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Abstract

We introduce Indirect Robust Generalized Method of Moments (IRGMM), a new
simulation-based estimation methodology, to model short-term interest rate processes.
The primary advantage of IRGMM relative to classical estimators of the continuous-time
short-rate diffusion processes is that it corrects both the errors due to discretization and
the errors due to model misspecification. We apply this new approach to various monthly
and weekly Eurocurrency interest rate series and show its good predictive performance.
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1. Introduction

Understanding the dynamics of the short-term interest rate is of fundamental impor-
tance for many financial applications. Although these data have been subjected to
extensive analysis, some basic issues remain unresolved. This may stem in part from
the difficulties associated with the statistical analysis of continuous-time processes. For
example, in complex statistical models, like diffusion models described by stochastic
differential equations (SDE) of the form,

dys = n(ye)dt + o (y,)dW;, (1)

where 7(-) and o(-) are the drift and the volatility and W; a Wiener process, it is often
difficult or impossible to carry out standard likelihood based estimation and inference.
Such SDEs play an important role when modeling the short-term interest rate; see, for
example, Vasicek (1977), Dothan (1978), Brennan and Schwartz (1977), Cox, Ingersoll
and Ross (1981, 1985), Chan, Karolyi, Longstaff and Sanders (1992), Brenner, Harjes
and Kroner (1996), Ahn and Gao (1999) among others.

A great deal of progress has been made recently in developing efficient tools for
estimating and testing continuous-time models of the short-rate process; for instance, the
Efficient Method of Moments (Gallant and Tauchen, 1996; Andersen and Lund, 1997),
weighted least squares estimation (Chapman and Pearson, 1999), simulated maximum
likelihood estimation (Durham and Gallant, 2002; Durham, 2003), a Gibbs sampling-
based Markov Chain Monte Carlo algorithm (Kalimipalli and Susmel, 2004), and other
innovative techniques as in Conley, Hansen, Luttmer and Scheinkman (1997), Chapman,
Long and Pearson (1999).

It is well known that estimators based on a discretized version of (1) are biased, see for
instance Gouriéroux, Monfort and Renault (1993). To tackle the problem arising from
discretization several approaches have been proposed. Among others, non-parametric
techniques (Ait-Sahalia, 1996; Stanton, 1997; Pritsker, 1998; Hong and Li, 2005; Jo-
hannes, 2004), pseudo-likelihood estimations (Ait-Sahalia, 1999; Ait-Sahalia, 2002) and
indirect techniques (Broze, Scaillet and Zakoian, 1995) were used to estimate the short-
term interest rate process. An additional problem arising when estimating the short
rate process is the possible model misspecification which can lead to biased estimators
and misleading testing results; see a simple example in Section 3. The theory of robust
statistics can be used to avoid this problem. Specifically, Dell’Aquila, Ronchetti and
Trojani (2003) used robust techniques to estimate and compare discrete-time interest
rate processes. Finally, Genton and Ronchetti (2003) combined robust techniques with
indirect inference and it robust indirect inference.

Typically the estimation of (1) is performed by means of an auxiliary model which
is a discretized version of the SDE. The resulting indirect estimation (Gouriéroux et al.,
1993) is based on the following idea. Given a sample of observations generated from a
probability model F(6), § € RP, define an auxiliary model F(;) where the parameter
p € R” is easier to estimate then 6. For instance, F'(€) could be the diffusion model (1)
or a fine discretization of (1) and F'(x) a crude discretization of (1). The main steps of
the indirect estimation are the following:

(i) the auxiliary estimator fi is calculated with the original sample;
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(ii) pseudo-observations are simulated from the true model F'(0) generating
S samples of pseudo-data

{yt1(9>}t:1,...,n; ceey {yf(e)}tzL...,n ;

(iii) the auxiliary estimators fis(#) are calculated with the simulated pseudo-
observations;

(iv) finally the indirect estimator 0; of 0 is obtained by minimizing the
distance between the auxiliary estimators fi and fis(0) = % S fis(6).

Gouriéroux and Monfort (1996) proved that under certain conditions the indirect
estimator 0; is consistent for 6 and asymptotically normal. Moreover, if the bias of the
auxiliary estimator is of order O(1), then indirect estimation reduces this bias, i.e. the
bias of 0; is of order O(n1).

This procedure relies on the assumption that the underlying model F'(0) is exact,
i.e. it has generated the data. If the underlying model F'(9) is misspecified, Genton and
Ronchetti (2003) showed that even the indirect estimators are biased. To eliminate this
bias they developed robust indirect estimation which is based on a robust estimator of
the auxiliary parameter. They proved that if the auxiliary estimator is a consistent and
robust estimator of the parameter, then the associated indirect estimator is also robust.
Applying indirect robust estimation to SDEs of the form (1) reduces both the bias due
to discretization and to contamination.

In this paper we combine and extend these results and we apply them explicitly to the
statistical analysis of models described by (1). In particular, we define the indirect robust
GMM (IRGMM), a new simulation-based estimation of SDEs and apply it to various
monthly and weekly Eurocurrency interest rate series. We compare empirical results
obtained with IRGMM to those obtained with classical GMM, robust GMM (RGMM)
and indirect GMM (IGMM). For each data we considered, indirect estimators, and in
most of cases the IRGMM, have the higher predictive performance.

The paper is organized as follows. Section 2 describes the IGMM estimation applied
to the well-known CKLS models. In section 3 we propose IRGMM to estimate interest
rates and explain the advantages of this technique with respect to classical estimation
methods. Section 4 presents the results of IRGMM estimation of Eurocurrency for
US data and compare our results with classical estimators. Moreover, we propose a
methodology for forecasting using IRGMM estimators. Finally section 5 concludes the
article with some open problems and suggestions for further work.

2. IGMM : correction of the bias due to the discretization

Let yo, ..., y, be observations generated from the CKLS diffusion model (Chan et al.,
1992):
dyy = (a + By, )dt + oy dW, (2)

where a represents the long term drift, 3 the mean reversion parameter, o the un-
conditional average volatility and 7 the elasticity parameter. We consider the data as



realizations of the diffusion model (2) at discrete times ¢t = 0,1,...,n. In general, it is
impossible to determine the form of the distribution of {y;}+—0.1,.., from the continuous
model (2). To estimate 6 = («, 3, 0,7) let us consider a discretization of equation (2)
with auxiliary parameters u = (a*, 8*, 0%, 7*):

Y =Y1 + " + By + U*yzjﬁt (3)

where {¢}i—1,., are independent identically distributed standard normal variables.
Hereafter we will refer to this equation as ”crude discretization”. For instance, Chan et
al. (1992) estimated (3) for US treasury bill data by GMM. The CKLS orthogonality
function is given by:

Vi
Vs
h({yt}a N) = 2 ' t21 2v* ) (4)

*
Vi =0 Y

t
(Vt2 - U*zy?zl)yt—l

where v, = y; — (1 — *)y;—1 — a*. In this situation we have the fully identified case,
i.e. 4 parameters to estimate with 4 orthogonality conditions and the GMM estimator
associated with the orthogonality function (4) is i such that

LS h({wd ) = 0. @

The GMM estimator f is a consistent estimator of y = (o, 5%, 0*,4*) in the model with
crude discretization (3) but is inconsistent for 6 = (o, 8, 0,7) in the diffusion model (2).
To correct the inconsistency under the diffusion model due to discretization we can use
the indirect GMM (IGMM) estimator according to the following steps:

1) We simulate pseudo-observations from a fine discretization of (2): we divide the

time interval At = 1 into m subintervals of length § = % The Euler approximation

corresponding to the time interval § is the process {y,ﬁ‘?}kzo,lmmn defined by

5 5 5 5)7 5
y((k)+1)5 = yl(cé) +d(a+ Byl(cé)) + Uy,ﬁa) \/561(6) ; (6)

where the e,(f) are standard normal variables. The process can be simulated? for every 6.

Selecting the data at time kd € N, we obtain pseudo-data {yt(l)(e)}t:o,l,_.,n . Then we
simulate S pseudo-datasets from this model:

{v;(0)} 01,y s=1,...,5, S>1. (7)

2) For every s, we construct the auxiliary GMM estimator defined in (5) with the
pseudo-data {y;(0)}i—0.1...» and obtain estimators fis(6),s = 1,...,.S which are func-
tions of the parameter 6. Let us denote by fis(f) = éz;ll fis(0) the mean of these
estimators.

21f y](ct;) < 0 we replace y;(cf;)v by \y;(cfs)l"-



3) The IGMM estimator éIGMM is the one which minimizes the distance between
the auxiliary estimator fi (computed on real data) and the mean fig(6):

éIGMM = arg mein([z — as(0) Qi — As(0)) (8)

where €) is a positive definite symmetric matrix.

3. IRGMM: consistency under misspecifications of the diffusion model

One of the hypotheses assuring the consistency of the indirect estimator is that the real
observations {y;} are generated from the diffusion model (2). In reality, the presence of
jumps and high kurtosis in the increments on real data shows that the diffusion model
may be misspecified. As an illustration, let us consider the diffusion model (2) where
the increments come from an e-neighborhood of a standard normal distribution:

Wt - Wt—l =€~ (1 - E)N(Oa 1) + 'SGv (9)

with 0 < e < 1 and G an unknown distribution. In Figure 3.1 we represent simulated
data of size n = 300 generated from a contaminated diffusion model (2) with (9), where

G =N(0,5%), e =0.05, a =0, B=—0.001, 0 =0.3, y=1.3
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Figure 3.1: Simulated data from a diffusion model with 5% contamination.

3This case corresponds to the geometric Brownian motion with drift, which has an

. . . 2
"exact discretization”: log(J %) = 8 — %G + o€ -




Figure 3.1 shows that a contaminated diffusion model can generate jumps in the data.
The kurtosis of the increments in a contaminated diffusion model with G = N(0, 72) is
k = 3(1 — &+ e7?)? which is around 14.5 in the example given above. To illustrate how
this kind of contamination affects the classical and indirect estimation procedures, let
us consider the CKLS model (2) with o = § = 0 and v = 1. We obtain the model of
Dothan:

dy, = oy dW; . (10)

Let (n + 1) observations of y;, t = 0,1,...,n to be given. To estimate o2, we proceed
to the crude discretization (3) with restrictions: o = 8 = 0 and v = 1. We obtain

Y = Y1+ 0 Y16, (11)

where the ¢ are i.i.d. standard normal variables. The maximum likelihood estimator of

o*? is

5% = %Z(“ —1)2, (12)

where ry = v,/ 1.

Figure 3.2 compares the bias of the auxiliary and the asymptotic bias of the indirect
estimators of o2 under 1%, 3%, 5% contamination as a function of 7. The real parameter
was set to 0 = 0.5. For the computation of the bias of auxiliary and indirect estimators
see Appendix A.1-A.3.
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Figure 3.2: Bias of the auxiliary (- - ) and indirect (—) estimators of 0.

Figure 3.2 shows that auxiliary estimator is biased even under the model without
contamination. Under the model (without contamination) the indirect estimator cor-
rects the bias due to discretization. But neither the auxiliary nor the indirect estimators
can correct the bias due to contamination when 7 > 2. Indeed, the bias increases expo-
nentially with 72.



Our goal is to construct an indirect estimator which is robust against misspecifica-
tions of the underlying stochastic structure of the model, i.e. a robust estimator of the
diffusion model (2) which represents the structure of the majority of the data. Genton
and Ronchetti (2003) have shown that indirect estimators are robust if the auxiliary
estimator is a robust and consistent estimator of the parameter of the auxiliary model.
In our case, the auxiliary model being the crude discretization (3), we need a robust
estimator of the parameter p in (3). The robust version of the GMM estimator (see
Ronchetti and Trojani, 2001 and Dell’Aquila, Ronchetti and Trojani, 2003) is defined
by (5), where the classical orthogonality condition A is replaced by a truncated orthog-
onality function:

AT = — 7| min ¢
h’c ({yt}7u) - A[h({yt}*u) } (17 ||A[h({yt},/l) _ 7_]”) ) (13)

where ¢ is a tuning constant. The non-singular matrix A € R* x R* and the vector
7 € R* are determined by the implicit equations (20) and (21) defined in Ronchetti and
Trojani (2001).

Let us denote the robust GMM (RGMM) estimator associated with the truncated
orthogonality function (13) by firgaar. The indirect robust GMM (IRGMM) estimator
é] raM M is an indirect estimator constructed with RGMM auxiliary estimators following
the steps described in Section 2. The IRGMM estimation procedure is summarized in
Figure 3.3 4 .

Since the RGMM estimator is a consistent and robust estimator of the auxiliary pa-
rameter u, the IRGMM is a consistent and robust estimator of the diffusion parameter ¢
(for consistency and robustness of RGMM estimators see Ronchetti and Trojani, 2001;
for consistency of indirect estimators see Gouriéroux et al., 1993; for robustness of indi-
rect estimators see Genton and Ronchetti, 2003). The IRGMM estimator corrects both
the errors due to discretization and the errors due to contamination of the underlying
diffusion model.

4For numerical computation of the IRGMM, our C program can be downloaded from
the webpage:
http://www.unige.ch/ses/metri/assistants/czellar/Research.htm



Data Simulated data
{yt}tzo,...,n {yf(g)}tZO,...,n;s:l,...,S
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5 discretization
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QIRGMM = arg H%H f— /JS(Q))TQ( 5(9)) 0

Figure 3.3 Construction of the IRGMM estimator O1raMM

4. Estimation and forecast
4.1 Estimation of models for US Eurocurrency rates

We consider the monthly Eurocurrency rates for US covering the period from February
28,1975 to December 31,2002. The data is plotted in Figure 4.1.
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Figure 4.1: US Eurocurrency rates from February 28, 1975 to December 31, 2002.

Table 4.1 represents the means, standard deviations, skewness, kurtosis and correla-
tions of the monthly interest rates.

Data N Mean StDev Sk Ku p1 p2 p3 pa pP5

Monthly Yt 335  0.07319  0.03537  1.2507 1.9307  0.9691  0.9347  0.9024  0.8692 0.8533

Ay 334 —0.00016 0.00816 —1.1001 20.9559 0.0673 —0.0331 0.0185 —0.3243 —0.0081

Table 4.1: US Eurocurrency rates statistics.

The classic and indirect GMM estimators are given in Table 4.2 with t-statistics® in

3

parentheses. For indirect estimators, we chose 2 = diag<ﬂ—12) with £ the auxiliary
0 i=1,..,4

estimator and the constants were set to § = 1/22 and S = 25. The choice of these
parameters is explained in Appendix A.4. For RGMM the value of the tuning constant
was ¢ = 5.85. IRGMM estimators were computed with auxiliary RGMM estimators
defined by (13) where 7 =0 6.

SFor IGMM and IRGMM we used the asymptotic distribution calculated in A.2 of the
Appendix with ¢ = 0.

5The consistency parameter 7 can be dropped because indirect inference corrects the
inconsistency of the auxiliary estimator.



In order to compare the classsical and indirect estimations, we perform a Monte Carlo

simulation based on the estimated parameters to forecast the monthly Eurocurrency
rates for 2003.

4.2 Forecast of US Eurocurrency rates

When forecasting with classical GMM, a natural way is to simulate from the model
with crude discretization (3) with parameters from Table 4.2 and residuals ¢; generated
from a standard normal distribution. Figure 4.2 represents a path of simulated future
observations for monthly values in 2003 using the last observed interest rate in December
2002 and GMM parameter estimates from Table 4.2.

rates
0.015 0.020 0.025 0.030
| | | |

0.010
|

Dec Jan Feb March Aprii May June July Aug Sept Oct Nov Dec

Figure 4.2: Simulated path for future US Eurocurrency rates for 2003.

We simulate 1000 of such paths and Figure 4.3 represents the simulated future values
by means of boxplots. The plots represent the real values that occured in 2003. These
values are far away from the forecasted intervals given by GMM estimation and so the
forecast with GMM doesn’t perform well. Figure 4.4 represents the forecast for 2003
with RGMM parameter estimates from Table 4.2. The forecast based on the RGMM
estimator performs better than the forecast based on the GMM estimator but most of
the observed values are still outside the forecasted intervals in the second half of the
year.
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Figure 4.3: Forecasted intervals for US Eurocurrency rates for 2003 using GMM.
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Figure 4.4: Forecasted intervals for US Eurocurrency rates for 2003 using RGMM.

For the forecast with IGMM and IRGMM, we generate data from the finer discretiza-
tion defined in (6) with § = 1/22 and with the estimated parameters in Table 4.2. In
this way we simulate daily data and by collecting every 22nd value we obtain simulated
monthly rates. Figure 4.5 represents a simulated path for monthly interests rates in
2003 with the indirect method and Figure 4.6 represents 1000 such paths.
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Figure 4.5: Simulated path for future US Eurocurrency rates for 2003 using IGMM.
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Figure 4.6: Forecasted intervals for US Eurocurrency rates for 2003 using IGMM.

Finally, Figure 4.7 shows the forecast based on IRGMM estimation.
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Figure 4.7: Forecasted intervals for US Eurocurrency rates for 2003 using IRGMM.

Clearly the forecast with IRGMM estimators performs better than those computed
with GMM, RGMM and IGMM estimators.

In order to compare numerically the goodness-of-fit of different forecasting techniques
we define the following measures:

— o= 1 o=, (& 3
RAMSE = (=" — > —u)?)". (14)
t=1 =1
I ; o
AMAD = - ;meélanﬂyt( ) — meclhan(yt( ))|) , (15)
— 1 & 5
AMEDBIAS = = 3" (Jmedian(y(™) — ). (16)
(e ’
where {yﬁs)}t:h“,n ,s = 1,...,m denote m simulated values for n number of periods,

and {y¢}1=1,..n are the real observations. AM @] AS measures the bias of the the

forecast, AM AD measures the variability of the forecast and RAMSE is the root mean
squared error of the forecast, a combination of bias and variablity.

In Table 4.2 we report the RAMSE , AMAD and AMEDBIAS for each technique
with m = 1000 and n = 12. For each goodness-of-fit measure, the smallest values in
each column are underlined.
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a 3 o v RAMSE AMAD AMB. 1073
GMM 0.00148  —0.02246 0.73331 1.93049 9.28 0.42 7.92
(0.80) (—0.75) (1.50) (6.73)
IGMM 0.00020  —0.00349 0.82777 2.09933 2.87 0.16 2.39
(0.11) (—0.11) (0.91) (4.31)
RGMM 0.00034 —0.00583 0.31669 1.61110 3.60 0.49 2.93
(0.29) (—0.30) (1.99) (7.79)
IRGMM —0.00016  0.00230 0.52401 1.83978 1.02 0.26 0.70
(—0.10) (0.08) (1.64) (7.25)

Table 4.2: Parameter estimates and goodness-of-fit test for US Eurocurrency rates.

Table 4.2 shows that the smallest bias of the forecast is obtained using the IRGMM
technique. The smallest variability of the forecast is obtained using the IGMM estimator
but the gain is not so important compared to the variability of the forecasts computed
by means of other techniques. Finally the accuracy of the forecast is the best with the
IRGMM estimator which provides the smallest value of RAMSE. These values confirm
the results obtained in Figures 4.3-4.7.

4.3 Forecast of international rates

We consider monthly Eurocurrency rates for Japan during the period 1/31/1990-
8/30/2002:
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Figure 4.14: Forecasts for monthly Eurocurrency rates of Japan for the period
8/30/2002-08/29/2003 using RGMM and IRGMM.
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o 3 o v RAMSE AMAD AMB. 1073
GMM —0.00019 —0.01132 0.00788 0.28067 2.99 1.33 0.70
(—0.91) (—1.08) (3.48) (3.70)
IGMM —0.00040 —0.00421 0.00882 0.32863 3.44 1.23 1.74
(—1.88) (—0.40) (2.95) (3.42)
RGMM —0.00024 —0.01030 0.00786 0.29101 3.02 1.25 0.84
(—2.94) (—2.53) (8.93) (9.87)
IRGMM —0.00006 —0.01204 0.01020 0.52590 0.51 0.14 0.27
(=0.77) (—2.96) (11.60) (17.84)

Table 4.3: Parameter estimates and goodness-of-fit test for monthly Eurocurrency rates

of Japan.

For Japan the 3 goodness-of-fit measures are the smallest when using the IRGMM

technique.

Estimation of monthly Eurocurrency rates for Switzerland during the period 1/31/1990-
12/31/2002:
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Figure 4.15: Forecasts for monthly Eurocurrency rates of Switzerland for the 2003 using

RGMM and IRGMM.

o 3 o ~y RAMSE AMAD AM.B. 1073
GMM 0.00014 —0.01881 0.00769 0.22646 6.66 3.54 2.60
(0.29) (—1.53) (0.02) (2.34)
IGMM —0.00003 —0.01091 0.00749 0.23395 5.81 3.25 1.82
(—0.07) (—0.87) (2.65) (2.11)
RGMM 0.00018  —0.02130 0.00699 0.20595 6.88 3.67 2.89
(0.98) (—4.40) (6.96) (5.41)
IRGMM 0.00005 —0.01466 0.00747 0.31878 4.70 2.15 2.58
(0.26) (—3.03) (7.44) (8.37)

Table 4.4: Parameter estimates and goodness-of-fit test for monthly Eurocurrency rates

of Switzerland.
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For Switzerland the smallest value of the AMEDBIAS is obtained by the IGMM
but the variability of the forecast is large. The IRGMM gives the smallest value for

AmD and also for RA/]W\SE which means that the forecast with IRGMM is the most
accurate.

Estimation of monthly UK Eurocurrency rates during the period 1/31/1990-12/31/2002:
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Figure 4.16: Forecasts for monthly UK Eurocurrency rates for the 2003 using RGMM

and IRGMM.
a 3 o ~y RAMSE AMAD AMB. -10°3
GMM 0.00004 —0.02282 0.01129 0.55218 5.69 2.91 2.98
(1.56) (—2.55) (2.12) (3.12)
IGMM | 0.00073 —0.02075 0.01222 0.60581 4.93 2.55 2.33
(1.96) (—2.28) (1.92) (3.06)
RGMM | 0.00078 —0.02042 0.01015 0.51808 5.53 3.00 2.71
(3.28) (—5.80) (4.85) (7.43)
IRGMM | 0.00020 —0.01382 0.01147 0.58527 4.73 2.74 1.93
(1.23) (—3.93) (5.48) (8.40)

Table 4.5: Parameter estimates and goodness-of-fit test for monthly UK Eurocurrency
rates.

For UK similar conclusions apply.
Tables 4.2-4.5 show that for every dataset we considered, IRGMM provides the

smallest value of RAMSE and has overall the best performance.
Now we turn to the estimation and forecast using shorter time periods.

4.4. Forecast with 5-year periods of weekly data

Here we present the forecasts with 5-year periods of weekly US Eurocurrency data. We
subdivided the time interval of 02/28/75-12/31/02 into periods of 5 years and using
weekly data we forecast the 3 first months of the following (out-of-sample) period. The
general pattern and the conclusions are similar to those in the previous case.
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a 3 o 5 RAMSE AMAD AMB. 1073
75 —-79: GMM —0.00037 0.00945 0.12213 1.53424 20.18 9.46 9.26
(—0.50) (0.81) (1.16) (4.57)
IGMM —0.00067 0.01217 0.22844 1.95989 22.00 7.70 9.00
(—0.88) (1.02) (0.57) (2.73)
RGMM —0.00048 0.00730 0.00997 0.61084 15.74 4.58 9.80
(~1.14) (1.19) (2.04) (3.26)
IRGMM —0.00031 0.00732 0.03558 1.68691 13.48 2.11 9.35
(—0.41) (0.63) (0.05) (0.22)
80 —-84: GMM 0.00257 —0.02241 0.08206 1.16842 11.14 6.69 2.11
(1.56) (—1.48) (3.22) (7.39)
IGMM 0.00075 —0.00636 0.09736 1.27609 10.63 6.28 2.06
(0.44) (—0.41) (2.91) (7.11)
RGMM 0.00257 —0.02147 0.11705 1.35374 10.55 6.24 2.70
(1.20) (—1.12) (3.50) (10.24)
IRGMM 0.00094 —0.00786 0.14145 1.49654 8.84 5.27 1.61
(0.54) (—0.49) (2.62) (7.31)
8, —89: GMM 0.00977 —0.12686 1.03427 2.07052 11.16 6.58 3.56
(2.26) (—2.21) (0.15) (0.78)
IGMM 0.00878 —0.11301 1.47481 2.31423 8.61 5.07 2.08
(1.97) (—1.91) (0.09) (0.49)
RGMM 0.00120 —0.01566 0.00381 0.25763 5.20 3.09 1.96
(1.60) (—1.63) (0.95) (0.63)
IRGMM 0.00256  —0.03388 0.22061 1.93304 4.42 2.73 1.43
(0.97) (—0.96) (0.02) (0.11)
90—-94: GMM 0.00150 —0.03219 5.75370 2.59929 9.39 4.64 4.92
(1.17) (—1.08) (2.04) (2.33)
IGMM 0.00037 —0.00927 14.2944 3.13175 6.20 2.69 3.41
(0.28) (—0.31) (0.86) (2.76)
RGMM 0.00039 —0.01101 0.00327 0.30182 5.07 2.15 3.45
(2.13) (—2.95) (2.29) (2.13)
IRGMM —0.00003 —0.00208 0.15822 1.53222 6.10 3.18 3.35
(—0.05) (—0.16) (0.16) (0.68)
95—-00: GMM 0.01137 —0.20885 24502.1 5.63413 4.92 2.02 3.33
(8.84) (—7.01) (1507.53) (5.06)
IGMM 0.01147 —0.20320 189797 6.56324 2.89 1.17 1.87
(8.74) (—6.69) (11450.8) (5.78)
RGMM 0.00014  —0.00469 0.00092 0.01259 3.34 1.46 1.98
(0.16) (—0.31) (0.31) (0.01)
IRGMM 0.00212  —0.03543 16.3467 3.33949 3.08 1.69 1.14
(0.55) (—0.49) (0.05) (0.53)

Table 4.6: Parameter estimates and goodness-of-fit test for weekly US Eurocurrency

rates using 5-year period data.
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00—-02: GMM 0.00031  0.00101 0.00545 0.42439 4.30 1.48 3.39
(—1.74) (0.20) (1.67) (2.35)

IGMM 0.00000  0.06883 2.07202 0.91987 12.81 0.02 12.75
(0.00) (4.73) (3.04) (9.04)

RGMM —0.00048 0.00464 0.00422 0.37601 2.89 1.33 1.63
(—2.89) (1.02) (2.19) (2.77)

IRGMM —0.00038 0.00164 0.00127 0.43122 1.60 0.31 1.24
(=0.71) (0.24) (0.09) (0.10)

Table 4.7: Parameter estimates and goodness-of-fit test for weekly US Eurocurrency
rates using 3-year period data.

5. Conclusion

In this paper we presented an empirical comparison of four estimation techniques of the
diffusion model (1). We checked the performance of these techniques by comparing their
predictive power on monthly Eurocurrency rates for US, UK, Japan and Switzerland
and weekly rates for US. With each dataset, indirect estimators and particularly the
IRGMM estimator provided the most accurate forecasts.

Two main research directions could be considered in the future. From a compu-
tational point of view, it would be useful to develop more efficient algorithms for the
computation of the IRGMM estimator which would reduce the computational com-
plexity of the present algorithm for the minimization of (8). This would speed up the
computation of IRGMM. Secondly, in this paper we applied the new technique in the
standard CKLS single factor model. However, extensions to other models are possible
and it would be interesting, for instance, to study the performance of IRGMM in more
complex diffusion models.
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Appendix

Suppose that our sample of observations {y;}:=1,., is generated from a contaminated
model (1 —¢)F(0)+cG, 0 < e < 1. In this appendix we provide the technical details to
investigate the consistency and the asymptotic distribution of the indirect estimator.

A.1 Asymptotic bias of indirect estimation
Let us define the auxiliary estimator fi,, as the solution of a maximization criterion
fin = argmax o ({ye}, 1) (17)

where p,, is an objective function, for instance the log-likelihood function of the auxiliary
model F'(u).Then the auxiliary estimators computed with the simulated pseudo-data are
defined by:

i (0) = argmgxpn({yf(e)},u), s=1,...,5. (18)
Let us denote by HASN the indirect estimator associated with the auxiliary fi,, estimator:
éSn(Q) = arg I%m(ﬂn - [LSn(g))TQ([Ln — fisn(0)) (19)

and assume that the objective function p,({y:}, i) satisfies the following regularity con-
ditions:

(1) pn({ye}, p) and p,,({y;(0)}, ) tend almost surely and uniformly respec-
tivily to n:(6p, 1) and to n(0, u) when n — oc;

(i) these limit functions have unique maxima with respect to pu:

68(90) = arg m;?X 775(90; :u) )
b(0) = argmaxn(0, 1) ;
o

(iii) pn, 1, n are differentiable with respect to u, and

a € . 8 n
— (0, 1) = lim ——({y; (0
g0 = lim 5 = ({wa(O)), 1)
(iv) the only solutions of the asymptotic first order conditions are b.(6p)
and b(0):
Uz
0 =0 = b.(0
6u( 0: 1) = M (6o)
on
—(0,pn) = =b(0
520,00 =0 = n = b0)
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(v) b is bijective, differentiable with respect to § and the inverse of 2 55(05)
exists at 05 = b= (b-(6y)) -

Proposition A.1 Under conditions (i)-(v) above the indirect estimator O, has the
asymptotic bias:

asbias (ésn, g)=06;—10. (20)

Proof: From assumptions (i)-(v) we have:

fin = argmax pu({ye}, p) = argmax (6o, p) = be(6) (21)
S
fisal0) = 5 3 axgmasp, (5 O)) ) —_ argmasn(0, ) = b(6) . (22
Then: .
Osn(2) =argmin(fin — fisn(0))" fin — fisn(0))

— argmin(b (6) — b(6))" (b-(60) — b(6)) (23)

={01]0-(60) = b(0)}

=b"1(b.(0y)) -

A.2 Asymptotic distribution of the indirect estimator

Assume the following additional regularity conditions:
(vi) pnmnm_awu ({ye}, b(60)) = (ff;;; (69, b-(6,)) = J. and
i, =z ({57(6)},0(0)) = —5,50r (6, 5(0)) = J(6)
(vii) Vg ({u} be(60)) = N(0. L) and
s d
VAR (5 (0)}.0(0)) L N(0.1(0))

Proposition A.2 Under conditions (i)-(vii) the indirect estimator O, is asymptotically
normally distributed:

Vi(ls, —0;) 5 NO,W), (24)

o —1 o -1
where W = (%) w, (%) and W, = J7HLJ7 + $J(05) 1 1(65) T (65)

Proof: First we derive the asymptotic expansions for fi,, and fis,(0). From the first
order conditions we have:

3p"<{yt} i) = 0 (25)
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and

%_f;?({y;w)},g;(e)) —0, ¥s=1,...,5. (26)

Taylor expansions around p = b.(0y) for (25) and around p = b(0) for (26) give:

e (i) + o (0} 00)) (7 = b00)) = o) (20

and

Opn py _
T (EO} 1) + 57 (0 O)) (0) ~10) = o)
Vs=1,...,5.
From (27) and (28) we obtain

o = bu00) = (~ 257 (h bol60)) ) 2 (i} ul6) + o)

TV
—J.

and
0) = 40) = (222 (0 0150)) L2 (4 0)150) +of )
) —.J(6) ’
Vs=1,...,5,
We conclude that
Vit = b00) = IV (i b)) o) (29)

and

\%

S
Vil (0) = b0) = JOG SR O0)00) o). @

Next we develop an asymptotic expansion for 0s,,. From the definition of the indirect
estimator (19) we have

8ﬂ5n(95n)T

o0 Q(/ln - ﬂSn(éSn)) =0. (31)

. A T
a:uSn (GSn)

o around the limit value 65 = b (b.(6y)) gives

An expansion of

8ﬂ5n(é5n)T _ Ofisn(05)"  0fisn(65) * l
o = o9t apeer CsnmOHeR). (32
By replacing (32) in (31), we get
Ofisn(00)" oy~ = vy Ofisn(05)" - Ofisn (65) N
o 20 Ui — fsn(05)) — L0 2 (9, — ) = o).
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Ofisn(63) ab(63)
90 o0

ob(05)" 55(9S)>156(9S)T

Finally, with , we obtain

Villsn = 05) :( o0 o0 g Wnlin = fisn(05)) + 0(%)
:(aba(gg))_l\/ﬁ(ﬂn — fsn(65)) + 0(%) -

(33)
By substracting (30) from (29), we get

il ~ fsn(05)
= VAL ()0 00) — S0 3 VA (i 0)).46)) +of )

7 s=1 . 7
N~ N~

d
jooN(OuIE)

n

1
4, N0, JZ LI+ = J(05) 7 1(05) T (65)7) -

n—oo S

By denoting W, = J-'L.J1 + $J(05) 1 1(65)J(6;) ", we conclude that

Vi(0s, —05) % N(O,W) (34)

n—oo

o 1 oy 1
with W = (ai,ggw) W, (%ggo)) .
A.3 Illustration on the model of Dothan

Let us consider the CKLS model (2) with a = 8 =0 and v = 1. We obtain the model
of Dothan:
dyt = O'ytth . (35)

This stochastic differential equation can be solved explicitely. By dividing (35) by v,

we obtain

% = O'th7

Yt
and under the hypothesis that y; > 0 and applying It6’s lemma to f(y;) = logy; we

have:
2

dlogy, — —%dt+ath.

By integration between ¢ and t — 1, we get

o2
lOg’I"t:—?—l—UEt, (36)
where 7, = It and ¢ is a standard normal variable. Hereafter we will refer to (36) as

Y1
the exact discretization of the model of Dothan.

The model of Dothan is one of the few cases where we can determine the distribu-
tion of y; and, therefore calculate the bias of the estimators. This model enables us
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to compare results obtained by way of simulations and those obtained by theoretical
calculation.

Let (n+ 1) observations of y;, t = 0,1,...,n to be given. To estimate o2, we proceed
to the crude discretization (3) with restrictions: a = =0 and v = 1. We obtain

Yt = Y1+ OYs_16¢, (37)

where the ¢, are i.i.d. standard normal variables. Then the maximum likelihood esti-
mator of o2 is

5% = %Z(” —1)2. (38)

Let us now consider the model of Dothan when the underlying diffusion model is
contaminated i.e. when the increments ftt_l dW; = ¢ in (1) are not standard Wiener
processes but in a e-neighborhood (1 —&)N(0, 1) + &N (0, 72).

In this case, there is a bias due to the contamination. Proposition A.3 gives the
biases of the auxiliary and indirect estimators of the model of Dothan when the data is
contaminated. The auxiliary estimator is based on the maximum likelihood estimator
for the crude discretization.

Proposition A.3 Let us suppose the model (36) with ¢, distributed by eN(0,1) + (1 —
e)N(0,7%) . Let 62 be the estimator defined by (38). Then, we have:

bias(62,¢) = €7 — (1 + 0?) + 5(2 7 4 er? @ 1) 9 0?(T 51)) . (39)
2 2 2 2 1
bias(67,¢) = In (e" +5(2—e" +e (272*1)—26"2(71)» —02—|—O(5) . (40)

Proof: For the contaminated data, we have:

21

be(0?) = El(r, — 1) =¢” —1+e(2—¢ +e7 7D _2e75))  (41)

and (39) follows from (41). For the simulated data we have:

*2

b(o*) = E(rj(0"*) = 1)*] =€ — 1, (42)

b1 (b(02)) = In(b.(0?) + 1) =In (e”2 +e(2—e 77D _9e7'C f))) .
Finally, (23) with (43) gives (40).

A.4 The Choice of the Parameters S and §

To compute the indirect estimator, we have to chose a constant ¢ corresponding to the
subdivision of the time interval and a number S of simulated pseudo-data. The 'real’
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data is generated from the exact discretization with o2 = 0.25. The auxiliary maximum
likelihood estimator 62 = 0.3097 and the robust MAD estimator is 63 = 0.1056.

©
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10 20 30 40 50
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Figure A.4 Indirect robust estimators of o2 for S = 10 (boxes), for S = 25 (diamonds)
and for S = 100 (curve).

Figure A.4 shows that the indirect robust estimator settles down for 6 < 1/22. Our
choice for the parameter will be S = 25 because the gain of stability with S = 100 is
not significant if we take into account the fact that computation time of an indirect
estimator with S = 100 is four times longer then with S = 25. For the classical indirect
estimators the results are more volatile.
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