusions 

In this study, we examined a new approach to BPM when the decision problem is layered with 

multiple, hierarchical, and conflicting goals. We specifically focused on the behavioral emotions 

of the affinity bias for sustainable investments and loss-aversion bias. Previous BPM seeking to 

incorporate sustainability goals mainly focused on single-index and ranking methods. Our study 

introduced a new dimension to sustainability and BPM. We implemented the PRS algorithm to 

produce three new pervasive factors to represent the ESG dimensions. Once created, the study 

examined the network impact of the three ESG indexes on asset returns by using the K4-RANN 

to estimate the weights of a six-factor Fama and French production-theoretic asset valuation 

model. The K4-RANN-based production theoretic model provided factor elasticity estimates as 

well as network scale returns. These outputs formed the valuation goal constraints that 

encapsulated ESG affinity bias within the proposed BPM model extension. Similarly, asset-level 

loss-aversion metrics were obtained from market data. We invoked a put-option structured model 

to estimate CVaR specific estimates for the statement of a loss-aversion goal constraint. 

Lastly, the study demonstrated why it is possible to model investor cognitive dissonance – 

decision-making involving layered and conflicting behaviors – as a goal program. Previous 

findings introduced a factor-based NLGP as a decision-structure to replicate the mean-variance 

portfolio optimization process when there are two or fewer investment priorities. We confirmed 

extant findings on comparative NLGP and mean-variance optimization and then extended the  

New contributions about the complexity of investor goal layering were elicited from the five 

models investigated in this study. First, and as expected, the benchmark standard mean-variance 

and SSIM portfolio models dominated all behavioral portfolio model diversification strategies. 

Second, Sharpe performance ratios for ESG affinity-bias portfolios were impacted by layered 

investor goal priorities. Investor’s expressing a ‘green’ sustainability tilt experienced differential 

performance characteristics than those representing a more ‘brown’ sustainability tilt. After 

comparing risk-adjusted return results across modeled portfolios, we found return dampening 

effects introduced by the adoption of ESG goals. But, importantly, we also report evidence on 

how sustainability bias can be partially overcome by switching from ‘brown’ to ‘green’ layered 

goals at different expected return levels.  

The modeling effort also provided confirmatory insights on how to emphasize ’loss aversion’ 

investor bias. We confirmed extant literature that argues ‘loss-aversion’ bias is likely to produce 

smaller Sharpe performance ratios. We were also able to confirm that a shift from prioritizing 

loss-aversion (CVaR) to targeting traditional variance minimization leads to improved Sharpe 

ratios. These preliminary findings notwithstanding, there are several important areas where new 

research is needed. The time-variation of the new ESG factors received attention but deserves a 

more detailed study. Also, the examination of alternate priority structure models is a worthy 

undertaking for future research. Lastly, the application of a machine learning method to the 

estimation of a production-theoretic model of asset returns is relatively new but is gaining 
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traction in the literature. A more extensive study on the use of the K4-RANN should provoke 

robust results in the area of networked asset return production. The application results provided 

here extend our understanding of the importance of modeling layered goals in MBPM. For the 

rational investor, the multiobjective model proved capable of solving the efficient portfolio 

selection problem while meeting biased goals as closely as possible. 
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Appendix A 

ESG Sustainable Impact Dimensions 

Environmental Social Governance 

Environment Policy Human Rights Corporate Governance 

Environment Performance Labor Standards Code of Ethics 

Climate Change Health and Safety Bribery and Corruption 

Nuclear Energy Employee Development Death Penalty 

Biodiversity Supply Chain Standards Military Expenses 
Source: Invesco, Vigeo Eiris, https://www.invesco.com/corporate/about-us/esg 

https://www.invesco.com/corporate/about-us/esg
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Appendix B  

Results from the K4-RANN Analysis – Page 1  
 

 Rm-Rf SMB HML RtSE RtSS RtSG RtS MSE 

XOM Exxon Mobil Corporation -1.746 -0.737 0.585 -0.094 -0.039 0.787 0.654 0.00020 

CVX Chevron Corporation -1.532 -0.001 0.554 -0.211 0.553 0.763 1.104 0.00028 

COP ConocoPhillips -0.034 0.279 1.000 0.428 0.375 0.756 1.558 0.00032 

IEZ iShares US Oil Eqp & Srv ETF -0.457 0.040 0.408 0.122 0.065 0.707 0.894 0.00012 

PFE Pfizer Inc -0.284 0.016 0.000 -0.163 0.128 0.087 0.051 0.00000 

JNJ Johnson & Johnson -1.407 -0.519 -0.518 -0.265 -0.159 -0.097 -0.520 0.00007 

ABT Abbott Laboratories -0.034 0.266 -0.224 0.058 0.071 0.439 0.567 0.00002 

CI Cigna Corporation -1.670 -2.011 -0.582 0.341 0.125 0.236 0.701 0.00046 

AMGN Amgen Inc -0.340 0.008 -0.629 -0.661 0.000 0.316 -0.345 0.00006 

AGN Allergan plc -0.712 -0.218 0.013 -0.819 -0.432 0.336 -0.915 0.00018 

TMO Thermo Fisher Scientific Inc 0.079 0.085 0.085 0.075 0.064 0.136 0.275 0.00000 

IBB iShares Nasdaq Biotech ETF 0.044 0.157 -0.026 -0.057 0.162 0.256 0.361 0.00009 

ABBV AbbVie Inc 0.925 -0.533 -1.805 0.196 0.134 0.778 1.108 0.00055 

CSCO Cisco Systems, Inc 0.612 0.715 0.048 0.729 0.924 0.998 2.652 0.00016 

MSFT Microsoft Corporation 0.180 0.223 0.063 0.756 0.125 0.642 1.524 0.00006 

QCOM QUALCOMM Incorporated -0.223 -0.773 -1.052 2.315 0.037 0.524 2.876 0.00087 

AAPL Apple Inc -0.338 0.279 -0.261 0.604 0.133 0.026 0.762 0.00005 

GOOG Alphabet Inc -0.818 -0.311 -0.976 0.204 -0.372 0.562 0.395 0.00010 

V Visa Inc -0.152 0.072 -0.045 0.400 0.243 1.043 1.685 0.00004 

NTAP NetApp, Inc 0.123 0.746 0.598 0.966 0.829 0.729 2.523 0.00052 

ACN Accenture plc -0.067 -0.097 -0.261 0.185 0.159 0.186 0.530 0.00000 

TEL TE Connectivity Ltd 0.073 0.089 -0.012 0.194 0.049 0.159 0.402 0.00000 

NEE NextEra Energy, Inc -0.106 0.287 0.193 0.196 0.140 -0.272 0.064 0.00001 

DUK Duke Energy Corporation -0.667 -0.172 0.032 0.096 -0.318 -1.059 -1.281 0.00006 

F Ford Motor Company -0.747 0.007 0.131 -0.081 -0.021 -0.157 -0.258 0.00004 

TJX The TJX Companies, Inc 0.513 0.673 0.567 0.477 0.712 0.623 1.812 0.00005 

LOW Lowe's Companies, Inc -0.480 -1.682 -0.248 -0.363 1.187 1.689 2.513 0.00053 
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Results from the K4-RANN Analysis – Page 2  
 

 Rm-Rf SMB HML RtSE RtSS RtSG RtS MSE 

GPS The Gap, Inc 0.063 0.236 -0.014 0.270 0.822 0.226 1.318 0.00021 

EBAY eBay Inc 0.659 -0.248 -0.556 -0.553 0.043 0.234 -0.276 0.00009 

WYN Wyndham Worldwide Corp -0.079 -0.135 -0.158 0.007 0.074 0.253 0.335 0.00001 

HBI Hanesbrands Inc -0.951 -0.565 -0.675 -1.949 0.691 0.561 -0.696 0.00059 

TWX Time Warner Inc 0.034 -0.108 -0.044 -1.196 -0.031 0.058 -1.169 0.00009 

JPM JPMorgan Chase & Co 0.044 -0.061 -0.247 0.010 0.333 0.306 0.648 0.00002 

WFC Wells Fargo & Company -0.694 -0.603 -0.595 -0.196 0.267 0.256 0.328 0.00008 

BAC Bank of America Corp.  0.070 0.037 -0.108 0.081 0.223 0.186 0.490 0.00002 

CB Chubb Limited -0.663 -0.908 -0.787 -0.446 -0.541 -0.402 -1.389 0.00006 

PNC PNC Financial Srv Grp, Inc.  0.109 -0.115 -0.816 -0.270 0.472 0.330 0.532 0.00006 

MMC Marsh & McLennan Co. Inc -0.306 -0.294 -0.350 -0.330 -0.326 -0.327 -0.983 0.00001 

BBT BB&T Corporation 0.171 0.080 -0.154 0.084 0.402 0.553 1.039 0.00003 

AMG Affiliated Managers Group, Inc -0.500 -0.031 -0.553 -0.242 0.216 -0.014 -0.040 0.00008 

AIV Apartment Investment and 

Management Company 

-0.937 -0.105 0.061 -0.125 -0.230 -0.707 -1.062 0.00005 

GNW Genworth Financial, Inc -0.116 -0.069 -0.101 -0.101 -0.088 -0.098 -0.287 0.00003 

C Citigroup Inc -0.261 -0.345 -0.353 -0.262 -0.087 -0.165 -0.514 0.00004 

GE General Electric Company -2.113 -0.936 -0.534 -2.518 -1.083 -0.297 -3.897 0.00110 

BA The Boeing Company 0.491 -0.341 -0.131 0.105 0.981 1.007 2.093 0.00018 

UTX United Technologies Corp. -0.104 -0.049 -0.139 -0.017 0.098 0.243 0.324 0.00000 

CTAS Cintas Corporation -0.186 0.382 -0.196 -0.243 0.445 0.169 0.371 0.00002 

GD General Dynamics Corporation 0.054 -0.046 -0.451 -0.629 -0.309 0.232 -0.706 0.00002 

DHR Danaher Corporation -0.193 0.250 0.026 0.721 -0.166 0.802 1.358 0.00004 

AME AMETEK, Inc 0.082 0.224 -0.196 0.282 0.372 0.421 1.075 0.00002 

ATU Actuant Corporation -0.430 -0.243 -0.102 -0.256 -0.137 -0.221 -0.615 0.00004 

MON Monsanto Company 0.059 0.011 0.158 -0.076 -0.015 0.148 0.057 0.00000 

XLB Materials Sector SPDR Fund -0.333 -0.211 -0.209 -0.112 -0.077 0.114 -0.076 0.00001 

WMT Walmart Inc -0.882 -2.064 -0.237 1.781 1.094 1.057 3.931 0.00054 
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Results from the K4-RANN Analysis – Page 3  
 

 Rm-Rf SMB HML RtSE RtSS RtSG RtS MSE 

CVS CVS Health Corporation -1.367 -1.106 0.019 -0.778 0.387 1.128 0.737 0.00027 

KO The Coca-Cola Company -1.112 -0.550 -0.164 -0.217 -0.160 0.103 -0.274 0.00002 

PG Procter & Gamble Company -1.820 -0.726 -0.685 -0.575 0.760 -0.341 -0.155 0.00018 

PEP PepsiCo, Inc -1.878 -0.687 -1.071 0.408 0.828 0.058 1.294 0.00010 

HSY The Hershey Company -1.231 -0.243 -0.570 -0.215 0.308 -0.370 -0.277 0.00012 

CL Colgate-Palmolive Company -0.519 -0.309 -0.275 -0.309 -0.167 -0.193 -0.669 0.00001 

DPS Dr Pepper Snapple Group, Inc 2.540 0.059 0.333 -0.193 1.192 0.734 1.733 0.00043 

VZ Verizon Communications Inc -0.867 -0.629 0.034 -0.725 1.795 0.157 1.227 0.00027 

T AT&T Inc -0.296 -0.324 -0.498 -0.703 0.847 -0.194 -0.050 0.00007 

IJR iShares S&P SmallCap ETF -0.482 0.064 -0.157 -0.170 -0.114 0.114 -0.170 0.00001 

MDY SPDR S&P MIDCAP 400 ETF -0.868 0.059 -0.344 0.034 -0.014 0.370 0.391 0.00002 

 


