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ABSTRACT

In this paper, we develop a general framework for optimal testing in volatility
models from a finite-sample perspective. We first describe the general structure
of point-optimal tests in the context of a general class of volatility models, which
includes ARCH, GARCH and stochastic volatility models. Then we propose an
adaptive methodology [the split-sample Monte Carlo adaptive optimal (SSMCAO)
technique], based on combining (maximized) Monte Carlo tests with split-sample
methods, which allows one to search for the best point alternative. We get in
this way approximate point-optimal tests under the true DGP under consideration
(adaptive point-optimal tests), such the power of the test converges to the power
envelope as the sample size increases. Further, the proposed procedure does not re-
quire the existence of moments and can be applied to any type of distribution for the
errors, including heavy-tailed ones. Stationary, unit root as well as non-stationary
volatility processes are allowed. Under parametric distributional assumptions, the
level of the test is perfectly controlled.
Although the theory presented covers a wide spectrum of volatility models, in-

ference on GARCH models is studied in greater detail. We consider the general
problem of testing any possible set of coefficient values in GARCH models, with
Gaussian and non-Gaussian errors. Both Engle-type, local best invariant and point-
optimal tests are studied. Special problems considered include the hypothesis of
no-GARCH effects and integrated models. We show that the method suggested
provides provably valid tests in both finite and large samples, in cases where stan-
dard asymptotic and bootstrap methods fail in the presence of heavy-tailed errors
[as shown by [Hall and Yao, 2003]]. When it is possible to find a consistent esti-
mate, the procedure touches the power envelope asymptotically. The performance
of the proposed tests, with both Gaussian and non-Gaussian errors, is analyzed in
a simulation experiment. Our results show that the proposed procedures work well
from the viewpoints of size and power. In many cases, spectacular power gains
provided are achieved. The tests also exhibit good behaviour outside the stationar-
ity region. Finally, the technique is illustrated by an application to a model of US
inflation.

Key words: hypothesis testing; testability; GARCH; asymptotic theory; exact in-
ference; fat tails; nonstationarity; conditional heteroskedasticity; unit root; optimal
testing; Monte Carlo test; Maximised Monte Carlo test; Split Sample Monte Carlo
Adaptive Optimal Tests.
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1 Introduction

In this paper we provide a framework for exact optimal testing in volatility mod-
els. The use of exact theory, allows for the possibility of having a very flexible
setting in the models where it is applied. Our proposal has the advantage of not
requiring the existence of moments, and that it works straightforwardly both in the
stationary, unit root and nonstationary regions. Our main novel contribution to the
literature, is to propose an adaptive procedure that allows to search for the point
alternative, at the same time that size is fully controlled in the point optimal test.
We start by characterising both local best invariant tests [extending the work of
[King and Hillier, 1985] and [King, 1980]] and approximate point optimal tests in
cases where the model can have a markovian structure or not. Because we deal with
starting values as nuisance parameters [following [Mueller and Elliott, 2003]], we
can get exact results in a straightforward way. Our approach proposes a combina-
tion of Monte Carlo tests, Maximised Monte Carlo tests with a splitting technique.
In optimal testing, the most important issue is how to select the point alternative
to use. We propose two possible mechanisms for that: either to use a consis-
tent estimate, or, when that is not possible, to search for the point that maximises
asymptotically the empirical frequency of rejection at the same time that size is
controlled regardless of the sample size. We show the performance of our ap-
proach by specilising our results on developing finite sample inference procedures
as well as optimal tests for GARCH models. Specially, we concentrate on testing
any value of the conditional heteroscedastic coefficients. This also allows us to
test for the presence of GARCH effects and the unit root case [with the IGARCH
process], and we compare our results with other available procedures. There are
already available several tests for accounting for ARCH and GARCH effects: see
for example [Engle, 1982], [Lee, 1991] and [Lee and King, 1993]. More recently,
[Dufour et al., 2004] have proposed to improve the properties of the inference by
exploiting the use of Monte Carlo (MC) techniques [see [Dufour and Kiviet, 1996]
and [Dufour and Kiviet, 1998] for more details]. In this paper we propose also the
use of MC techniques, although we go further, and we present new procedures for
testing any value of coefficients of much more general models in the mean and in
the conditional variance equation. Among others, we propose a point optimal test.
We also use the Maximised Monte Carlo (MMC) technique to deal with nuisance
parameters [see [Dufour, 2004] for more details]. As the main innovation of this
paper, we propose a combination of Monte Carlo tests with splitting the sample in
two steps, and we show its optimality properties. If the sample is divided into two
and we condition on the history of the first part of the sample [order matters in this
case], we get a full control of the size after step 2 of the procedure.
In the case of testing the null of IGARCH(1,1), [Lumsdaine, 1995] gets re-
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sults that Wald tests seem to have the best size, although the standard Lagrange
multiplier statistic is badly oversized. At the same time, versions of the LM that
are robust to possible nonnormality of the data perform only marginally better.
In any case, [Lumsdaine, 1995] reports that in general, from her simulations, the
Lagrange multiplier, likelihood ratio and Wald do not behave very well in small
samples. Our framework also allows us to test for this hypothesis and with the MC
and the MMC techniques we will be able to control for the size.
We also show through simulation that the tests developed in this paper can be

applied both in the framework of gaussian and non-gaussian errors; including er-
rors following a t-distribution with very low degrees of freedom [situations that
are very important in practice, and where asymptotic theory and standard bootstrap
methods break down]. [Hall and Yao, 2003] report problems with the conservatism
of their subsampling technique when the tails of the errors are very light and prob-
lems with the anticonservatism for heavy-tails [in their study, for sample sizes of
1000 and for nominal levels of 0.10, they tend to get size distorsions of around
0.30]. Due to the fact that our procedure controls the size and the exactness of
the test, this makes our proposal more attractive than the subsampling technique of
[Hall and Yao, 2003]. Moreover, apart from controlling for the size, our proposal
maximises the empirical frequency of rejection asymptotically through the struc-
ture of the approximate point optimal test, providing very good power in finite
samples, as we will show through simulation. That implies that the procedures de-
veloped in this paper can be used by practicioners in any type of scenarios: includ-
ing gaussian and non-gaussian errors without being worried about the existence of
moments. Besides, [Hall and Yao, 2003] only show results for sample sizes 1000
and 500 and even already in those cases their procedure has size problems. We will
show the good perfomance of our procedure even for sample sizes of 50.
[Jensen and Rahbek, 004a], [Jensen and Rahbek, 004b] have shown recently that

the QMLE is always asymptotically normal provided that the fourth moment of the
innovation process is finite in GARCHmodels. However, although this shows what
happens asymptotically, it is still unknown in the literature which is the effect of
being in a non-stationarity region in finite samples. In this paper we also consider
cases where we are in a non-stationary region, and we will provide the behaviour
of the tests in this framework. Again in this case, the existence of moments is cru-
cial for the result of [Jensen and Rahbek, 004a],[Jensen and Rahbek, 004b] [their
result does not allow to deal with non-stationary regions and fat tails at the same
time] while our tests [through the MC and the MMC] can work both in the non-
stationary region and/or in those cases where moments do not exist [with very fat
tails].
Finally, making use of the MMC technique, and dealing with starting values

we can afford the existence of a very general framework both in the mean and in
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the conditional variance. With asymptotic approximations, this would change the
framework of the test, while the MMC technique takes that into account directly.
We also make operational our procedures for testing the null of a sub-group of
the GARCH coefficients equal to a value by making use of the Maximised Monte
Carlo (MMC) technique.
The inmediate applications of the results in this paper are several. Among

them, first, from our inference procedures we can construct confidence intervals for
conditional volatility. Second, we can retrieve from there predictions of volatility
through the confidence intervals and point predictions. Third, from our method we
can get predictions of the underlying variables.
The plan of the paper is as follows. We first present our general setting and

how we can get both exact and approximate point optimal tests. Section 3 develops
the new methodology of exact splitting: the Split Sample Monte Carlo Adaptive
Optimal (SSMCAO) technique and its minimised (MSSMCAO) version. Later,
in Sections 4 and 5 we specialise our results in the case of GARCH and ARCH
models. We also carry out a simulation study to find out about the size and power
properties of the proposed test procedures. We also show the usefulness of our test
in practice, when we re-visit the analysis of the US implicit price deflator for GNP.
Finally, in Section 6 we conclude.

2 Optimal inference in volatility models

We consider both local best invariant tests and approximate point optimal tests in
four scenarios: local best invariant tests [extending the work of [King and Hillier, 1985]
and [King, 1980]] when the parameters in a linear mean equation are estimated or
not, and approximate point optimal tests where the parameters in the mean equation
are estimated and both when the mean equation is linear or not.

2.1 Exact optimal and locally best invariant tests with a known linear
regression in the mean equation

We start by presenting an exact point optimal test that will be the local best invariant
test in the sense of [King and Hillier, 1985] and [King, 1980] when the parameters
in the mean equation are known.
Let’s suppose the model:

yt = xt́β + εt, t = 1, ...T or y = Xβ + ε (1)

ht = E
¡
ε2t /Jt−1 : Φ

¢
; εt =

p
htut (2)
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where ut can follow any type of distribution that can fit our data, the information
Jt−1 contains at least the minimal natural filtration associated to the process εt−1 :
It−1 = σ (ετ , τ ≤ t− 1) . y is T × 1, X is T × k, fixed, and of rank k ≤ T.Many
models in the econometrics literature deal with those characteristics including the
general clase of square-root stochastic autoregressive models, stochastic volatility
models or GARCH [see e.g. [Andersen, 1994] and [Meddahi and Renault, 2004]
for more details]. This specification would of course include models that could
specify asymmetries, leverage effects, or any other specification typically used
nowadays in the conditional variance equation. We also assume first that β is
known.
We characterise now the exact optimal test in the next theorem. We assume a

t-distribution and conditional normality to derive the test in closed form, although
any generalization to a different distributional assumption would be straightfor-
ward [we could allow for example, for the skewed t-quasi likelihood function (see
[Fernandez and Steel, 1998] and [Hansen, 1994]), or for the α−stable distribution
(see eg. [Garcia and Veredas, 2004])]:

Theorem 2.1 Exact point optimal tests. Suppose that yt = xt́β + εt, β is known
and ht = E

¡
ε2t /Jt−1 : Φ

¢
. Then an exact point optimal test at Φ = Φ1 for the

null ofH0 : Φ = Φ, under any distribution function of ut is given by:

LR
¡
Φ1,Φ

¢
= −2 £lT ¡εt ¡Φ1¢ ,Φ1¢− lT ¡εt ¡Φ¢ ,Φ¢¤

where lT will be the likelihood function of the distribution of ut. In the special case
of the t-distribution:

lT (Φ) = ln

·
Γ

µ
v + 1

2

¶¸
− ln

h
Γ
³v
2

´
− 0.5 ln [π (v − 2)]

i

−0.5
TX
t=1

"
ln
¡
E
¡
ε2t /Jt−1 : Φ

¢¢
+ (1 + v) ln

Ã
1 +

ε2t
(v − 2)E ¡ε2t /Jt−1 : Φ¢

!#
under conditional normality is given by:

LR
¡
Φ1,Φ

¢
=

TX
t=1

ln

Ã
E
¡
ε2t /Jt−1 : Φ1

¢
E
¡
ε2t /Jt−1 : Φ

¢ !+ TX
t=1

Ã
ε2t

E
¡
ε2t /Jt−1 : Φ1

¢ − ε2t
E
¡
ε2t /Jt−1 : Φ

¢!

Proof. Given in Appendix 1.
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2.2 Exact optimal and locally best invariant tests when a linear re-
gression is estimated in the mean equation

To extend the previous setting to the case where β is estimated, we first get the
local best invariant test.
Following [King and Hillier, 1985] and [King, 1980], the previous problem is

invariant under transformations of the form:

y → γ0y +Xeγ
where γ0 is a positive scalar and eγ is a real k × 1 vector.
Let M = IT − X (X́X)−1 X́, z = My, and P1 be an (T − k) × T matrix

such that P1P1́ = IT−k and M = P1́P1. We also define P2 as an k × T matrix
where P = (P1, P2)́ , P Ṕ = IT , P2P2́ = Ik, P1P2́ = 0. Then:

Theorem 2.2 Locally best invariant tests.Suppose that yt = xt́β + εt,β is esti-
mated and ht = E

¡
ε2t /Jt−1 : Φ

¢
. Then a local best invariant test forH0 : Φ = 0

againstH1 : Φ > 0 is that with critical regions of the form:

∂ ln f (v;Φ)

∂Φ
|Φ=0 > c2

where c2 is a suitable constant and v = P1z

(źP1́P1z)
1/2 is the maximal invariant under

the above group of transformations. Besides:

f (v;Φ) =

Z
f (ε, s;Φ) ds

where s = P2z

(źP2́P2z)
1/2 and:

f (ε;Φ) = f (εT/IT−1;Φ) f (εT−1/IT−2;Φ) f (εT−2/IT−3;Φ) ....f (ε1;Φ)

where f (ε1) is treated as a nuisance parameter to estimate.
To obtain the local best uniform invariant test yields critical regions w0 of the

form:
∂2f (v;Φ)

∂Φ∂Φ́
|Φ=0 > k1f (v;Φ) |Φ=0 + k2∂ ln f (v;Φ)

∂Φ
|Φ=0

where k1 and k2 are constants so that w0 satisfies the size condition:

Pr {v ∈ w0|Φ = 0} = α

and the local unbiasedness condition:
∂ Pr {v ∈ w0}

∂Φ
|Φ=0 = 0
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Proof. Based on [King and Hillier, 1985].
Theorem 2.2 makes our proposal difficult to be operative from the applied point

of view, unless an extensive simulation exercise is carried out to evaluate the inte-
gral. In relation to the exact optimal test, the expression is exactly the same as the
one given in Theorem 2.1, due to the fact that we are using residual-based tests [see
e.g. [Dufour et al., 2004] for more details]. Then we can justify that the previous
test is invariant to the choice of the intercept in the conditional variance and in the
mean equation, and to the parameters of any number of exogenous variables that
are included in the mean equation. We justify this in the following proposition and
corollary:

Proposition 2.3 (Pivotality of a statistic). Under (1) and (2), let S (y,X) =
(S1 (y,X) , S2 (y,X) , ..., Sm (y,X))́ be any vector of real-valued statistics such
that

S (cy +Xd,X) = S (y,X) ,∀c, d ∈ Rk.
Then, for any positive constant

√
h0 > 0, we can write

S (y,X) = S
³
ε/
p
h0,X

´
and the conditional distribution of S (y,X), given X, is completely determined
by the matrix X and the conditional distribution of ε/

√
h0 = ∆η/

√
h0 given X,

where ∆ = diag (
√
ht, t = 1, ..., T ). In particular, under H0 : Θ = Θ,Φ = Φ,

we have:
S (y,X) = S (η,X)

where η = ε/
p
ht, and the conditional distribution of S (y,X) , given X, is com-

pletely determined by the matrix X and the conditional distribution of η given X.

Proof. Taking c = 1/
√
h0 and d = −β/

√
h0, then:

cy +Xd = (Xβ + ε) /
p
h0 −Xβ/

p
h0 = ε/

p
h0.

From (2) then, and underH0 : Θ = Θ,Φ = Φ, we have that ε = ∆η =
p
htη, and

then, taking
√
h0 =

p
ht, we get finally ε/

√
h0 = η and S (y,X) = S (η,X).

It is also necessary to prove that the pivotality characteristic also holds because
in our case our statistics are scale-invariant functions of OLS residuals. We prove
this in the next Corollary:

Corollary 2.4 (Pivotal property of residual-based statistics). Under (1) and (2),
let S (y,X) = (S1 (y,X) , S2 (y,X) , ..., Sm (y,X))́ be any vector of real-valued
statistics such that

6



S (y,X) = S (A(X)y,X)

where A(X) is any n× k matrix (n ≥ 1) such that

A(X)X = 0

and S (A(X)y,X) satisfies the scale invariance condition

S (cA(X)y,X) = S (A(X)y,X) , forallc > 0.

Then for any positive constant
√
h0 > 0, we can write

S (y,X) = S
³
A(X)ε/

p
h0,X

´
and the conditional distribution of S (y,X) , givenX, is completely determined by
the matrixX jointly with the conditional distribution of A(X)ε/

√
h0 givenX.

Because the previous expressions do not have a straightforward representation
to apply in practice, we proceed in the next section to apply an approximate point
optimal test.

2.3 Approximate optimal tests when the mean equation has a linear
regression

Let’s suppose that our setting is again the one given in the previous section where
β is estimated. The approximate point optimal test will be given by the same
expression as in Theorem 2.2, but where ε is replaced by bε [the residuals], and
again, we can use the invariance property given in Proposition 2.3 and Corollary
2.4.

2.4 Approximate optimal tests when the mean equation is nonlinear

This section contains the more general case that our theory covers. We start now
by characterising the general framework of approximate point optimal tests. We
allow for the existence of any process of the form:

yt = f (µt : Θ) + εt

ht = E
¡
ε2t /Jt−1 : Φ

¢
; εt =

p
htut

where ut can follow any type of distributional function, the information Jt−1
contains at least the minimal natural filtration associated to the process εt−1 :

7



It−1 = σ (ετ , τ ≤ t− 1) . f (µt : Θ) may contain exogenous variables, ARMA
or another [possibly nonlinear] processes, and Θ and Φ are the parameter vec-
tors of interest. The main theorem states a general framework of approximate
point optimal tests for any type of possibly non-linear process that would fit in the
previous specification. Again, this specification would of course include models
that would specify asymmetries, leverage effects, or any other specification typi-
cally used nowadays. Many models in the econometrics literature deal with those
characteristics including the general class of square-root stochastic autoregressive
models, stochastic volatility models or GARCH [see e.g. [Andersen, 1994] and
[Meddahi and Renault, 2004] for more details]. We state the theorem in the con-
text of the conditional normal distribution for εt√

ht
for sake of simplicity, although

any generalization to a different distributional assumption would be straightfor-
ward [we could allow for example, for the skewed t-quasi likelihood function (see
[Fernandez and Steel, 1998] and [Hansen, 1994]), or for the α−stable distribution
(see eg. [Garcia and Veredas, 2004])], where using a pretest-estimator, first we
would find the best distribution that conditionally would accommodate our data,
and later we would apply in a second stage our approximate point optimal test
where we would deal with the nuisance parameters with the MMC technique.

Theorem 2.5 Approximate point optimal tests. Suppose that yt = f (µt : Θ) + εt
and ht = E

¡
ε2t/Jt−1 : Φ

¢
; εt =

√
htut. Then an approximate point optimal test

at Θ = Θ1,Φ = Φ1 for the null ofH0 : Θ = Θ,Φ = Φ, is given by:

LR
¡
Θ,Φ,Θ1,Φ1

¢
= −2 £lT ¡εt ¡Θ1,Φ1¢ ,Θ1,Φ1¢− lT ¡εt ¡Θ,Φ¢ ,Θ,Φ¢¤

under conditional normality is given by:

LR
¡
Θ,Φ,Θ1,Φ1

¢
=

TX
t=1

ln

Ã
E
¡
ε2t/Jt−1 : Φ1

¢
E
¡
ε2t /Jt−1 : Φ

¢ !+ TX
t=1

Ã
ε2t
¡
Θ1
¢

E
¡
ε2t /Jt−1 : Φ1

¢ − ε2t
¡
Θ
¢

E
¡
ε2t /Jt−1 : Φ

¢!
Proof. Given in Appendix 1.
To understand better Theorem 2.5, let’s start by clasifying the type of models

that have the property of autoregression of the variance in two cases:

1. Those models that can be expressed as markovian processes. An example of
this case would be the AR(p) or ARCH(p) models. In this case, we do not
need to deal with nuisance parameters to test for the whole parameter vector,
so we can simply use theMonte Carlo technique [see [Dufour and Kiviet, 1996],
[Dufour and Kiviet, 1998], [Dufour et al., 2004] for more details]. If the
practicioner would be interested to test null hyphotesis different from the
whole parameter vector, it would be possible again thanks to the MMC tech-
nique. We see later more in detail the case of the ARCH(p) model.

8



2. Those models that cannot be expressed as markovian processes. A typical
example of this case is the ARMA(p,q) or the GARCH(p,q) model or com-
binations of both. We can express these models as a function of parameters
and starting values. This is one of the novel approaches we propose in this
paper: in order to provide provably valid inference of the previous point op-
timal test, we propose to deal with the initial values as nuisance parameters.
Due to the non-standard distribution of the statistic, we propose to retrieve
the critical values of the point optimal test through the MMC technique [see
[Dufour, 2004] for more details]. We will see more in detail in the next sec-
tion how we can deal with the GARCH(p,q) model, and how a much simpler
expression of the point optimal test can be found. This approach allows
for enough flexibility to consider non-stationary scenarios as well as regions
of the parameter space where the moments do not exist [a crucial issue in
volatility models].

3 Split-sample monte carlo adaptive optimal (SSMCAO)
tests

Because our proposal includes the use of exact approximate point optimal tests,
a primary concern is to find a methodology to find the point to optimise the test.
There are already several alternatives available in the literature: one could look for
the middle of the parameter space [as in [Elliott et al., 1996]] or to maximise power
against a weighted average of alternatives [[Andrews and Ploberger, 1994]]. Our
proposal includes the novelty of selecting the point to optimise the test from the
own data directly: the Split-Sample Monte Carlo Adaptive Optimal (SSMCAO)
tests. The two stages procedure is described below:
Let’s suppose that θ1 =

¡
θ11, θ

1
2, ..., θ

1
s

¢́
are the possible points to optimise

the point optimal test, and let’s suppose that we do not have nuisance parameters
[otherwise instead of applying the Monte Carlo technique, we would use the Max-
imised Monte Carlo technique]. Let’s suppose we have an original sample size
“T”. Let’s divide T in two subsamples: “q” the first and “p” the second. We will
use q for the first step and p for the second step [the order is crucial when dealing
with dynamic models].

STEP 1:

1. In case asymptotic theory would work, one possibility is to find a consistent
estimator for the point to optimise the test. We would estimate the model to

9



find a consistent estimate
¡
θ1∗
¢
with the first part of the sample q, and later

we move to step 2.

2. However, we want to generalise this result and to make it general enough
to work as well when asymptotics breaks down and it is not possible or
extremely difficult to get a consistent estimate [and to be able to deal with
situations like in [Hall and Yao, 2003]]. In this case, we propose to minimise
the empirical p-value from the first subsample in order to find the chosen θ1∗
[the point alternative] that it will be used in step 2 with the second subsample.
This originates a Minimised Split-Sample Monte Carlo Adaptive Optimal
(MSSMCAO) test. The idea is based on chosing the θ1∗ that produces the
higher frequency of rejection from our sample. In more detail:

Select a first point to optimise the test θ11 and compute the corresponding statis-
tic S0

¡
yt, θ

1
1, θ0

¢
for the first subsample of size p. Then retrieve a simulated p-

value bpN1 for θ11 through the Monte Carlo technique [in case of the presence of
nuisance parameters, we would use the MMC technique]:

bGN1 ¡S0 ¡yt, θ11, θ0¢ , θ0, θ11¢ = PN
i=1 1

¡
Si
¡
θ0, θ

1
1, θ0

¢− S0 ¡yt, θ11, θ0¢¢
N

where S1, ..., SN are simulated from the null hypothesis. yt is our available data
for each subsample. And compute:

bpN1 ¡S0 ¡yt, θ11, θ0¢ , θ0, θ11¢ = N bGN1 ¡S0 ¡yt, θ11, θ0¢ , θ0, θ11¢+ 1
N + 1

Repeat the procedure with θ12 :

bGN2 ¡S0 ¡yt, θ12, θ0¢ , θ0, θ12¢ = PN
i=1 1

¡
Si
¡
θ0, θ

1
2, θ0

¢− S0j ¡yt, θ12, θ0¢¢
N

where S1, ..., SN are simulated from the null hypothesis. And compute:

bpN2 ¡S0 ¡yt, θ12, θ0¢ , θ0, θ12¢ = N bGN2 ¡S0j ¡yt, θ12, θ0¢ , θ0, θ12¢+ 1
N + 1

Finally, with the θ1i , i = 1, ..., s different possible points to optimise the test,
compute:
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bpNi ¡S0 ¡yt, θ1i , θ0¢ , θ0, θ12¢ = N bGNi ¡S0 ¡yt, θ1i , θ0¢ , θ0, θ1i ¢+ 1
N + 1

Finally the criterium is to choose:

θ1∗ = argmin
θ1

©bpN ¡S0 ¡yt, θ1, θ0¢ , θ0, θ1¢ª , θ1 =
¡
θ11, θ

1
2, ..., θ

1
s

¢́
bpN ¡S0 ¡yt, θ1, θ0¢ , θ0, θ1¢ is the empirical p-value. The control for the size

is preserved through the sample splitting. And when the data comes from the
alternative hypothesis, we want to choose θ1∗ in such a way that our sample rejects
the null hypothesis as much as we can [the smallest empirical p-value].
In practice, we propose to apply the simulated annealing algorithm [see eg.

[Goffe and Rogers, 1994] for more details] to search on the parameter space of θ1i
till we reach the minimum of the empirical p-value in the first step.

STEP 2. With θ1∗ from STEP 1, finally we apply to the remaining sample “p”
the Monte Carlo technique. This second step allows to control size both in large
and finite samples because we condition to the history of the data in the first part
of the sample.

bGN ¡S0 ¡yt, θ1∗, θ0¢ , θ0, θ1∗¢ = PN
i=1 1

¡
Si
¡
θ0, θ

1∗, θ0
¢− S0 ¡yt, θ1∗, θ0¢¢

N

where S1, ..., SN are simulated from the null hypothesis. And compute:

bpN ¡S0 ¡yt, θ1∗, θ0¢ , θ0, θ1∗¢ = N bGN ¡S0 ¡yt, θ1∗, θ0¢ , θ0, θ1∗¢+ 1
N + 1

The proposed procedure holds the next properties:

Theorem 3.1 Split maximised technique. (a) The procedure defined in STEP 1
and STEP 2, is provably valid both in finite and large samples [both when finding
a consistent estimate of θ1 and when minimising the empirical p-value].
(b) The procedure defined in STEP 1 and STEP 2, when θ1 is chosen as a

consistent estimate of the θ from where the sample comes, it is the most powerful
test and it touches the power envelope asymptotically.
(c) The procedure defined in STEP 1 and STEP 2, when θ1 is chosen as the

minimum empirical p-value from the sample, asympotically it maximises the prob-
ability of rejection from the sample.

11



Proof. (a): by assuming that in step 2 we condition on the history of the first
sample of the data [from 1 to q], the procedure controls size in finite samples
and asymptotically. Here the order matters, and, because of the possible recursive
nature of the data, it is necessary that we split the sample into two, and we use the
first sample for step 1 and the second for step 2.
(b): Because of the consistency of the estimate, asymptotically and based on a

mean-value expansion, the procedure touches the power envelope.
(c): by assuming that q/T → 0, along with q → ∞, T → ∞, [the same as

the requirements in [Hall and Yao, 2003]], by construction θ1∗ is chosen such that
it maximises the probability of rejection from the sample.

4 The GARCH(p,q) case

4.1 The setting and the tests

We apply now our SSMCAO test to GARCH models. We consider the case of
univariate GARCH models, although our methodology may be applied to multi-
variate settings (see eg. [Cajigas and Urga, 2004]) and other type of models. The
GARCH(p,q) model will be an important example of the flexibility that our pro-
cedure offers and the important applicability in practice. Our procedure allows
to deal many problems that cannot be solved nowadays by asymptotic theory or
standard bootstrap procedures. We consider the model:

yt = xt́β + εt (3)

εt =
p
htut, t = 1, ...T, ht = E

¡
ε2t/It−1

¢
= θ0 +

pX
i=1

θiε
2
t−i +

qX
j=1

γjht−j (4)

To have a better understanding, let’s consider first the case where we only deal
with exogenous in the mean equation and we are interested in the problem of testing
any possible set of values for the GARCH coefficients:

H0 : θi = θi, γj = γj (5)

Again, the case of a conditional gaussian distribution is a special case, although
we can allow for possibly any other distribution for ut. Although the example that
we follow in this section implies that we are not dealing with nuisance parameters
in the mean equation, our framework allows for that by using the MMC technique.
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As we already said in the previous section, due to the fact that we are using
residual-based tests [see e.g. [Dufour et al., 2004] for more details], we can justify
that the tests are invariant to the choice of the intercept in the conditional vari-
ance and in the mean equation, and to the parameters of any number of exogenous
variables that are included in the mean equation.
Although we do not have nuisance parameters in the mean equation, we have

still the initial values in the conditional variance equation. In this paper we deal
with them as nuisance parameters in order to get provably valid inference [follow-
ing [?]]. In this case, the point optimal test would take a much simpler form than
the one in Theorem 2.5:

Theorem 4.1 Under conditional normality. Suppose that yt = xt́β + εt and ht =
E
¡
ε2t /It−1

¢
= θ0 +

Pp
i=1 θiε

2
t−i +

Pq
j=1 γjht−j . Then a point optimal test at

θi = θ1i , γj = γ1j for the null of H0 : θi = θi, γj = γj , under conditional
normality is given by:

LR
¡
θi, γj , θ

1
i , γ

1
j , h0, ε0

¢
=

TX
t=1

ln
¡
ht
¢
+

TX
t=1

µ
1

ht
− 1
¶

ε2t
θ0 +

Pp
i=1 θiε

2
t−i +

Pq
j=1 γjht−j

where ht =
µ

θ0+
Pp
i=1 θ

1
i ε
2
t−i+

Pq
j=1 γ

1
jht−j

θ0+
Pp
i=1 θiε

2
t−i+

Pq
j=1 γjht−j

¶
.

Proof. Given in Appendix 2.
h0 and ε0 are treated as nuisance parameters through the MMC technique. We

can include more complicated structures in the mean and the conditional variance
equation, and using theMMC technique. [Hall and Yao, 2003], [Jensen and Rahbek, 004a]
and [Jensen and Rahbek, 004b] have brought into consideration an important issue
in practice and it is the behaviour of these models in the non-stationary region and
in the case of fat tails. Our framework allows straightforwardly to consider their
framework, and in a much more general setting, because we allow for a full it-
eraction between mean and conditional variance equation, while their framework
is much more restrictive. The procedure in [Hall and Yao, 2003] only shows the
good asymptotic properties, although later in finite samples, there are strong size
distorsions and dependence of the choice of the subsample size. We proceed now
to provide some simulation results of our proposal.

4.2 Simulation results

We consider the GARCH(1,1) and we analyse the settting [to follow the simulation
results given in [Hall and Yao, 2003]]:
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yt = εt, where ht = E
¡
ε2t /It−1

¢
= θ0 + θ1ε

2
t−1 + γ1ht−1

The simulation results are given in Appendix 3. We have selected two null hy-
pothesis: θ1 = 0.5 and γ1 = 0.4 [the same null analysed in [Hall and Yao, 2003]]
and a non-stationary region null hypothesis to see the consequences of that [to ex-
plore the setting analysed in [Jensen and Rahbek, 004a], [Jensen and Rahbek, 004b]].
In order to check the robustness of our result to the distributional error, we show
the results both when the normal distribution is the correct one, and when the er-
rors are finally distributed with a t-distribution with 3 degrees of freedom. We
want to analyse the case where the true errors come from a t-distribution with 3
degrees of freedom to compare our results with those of [Hall and Yao, 2003], and
because in this case to find a consistent estimate for the GARCH parameters it is
a difficult task, we use our SSMCAO procedure by finding the point alternative in
relation to the minimum p-value in the first stage, as well as the result we would
get through QML. SSMCAO when we use the minimum p-value from the first part
of the sample, produces the Minimised SSMCAO (MSSMCAO) (in Appendix 3,
this is denoted SSMMCAO m-p). Because we treat the initial values as nuisance
parameters, we have to use instead of the MC technique, the MMC technique. And
when this is combined with our split sample technique and the minimum p-value,
this produces the Minimised Split-Sample Maximised Monte Carlo Adaptive Op-
timal (MSSMMCAO) test . We also show the results of the SSMMCAO when we
use the QML estimator to optimise the test in the second stage (even although for
t(3) errors, the estimate is not consistent). Besides, we also show the result of the
point optimal test when the full sample size is used both for the first and the second
stage (PO(full sample)).
[Hall and Yao, 2003] only offered results about the size of their test. We first

see how our test procedure fully controls the size [in all the cases where we split
the sample, except when the full sample is used for both the first and second stage].
We also show the performance of our test in relation to power. We see how indeed
the power of the point optimal test is very sensitive against the alternative to which
it is maximised (in some cases, where the wrong alternative in the point optimal
test is used, the power can be very low, and even as well when the point is very
close to the true one), and how our proposal of splitting the sample offers very
good finite sample results when the researcher does not a any a priori information
about where to optimise the approximate point optimal test. Our proposal has very
good power both in the cases of the stationary and the non-stationary region and it
is quite close to the power envelope. For our split sample technique we have used
1000 replications, the MMC technique in STEP 1 to deal with the starting values
as nuisance parameters, and when the sample size is 50, we have used 25 for the
first step and 25 for the second step. In case the total size was 200, we have used
50 for the first step and 150 for the second step. A general rule that is supported
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through simulations, it is that it is advisable to use around the 20% of the sample
for step 1 and 80% for step 2. We see how the procedure of minimising the p-value
always have very good results. The procedure of using the consistent estimate has
very good results under normality (when the estimator is consistent), although the
MSSMMCAO technique is always better when the QML does not offer a consistent
estimator. In any case, the SSMMCAO technique clearly outperforms the subsam-
pling technique of Hall and Yao (2003) (controls for size and it is very close to
the power envelope). The procedure of using the full sample for both stages offers
large size distorsions.
We also show the results of using retrieving the QMLE from the whole sample

size and to use it to optimise a point optimal test in the whole sample size again.
It is shown that the test is not exact (there are size distorsions) and the power
increments do not overcome the size distorsions (what supports the use of our split
sample technique).

5 The ARCH(p) case

5.1 Alternative test statistics for any value of the ARCH coefficients

We proceed now to propose alternative tests for any value of the AR(q)-ARCH(p)
coefficients. We could also allow for more complicated ARMA-GARCH pro-
cesses, but in order to keep the notation simple, we specialise this section in the
AR(q)-ARCH(p) case. We consider the model:

yt = xt́β +

qX
i=1

φiyt−i + εt (6)

εt =
p
htut, t = 1, ...T, ht = E

¡
ε2t /It−1

¢
= θ0+θ1ε

2
t−1+θ2ε

2
t−2+ ...+θpε

2
t−p
(7)

where xt = (xt1, xt2, ..., xtk )́ , X ≡ [x1, ..., xT ]́ is a full-column rank T × k
matrix, β = (β1, ...,βk )́ is a k × 1 vector of unknown coefficients,

√
h1, ...,

√
hT

are [possibly random] scale parameters, and ut = (u1, ..., uT )́ is a random vector.
The case of a conditional gaussian distribution is a special case, although we can
allow for possibly any other distribution.
Let’s consider first the case where we only deal with exogenous in the mean

equation. We are interested in the problem of testing any possible set of values for
the ARCH(p) coefficients:

H0 : ht = ht = θ0 + θ1ε
2
t−1 + ...+ θpε

2
t−p (8)
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We stress the fact that our procedures allow as well to test the null hypothesis of
no-ARCH and the integrated ARCH cases. Our scenario using the MC technique
allows us as well the introduction of exogenous variables in the mean equation, and
we also show later in the simulation study that we can allow for the presence of
normal or non normal errors (including those cases where asymptotic theory even
breaks down [see [Hall and Yao, 2003]].
In the case we wanted to test sub-vector coefficients of the ARCH process, we

could still preserve the exactness of the test by dealing with the nuisance parame-
ters through the MMC technique. The same type of methodology would be used
in case we would need to incorporate dynamics in the mean equation.

5.2 Extension of the Engle test under a null hypothesis different from
the one of no-ARCH effects

A first alternative we consider is what we name to be an extension of “an Engle-
type test”. The original [Engle, 1982] test was designed as an LM test:

ht = E
¡
ε2t /It−1

¢
= θ0 + θ1ε

2
t−1 + θ2ε

2
t−2 + ...+ θpε

2
t−p

where the null hypothesis is H0 : θ1 = θ2 = ... = θp = 0, ht is the conditional
variance, and the test is formulated by TR2 where T is the sample size and R2 is
the determination coefficient of a regression of OLS residuals bε2t on a constant andbε2t−i for i = 1, ..., p. The test is distributed as a χ2 with p degrees of freedom.
In this paper we propose the next extension:

Theorem 5.1 Suppose that yt = xt́β+εt and ht = E
¡
ε2t /It−1

¢
= θ0+θ1ε

2
t−1+

θ2ε
2
t−2 + ...+ θpε

2
t−p, then, an extension of the [Engle, 1982] test to any possible

set of values of the ARCH coefficientsH0 : θ1 = θ1, θ2 = θ2, ..., θp = θp, is given
by TR2 ∼ χ2p, where ht = θ0+ θ1ε

2
t−1+ ...+ θpε

2
t−p and R2 is the determination

coefficient coming from the regression:

ε2t = 2h
2
t

£
γ0 + γ1ε

2
t−1 + γ2ε

2
t−2 + ...+ γpε

2
t−p
¤
+ ht + vt.

and it is asymptotically normally distributed as a χ2p. Besides, the statistic is pivotal
in finite samples.

Proof. Given in Appendix 4, and a direct consequence of Proposition 2.3 and
Corollary 2.4.
In practice, the test would imply to take the residualsbε2t , to compute the depen-

dent variable
µ bε2t
2(θ0+θ1bε2t−1+...+θpbε2t−p)2 − 1

2(θ0+θ1bε2t−1+...+θpbε2t−p)
¶
, and to regress

this depend variable on a constant and bε2t−i for i = 1, ..., p. The test is distributed
as a χ2p.
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5.3 A point optimal test

To find out the most powerful test for ARCH processes, we develop now a point
optimal test.

Theorem 5.2 Suppose that yt = xt́β+
Pq
i=1 φiyt−i+εt and ht = E

¡
ε2t /It−1

¢
=

θ0+θ1ε
2
t−1+θ2ε2t−2+...+θpε2t−p. Then a point optimal test at θ1 = θ11, ..., θp = θ1p

for the null of H0 : θ1 = θ1, θ2 = θ2, ..., θp = θp, under conditional normality is
given by:

LR
¡
θ1, ..., θp, θ

1
1, ..., θ

1
p

¢
=

TX
t=1

ln
¡
ht
¢
+

TX
t=1

µ
1

ht
− 1
¶

ε2t¡
1 + θ1ε2t−1 + ...+ θpε2t−p

¢
where ht =

µ
(1+θ11y2t−1+...+θ

1
py
2
t−p)

(1+θ1y2t−1+...+θpy2t−p)

¶
.

Proof. It comes as a special case from the GARCH(p,q) model.
In practice, the test implies the following. Take the residuals bε2t , and compute

the test statistic:PT
t=1 ln

µ
(1+θ11bε2t−1+...+θ1pbε2t−p)
(1+θ1bε2t−1+...+θpbε2t−p)

¶
+
PT
t=1

µ
(1+θ1bε2t−1+...+θpbε2t−p)
(1+θ11bε2t−1+...+θ1pbε2t−p) − 1

¶ bε2t
(1+θ1bε2t−1+...+θpbε2t−p)

Due to the non-standard distribution of the statistic, in this paper we propose to
retrieve the critical values through theMC technique [see [Dufour and Kiviet, 1996],
[Dufour and Kiviet, 1998] and [Dufour et al., 2004] for more details]. In case we
would have an AR(p) process in the mean equation, we could use the MMC tech-
nique to treat those coefficients as nuisance parameters.

5.4 An alternative test

Another possible test is constructed by exploiting the use of pivotal properties of
ARCH processes:

Theorem 5.3 Suppose that yt = xt́β+εt and ht = E
¡
ε2t /It−1

¢
= θ0+θ1ε

2
t−1+

θ2ε
2
t−2+ ...+θpε2t−p, then, a test for the null ofH0 : θ1 = θ1, θ2 = θ2, ..., θp = θp,

is given as:
ε2t

(1+θ1ε2t−1+...+θpε2t−p)
−1 = θ∗1

ε2t−1
(1+θ1ε2t−1+...+θpε2t−p)

+...+θ∗p
ε2t−p

(1+θ1ε2t−1+...+θpε2t−p)
+

wt
This implies:

ε2t −
¡
1 + θ1ε

2
t−1 + ...+ θpε

2
t−p
¢
= θ∗1ε

2
t−1 + ...+ θ∗pε

2
t−p + wt

where θ∗i =
¡
θi − θi

¢
,∀i = 1, .., p. The test can be re-written as an F-type test for

the null ofH0 : θ∗1 = 0, θ∗2 = 0, ..., θ∗p = 0. The statistic is pivotal in finite samples.
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Proof. Given in Appendix 5, and a direct consequence of Proposition 2.3 and
Corollary 2.4.
In practice, the test implies the following. Take the residuals bε2t , and regressbε2t

(1+θ1bε2t−1+...+θpbε2t−p) on bε2t−i
(1+θ1bε2t−1+...+θpbε2t−p) for i = 1, ..., p. The critical values

can be obtain from the asymptotic theory from an F-distribution or through the MC
technique.
Finally, it is important to stress that we can apply these tests not only in the

presence of pivotality when we test for the null of the full ARCH coefficients vector
[using the MC technique] equal to a value; but also, using the Maximised Monte
Carlo (MMC) technique, we can handle those cases where we loose the pivotal
property when we test only for a sub-vector of those ARCH coefficients equal
to a value [see [Dufour, 2004] for more details)]. The MMC also allows for the
presence of processes in the mean equation.

5.5 Simulation results

The main objective of this section is to show the poor finite sample properties
that we can get when we use asymptotic theory for testing procedures regardless
if we have fat tails or not and if we are in a nonstationary region or not. We
proceed now to compare our different test procedures in the context of an ARCH(2)
process under normal, t(5) and t(3) errors. This model was already analysed in
[Hall and Yao, 2003] and it was chosen for comparative purposes. The model is
then given by:

yt = εt, where E
¡
ε2t/It−1

¢
= θ0 + θ1ε

2
t−1 + θ2ε

2
t−2.We take θ0 = 0.81.

We consider seven different types of null hypothesis. The results are given
in Appendix 6. We will present the results both using asymptotic theory [when
it is available] and the MC and MMC techniques [see [Dufour and Kiviet, 1996],
[Dufour and Kiviet, 1998] and [Dufour et al., 2004] for more details]. While in
[Hall and Yao, 2003] they only reported results for sample sizes 500 and 1000 and
for size, we will report results for sample sizes 500, 200 and 50, to show the good
finite sample properties of our procedures. We also consider a much more variety
of null and alternative hypothesis than those given in [Hall and Yao, 2003]. In this
last paper, they report that with their proposed subsampling technique, light tails
in the distribution of the errors tend to produce relatively conservative confidence
intervals. On the other hand, for extreme heavy-tailed-errors (t-3) the anticon-
servatism becames a problem. Our procedure allows to control for the size, and
besides, we will provide clear results about the power properties. The objective
of this simulation study is again to show the robustness of our procedure to the
distributional assumptions of the errors and having fat tails. We also compare our
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three test proposals, and which are the consequences of relying on the asymptotic
approximations or using the exact distribution. Also, [Hall and Yao, 2003] only
showed the results for size, while we will report results for size and power.
The results for the Monte Carlo technique are based on 40000 replications, and

N=99. The results for asymptotics where carried out with 40000 replications. The
results for the simulated annealing [for the Maximised Monte Carlo technique]
have been based on 1000 replications and N=99.
We cover 7 different types of nulls in the simulation results. All tests are very

conservative in relation to the size distorsion.We proceed now to comment in detail
results in each of the null hypothesis:
1) the first one, is the case of the IARCH(2) process. Here specially, the

advantages of the point optimal test are huge. The point optimal test evaluated
in the middle of the parameter space seems a very good alternative [following
[Elliott et al., 1996]]. We also check that the procedure does not loose important
power when the residuals are not gaussian. In this case, for alternatives with low
values of the coefficients, to set the point optimal test to the middle value seems
not to have good power properties. In this case, it would more advisable to use a
small fraction of the sample [at the beginning] to estimate a plausible value for the
alternative, and the rest to perform the test by using our splitting sample technique.
Test 2 also has a good performance.
2) the second one is where θ1=0.98 and θ2=0.01; namely, it is similar to an

ARCH(1) process [because θ2 is very small], and there, any point optimal test
seems to be doing it ok, what means that to set the point to optimize the test equal
to (0.49, 0.49) seems to be a good suggestion [in an ARCH(1), then for nulls of
the type near the unit root it would be a good idea to set the point optimal test to
maximize in 0.49]. Test 2 also provides a good performance.
3) The third case is when the null is quite close to that recommendation of set-

ting the point to the middle of the parameter space. Here the recommendation to the
researcher is to follow again the route of maximing power through our split sam-
ple technique [as the proposal in this paper], since for this type of nulls, the point
optimal test has very different powers depending on when it is the true alternative.
Test 2 has a bad performance power in this case.
4) The fourth null covers the case of very low values of θ1 and θ2, and there a

good point to optimize the test is again the recommendation of [Elliott et al., 1996]:
(0.49, 0.49) for the ARCH(2) [and for the ARCH(1), it would be in 0.49].
5) The fifth case covers the case of testing for ARCH effects. Here, the Engle

test has a much better performance than for the null of any other value. Even so,
our point optimal test has superior properties to the [Engle, 1982] test, specially
for low value alternatives and low degrees of freedom as well. Our point optimal
test also has very good power when the distribution of the innovation process has
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very fat tails.
6) The sixth null relates to the case where we would be interested in testing for

subsets of the whole set of ARCH coefficients. We see how the MMC technique
also makes our tests operational in case we want to test for a null hypothesis differ-
ent from the one of the whole coefficient ARCH vector equal to a value. The MMC
technique was carried out using the simulated annealing algorithm. The results
show that even for sample sizes of 50, the point optimal test although it decreases
the power for alternative hypothesis quite close to the null, still has good power,
after optimising the p-value out of all possible values for the nuisance parameters.
7) In the seventh case, we consider a non-stationary case where we show the be-

haviour of our point optimal case against the asymptotic alternatives [in the context
of [Jensen and Rahbek, 004a], [Jensen and Rahbek, 004b]]. They have proved that
in the setting of a non-stationary region, the QMLE is still asymptotically normal.
However, there are still no results in the literature that show what happens in small
samples. We provide results in this context both when the fourth moment of the
innovation process exists and when it does not exist. We show that the behaviour
of our point optimal test in this setting has very good power regardless if the errors
have very fat tails or not [at the same time of controlling for the size]. The exten-
sion of the Engle test and the other test we propose have very low power in some
of the alternatives. This possibility of very good behaviour of point optimal tests
outside the stationarity region was already shown in [Dufour and King, 1991].
So, from the simulation results, we advice the practitioners that it is possible to

use as a rule of thumb in some cases the value of the point alternative equal to the
middle of the parameter space; although when it is possible, it is always better to
find a consistent estimate [when possible] or to split the sample size [as we did in
the previous section], and to use a small fraction of the sample (at the beginning)
to estimate a plausible value for the alternative [as it is suggested in this paper].
We also show the behaviour of the point optimal test under non-normal-t(3) errors,
and the findings indicate good power in these cases [allowing also for control of
the size and then, improving on [Hall and Yao, 2003]].

5.6 Application of an ARCH model for US inflation

In this section we re-visit the analysis of the Implicit price deflator for GNP done
by [Engle and Kraft, ] and also reported by [Bollerslev, 1986]. The series is also
analysed in [Greene, 2000] [page 809]. The data corresponds to quaterly obser-
vations on the implicit price deflator for GNP from 1948.II to 1983.IV. We have
obtained the data from the U.S. Department of Commerce: Bureau of Economic
Analysis.
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For this data, [Engle and Kraft, ] selected an AR(4)-ARCH(8) model such as:

bπt = 0.138 + 0.423πt−1 + 0.222πt−2 + 0.377πt−3 − 0.175πt−4
(0.059) (0.081) (0.108) (0.078) (0.104)

bht = 0.058 + 0.808 8X
i=1

µ
9− i
36

¶
ε2t−i (9)

(0.033) (0.265)

where:

πt = 100 ln
Pt
Pt−1

Asymptotic standard errors are given in brackets. Acording to the previous
study, the values in that model decline linearly from 0.179 to 0.022. The nor-
malised residuals from this model show no evidence of autocorrelation, nor do
their squares.
We first carried out the analysis of the series for the same time period 1948.II

to 1983.IV using an AR(4) model in the mean equation and using asymptotic
[Newey and West, 1987] HAC standard errors. The results were:

bπt = 0.182 + 0.595πt−1 + 0.147πt−2 + 0.144πt−3 − 0.075πt−4
(0.090) (0.106) (0.110) (0.131) (0.110)

The same that happens in the study of [Engle and Kraft, ], when we test for
ARCH effects at lags 1, 4 and 8, we reject the null hypothesis both using the
asymptotic LM test of [Engle, 1982] and when we apply our point optimal test
using the MSSMMCAO test [in all the cases giving very small p-values of 0.000].
To use our point optimal test in this framework, we have applied the MMC tech-
nique where we have kept the AR coefficients in the mean equation as nuisance
parameters, in order to obtain provably valid results. We have used the point to
optimise looking for it as in our split sample technique. Then we proceed as the
previous study to fit an unrestricted ARCH(8) model where we have used asymp-
totic [Bollerslev and Wooldridge, 1992] robust standard errors, and we obtain:
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bπt = 0.136 + 0.544πt−1 + 0.171πt−2 + 0.158πt−3 − 0.011πt−4
(0.040) (0.084) (0.094) (0.076) (0.081)

bht = 0.064 + 0.166ε2t−1 + 0.109ε2t−2 − 0.021ε2t−3 + 0.120ε2t−4 + 0.033ε2t−5
(0.015) (0.206) (0.109) (0.095) (0.111) (0.104)

+0.189ε2t−6 + 0.051ε
2
t−7 − 0.050ε2t−8

(0.114) (0.123) (0.048)

As [Greene, 2000] says, the linear restriction of the linear lag model given in
(9) on the unrestricted ARCH(8) model appears not to be statistically significant.
We indeed tested for the existence of the linear restriction in (9) to see if it holds in
our model, and both using an asymptotic test and our point optimal test we reject
the linear restriction with a p-value of 0.000 in both cases. However, one interesting
puzzle is why although with the Engle-test and with our point optimal test we reject
the null of no-ARCH effects of order 8, when we fit the previous model we obtain
that all the coefficients in the ARCH(8) are not individually statistically significant
according to the asymptotic results. We proceed then to apply our point optimal test
using the MSSMMCAO technique to test if the ARCH coefficients in the previous
model where individually statistically significant, and we found in the 8 cases a
p-value around 0.000 rejecting the null hypothesis that each of the coefficients are
individually equal to zero. In this case, it is proved that asymptotic results give
pretty bad inference for the individual statistically significance for this example.

6 Conclusion

In this paper we have provided a general framework for exact optimal testing. We
propose a new adaptive methodology that allows to search the point alternative by
combining [Maximised] Monte Carlo tests and splitting the sample: the SSMCAO
technique and its minimized version (MSSMCAO) when we do not have a consis-
tent estimate available. We have specialised our results to find the best procedures
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for practitioners to test for any value of GARCH coefficients. We have developed
tests, including point optimal tests and another tests where we provide the asymp-
totic distribution, and we have provided evidence of their performance both in the
case of normal errors, very fat tails [to compare with [Hall and Yao, 2003]], and/or
in a non-stationary region [to cover as well the framework of [Jensen and Rahbek, 004a],
[Jensen and Rahbek, 004b]]. We have shown mainly that, while the SSMCAO tests
can have a very good performance in all these cases in terms of power and size,
asymptotic theory can provide very poor results; both regardless if we are in the
situation of heavy tails or not, and in the stationary or in the nonstationary case.
We have also shown that our tests can be made operational not only in the case
where pivotality is guaranteed, but also when we test for the null of a sub-vector
of the whole coefficient vector in the GARCH structure or when an ARMA pro-
cesses are introduced in the mean equation without loosing the exactness. We have
also provided evidence of how our split sample proposal is very useful when the
researcher does not have any a priori knowledge of where the point alternative is.
Finally, when we cannot find a consistent estimate, we extend our SSMCAO test
to the minimised version (MSSMCAO) where the empirical p-value is minimised
in the first stage. We show that under the case of moments non-existing [such as
in [Hall and Yao, 2003]] this is the best alternative (allowing for a full control of
the size)]. Finally, we have also reported the usefulness of our methodology by
applying our procedure to the US inflation.
In summary, a general rule to advice to practitioners is that in some circum-

nstances and for some null hypothesis is good enough to use our point optimal
test setting the point to optimise equal to the middle value of the parameter space
[following the recommendation of [Elliott et al., 1996]]. However, sometimes, as
we have shown in our simulations, this is not a good strategy, and the best rec-
ommendation, is to use our SSMCAO to allow the sample to select the point (or
MSSMCAO if moments do not exist). Our simulations show that our (M)SSMCAO
test has good properties in finite samples regardless if the errors are gaussian or not
[including if the errors have very fat-tails] and/or if the process is in the stationarity
region or not.
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Appendix

A Appendix 1

Here we provide a proof for Theorems 2.2 and 2.5. Theorem 2.5 is a generalisation
of Theorem 2.2, so our proof will be referred explicitly to the general case.
Let’s suppose a general process:

εt (Θ)

E
¡
ε2t /Jt−1 : Φ

¢1/2
UnderH0: Θ = Θ,Φ = Φ,

εt
¡
Θ
¢

E
¡
ε2t /Jt−1 : Φ

¢1/2 ≡ εt
¡
Θ,Φ

¢
UnderH1: Θ = Θ1,Φ = Φ1

εt
¡
Θ1
¢

E
¡
ε2t /Jt−1 : Φ1

¢1/2 = εt
¡
Θ1,Φ1

¢
Let

εt
¡
Θ,Φ

¢
=
¡
ε1
¡
Θ,Φ

¢
, ..., εT

¡
Θ,Φ

¢¢
Then

lT
¡
εt
¡
Θ,Φ

¢
,Θ,Φ

¢
= −T

2
ln 2π−1

2

TX
t=1

ln
¡
E
¡
ε2t /Jt−1 : Φ

¢¢−1
2

TX
t=1

ε2t
¡
Θ
¢

E
¡
ε2t /Jt−1 : Φ

¢
lT
¡
εt
¡
Θ1,Φ1

¢
,Θ1,Φ1

¢
= −T

2
ln 2π−1

2

TX
t=1

ln
¡
E
¡
ε2t /Jt−1 : Φ

1
¢¢−1

2

TX
t=1

ε2t
¡
Θ1
¢

E
¡
ε2t /Jt−1 : Φ1

¢
So:

LR
¡
Θ,Φ,Θ1,Φ1

¢
= −2 £lT ¡εt ¡Θ1,Φ1¢ ,Θ1,Φ1¢− lT ¡εt ¡Θ,Φ¢ ,Θ,Φ¢¤ =

−2
·
−12

PT
t=1 ln

µ
E(ε2t /Jt−1:Φ1)
E(ε2t /Jt−1:Φ)

¶
− 1

2

PT
t=1

µ
ε2t (Θ1)

E(ε2t /Jt−1:Φ1)
− ε2t (Θ)

E(ε2t /Jt−1:Φ)

¶¸
=PT

t=1 ln

µ
E(ε2t /Jt−1:Φ1)
E(ε2t /Jt−1:Φ)

¶
+
PT
t=1

µ
ε2t (Θ1)

E(ε2t /Jt−1:Φ1)
− ε2t (Θ)

E(ε2t /Jt−1:Φ)

¶
.
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B Appendix 2

Let’s suppose a simple GARCH(p,q) process:

εt =

θ0 +

pX
i=1

θiε
2
t−i +

qX
j=1

γjht−j

1/2 vt
UnderH0: θi = θi, γj = γj

vt =
εt³

θ0 +
Pp
i=1 θiε

2
t−i +

Pq
j=1 γjht−j

´1/2 ≡ εt
¡
θi, γj , h0, ε0

¢
UnderH1: θi = θ1i , γj = γ1j

vt =
εt³

θ0 +
Pp
i=1 θ

1
i ε
2
t−i +

Pq
j=1 γ

1
jht−j

´1/2
and

εt
¡
θi, γj , h0, ε0

¢
=

³
θ0 +

Pp
i=1 θ

1
i ε
2
t−i +

Pq
j=1 γ

1
jht−j

´1/2
³
θ0 +

Pp
i=1 θiε

2
t−i +

Pq
j=1 γjht−j

´1/2 vt = ht ¡θi, γj , θ1i , γ1j , h0, ε0¢1/2 vt
where:
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¡
θi, γj , θ

1
i , γ

1
j , h0, ε0

¢
=

³
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i=1 θ

1
i ε
2
t−i +

Pq
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1
jht−j

´
³
θ0 +

Pp
i=1 θiε

2
t−i +

Pq
j=1 γjht−j

´ ≡ ht
Let

εt
¡
θi, γj , h0, ε0

¢
=
¡
ε1
¡
θi, γj , h0, ε0

¢
, ..., εT

¡
θi, γj , h0, ε0

¢¢
Then

lT
¡
εt
¡
θi, γj , h0, ε0

¢
, θi, γj , h0, ε0

¢
= −T

2
ln 2π − 1

2

TX
t=1

εt
¡
θi, γj , h0, ε0

¢2
lT
¡
εt
¡
θi, γj , h0, ε0

¢
, θ1i , γ

1
j , h0, ε0

¢
= −T

2
ln 2π−1

2

TX
t=1

ln
¡
ht
¢−1
2

TX
t=1

εt
¡
θi, γj , h0, ε0

¢2
ht

So:
LR

³
θi, γj , h0, ε0, θ

1
i , γ

1
j

´
= −2

h
lt

³
v
¡
θi, γj , h0, ε0

¢
, θ1i , γ

1
j , h0, ε0

´
− lt

¡
v
¡
θi, γj , h0, ε0

¢
, θi, γj , h0, ε0

¢i
=
PT
t=1

h
ln
¡
ht
¢
+
³
1
ht
− 1
´
εt
¡
θi, γj , h0, ε0

¢2i
25



Appendix 3

Null 1: H0 : θ1 = 0.5; γ1 = 0.4
PO (0.6,0.7) PO (0,0) PO (0.3,0.2) PO (0.2,0.3) PO (0.05,0.9) PO (0.1,0.9) PO (1,0) PO (SSMMCAO technique) PO(full sample)

MMC-t3 MMC-n MMC-t3 MMC-n MMC-t3 MMC-n MMC-t3 MMC-n MMC-t3 MMC-n MMC-t3 MMC-n MMC-t3 MMC-n m—p-t3 m—p-n QML-t3 QML-n QML-t3 QML-n

Size T=200 0.045 0.047 0.053 0.054 0.043 0.056 0.051 0.059 0.049 0.052 0.045 0.047 0.059 0.061 0.052 0.051 0.053 0.057 0.078 0.077

T=50 0.042 0.053 0.052 0.048 0.045 0.057 0.049 0.056 0.047 0.057 0.051 0.058 0.058 0.049 0.057 0.043 0.061 0.052 0.089 0.084

H(0,0) T=200 0.004 0.005 1.000 1.000 0.403 0.605 0.398 0.609 0.403 0.506 0.421 0.403 0.702 0.813 0.995 1.000 0.996 1.000 0.999 1.000

T=50 0.010 0.001 0.960 1.000 0.201 0.430 0.204 0.426 0.201 0.322 0.213 0.312 0.639 0.705 0.934 0.998 0.920 1.000 0.945 1.000

H(0.6,0.7) T=200 0.740 1.000 0.002 0.005 0.251 0.300 0.301 0.351 0.311 0.312 0.413 0.515 0.502 0.701 0.645 0.988 0.500 1.000 0.603 1.000

T=50 0.470 0.999 0.003 0.003 0.190 0.251 0.202 0.253 0.191 0.225 0.222 0.321 0.251 0.434 0.440 0.770 0.401 0.998 0.438 1.000

H(0.3,0.2) T=200 0.261 0.351 0.196 0.250 0.842 1.000 0.791 1.000 0.613 0.903 0.504 0.809 0.401 0.512 0.815 0.913 0.813 1.000 0.822 1.000

T=50 0.191 0.256 0.096 0.110 0.713 0.990 0.632 0.704 0.504 0.605 0.473 0.525 0.215 0.322 0.691 0.807 0.688 0.972 0.703 0.981

H(0.2,0.3) T=200 0.312 0.512 0.502 0.601 0.521 0.902 0.871 1.000 0.571 0.913 0.501 0.908 0.413 0.891 0.851 1.000 0.832 1.000 0.853 1.000

T=50 0.095 0.321 0.312 0.413 0.413 0.513 0.639 0.813 0.312 0.612 0.413 0.504 0.315 0.413 0.612 0.791 0.503 0.801 0.615 0.811

H(0.05,0.9) T=200 0.231 0.421 0.109 0.195 0.301 0.504 0.304 0.507 0.649 1.000 0.491 0.998 0.195 0.271 0.631 1.000 0.591 1.000 0.629 1.000

T=50 0.203 0.312 0.091 0.113 0.271 0.371 0.251 0.431 0.512 0.721 0.471 0.691 0.154 0.197 0.479 0.669 0.391 0.691 0.451 0.722

H(0.1,0.9) T=200 0.371 0.541 0.151 0.242 0.451 0.491 0.401 0.522 0.613 0.898 0.750 1.000 0.512 0.613 0.729 1.000 0.691 1.000 0.731 1.000

T=50 0.213 0.322 0.091 0.129 0.371 0.403 0.293 0.381 0.421 0.713 0.621 0.813 0.401 0.524 0.599 0.776 0.502 0.803 0.551 0.809

H(1,0) T=200 0.291 0.691 0.191 0.512 0.613 0.771 0.412 0.721 0.211 0.321 0.391 0.401 0.871 1.000 0.853 1.000 0.813 1.000 0.849 1.000

T=50 0.197 0.473 0.163 0.321 0.421 0.612 0.321 0.428 0.191 0.199 0.311 0.391 0.792 0.893 0.769 0.861 0.712 0.879 0.771 0.894

H(a, b) means the values HA : θ1= a; γ1= b



.

Null 2: H0 : θ1 = 0.5; γ1 = 0.6
PO (0.5,0.4) PO (0,0) PO (0.3,0.2) PO (0.2,0.3) PO (0.05,0.9) PO (0.1,0.9) PO (1,0) PO (SSMMCAO technique) PO(full sample)

MMC-t3 MMC-n MMC-t3 MMC-n MMC-t3 MMC-n MMC-t3 MMC-n MMC-t3 MMC-n MMC-t3 MMC-n MMC-t3 MMC-n m—p-t3 m—p-n QML-t3 QML-n QML-t3 QML-n

Size T=200 0.054 0.057 0.054 0.052 0.045 0.049 0.042 0.054 0.046 0.055 0.054 0.047 0.052 0.054 0.050 0.051 0.051 0.056 0.071 0.079

T=50 0.052 0.056 0.053 0.055 0.048 0.056 0.053 0.049 0.045 0.047 0.055 0.051 0.053 0.055 0.049 0.053 0.056 0.052 0.081 0.084

H(0,0) T=200 0.970 1.000 1.000 1.000 0.902 1.000 0.892 1.000 0.704 1.000 0.850 1.000 0.860 0.998 0.997 1.000 0.890 1.000 0.991 1.000

T=50 0.870 0.800 0.988 1.000 0.852 0.709 0.853 0.702 0.691 0.987 0.801 0.911 0.871 0.913 0.981 1.000 0.882 1.000 0.901 1.000

H(0.5,0.4) T=200 0.659 1.000 0.502 0.900 0.501 0.893 0.498 0.754 0.503 0.622 0.612 0.703 0.514 0.901 0.640 0.979 0.520 1.000 0.620 1.000

T=50 0.400 0.890 0.349 0.615 0.356 0.412 0.341 0.391 0.298 0.430 0.301 0.451 0.352 0.546 0.390 0.772 0.350 0.870 0.360 0.889

H(0.3,0.2) T=200 0.430 0.711 0.530 0.632 0.903 1.000 0.851 1.000 0.841 1.000 0.849 1.000 0.605 0.809 0.882 1.000 0.870 1.000 0.880 1.000

T=50 0.212 0.504 0.323 0.405 0.702 0.903 0.582 0.792 0.571 0.703 0.582 0.699 0.359 0.603 0.653 0.805 0.590 0.867 0.620 0.873

H(0.2,0.3) T=200 0.429 0.693 0.603 0.704 0.691 1.000 0.907 1.000 0.676 1.000 0.695 1.000 0.573 0.971 0.891 1.000 0.704 1.000 0.871 1.000

T=50 0.193 0.579 0.524 0.609 0.591 0.803 0.751 0.912 0.599 0.792 0.603 0.818 0.403 0.605 0.704 0.821 0.509 0.870 0.659 0.892

H(0.05,0.9) T=200 0.401 0.543 0.106 0.205 0.431 0.641 0.454 0.649 0.741 1.000 0.698 1.000 0.209 0.306 0.713 1.000 0.693 1.000 0.701 1.000

T=50 0.329 0.402 0.095 0.159 0.322 0.491 0.325 0.502 0.609 0.805 0.572 0.751 0.163 0.205 0.591 0.759 0.582 0.791 0.592 0.804

H(0.1,0.9) T=200 0.403 0.602 0.192 0.251 0.502 0.651 0.506 0.651 0.742 1.000 0.803 1.000 0.611 0.831 0.761 1.000 0.702 1.000 0.759 1.000

T=50 0.319 0.451 0.103 0.163 0.403 0.502 0.393 0.592 0.681 0.859 0.704 0.902 0.503 0.630 0.692 0.849 0.672 0.861 0.697 0.892

H(1,0) T=200 0.531 0.703 0.264 0.612 0.705 0.884 0.653 0.873 0.391 0.403 0.403 0.474 0.951 1.000 0.943 1.000 0.904 1.000 0.932 1.000

T=50 0.252 0.509 0.231 0.503 0.621 0.703 0.594 0.692 0.352 0.391 0.391 0.401 0.870 0.973 0.851 0.943 0.803 0.961 0.824 0.968

n: denotes normal distribution
t3: denotes t-distribution with 3 degress of freedom



D Appendix 4

The construction of (what we denote) an Engle test for the null of any possible
set of values for the ARCH coefficients, implies the following. Let’s suppose an
ARCH(p) model:

yt = xt́β +

qX
i=1

φiyt−i + εt

ht = E
¡
ε2t /It−1

¢
= θ0 + θ1ε

2
t−1 + θ2ε

2
t−2 + ...+ θpε

2
t−p

The log-likelihood:

L ∝ −1
2

TX
t=1

log ht − 1
2

TX
t=1

ε2t
ht

So the gradient (grad) and the hessian (hes) are:

grad =

·
ε2t
2h2t
− 1

2ht

¸
Z

hes =

·
1

2h2t
− ε2t
h3t

¸
ZZ 0

where Z is the vector Z =
¡
1, ε2t−1, ε2t−2, ..., ε2t−p

¢0
.

Under any null hypothesis, we have to get the R2 coming from regressing a
column of ones on the derivatives of the log likelihood function computed at the
restricted estimator.
Following Engle (1982), we can denote f0 to be the first part of the gradient

evaluated at the restricted estimator under the null:

f0 =

·
ε2t
2h2t
− 1

2ht

¸
0

So, the Engle test comes from TR2, where R2 comes from regressing f0 on Z.
In the special case where the null is no-ARCH effects, since (following Engle

(1982)) adding a constant and multiplying by a scalar won’t change the R2 of a
regression, this will be the R2 coming from regressing ε2t on an intercept and p
lagged values of ε2t .
In the general case of any other null except the no-ARCH effects one, ht eval-

uated at a restricted estimator is going to contain lagged ε2t and the values we are
testing. The test in this case can be interpreted as regressing under the null:·

ε2t
2h2t
− 1

2ht

¸
0

= γ0 + γ1ε
2
t−1 + γ2ε

2
t−2 + ...+ γpε

2
t−p + vt (A.3.1)
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Or:
ε2t = 2h

2
t

£
γ0 + γ1ε

2
t−1 + γ2ε

2
t−2 + ...+ γpε

2
t−p
¤
+ ht + vt

So running (A.3.1), can be equivalent to run as well a regression of ε2t under
the null, on 2h2t times the usual regression terms in the Engle test plus the ht
(everything evaluated under the null). Implicitly, because ht has ε2t−i inside, in
order to construct the confidence sets, this may have some equivalent representation
to running ε2t under the null on a constant, as many lags of εt as the order of
the ARCH(p) we are testing, raised to six, to four and to two (so, terms of the
form ε6t−i, ε

4
t−i, ε

2
t−i,∀i = 1, ..., p), and cross products of as many lags of εt as

the order of the ARCH(p) we are testing raised to four and two (so terms of the
form ε4t−iε

2
t−j ,∀i 6= j), plus cross products of as many lags of εt as order of the

ARCH(p) we are testing raised to two (so terms of the form ε2t−iε
2
t−j ,∀i 6= j). But

with the “problem” of multiplying in each case the previous terms by the values
we are testing under the null.
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E Appendix 5

Let us consider the expression:

vt
¡
θ1
¢
=

εt¡
θ0 + θ1ε2t−1 + ...+ θpε2t−p

¢1/2
where, for the case of the ARCH(1):

yt = εt

ht = E
¡
ε2t /It−1

¢
= θ0 + θ1ε

2
t−1

E
¡
v2t
¡
θ1
¢¢
=
E (yt/It−1)¡
1 + θ1y2t−1

¢ = ¡
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2
t−1
¢¡
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¢

So:

E

Ã
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¡
θ1
¢− 1¡

1 + θ1y2t−1
¢/It−1! = θ1y

2
t−1¡

1 + θ1y2t−1
¢

E
¡
v2t
¡
θ1
¢− 1¢ = ¡θ1 − θ1

¢ y2t−1¡
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¢
So finally in this case we will regress:

y2t¡
1 + θ1y2t−1

¢ − 1 = θ∗1
y2t−1¡

1 + θ1y2t−1
¢ + wt

In the general case of an ARCH(p) model:

E
¡
v2t
¡
θ1, ..., θp

¢− 1¢ = ¡θ1 − θ1
¢ y2t−1¡
1 + θ1y2t−1 + ...+ θpy2t−p

¢ + ...
+
¡
θp − θp

¢ y2t−p¡
1 + θ1y2t−1 + ...+ θpy2t−p

¢
So the testing would imply to regress:

y2t
(1+θ1y2t−1+...+θpy2t−p)

− 1 =
θ∗1

y2t−1
(1+θ1y2t−1+...+θpy2t−p)

+ ...+ θ∗p
y2t−p

(1+θ1y2t−1+...+θpy2t−p)
+ wt
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F Appendix 6

Null 1: H0 : θ1 = 0.81; θ2 = 0.19

Engle-normal Engle-t(5) Engle-t(3) T2-normal T2-t(5)
AS MC AS MC AS MC AS MC AS MC

Size: simulating under the null
T=500 0.002 0.050 0.001 0.048 0.051 0.018 0.047 0.020 0.050
T=200 0.002 0.050 0.001 0.047 0.047 0.017 0.050 0.021 0.049
T=50 0.002 0.047 0.001 0.050 0.048 0.014 0.050 0.018 0.051
Power: simulating underHA : θ1 = 0.16; θ2 = 0.16
T=500 0.004 0.780 0.001 0.565 0.700 0.963 1.000 0.438 0.845
T=200 0.003 0.560 0.001 0.420 0.555 0.690 1.000 0.192 0.460
T=50 0.006 0.145 0.001 0.130 0.095 0.101 0.315 0.050 0.145
Power: simulating underHA : θ1 = 0.5; θ2 = 0.4
T=500 0.001 0.395 0.001 0.145 0.115 0.824 1.000 0.554 1.000
T=200 0.003 0.280 0.001 0.140 0.075 0.410 1.000 0.298 0.955
T=50 0.003 0.095 0.002 0.065 0.055 0.095 0.245 0.093 0.255
Power: simulating underHA : θ1 = 0.01; θ2 = 0.98
T=500 0.011 1.000 0.001 0.370 0.220 1.000 1.000 0.997 1.000
T=200 0.003 1.000 0.001 0.095 0.210 0.999 1.000 0.967 1.000
T=50 0.009 0.170 0.001 0.085 0.095 0.582 1.000 0.485 1.000
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T2-t(3) PO (0.01,0.98) PO (0.49,0.49) PO (0.16,0.16)
AS MC MC-t(3) MC-normal MC-t(3) MC-normal MC-t(3) MC-normal

Size: simulating under the null
T=500 0.050 0.048 0.051 0.050 0.051 0.050 0.051
T=200 0.049 0.050 0.049 0.049 0.049 0.054 0.049
T=50 0.050 0.047 0.050 0.050 0.049 0.050 0.048
Power: simulating underHA : θ1 = 0.16; θ2 = 0.16
T=500 0.330 1.000 1.000 0.060 1.000 1.000 1.000
T=200 0.230 1.000 1.000 0.050 0.755 1.000 1.000
T=50 0.095 0.500 0.580 0.040 0.090 1.000 1.000
Power: simulating underHA : θ1 = 0.5; θ2 = 0.4
T=500 0.795 0.535 1.000 0.325 1.000 0.600 1.000
T=200 0.625 0.335 1.000 0.210 1.000 0.270 0.495
T=50 0.175 0.190 0.320 0.140 0.485 0.110 0.150
Power: simulating underHA : θ1 = 0.01; θ2 = 0.98
T=500 1.000 1.000 1.000 1.000 1.000 1.000 1.000
T=200 1.000 1.000 1.000 1.000 1.000 1.000 1.000
T=50 1.000 1.000 1.000 1.000 1.000 0.485 0.705
AS: Asymptotic. MC: Monte Carlo. PO(θ11,θ

1
2): Point optimal. T2: Test in Theorem 9.
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Null 2: H0 : θ1 = 0.98; θ2 = 0.01

Engle-normal Engle-t(5) Engle-t(3) T2-normal T2-t(5)
AS MC AS MC AS MC AS MC AS MC

Size: simulating under the null
T=500 0.003 0.054 0.001 0.047 0.049 0.023 0.049 0.022 0.049
T=200 0.001 0.054 0.001 0.049 0.055 0.026 0.052 0.024 0.053
T=50 0.001 0.053 0.001 0.054 0.055 0.025 0.055 0.027 0.050
Power: simulating underHA : θ1 = 0.16; θ2 = 0.16
T=500 0.456 1.000 0.089 1.000 1.000 0.999 1.000 0.885 1.000
T=200 0.171 1.000 0.021 1.000 1.000 0.909 1.000 0.625 1.000
T=50 0.012 0.395 0.003 0.465 0.410 0.261 0.560 0.232 0.540
Power: simulating underHA : θ1 = 0.5; θ2 = 0.4
T=500 0.029 0.255 0.001 0.110 0.085 0.999 1.000 0.988 1.000
T=200 0.008 0.195 0.001 0.145 0.050 0.905 1.000 0.861 1.000
T=50 0.002 0.110 0.001 0.100 0.070 0.395 1.000 0.431 1.000
Power: simulating underHA : θ1 = 0.01; θ2 = 0.98
T=500 0.003 0.135 0.001 0.135 0.150 1.000 1.000 0.999 1.000
T=200 0.005 0.125 0.001 0.085 0.095 0.995 1.000 0.977 1.000
T=50 0.002 0.130 0.001 0.110 0.145 0.662 1.000 0.613 1.000

T2-t(3) PO (0.01,0.98) PO (0.49,0.49) PO (0.16,0.16)
AS MC MC-t(3) MC-normal MC-t(3) MC-normal MC-t(3) MC-normal

Size: simulating under the null
T=500 0.051 0.055 0.049 0.051 0.050 0.051 0.051
T=200 0.051 0.047 0.050 0.049 0.049 0.048 0.049
T=50 0.049 0.051 0.050 0.051 0.048 0.051 0.052
Power: simulating underHA : θ1 = 0.16; θ2 = 0.16
T=500 1.000 1.000 1.000 0.860 1.000 1.000 1.000
T=200 1.000 1.000 1.000 0.440 1.000 1.000 1.000
T=50 0.545 0.765 1.000 0.250 0.785 1.000 1.000
Power: simulating underHA : θ1 = 0.5; θ2 = 0.4
T=500 1.000 1.000 1.000 1.000 1.000 1.000 1.000
T=200 1.000 1.000 1.000 1.000 1.000 1.000 1.000
T=50 0.980 0.930 1.000 1.000 1.000 1.000 1.000
Power: simulating underHA : θ1 = 0.01; θ2 = 0.98
T=500 1.000 1.000 1.000 1.000 1.000 1.000 1.000
T=200 1.000 1.000 1.000 1.000 1.000 1.000 1.000
T=50 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Null 3: H0 : θ1 = 0.5; θ2 = 0.4

Engle-normal Engle-t(5) Engle-t(3) T2-normal T2-t(5)
AS MC AS MC AS MC AS MC AS MC

Size: simulating under the null
T=500 0.078 0.050 0.001 0.051 0.052 0.016 0.044 0.019 0.047
T=200 0.035 0.047 0.001 0.055 0.050 0.016 0.051 0.017 0.053
T=50 0.013 0.048 0.002 0.052 0.051 0.012 0.049 0.012 0.047
Power: simulating underHA : θ1 = 0.16; θ2 = 0.16
T=500 0.607 1.000 0.137 1.000 1.000 0.784 1.000 0.015 0.045
T=200 0.365 0.895 0.049 1.000 1.000 0.351 1.000 0.010 0.035
T=50 0.070 0.310 0.001 0.780 0.305 0.032 0.135 0.008 0.040
Power: simulating underHA : θ1 = 0.16; θ2 = 0.4
T=500 0.393 0.480 0.023 0.600 0.570 0.762 1.000 0.214 0.400
T=200 0.177 0.410 0.012 0.545 0.450 0.293 1.000 0.101 0.320
T=50 0.041 0.165 0.007 0.145 0.175 0.040 0.135 0.028 0.105
Power: simulating underHA : θ1 = 0.16; θ2 = 0.64
T=500 0.094 0.040 0.001 0.110 0.085 0.981 1.000 0.804 1.000
T=200 0.041 0.085 0.001 0.105 0.115 0.656 1.000 0.654 1.000
T=50 0.019 0.045 0.001 0.080 0.095 0.118 0.400 0.093 0.435
Power: simulating underHA : θ1 = 0.5; θ2 = 0.16
T=500 0.237 0.215 0.004 0.240 0.210 0.364 0.515 0.071 0.255
T=200 0.037 0.135 0.003 0.225 0.185 0.094 0.305 0.040 0.150
T=50 0.024 0.209 0.004 0.095 0.100 0.015 0.060 0.011 0.040
Power: simulating underHA : θ1 = 0.9; θ2 = 0.09
T=500 0.005 0.015 0.001 0.015 0.025 0.995 1.000 0.824 1.000
T=200 0.004 0.010 0.001 0.005 0.035 0.711 1.000 0.449 1.000
T=50 0.005 0.020 0.001 0.025 0.060 0.092 0.315 0.061 0.220
Power: simulating underHA : θ1 = 0.09; θ2 = 0.9
T=500 0.007 0.020 0.001 0.010 0.015 1.000 1.000 0.984 1.000
T=200 0.007 0.005 0.001 0.010 0.030 0.964 1.000 0.843 1.000
T=50 0.008 0.040 0.002 0.030 0.060 0.324 1.000 0.241 0.860
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T2-t(3) PO (0.01,0.98) PO (0.49,0.49) PO (0.16,0.16)
Size: simulating under the null

AS MC MC-t(3) MC-normal MC-t(3) MC-normal MC-t(3) MC-normal
T=500 0.048 0.051 0.050 0.051 0.051 0.050 0.049
T=200 0.048 0.051 0.048 0.050 0.051 0.051 0.048
T=50 0.053 0.046 0.051 0.047 0.051 0.048 0.052
Power: simulating underHA : θ1 = 0.16; θ2 = 0.16
T=500 0.015 1.000 1.000 0.015 0.010 1.000 1.000
T=200 0.010 1.000 1.000 0.010 0.006 1.000 1.000
T=50 0.020 0.165 0.070 0.010 0.005 1.000 0.770
Power: simulating underHA : θ1 = 0.16; θ2 = 0.4
T=500 0.255 1.000 1.000 0.030 0.025 1.000 1.000
T=200 0.210 1.000 1.000 0.035 0.015 0.710 1.000
T=50 0.095 0.250 0.275 0.030 0.015 0.375 0.310
Power: simulating underHA : θ1 = 0.16; θ2 = 0.64
T=500 1.000 1.000 1.000 0.175 1.000 0.250 0.315
T=200 1.000 1.000 1.000 0.150 1.000 0.160 0.175
T=50 0.260 0.370 0.815 0.120 0.380 0.100 0.085
Power: simulating underHA : θ1 = 0.5; θ2 = 0.16
T=500 0.160 0.380 0.070 0.015 0.010 1.000 1.000
T=200 0.095 0.145 0.030 0.015 0.005 0.690 0.555
T=50 0.040 0.035 0.015 0.020 0.001 0.185 0.130
Power: simulating underHA : θ1 = 0.9; θ2 = 0.09
T=500 1.000 0.010 0.005 0.025 0.015 0.010 0.025
T=200 0.970 0.010 0.002 0.025 0.011 0.015 0.022
T=50 0.150 0.010 0.001 0.025 0.010 0.030 0.020
Power: simulating underHA : θ1 = 0.09; θ2 = 0.9
T=500 1.000 1.000 1.000 0.960 1.000 0.010 0.040
T=200 1.000 1.000 1.000 0.585 1.000 0.015 0.036
T=50 0.790 0.860 1.000 0.290 1.000 0.040 0.035
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Null 4: H0 : θ1 = 0.16; θ2 = 0.25

Engle-normal Engle-t(5) Engle-t(3) T2-normal T2-t(5)
AS MC AS MC AS MC AS MC AS MC

Size: simulating under the null
T=500 0.077 0.049 0.016 0.051 0.045 0.017 0.049 0.022 0.047
T=200 0.002 0.048 0.001 0.049 0.056 0.018 0.047 0.028 0.051
T=50 0.003 0.046 0.001 0.053 0.045 0.014 0.041 0.019 0.052
Power: simulating underHA : θ1 = 0.5; θ2 = 0.16
T=500 0.019 0.020 0.001 0.005 0.005 0.919 1.000 0.685 1.000
T=200 0.001 0.005 0.001 0.005 0.020 0.526 1.000 0.399 1.000
T=50 0.001 0.020 0.001 0.025 0.015 0.109 0.380 0.102 0.355
Power: simulating underHA : θ1 = 0.5; θ2 = 0.4
T=500 0.003 0.020 0.001 0.001 0.001 0.863 1.000 0.602 1.000
T=200 0.001 0.015 0.001 0.001 0.001 0.466 1.000 0.313 0.910
T=50 0.001 0.030 0.001 0.001 0.001 0.090 0.220 0.076 0.195
Power: simulating underHA : θ1 = 0.9; θ2 = 0.09
T=500 0.001 0.001 0.001 0.001 0.001 1.000 1.000 0.985 1.000
T=200 0.001 0.001 0.001 0.001 0.001 0.970 1.000 0.846 1.000
T=50 0.001 0.005 0.001 0.020 0.010 0.361 1.000 0.261 0.690
Power: simulating underHA : θ1 = 0.09; θ2 = 0.9
T=500 0.005 0.015 0.001 0.001 0.001 0.999 1.000 0.965 1.000
T=200 0.001 0.001 0.001 0.005 0.001 0.912 1.000 0.729 1.000
T=50 0.001 0.005 0.001 0.020 0.010 0.254 0.995 0.172 0.400
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T2-t(3) PO (0.01,0.98) PO (0.49,0.49) PO (0.16,0.16)
AS MC MC-t(3) MC-normal MC-t(3) MC-normal MC-t(3) MC-normal

Size: simulating under the null
T=500 0.045 0.051 0.051 0.051 0.051 0.051 0.049
T=200 0.051 0.046 0.050 0.051 0.050 0.048 0.049
T=50 0.045 0.051 0.050 0.048 0.049 0.053 0.051
Power: simulating underHA : θ1 = 0.5; θ2 = 0.16
T=500 0.975 0.035 0.030 0.375 1.000 0.010 0.060
T=200 0.630 0.035 0.025 0.320 1.000 0.015 0.055
T=50 0.180 0.045 0.005 0.250 0.950 0.025 0.050
Power: simulating underHA : θ1 = 0.5; θ2 = 0.4
T=500 0.495 0.045 0.525 1.000 1.000 0.003 0.015
T=200 0.345 0.065 0.480 0.915 1.000 0.001 0.011
T=50 0.185 0.080 0.335 0.425 1.000 0.004 0.010
Power: simulating underHA : θ1 = 0.9; θ2 = 0.09
T=500 1.000 0.030 0.350 1.000 1.000 0.010 0.035
T=200 1.000 0.045 0.325 1.000 1.000 0.005 0.030
T=50 0.465 0.070 0.320 0.870 1.000 0.005 0.025
Power: simulating underHA : θ1 = 0.09; θ2 = 0.9
T=500 1.000 1.000 1.000 1.000 1.000 0.002 0.010
T=200 1.000 1.000 1.000 1.000 1.000 0.001 0.005
T=50 0.370 0.645 1.000 0.460 1.000 0.001 0.002
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Null 5: H0 : θ1 = 0; θ2 = 0

Engle-normal Engle-t(5) Engle-t(3) T2-normal T2-t(5)
AS MC AS MC AS MC AS MC AS MC

Size: simulating under the null
T=500 0.045 0.052 0.045 0.048 0.047 0.023 0.049 0.016 0.046
T=200 0.043 0.051 0.041 0.053 0.050 0.023 0.048 0.028 0.048
T=50 0.039 0.050 0.033 0.048 0.050 0.019 0.047 0.025 0.050
Power: simulating underHA : θ1 = 0.16; θ2 = 0.16
T=500 0.957 1.000 0.984 1.000 1.000 0.923 1.000 0.873 1.000
T=200 0.654 1.000 0.815 1.000 1.000 0.620 1.000 0.650 1.000
T=50 0.191 0.375 0.288 0.665 0.960 0.170 0.575 0.241 0.700
Power: simulating underHA : θ1 = 0.5; θ2 = 0.4
T=500 1.000 1.000 0.995 1.000 1.000 0.999 1.000 0.900 1.000
T=200 0.991 1.000 0.976 1.000 1.000 0.961 1.000 0.834 1.000
T=50 0.528 1.000 0.594 1.000 1.000 0.541 1.000 0.488 1.000
Power: simulating underHA : θ1 = 0.5; θ2 = 0.16
T=500 1.000 1.000 0.995 1.000 1.000 0.998 1.000 0.980 1.000
T=200 0.698 1.000 0.962 1.000 1.000 0.926 1.000 0.886 1.000
T=50 0.433 1.000 0.512 1.000 1.000 0.387 1.000 0.420 1.000
Power: simulating underHA : θ1 = 0.09; θ2 = 0.9
T=500 0.999 1.000 0.976 1.000 1.000 0.999 1.000 0.976 1.000
T=200 0.984 1.000 0.949 1.000 1.000 0.509 1.000 0.888 1.000
T=50 0.568 1.000 0.543 1.000 1.000 0.468 1.000 0.443 1.000
Power: simulating underHA : θ1 = 0.9; θ2 = 0.09
T=500 1.000 1.000 0.990 1.000 1.000 0.998 1.000 0.981 1.000
T=200 0.990 1.000 0.961 1.000 1.000 0.957 1.000 0.906 1.000
T=50 0.558 1.000 0.580 1.000 1.000 0.490 1.000 0.481 1.000
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T2-t(3) PO (0.01,0.98) PO (0.49,0.49) PO (0.16,0.16)
AS MC MC-t(3) MC-normal MC-t(3) MC-normal MC-t(3) MC-normal

Size: simulating under the null
T=500 0.051 0.051 0.050 0.051 0.051 0.052 0.049
T=200 0.046 0.051 0.053 0.053 0.050 0.050 0.048
T=50 0.055 0.046 0.048 0.051 0.049 0.051 0.051
Power: simulating underHA : θ1 = 0.16; θ2 = 0.16
T=500 1.000 1.000 1.000 1.000 1.000 1.000 1.000
T=200 1.000 1.000 1.000 1.000 1.000 1.000 1.000
T=50 0.790 1.000 1.000 1.000 1.000 1.000 1.000
Power: simulating underHA : θ1 = 0.5; θ2 = 0.4
T=500 1.000 1.000 1.000 1.000 1.000 1.000 1.000
T=200 1.000 1.000 1.000 1.000 1.000 1.000 1.000
T=50 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Power: simulating underHA : θ1 = 0.5; θ2 = 0.16
T=500 1.000 1.000 1.000 1.000 1.000 1.000 1.000
T=200 1.000 1.000 1.000 1.000 1.000 1.000 1.000
T=50 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Power: simulating underHA : θ1 = 0.09; θ2 = 0.9
T=500 1.000 1.000 1.000 1.000 1.000 1.000 1.000
T=200 1.000 1.000 1.000 1.000 1.000 1.000 1.000
T=50 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Power: simulating underHA : θ1 = 0.9; θ2 = 0.09
T=500 1.000 1.000 1.000 1.000 1.000 1.000 1.000
T=200 1.000 1.000 1.000 1.000 1.000 1.000 1.000
T=50 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Null 6: H0 : θ1 = 0
Point optimal test set to (0.49,0.49) using MMC with t(3) and normal.

Size Power θ1 = 0.9 Power θ1 = 0.5 Power θ1 = 0.16
MMC-t(3) MMC-nor MMC-t(3) MMC-nor MMC-t(3) MMC-nor MMC-t(3) MMC-nor

T=50 0.059 0.060 0.910 0.940 0.820 0.840 0.340 0.400
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Null 7: H0 : θ1 = 0.81; θ2 = 0.49

Engle-normal Engle-t(5) Engle-t(3) T2-normal T2-t(5)
AS MC AS MC AS MC AS MC AS MC

Size: simulating under the null
T=500 0.003 0.049 0.002 0.051 0.051 0.020 0.050 0.017 0.052
T=200 0.002 0.049 0.001 0.052 0.052 0.016 0.049 0.015 0.053
T=50 0.002 0.051 0.001 0.051 0.048 0.014 0.052 0.013 0.049
Power: simulating underHA : θ1 = 0.16; θ2 = 0.16
T=500 0.007 1.000 0.002 1.000 1.000 0.956 1.000 0.505 0.950
T=200 0.007 0.720 0.002 0.695 1.000 0.723 1.000 0.137 0.535
T=50 0.009 0.180 0.002 0.185 0.225 0.111 0.390 0.018 0.065
Power: simulating underHA : θ1 = 0.5; θ2 = 0.4
T=500 0.003 0.505 0.001 0.180 0.655 0.363 0.565 0.018 0.070
T=200 0.001 0.385 0.001 0.150 0.400 0.108 0.355 0.016 0.050
T=50 0.005 0.120 0.001 0.080 0.115 0.022 0.110 0.012 0.040
Power: simulating underHA : θ1 = 0.01; θ2 = 0.98
T=500 0.002 0.600 0.001 0.430 0.975 1.000 1.000 0.989 1.000
T=200 0.001 0.360 0.001 0.360 0.695 0.992 1.000 0.910 1.000
T=50 0.004 0.090 0.001 0.100 0.125 0.417 1.000 0.311 1.000
Power: simulating underHA : θ1 = 0.49; θ2 = 0.81
T=500 0.001 0.080 0.002 0.045 0.040 0.927 1.000 0.724 1.000
T=200 0.001 0.090 0.001 0.075 0.050 0.513 1.000 0.348 1.000
T=50 0.001 0.060 0.001 0.040 0.085 0.099 0.455 0.077 0.265
Power: simulating underHA : θ1 = 0.16; θ2 = 1
T=500 0.003 0.160 0.002 0.175 0.275 1.000 1.000 0.984 1.000
T=200 0.003 0.125 0.001 0.185 0.240 0.970 1.000 0.832 1.000
T=50 0.003 0.085 0.001 0.095 0.100 0.323 1.000 0.231 0.840
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T2-t(3) PO (0.01,0.98) PO (0.49,0.49) PO (0.16,0.16)
AS MC MC-t(3) MC-normal MC-t(3) MC-normal MC-t(3) MC-normal

Size: simulating under the null
T=500 0.050 0.052 0.049 0.051 0.053 0.049 0.047
T=200 0.051 0.053 0.052 0.049 0.052 0.049 0.052
T=50 0.049 0.048 0.051 0.048 0.050 0.052 0.049
Power: simulating underHA : θ1 = 0.16; θ2 = 0.16
T=500 0.050 1.000 1.000 1.000 1.000 1.000 1.000
T=200 0.075 1.000 1.000 1.000 1.000 1.000 1.000
T=50 0.035 1.000 1.000 1.000 1.000 1.000 1.000
Power: simulating underHA : θ1 = 0.5; θ2 = 0.4
T=500 0.055 1.000 1.000 1.000 1.000 1.000 1.000
T=200 0.075 1.000 1.000 1.000 1.000 1.000 1.000
T=50 0.040 0.280 0.220 0.370 0.285 0.390 0.355
Power: simulating underHA : θ1 = 0.01; θ2 = 0.98
T=500 1.000 1.000 1.000 1.000 1.000 1.000 1.000
T=200 1.000 1.000 1.000 1.000 1.000 1.000 1.000
T=50 0.920 1.000 1.000 1.000 1.000 0.556 0.390
Power: simulating underHA : θ1 = 0.49; θ2 = 0.81
T=500 1.000 0.290 0.860 0.540 0.500 0.055 0.050
T=200 0.725 0.165 0.315 0.255 0.515 0.055 0.065
T=50 0.300 0.135 0.220 0.115 0.190 0.055 0.060
Power: simulating underHA : θ1 = 0.16; θ2 = 1
T=500 1.000 1.000 1.000 1.000 1.000 0.825 0.800
T=200 1.000 1.000 1.000 1.000 1.000 0.425 0.415
T=50 0.625 0.905 1.000 0.705 1.000 0.175 0.155
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