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1. Introduction 

The goal of integrated risk management in a financial institution is to measure and 

manage risk and capital across a diverse range of activities in the banking, securities and 

insurance sectors.1  This requires an approach for aggregating different risk types and hence risk 

distributions, a problem found in many applications in finance including risk management and 

portfolio choice. 

At the core of all financial institutions, no matter which sector they operate in, lie three 

risk types: market, credit, and operational risk.2  The distributional shapes of each risk type vary 

considerably.  For market risk, we typically see portfolio value distributions that are nearly 

symmetric and often approximated as normal.  Credit and especially operational risk generate 

more skewed distributions because of occasional, extreme losses.  These losses might be due to 

large lending exposures in the case of credit risk, or large catastrophes such as 9/11, in the case 

of operational risk.3 

Some risks types, such as market risk, are more easily characterized and measured than 

others, such as operational risk, but much less is known about the relationship between the risks.  

We develop an approach to combine marginal distributions in an internally consistent and 

realistic manner while preserving important properties of the individual risks, like skewness and 

                                                 

1 Virtually all of the large, multinational financial institutions operating around the world today operate in at least 
two of the three sectors, which make them financial conglomerates by the definition of the Joint Forum (Joint 
Forum, 2001, p.5).  They define a financial conglomerate as “any group of companies under common control whose 
exclusive or predominant activities consists of providing significant services in at least two different financial 
sectors (banking, securities, insurance).” 
2 Credit risk is the dominant risk in a commercial bank and received a formal regulatory capital charge with the first 
Basel Capital Accord (BCBS, 1988).  Market risk capital was added with the 1996 market risk amendment (BCBS, 
1996).  Under the anticipated New Basel Accord (BCBS, 2004), operational risk is added so that each of these risks 
carries a regulatory capital charge. 
3 See Jorion (2001) for examples of market risk and Crouhy, Galai and Mark (2001) for examples of all three risk 
types.  Kuritzkes, Schuermann and Weiner (2003) present stylized pictures of a very broad range of risk types faced 
by a financial conglomerate. 
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fat-tails.  At the same time, our methodology can be implemented when there is limited 

information about inter-risk dependencies, as in the case in which only correlations are available. 

In this paper, we directly construct the joint risk distribution for a typical, large, 

internationally active bank — one engaged in commercial banking and securities (underwriting) 

activities — using the method of copulas.  Market and credit risk distributions are known to be 

time varying, reflecting the effects of stochastic volatility.  With this in mind, we estimate 

dynamic models for these risks using a multivariate GARCH approach, and then combine the 

resulting conditional distributions with operational risk which is taken to be unconditional.  

Indeed, the risk dynamics will naturally carry through to the joint or total risk distribution via the 

copula. 

Our empirical analysis uses a combination of data from regulatory reports, market data 

and vendor data.  Banking holds particular interest at the moment because of the intense policy 

debate surrounding the New Basel Capital Accord (BCBS, 2004), and the incorporation into 

regulation of a new risk type (operational) which has substantially different characteristics from 

market or credit risk.4  Although our application is to a bank, it could just as easily be extended 

to an insurer or, indeed, to a financial conglomerate that combines all three (and not just two) 

sectors under one roof. 

Our study is the first to use publicly available, industry-wide data to perform a 

comprehensive analysis surrounding the set of factors or dimensions that affect total risk.  

Specifically, we examine the sensitivity of risk estimates to business mix, dependence structure, 

risk measure, and estimation method.  Few papers conduct such sensitivity analysis — those that 

do focus on just one or two of these dimensions, and the risk densities themselves are not 

                                                 

4 That banks and insurers are actively wrestling with this issue is shown quite clearly in Joint Forum (2003). 
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estimated from empirical data.  Those studies that do model risk based on empirical data do not 

conduct sensitivity analysis.  Moreover, the results of these studies are difficult to generalize, 

since their data is often based on the experience of a single institution.  By using a panel of 

quarterly data for a set of large banks, we can have more confidence that our results are indeed 

representative of a typical institution.  In addition, by exploring the impact of business mix, we 

can comfortably span a wide range of business activities and hence bank types. 

We find that given a risk type, total risk is more sensitive to differences in business mix 

or risk weights than to differences in inter-risk correlations.  For a policy maker or practitioner 

this is good news as it is far harder to estimate inter-risk correlations than to assess business mix.  

We show a complex relationship between volatility and fat-tails in determining total risk: 

depending on the setting, they either offset or reinforce each other.  For example, as operational 

exposure is increased relative to market and credit exposure, total risk, whether measured using 

value-at-risk (VaR) or expected shortfall (ES), first declines significantly (operational risk has 

lower volatility than the other two) but then flattens as the impact of fatter tails offsets the effect 

of lower volatility.  As correlation of market and credit risk with operational risk is increased, 

both volatility and fat-tails increase.  The choice of copula (normal versus Student-t), which 

determines the level of tail dependence, has a more modest effect on total risk. 

We go on to compare the copula-based method with several conventional approaches to 

computing risk.  These are examples of typical industry practice, and in one case, a calculation 

related to required regulatory capital.  Understanding the accuracy of these easy to implement 

approximations to the more complicated copula-based approach should therefore have broad 

appeal.  A first approximation of adding up the risks (e.g. VaR) of the marginal distributions 

significantly overestimates total risk or economic capital, which is not surprising as it assumes 
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perfect inter-risk correlation.  Assuming joint normality of the risk factors imposes tails that are 

thinner than the empirical estimates and significantly underestimates economic capital.  A third 

“hybrid” approach, which combines marginal risks using a formula that would apply to an 

elliptical distribution, is surprisingly accurate.   

The rest of the paper proceeds as follows.  In Section 2, we present a brief overview of 

the related literature.  We then discuss risk measurement (VaR, ES) and risk aggregation in 

Section 3.  Most of the discussion is in terms of VaR, simply because it has become so common, 

but later we go on to conduct robustness checks using ES and find that all results implied by VaR 

hold.  Section 4 provides an overview of copulas, while Section 5 focuses on the marginal risk 

distributions by risk type and lays out our general approach.  In Section 6, we present our 

analytical results by examining the impact of business mix, correlations and copula type on the 

joint risk distribution.  Section 7 provides some final comments.  

 

2. Related literature 

With the rise of risk management as a distinct discipline in banking and finance, the issue 

of risk aggregation has only recently become an area of study.  Using copulas to this end seems 

like a natural application.  Embrechts, McNeil, and Straumann (1999, 2002) were among the first 

to introduce this toolkit to the finance literature.  Li (2000) provides an application to credit risk 

and credit derivatives.  Frey and McNeil (2001) emphasize the importance of tail dependence 

and, by introducing copulas, generalize dependence beyond correlation.5  Other applications of 

                                                 

5 Poon, Rockinger and Tawn (2004) use multivariate extreme value theory instead of copulas to model tail 
dependence.  Their technique is data-intensive and requires empirical observations of joint tail events.  Other 
applications of copulas include Rosenberg (2003), who uses a copula related methodology for multivariate 
contingent claims pricing.  Patton (2002) uses copulas to model exchange rate dependence while Fermanian and 
Scaillet (2003) analyze copula estimation and testing methods. 
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copulas for portfolio risk measurement include Bouyé (2001), Longin and Solnik (2001), 

Glasserman, Heidelberger, and Shahabuddin (2002), and Embrechts, Lindskog, and McNeil 

(2003). 

Studies that focus more narrowly on cross-risk type aggregation for a financial institution 

are less common.  Alexander and Pézier (2003) use a common risk factor approach to 

characterize the joint distribution of market and credit risk for a bank.  Wang (1998) lays out a 

series of theoretical arguments and approaches for measuring and modeling enterprise-wide risk 

for an insurer facing a highly diverse set of marginal risk distributions.  Ward and Lee (2002) use 

a normal copula to aggregate a diverse set of risks, some computed analytically (e.g. credit risk is 

assumed to follow a beta distribution), some by simulation (e.g. mortality risk for life insurance), 

to arrive at the total distribution for a diversified insurer.   

Dimakos and Aas (2004) estimate the joint loss distribution for a Norwegian bank that 

also owns a life insurance subsidiary.  This study, as well as Ward and Lee (2002), approaches 

the problem of risk aggregation by considering risks pair-wise.  Ward and Lee (2002) use pair-

wise roll-ups with a Gaussian copula, while Dimakos and Aas (2004) decompose the joint risk 

distribution into a set of conditional probabilities and impose sufficient conditional independence 

so that only pair-wise dependence remains.  The total risk is then just the sum of the conditional 

marginals (plus the unconditional credit risk which serves as their anchor).  Their simulations 

indicate that total risk measured using near tails (95% to 99%) is about 10-12% less than the sum 

of the individual risks.  Using the far tail (99.97%), they find that total risk is often overestimated 

by more than 20% using the additive method.  These results suggest that incorporation of 

diversification effects can be crucial for accurate risk aggregation, particularly in the tails. 
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Finally, Kuritzkes, Schuermann and Weiner (2003), hereafter KSW, make a simplifying 

assumption of joint normality, allowing for a closed-form solution, and use a broad set of 

parameters to arrive at a range of risk aggregation and diversification results for a financial 

conglomerate.  They find somewhat smaller, but still significant differences between total risk 

and the sum of individual risks.  These differences are about 15% across market, credit and 

operational risk for a bank, 20% to 25% for insurers, and 5% to 15% for a banc-assurance style 

financial conglomerate. 

 

3. Risk measurement and VaR 

3.1. Risk measurement 

Risk is simply the potential for deviation from expected results, particularly adverse 

deviation.  Behind every risky future cash flow, earnings result, or change in value there lies a 

probability distribution of potential results.  The relative magnitude of risk could be defined by a 

measure of spread or dispersion in that distribution such as the standard deviation or variance.  

However, variance is not necessarily sufficient for capturing risk — two distributions with 

dramatically different shapes and differing amounts of downside risk can have the same 

variance. 

Measures such as skewness and kurtosis can be used to quantify the risk that is not 

adequately described by variance alone.  Another approach is to examine the percentiles of the 

distribution to provide answers like “99% of the time interest rates will move less than X% in 

one day and 1% of the time the move will be greater.”  This effectively summarizes Value-at-

Risk (VaR), a concept we take up in more detail below. 
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3.2. Value-at-Risk 

Value-at-risk (VaR) has become a standard for measuring and assessing risk in financial 

institutions.  VaR is broadly defined as a quantile of the distribution of returns (or losses) of the 

portfolio in question.  Some find it convenient to consider the negative of this quantile so that 

higher values of VaR correspond to higher levels of risk.  We take VaR simply to be equal to this 

quantile so that larger (negative) values correspond to higher levels of risk. 

More formally, let Yt be the portfolio value at time t, and define the k-period ahead 

portfolio return as rt+k = ln(Yt+k) – ln(Yt).  We denote the (1-α)% VaR estimate at time t for a k-

period ahead return as VaRt+k(α), so that 

 ( )Pr VaR ( ) .t k t kr α α+ +< =  (3.1) 

Much as the concept of a sufficient statistic provides a compact representation of the 

characteristics of the data, so VaR is hoped to give us a similarly compact sufficient risk 

measure.  Christoffersen and Diebold (2000) and Berkowitz (2001) argue that rather than focus 

on just one number such as VaR, risk managers and, implicitly, regulators should focus on the 

whole density function of returns, perhaps using techniques such as those laid out in Diebold, 

Gunther and Tay (1998) and Berkowitz (2001).  Nonetheless, interest in a simpler summary 

measure continues.  

Artzner, Delbaen, Eber, and Heath (1997, 1999) lay out a set of criteria necessary for 

what they call a “coherent” measure of risk.  They include homogeneity (larger positions bring 

greater risk), monotonicity (if a portfolio has systematically lower returns than another for all 

states of the world, its risk must be greater), sub-additivity (the risk of the sum cannot be greater 

than the sum of the risks) and the risk-free condition (as the proportion of the portfolio invested 

in the risk-free asset increases, portfolio risk should decline).  Importantly, unless the underlying 
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risk factors come from an elliptical distribution (the normal belongs to this family), VaR does not 

satisfy the sub-additivity condition.  Thus, a firm could concentrate all of its tail risks in one 

exposure in such a way that the risk borne by that exposure appears just beyond the overall 

portfolio VaR threshold (Embrechts, McNeil and Straumann, 1999, 2002).   

A related statistic, expected shortfall (ES), also sometimes referred to as conditional VaR, 

is a coherent risk measure that estimates the mean of the beyond-VaR tail region.  Specifically, 

using Eq. (3.1), ES at time t over horizon k at confidence level α, is defined as  

 [ ]ES ( ) | VaR ( ) .t k t k t k t kE r rα α+ + + += ≤  (3.2) 

Similar to our reporting convention for VaR, we take ES to be a tail expectation of losses, so that 

ES is also negative.  Our empirical results in Section 6.2 are largely discussed using VaR, but we 

go on to conduct robustness checks using ES as well. 

3.3. VaR for portfolios 

One of the original approaches for portfolio risk measurement is Markowitz’s (1959) 

mean-variance analysis.  Consider a simple case of three assets (or more broadly, three cash-flow 

generating processes) with returns rx, ry and rz and weights wx, wy and wz such that these weights 

sum to one.  The portfolio return is simply rp = wxrx + wyry + wzrz and the variance is 

 2 2 2 2 2 2 2
, , ,2 2 2 ,p x x y y z z x y x y x z x z y z y zw w w w w w w w wσ σ σ σ σ σ σ= + + + + +  (3.3) 

where 2
iσ  is the variance of the ith return and σi,j is the covariance between return i and j. 

Then, assuming for simplicity that the portfolio expected return is zero, the portfolio VaR 

can be written as (see, for instance, Bradley and Taqqu, 2003), 

 1VaR ( ) ( ).p p pFα σ α−=  (3.4) 
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where 1( )pF α−  is the αth quantile of the standardized portfolio return (rp/σp).  1( )pF α−  is the 

standardized quantile function, which measures risk in terms of the number of standard 

deviations from zero.  Note that 1( )pF α−  is a negative number (e.g. -3.1 for 0.1st percentile of the 

standard normal distribution), and σp is positive; thus, VaRp(α) is also negative. 

By substituting the portfolio volatility Eq. (3.3) into the VaR Eq. (3.4), we have 

 

2 2 2 2 2 2 1
, , ,

2 2 22 2 1 2 2 1 2 2 1

1
21

,

VaR ( ) 2 2 2 ( )

( ) ( ) ( )
( ) .

2 ( ) ...

p x x y y z z x y x y x z x z y z y z p

x x p y y p z z p

p

x y x y p

w w w w w w w w w F

w F w F w F
sign F

w w F

α σ σ σ σ σ σ α

σ α σ α σ α
α

σ α

−

− − −

−

−

 = + + + + +  

     + +       =  
 + + 

 (3.5) 

Eq. (3.5) tells us that the VaR of the portfolio can be written in terms of the second moments of 

the marginal returns and the inverse distribution function of the standardized portfolio returns.  

We can think of the quantile 1( )pF α−  as a providing a scaling factor for each volatility. 

Now, suppose the quantiles of the individual standardized returns are the same as for the 

portfolio returns, i.e. 1 1 1 1( ) ( ) ( ) ( )p x y zF F F Fα α α α− − − −= = = .  For example, this is true for the 

multivariate normal distribution.  Given this equality, and under the assumption that 

1( ) 1α−  = − psign F  meaning we are looking at losses, we write portfolio VaR, which we denote 

H-VaR (H for hybrid), as 

 
[ ] [ ]

( )( )

2 2 22 2 1 2 2 1 2 2 1

1 1
,

22 22 2 2

,

( ) ( ) ( )
H-VaR ( )

2 ( ) ( ) ...

VaR ( ) VaR ( ) VaR ( )
.

2 VaR ( ) VaR ( ) ...

x x x y y y z z z
p

x y x y x y

x x y y z z

x y x y x y

w F w F w F

w w F F

w w w

w w

σ α σ α σ α
α

σ α α

α α α

ρ α α

− − −

− −

     + +     = −
   + +   

 + + = −
 + + 

 (3.6) 

Eq. (3.6) says that portfolio VaR can be computed using the same formula as portfolio volatility, 

where each volatility is replaced by the corresponding VaR.  If we calculate H-VaR when the 
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marginals come from different density families, then some volatilities could be overweighted and 

others underweighted relative to the actual VaR.  The net effect will depend on the relationship 

between the marginal quantiles, the volatilities, and the portfolio quantile.  Notice, however, that 

H-VaR does allow the tail shape of the marginals to affect the portfolio VaR estimate.  

Eq. (3.6) simplifies considerably when the individual returns are uncorrelated, i.e. 

, 0 ,i j i jσ = ∀ .  Then, 

 [ ] [ ]22 22 2 2VaR ( ) VaR ( ) VaR ( ) VaR ( )α α α α = − + + p x x y y z zw w w . 

When the risks are perfectly correlated ( , 1 ,i j i jρ = ∀ ), Eq. (3.6) becomes (for positive weights): 

 Add-VaR ( ) VaR ( ) VaR ( ) VaR ( ).p x x y y z zw w wα α α α= + +  (3.7) 

We will refer to this as additive VaR or Add-VaR.  When risk correlations are less than one, we 

would expect Add-VaR to overestimate risk.  Like H-VaR, Add-VaR allows the tail shape of the 

marginals to affect the portfolio VaR estimate.6  

Another special case of Eq. (3.5) is obtained by assuming that the risk distribution is 

multivariate normal, which makes it also a special case of Eq. (3.6).  Then, each of the marginals 

is normal, and Normal VaR (N-VaR) has standardized quantiles given by the inverse standard 

normal distribution function ( 1−Φ (α)), 

 
2 2 1 2 2 2 1 2 2 2 1 2

1 2 1 2
,

( ) ( ) ( )
N-VaR ( ) .

2 ( ) ( ) ...
x x y y z z

p
x y x y

w w w

w w

σ α σ α σ α
α

σ α α

− − −

− −

Φ + Φ + Φ
= −

+ Φ Φ +
 (3.8) 

It is clear that N-VaR will be accurate only when the joint risk distribution is multivariate 

normal.  N-VaR is most likely to fail when one or more marginals exhibit significant negative 

                                                 

6 Note that Add-VaR assumes an elliptical underlying distribution and perfect correlation.  If the actual distributions 
are not members of this family, then Add-VaR might not provide an upper bound for VaR.  This would be an 
example of the failure of sub-additivity. 



-11- 

skewness or excess kurtosis.  In that case, the normal quantile underestimates the actual marginal 

quantile. 

Clearly, the closeness of each of the VaR approximations (hybrid, additive, and normal) 

to the actual VaR will depend on the validity of their underlying assumptions.  H-VaR has the 

least restrictive assumptions, since it permits the correlations and marginal quantiles to depend 

on the data.  Add-VaR restricts the correlations to be unity, but does not restrict the quantiles.  N-

VaR forces the quantiles to come from a normal distribution but allows the correlations to be 

estimated from the data. 

Each of these approximations relies on the assumption that the quantiles of the portfolio 

are the same as the quantiles of the marginals.  When 1 1 1 1( ) ( ) ( ) ( )p x y zF F F Fα α α α− − − −≠ ≠ ≠ , we 

are left with the problem of computing Eq. (3.5) when 1
pF −  is unknown.  To obtain the correct 

portfolio VaR, we therefore need to obtain the joint return distribution of the portfolio.  Copulas 

allow us to solve this problem by combining the specified marginal distributions with a 

dependence function to create this joint distribution.  The joint distribution can then be used to 

calculate the quantiles of the portfolio return distribution, since the portfolio returns are weighted 

averages of the individual returns.  

 

4. Copulas 

Copulas provide important theoretical insights and practical applications in multivariate 

modeling; an excellent reference is Nelsen (1999).  The essential idea of the copula approach is 

that a joint distribution can be factored into the marginals and a dependence function called a 

copula.  The term copula is based on the notion of “coupling;” the copula couples the marginal 

distributions together to form a joint distribution.  The dependence relationship is entirely 
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determined by the copula, while scaling and shape (e.g., mean, standard deviation, skewness, and 

kurtosis) are entirely determined by the marginals. 

Using a copula, marginal risks that are initially estimated separately can then be 

combined in a joint risk distribution that preserves the original characteristics of the marginals.  

This is sometimes referred to as obtaining a joint density with pre-determined marginals.  For 

example, when individual risk distributions are estimated using heterogeneous dynamic models 

that cannot be easily combined into a single dynamic model (e.g. different explanatory variables, 

different variable frequencies, or different model types), the marginals can be thought of as pre-

determined.  The copula approach is then naturally applied to combine these time-varying 

marginal risk distributions to obtain a time-varying joint risk distribution.   

In addition, there are cases in which marginal risks are not estimated using time-series 

data (e.g., implied density estimation, survey data, or combination of frequency and severity 

data).  There is then no direct way to create a multivariate dynamic model that incorporates all of 

the risk types.  Once again, the copula method can incorporate these marginal risks into a joint 

risk distribution. 

The copula approach is also useful when “off-the-shelf” multivariate densities 

inadequately characterize the joint risk distribution.  In the risk management context, the 

multivariate normal distribution is known to poorly fit the skewed, fat-tailed properties of 

market, credit, and operational risk.  Using a copula, parametric or non-parametric marginals 

with quite different tail shapes can be combined into a joint risk distribution.  Joint risk 

distributions created using copulas can also span a range of dependence types beyond correlation 

such as tail dependence. 
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4.1. Representation of a joint distribution using a copula 

One of the fundamental results concerning copulas is known as Sklar’s Theorem.  It 

states that any joint distribution can be written in terms of a copula and marginal distribution 

functions.  This representation shows that it is possible to separately specify each variable’s 

marginal distribution and the dependence relationship that links these marginals into a joint 

distribution.  The standard representation for the joint distribution Fxy is:  

 ( ), ( , ) ( ), ( ) ,x y x yF x y C F x F y=  (4.1) 

where C(u,v) is the copula, and Fx as well as Fy are the cumulative marginal distribution 

functions. 

Alternatively there is the density representation: 

 ( ), ( , ) ( ) ( ) ( ), ( ) ,x y x y x yf x y f x f y c F x F y=  (4.2) 

where 
2

( , ) ( , )c u v C u v
u v

 ∂
=  ∂ ∂ 

 is the copula density, and fx as well as fy are the marginal density 

functions. 

In Eq. (4.1), the marginal information is embedded in Fx(x) and Fy(y), and the 

dependence information is captured by C(u,v).  The copula itself is a joint distribution with 

uniform marginals, so it maps points on the unit square (u,v ∈[0,1]×[0,1]) to values between zero 

and one.  The copula relates the quantiles of the two distributions rather than the original 

variables, so that the copula for two random variables is unaffected by a monotonically 

increasing transformation of the variables.  For example, the copula of the joint distribution of X 

and Y is the same as the copula of the joint distribution of ln(X) and exp(Y). 
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4.2. Constructing a joint distribution using a copula 

The copula for any multivariate distribution function can be obtained using the method of 

inversion.  This technique factors out the effects of the marginal distributions on the dependence 

relation by substituting the arguments of the original joint distribution with the marginal quantile 

functions.  Using this method, the copula C(u,v) of the joint distribution Fx,y is: 

 ( )1 1
,( , ) ( ), ( ) ,x y x yC u v F F u F v− −=  (4.3) 

where 1
xF −  and 1

yF −  are the marginal quantile functions,  and u as well as v are probabilities. 

For example, we can determine the normal copula using the method of inversion.  If 

( ), ;x y ρΦ  is a bivariate standard normal cumulative distribution function and Φ-1(u) and Φ-1(v) 

are standard normal quantile functions, then the normal copula is simply ( )1 1( ), ( );u v ρ− −Φ Φ Φ .  

The bivariate normal copula has a single parameter, the correlation coefficient ρ.  

A joint distribution with given marginals and a given copula can be created by plugging-

in the marginal distributions into the copula function.  To obtain the joint distribution Fa,b using 

the copula C(u,v) and the marginals Fa and Fb, we have  

 ( ), ( , ) ( ), ( ) .a b a bF a b C F a F b=  (4.4) 

So, to create a bivariate distribution with given marginals and a normal copula, one 

simply inserts the marginal distributions into the normal copula as ( )1 1( ), ( );x yF u F v ρ− −Φ .  It is 

worth noting that the correlation between the risks is not necessarily equal to ρ.  The non-

normality of the marginal densities drives a wedge between the ρ and the Pearson correlation 

coefficient.  In addition, it is possible that some correlations cannot be attained for certain 

choices of marginals. 
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4.3. Simulation using copula-based multivariate densities 

Techniques for simulating realizations from the multivariate normal distribution are well-

known.  Probably, the most common approach is to draw uncorrelated univariate normal vectors 

with desired means and standard deviations.  These are transformed into correlated draws from a 

multivariate normal distribution using a Cholesky factorization of the correlation matrix. 

A related approach can be used to simulate realizations from a multivariate distribution 

written in terms of a copula and marginal distributions.  For clarity, we illustrate how to simulate 

random variables A and B from a joint distribution generated using a bivariate normal copula and 

given marginals (Fx and Fy).  Notice that Fx and Fy can be defined either parametrically or non-

parametrically. 

First, two uncorrelated standard normal vectors are generated and transformed to 

correlated standard normal vectors using the lower triangular Cholesky factor.7  Then, we have  

X,Y ~ ( ), ;x y ρΦ .  X and Y are transformed into realizations from a normal copula by applying 

the normal cumulative distribution function to each vector [U = Φ(X), V = Φ(Y)] so that  

U,V ~ ( )1 1( ), ( );u v ρ− −Φ Φ Φ .  Finally, A and B are obtained by applying the inverse cumulative 

distribution function for each marginal to U and V, 1 1( ), ( )x yA F U B F V− − = =  . 

 

                                                 

7 If the two uncorrelated standard normal random variables are Z1 and Z2, then X = Z1 and ( )1 2
21Y Z Zρ ρ= + − .  

This method is easily extended to simulate Student-t variates with ν degrees of freedom.  The Student-t realization is 
obtained by multiplying each normal pair (Xi,Yi) by / iv s  where si is drawn from a chi-square distribution with ν 
degrees of freedom.  Then, the inverse cumulative distribution function for a Student-t(ν) is applied instead of the 
inverse normal to create a Student-t copula realization.  
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5. Marginal risk distributions: market, credit, and operational 

In this section, we consider the problem of modeling the marginal risk distributions for a 

typical large, internationally active bank.  This is the kind of bank regulators have in mind when 

designing capital regulation (BCBS, 2004).  As noted earlier, we will focus on three risk-types: 

market, credit, and operational.  Market risk measures the risk of adverse movements in market 

factors, such as asset prices, foreign exchange rates or interest rates.  The risk of loss resulting 

from failure of obligors to honor their payments is called credit risk, while operational risk can 

be defined as (BCBS, 2004, §644) “the risk of loss resulting from inadequate or failed internal 

processes, people and systems or from external events.”  This list is hardly exhaustive; for 

instance, mortality and morbidity risk is typically incurred by life insurers but rarely by banks.  

But any financial institution is subject to these three risks and hence the focus of our study. 

While all banks are subject to minimum capital standards due to credit risk, only banks 

with a significant market risk exposure are required to calculate a risk-based capital ratio that 

takes into account market risk in addition to credit risk.  U.S. regulators deem market risk 

exposure to be significant if the gross sum of trading assets and liabilities on the bank’s balance 

sheet exceeds 10 percent of total assets or $1 billion (USGAO, 1998, p. 121).  As reported in 

Hirtle (2003; Table 1), at the end of 2001 there were 19 bank holding companies (BHCs) that 

were subject to market risk capital standards.  This set of institutions will form the sample of 

banks for our analysis.  As a benchmark, we consider the risk and business activity profile of the 

median bank from that group for which we have complete data; there are 17 of those. 

5.1. The bank sample 

We have quarterly data for 17 BHCs from 1994Q1 to 2002Q4, obtained from Y-9C 

regulatory reports, expressed on a pro-forma basis going back in time to account for mergers.  
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See Table 1 for details.  For example, if a bank in 2002 is the result of a merger in 2000, pre-

2000 data is merged on a pro-forma basis.  We use this data to arrive at typical size and business 

mix characteristics.  Thus for the last year of the sample period the average (median) BHC has 

$277bn ($178bn) in assets, 48% (53%) of which was devoted to lending.  Even though only 

these banks were required to report market risk, the market risk share of the minimum capital 

requirement was rather small on average (median): 0.18% (0.14%).8  The average (median) 

return on assets was 1.07% (1.19%).  Because the size distribution of banks is quite skewed – 

there are a few very large banks – we will use medians to characterize the typical bank. 

5.2. General approach 

In developing a modeling framework for the joint risk distribution of a bank, we face a 

number of challenges.  First, there is the range of business mix.  The “typical” bank we have in 

mind is engaged in a range of business activities, some of which are more intensive in market 

risk (like trading), credit risk (like lending), or operational risk (like custody). 

A second important consideration is the units in which the risk type is measured and 

reported.  To arrive at an aggregate risk distribution, we need a common currency of risk.  

Market risk is typically based on the return distribution of the end-of-day positions in the trading 

book.  Similarly, credit risk can be described by a loss or return distribution, typically in terms of 

percentage exposure.  In both cases we need to know the exposure at risk, e.g. trading or lending 

assets, to compute dollars at risk.   

                                                 

8 This small amount of market risk regulatory capital is not necessarily inconsistent with industry benchmarks of 
economic capital arising from internal models; those are closer to 20%.  Only position risk, i.e. risk arising from 
trading activities, is measured for purposes of assigning regulatory capital.  Interest rate risk due to ALM is typically 
included in internal models. 
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Finally, operational risk is not yet part of the regulatory framework – but will be under 

the New Basel Accord – so typically banks do not currently report operational risk.  Data for this 

risk type is only recently becoming available, and we will rely on external sources to 

characterize, and calibrate, our operational risk distribution.  The measurement unit is in dollars.  

We convert the operational risk losses into a “return” by normalizing with respect to total assets, 

since all assets and activities of the bank are in some way subject to this risk type. 

The overall or total risk distribution will simply be a weighted combination of the 

individual risks, where the weights, which add up to one, are determined by the risk-specific 

exposures.  We determine exposures and risk weights as follows.  Market risk exposure is equal 

to trading assets, credit risk exposure is equal to lending assets, and operational risk exposure is 

equal to total assets.  We call the sum of these three exposures the “total book,” and each risk 

weight is simply the ratio of the exposure to the total book.  Based on BHC characteristics at the 

end of 2002, the risk weights for our benchmark bank are 3.1% market, 29.1% credit, and 67.8% 

operational.  To be sure, these weights could be somewhat arbitrary because they only include 

on-balance sheet items.9  Although off-balance sheet items can be larger, this is the usual 

treatment.  We do not consider these weights as benchmarks per se but rather as a useful starting 

point from which to conduct our business mix experiments.  After all, we are interested in 

understanding the range of total risk outcomes as that business mix changes. 

Our ex ante weights are quite different from the ex post risk contribution from business 

lines discussed in other studies.10  For example, KSW report that the average ex post 

                                                 

9 This was kindly pointed out by a referee. 
10 The difference arises primarily because the ex post contribution depends on both the exposure and the riskiness of 
the business line, while the ex ante weight is only a function of the exposure.  For instance, all business activities are 
exposed to some operational risk (high ex ante weight), but this need not result in a large attribution to operational 
risk capital (ex post contribution) if operational activities have relatively low risk.  A useful analogy is the example 
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decomposition based on bank internal models attributes about 20% of economic capital to 

market risk, 55% to credit risk, and 25% to operational risk.  When we perform an ex post risk 

decomposition using our ex ante benchmark risk weights (Section 6.2), we obtain generally 

similar results.   

For market and credit risk, we model the return due to each risk-type as a function of 

observable risk factors.  This approach allows us to separately measure factor sensitivities and 

model risk factor dynamics.  We can then estimate marginal risk distributions by combining the 

time-varying risk factor distributions with the factor sensitivities.  For operational risk, it is far 

from clear which observable risk factors might drive operational risk.11  Thus, we work with the 

unconditional distribution, the details of which are provided below in Section 5.6. 

We proceed by letting bank i returns from risk type j = {market, credit} at time t be 

driven by a set of observable risk factors xj,t as in  

 '
, , , , , , , .i j t i j i j j t i j tr α ε= + +β x  (5.1) 

In Eq. (5.1), bank returns attributable to risk type j are said to be captured by the set of 

observable risk factors collected in xj,t.   We estimate factor sensitivities using panel data, so 

these are perhaps best interpreted as time-averaged if actual sensitivities are time-varying.  The 

risk factors are themselves subject to complex dynamics which are specified and estimated 

separately.  

Naturally, our chosen factors (xj,t.) will not necessarily capture all of the relevant risks.  

But as long as the omitted factors which appear in εi,j,t are not correlated with observable factors, 

                                                                                                                                                             

of a portfolio invested in a low risk and a high risk asset, e.g. U.S. treasuries and the S&P500.  One could place a 
majority of the portfolio in the former (high ex ante weight) but still have the overall portfolio risk be driven largely 
by the latter (high ex post risk contribution). 
11 An example of this approach for market and credit (but not operational) risk is Alexander and Pézier (2003).  See 
also Jorion (2002) for the importance of market exposures of trading revenues on reported market risk. 
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we suffer only loss of efficiency but no bias in estimating the bank-specific set of factor 

sensitivities '
,i jβ .  To be sure, some residual market and credit risk might be captured by our 

operational risk measure, but a significant amount of the unexplained variation is likely to be 

bank specific.  We analyze residual risk in Section 5.4. 

An advantage of proceeding along the lines of Eq. (5.1) is that the time series available 

for bank data, ri,j,t, is much shorter and at a lower frequency (quarterly from 1994-2002) than 

what is available for the risk factors xj,t (daily from 1974-2002 for the market risk factors and 

monthly from 1988-2002 for the credit risk factors).  Using the factor approach, we can construct 

the marginal risk distributions from a much richer history of risk factor movements than what we 

have seen at a quarterly frequency in the last nine years.  

The income from market risk related activities is captured in the regulatory reports as 

“Trading Revenue.”  While fluctuations from this income source include the outcome of position 

taking, arguably some of this revenue comes from customer-related activities such as fees and 

commissions.  Regulatory reporting, however, is focused on sensitivity of the trading book to 

risk factors such as equity returns, interest rates and foreign exchange rates.  We therefore direct 

our analysis by regressing trading returns, defined as trading revenue over trading assets, on 

returns and volatilities of risk factors from a broad set of asset classes in the capital markets: 

equities, currencies, and interest rates. 

Most credit risk arises from lending, which generates fees and interest income.  The 

former is not separately reported, so we will proxy total credit risk related income by net interest 

income less a charge for incurred losses as proxied by provisions.  To define a credit return, we 

divide this net credit income by the lending assets.  In thinking about modeling the variation in 

this return, credit spreads come immediately to mind as they should yield the appropriate 
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filtering over a wide set of factors, such as default risk, that we would expect to drive the profits 

and losses of a bank’s loan portfolio. 

Having defined the dependent variable in Eq. (5.1) for market and credit risk, we now go 

on to specify the factor dynamics. 

5.3. Specification of risk factor dynamics 

It is well known that asset returns exhibit stochastic volatility, which can create skewness 

and fat-tailedness in the resulting risk distributions.  To capture this phenomenon, we estimate 

the joint distribution of the factor risks within a multivariate GARCH framework.  In particular, 

we estimate the asymmetric BEKK model proposed by Kroner and Ng (1998) that allows for 

different volatility impacts of positive and negative shocks.  Asymmetric volatility effects can be 

important to capture, for example, the negative skewness in equity returns or the positive 

skewness in changes in credit spreads.  This model can be written as 

 1 1

-1 -1 -1 -1 -1

, | ( , )

.
t t t t t t

t t t t t t

N− −= + + Ξ
' ' ' ' '

r µ αr ε ε 0 H

H = Ω+ A ε ε A + B H B + G η η G

∼
 (5.2) 

The first equation models the expected return dynamics of the n×1 vector of risk factors 

(rt), with a vector of constants (µ) and a first-order autoregressive component with parameter 

(α).  The second equation models the volatility dynamics of the factor innovations εt, conditional 

on the information set Ξt, where Ht is the n×n conditional covariance matrix of the n factors. 

Conditional variance depends on a constant parameter matrix (Ω), scaled lagged squared 

innovations (εt-1εt-1’), the lagged covariance matrix (Ht-1), and a matrix of asymmetric terms  

(ηt-1ηt-1) where ηit = Max[0, -εit] or Max[0, εit].  A, B, and G are n×n lower triangular parameter 

matrices that provide the weights on the lagged squared innovations, lagged covariances, and 

asymmetric terms.  Estimation is performed using maximum likelihood under the assumption of 
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a Gaussian error density.  This procedure has a quasi-maximum likelihood interpretation 

(Bollerslev and Wooldrige, 1992) and will produce consistent parameter estimates under other 

error distributions. 

One of the well-known difficulties associated with multivariate GARCH model 

estimation is the large number of parameters to be estimated.  Therefore, we make use of a more 

parsimonious version of the asymmetric BEKK model in which the A, B, and G matrices are 

constrained to be diagonal.  To further reduce the number of parameters required for the market 

risk model, we implement variance targeting (Engle and Mezrich, 1996).  This procedure sets the 

long-run covariance from the model equal to the sample covariance matrix by imposing the 

restriction that ( )Ω = I - A - B S , where S is the sample covariance matrix. 

Our market risk model is based on three daily risk factors from 1/1/1974 to 12/31/2002: 

equity returns, currency returns, and interest rate changes.12  For credit risk, we would like broad 

coverage of the credit spectrum, given that not all bond credit ratings are equally liquid.  Thus, 

we use monthly changes in double-A (AA) and triple-B (BBB) credit spreads, for which we have 

data coverage from December 1988 to the end of 2002.13 

We find evidence of stochastic volatility in the market and credit risk factors.  As shown 

in Table 2, squared market factors are predictable as evidenced by Ljung-Box statistics 

significant at the 1% level.  Squared credit factors are also predictable with Ljung-Box test p-

values of 3% and 10%.  We test each factor for an asymmetric volatility effect using a univariate 

asymmetric GARCH specification.  We find that the term Max[0, -εit] is significant for equities, 

                                                 

12 The equity return is the log of the S&P500 return from Datastream.  The interest rate measure is the log-difference 
of the 10-year Constant Maturity Treasury rate from the Board of Governors H.15 release.  The currency return is 
the log difference of the trade-weighted currency index from the Board of Governors G.5 release. 
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and Max[0, εit] is significant for both credit spreads. These terms are included in estimation of 

the final model.  

Overall, the estimated multivariate GARCH model fits the data well.  When we apply 

Ljung-Box tests to squared standardized model residuals, we find insignificant p-values at the 

10% level for all but one risk factor.  In Fig. 1, we graph the conditional volatility and 

conditional correlations of the risk factors.  We see that factor volatility is quite variable over the 

sample period.  There are notable volatility spikes for equities in October 1997 (Black Monday, 

first panel) and for credit spreads in September 1998 (Russian ruble devaluation and Long Term 

Capital Management recapitalization, third panel).  Conditional correlations for equities versus 

interest rates range from -0.66 to 0.64 (second panel) while conditional correlations for double-A 

(AA) versus triple-B (BBB) spreads range from 0.59 to 0.99 (fourth panel). 

5.4. Market and credit risk 

With the risk factor dynamics in hand, we go on to estimate market and credit factor 

sensitivities (5.1) over the sample period 1994Q1 to 2002Q4.  We test both the factors and the 

factor volatilities as explanatory variables in our market and credit factor sensitivity regressions.  

The volatilities used in the regression are quarterly conditional volatilities from the estimated 

multivariate GARCH models.  In the credit regressions, we find that the credit spread volatilities 

are not statistically significant additions to the credit spreads, so they are omitted from the final 

model. 

Our aim is to characterize the factor sensitivities of a typical BHC.  Although sensitivities 

will vary across banks and over time, we do expect to find certain key commonalities.  For 

                                                                                                                                                             

13 We use monthly changes in AA and BBB credit spreads from Bloomberg.  The spreads are constructed using the 
yield-to-maturity from the Merrill Lynch AA and BBB-rated corporate bond indices subtracted from duration-
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example, on average, trading returns are likely to be positively related with the equity index, and 

credit returns are likely to be negatively related to credit spreads.  For certain factors, it could be 

the case that some banks have large positive sensitivities and others have large negative 

sensitivities.  In that case, our average estimate would be close to zero which would not be 

representative of any of the banks.14  

We used median asset shares to characterize a typical large BHC for our benchmark risk 

weights.  However, to obtain representative factor sensitivities, the median approach is not as 

appealing.  Using the factor sensitivities of the median size bank would make inefficient use of 

the 612 bank-quarters we have in our pooled sample.  Moreover, using the median sensitivity 

from each of the 17 bank-specific regressions would not account for correlations between the 

parameters.  Therefore, this method might misestimate the characteristics of the typical bank. 

In light of these issues, we thought it most reasonable to follow a pooled OLS regression 

approach.  In Table 3, we present estimates from this regression including bank fixed effects.  

We also present 2R  for the pooled regressions with fixed effects alone and in combination with 

the factors, as well as the average 2R  from the 17 bank-level regressions. 

For the bank-level regressions, the market risk factors explain on average about 10% of 

the variation of returns (as measured by average 2R ) attributable to market risk related activities.  

In the pooled regression, the addition of the risk factors increases the 2R  from 58.3% to 59.7%.  

We find that the signs of the pooled regression coefficients are broadly in line with our 

expectations.  Specifically, trading returns are positively associated with equity returns as might 

be expected when equity trading positions are generally net long.  Trading returns are also 

                                                                                                                                                             

matched Treasury yields from the Federal Reserve Board H.15 release. 
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positively related to equity volatility.  This result could be due to a positive correlation between 

commission-based trading revenue, trading volume, and volatility.  Trading returns are 

negatively associated with currency volatility.  This would be consistent with bank exposure to 

volatility risk from writing foreign exchange options. 

The interest rate and interest rate volatility factors are not statistically significant in the 

pooled regression, but the signs of the coefficients are as expected.  A decline in short-term 

interest rates has a positive effect on returns, which would be consistent with slight positive 

duration.  And, interest rate volatility is negatively related to trading returns, which could reflect 

exposure from writing interest rate options or holding long positions in assets with negative 

convexity such as mortgages. 

Turning now to the credit risk regression, we see in Table 4 that the two credit risk 

factors explain on average about 5% of the variation in credit risk earnings (as measured by 

average 2R ) across the 17 bank-level regressions.  Adding the risk factors to the pooled 

regression with fixed effects increases the 2R  from 56.2% to 56.8%.  As spreads on high credit 

quality (double-A) firms widen, returns attributable to credit activities increase.  The opposite is 

true for spread changes for lower quality (triple-B) firms.  This seems reasonable as bank lending 

portfolios are relatively more concentrated toward the middle and lower end of the credit 

spectrum.  Thus, when the credit quality of those firms deteriorates, returns attributable to bank 

lending activities should decline.   

One reason why the lending portfolio of banks is skewed in this way is due to differential 

borrower access to capital markets as an alternative source of funding.  Large corporates, which 

tend to have better credit ratings, are able to go to the capital markets instead of banks for 

                                                                                                                                                             

14 We conduct several additional tests and do not find evidence for bimodality of the factor sensitivities from the 
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funding.  This alternative is less available to smaller, lower credit quality firms.  As the cost of 

funding increases, i.e. the spread on high credit quality bonds widens, bank loans become more 

attractive as a capital source. 

In addition, changes in credit spreads need not just reflect credit risk.  Huang and Huang 

(2004) and others have shown that the proportion of the credit spread attributable to default (i.e. 

to pure credit risk) is relatively low (20-30%) for high quality bonds but higher (60-80%) for 

speculative grade bonds.  As a result, it is not surprising that a widening of double-A spreads 

actually increases credit related returns for banks. 

We are now in a position to generate the market and credit risk distributions by 

combining the estimated factor sensitivities with simulated annual realizations of the factors 

based on the estimated multivariate asymmetric GARCH model.  In our application, starting 

values for volatilities are set to their unconditional levels to reflect average market conditions. 

However, by setting the initial volatility levels to their current values, our model could also be 

used to estimate time-varying risk densities that depend on current market conditions. 

For the market risk factors, which are modeled at a daily frequency, we first simulate a 

path of 252 daily log-returns and variances.  Since the credit risk factors are estimated at a 

monthly frequency, we simulate a path of 12 log-returns and variances.  The sum of the 252 

daily or 12 monthly log-returns is equal to a single annual return, and the sum of the daily or 

monthly variances is equal to a single annual variance.  This approach matches the market and 

credit risk horizons to the same annual horizon as operational risk.  We repeat this procedure 

200,000 times to create the simulated joint distribution of the annual factors.  Each of the 

                                                                                                                                                             

bank level regressions. 
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200,000 simulated annual market or credit returns is just a linear combination of the simulated 

annual factor realizations multiplied by the factor sensitivities. 

5.5. Market and credit residual risk 

From the relatively small size of average 2R  in the factor sensitivity regressions, it is 

clear that much of the variation in accounting returns attributable to either market or credit risk 

related activities is not captured by our set of dynamic risk factors.  This should hardly be 

surprising as bank specific risk often plays an important role in total bank risk.  For example, a 

single large obligor default can have a significant bottom line impact for an individual bank that 

is not common across the entire industry.  Moreover, operating risk and business risk are 

absorbed into our estimated residual.15  Operating risk includes operational risk as defined by the 

New Basel Accord, while business risk includes variation in earnings due to factors such as 

fluctuations in demand, technology shocks, and changes in the competitive landscape. 

In Table 5, we present summaries of the regression residuals for the market and credit 

risk regressions.  We report cross-sectional (across 17 regressions) averages and medians of 

moments two through four of the residuals.  The simulated residuals are discussed below in 

Section 5.7.  The distribution of residuals is asymmetric and fat-tailed for both risk types, though 

the skew is positive for market and negative for credit risk. 

It is also of interest to analyze the impact of these residuals on the total risk distribution.  

To conduct such an exercise, we need to obtain a representative residual distribution for market 

                                                 

15 Kuritzkes (2002), for instance, contrasts “event” risk, which conforms more closely to the notion of operational 
risk used here, with “business” risk, which is thought to capture (p. 3) “residual non-financial earnings volatility not 
attributable to internal or external events.”  He finds that event plus business risk make up about 2.5% of total risk 
weighted assets (or about 30% of the BIS total capital requirement) for these institutions, of which about 58% is 
residual “business” risk.  If we take these figures at face value, it would imply that we are missing about 15-18% of 
“total” risk. 
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and credit risk which can then be incorporated into the overall analysis.  To avoid creating excess 

kurtosis by combining densities with different volatilities, we first standardize each of the 

residuals by the respective bank-risk type residual volatility, i.e. the root mean square error of 

each bank-risk type regression.  We then pool the standardized residuals across all banks for each 

risk type and proceed to scale them by the median RMSE of each risk type.  In this way, the 

higher moments of the residuals are preserved but at a scale which is representative of this group 

of large banks.  This gives us a sample of 612 residuals for each of the two risk types that can be 

used to define each non-parametric residual risk distribution.  

5.6. Operational risk 

For our empirical work, we adopt the definition of operational risk set forth by the Basel 

Committee.  Namely, these are losses due to failure of internal processes, people, systems and 

external events.  For our analysis of operational risk, we use results from de Fountnouvelle, 

DeJesus-Rueff, Jordan, and Rosengren (2003), hereafter FJJR.  They argue that the vendor-

provided operational loss databases suffer from a reporting bias that is correlated with size.  

Small losses are under-reported while large losses are “too big to hide.”  Specifically, if we 

denote X as a vector of operational losses, then for some reporting threshold τ, where τ = $1 

million in FJJR, x = log(X-τ) is modeled as an exponential density, 1( )
x
b

bf x e−= .  FJJR 

incorporate a size-bias correction and estimate the exponential parameter b to be 0.64 using the 

OpRisk Analytics database and 0.66 using the OpVantage database.  We take the average of 

these to obtain an exponential parameter of 0.65.   
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FJJR also report that large, internationally active banks typically experience between 50 

and 80 losses exceeding $1 million per year, the minimum loss value in the datasets.  We take 

the mid-point of their range to obtain a daily probability of an operational loss event of 65/365.16 

We construct the annual operational loss distribution for our typical bank as follows.  To 

create a single annual loss realization, we first draw 365 Bernoulli trials with p = 65/365.  This 

reflects the possibility of an operational loss each day.  On each day that an operational loss 

occurs, we draw the log of the dollar loss amount from an exponential distribution with 

parameter of 0.65.  We sum the exponentials of the daily log-losses to create the annual dollar 

loss.  The final operational risk distribution is generated using 200,000 loss years.17 

5.7. Marginal risk distributions 

While each marginal risk is simulated from a parametric model, the introduction of 

nonlinearities such as GARCH and associated temporal aggregation result in annual risk 

distributions that might be quite difficult to fit parametrically.  This motivates our more robust 

nonparametric approach for inverse cumulative distribution function estimation.  These functions 

are needed as inputs to the copula to generate the total risk distribution. 

For each risk type, we define the empirical inverse cumulative distribution function by 

sorting the returns and associating with each return its rank in the dataset (divided by 200,000).  

We then fit a cubic spline to this function.  The spline estimate is our inverse cumulative 

distribution for each risk type. 

                                                 

16 To be sure, we cannot directly verify that these “internationally active banks” represent the median bank in our 
sample.  But at a minimum, this group will likely have regulatory capital assessed for credit and market risk (under 
the existing capital rules) and thus should overlap substantially with our sample of 17 banks.  Note also that FJJR do 
not find the tail thickness parameter b to vary with bank size. 
17 If log(X) is exponentially distributed, then X has a Pareto distribution (e.g. Johnson, Kotz, and Balakrishnan, 1994, 
p. 576).  Using the exponential parameter of 0.65, only the first moment of the loss distribution exists.  In our 
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The characteristics of the simulated marginal risk distributions for 200,000 simulated 

bank-years are presented numerically in Table 6 (columns two through four) and visually in Fig. 

2.  In terms of assets at risk, market risk has highest volatility (σmk = 0.58%) and thinnest tails 

(κmk = 3.7), while operational risk has lowest volatility (σop = 0.04%) and fattest tails (κop = 

35.3).  Credit risk is in-between with σcr = 0.19% and κcr = 16.1.  The market risk distribution is 

nearly symmetric while the credit risk distribution is moderately left-skewed at –1.3 and 

operational risk is more significantly skewed at –4.5.   

The operational risk distribution is noticeably different from the other two.  Volatility is 

relatively low, but both skewness and especially kurtosis are quite high.  So operational exposure 

typically has a small impact on risk, but there are occasional extreme losses.  This finding is 

consistent with rare, but enormous operational losses observed at financial institutions such as 

Allied Irish, Daiwa, and Barings (Jorion, 2001). 

At this stage, it is instructive to examine the moments of the simulated market and credit 

residual risk distributions that are given in Table 5 in the rows labeled “Simulated.”  By 

construction, the volatility of those residuals is the same as the empirical median.  As expected, 

the higher moments of the simulated residuals are similar to those of the actual residuals.  Market 

risk residuals have the positive skew and fat-tails of their systematic counterpart, and credit risk 

residuals are similarly fat-tailed but negatively skewed.  In the risk aggregation analysis (Section 

6.3.3), we use these simulated residuals when including residual risk into the total risk 

distribution. 

 

                                                                                                                                                             

simulations, we set a log-loss greater than 1,000 standard deviations equal to a loss of 1,000 standard deviations.  
This guarantees the existence of all moments without affecting the tail shape in the region of interest. 
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6. Aggregating the risks 

To aggregate the three risk types, we need to know their marginal distributions, the 

relative weight of each distribution, assign inter-risk correlations, and then specify a copula.  We 

consider the normal copula to be a useful benchmark, since the multivariate normal distribution 

is commonly used in risk management, an obvious example being RiskMetrics (JP Morgan, 

1995).  A reasonable first generalization beyond the multivariate normal is to combine more 

realistic marginals into a joint distribution using a normal copula.  The normal copula is also 

commonly seen in the literature.  See, for instance Li (2000) and Ward and Lee (2002). 

More recently, the Student-t copula has become prominent (see, for instance, Frey and 

McNeil, 2001, and Glasserman, Heidelberger, and Shahabuddin, 2002) because it can capture 

“tail dependence,” which is controlled by the degrees of freedom parameter.  In contrast, a 

normal copula has tail independence.  We report risk aggregation results for Student-t copulas 

with 5 and 10 degrees of freedom in Section 6.3. 

6.1. Marginal risk-type weights and cross-risk type correlations 

In Section 5.2, we determined benchmark ex ante weights for our large, internationally 

active bank to be 3.1% for market risk, 29.1% for credit risk, and 67.8% for operational risk.  

Changing these weights is meant to reflect different business mixes.  For example, most regional 

banks focus their business activities on lending and have little trading activity.  As a result they 

are likely to have relatively more credit risk and less market risk than the base case would 

suggest.  In addition, they could have less exposure to traditional sources of operational risk such 

as processing or custody related activities.  A “processing bank,” conversely, would likely have 

more operational risk than the average bank.  Finally, one would expect a trading-intensive bank 

to have relatively more market risk. 
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KSW, in their risk aggregation exercise, examine a broad range of correlations gleaned 

from several academic and industry studies.  They summarize these correlations in their Table 4, 

which we reproduce here and use in our own analysis as Table 7.  The first set is taken from 

Dimakos and Aas (2004).  The second set comes from Ward and Lee (2002) who have separate 

correlations for market and ALM risk; the table entry is the higher of the two correlations.  The 

third set is cited in Joint Forum (2001, p. 25), and is based on interview findings and reflect the 

values used by Dutch and other financial conglomerates in their internal capital models.  For our 

benchmark institution, we take a midpoint of those values.  The resulting benchmark correlation 

between market and credit is 50%, and the benchmark correlation of each of those two risk types 

with operational risk is 20%.18 

6.2. Results 

The total risk distribution using the benchmark weightings and correlations with a normal 

copula is displayed graphically in Fig. 3 and numerically in the last column of Table 6.  The 

volatility is 0.08% of total book (defined as the sum of trading assets, lending assets and total 

assets) or 0.11% of total assets.  Of course, this distribution inherits features from the marginals.  

The negative skewness present in the credit and operational marginals is carried over into the 

overall skewness (-1.1).  The kurtosis of total risk at 9.6 is between market at 3.7 and credit at 

35.3. 

We can now use the characteristics of the benchmark total risk distribution to measure ex 

post contributions of each risk type.  These can be compared with the ex ante business mix 

                                                 

18 When the marginal risks are normal, the correlations for risks combined using a normal copula are equal to the 
copula parameter values.  Otherwise, there will be some difference between the actual correlation and the ‘rho 
values’ that are used for the copula.  For our analysis across business mix with fixed correlations, the market versus 
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weights used to estimate VaR.19  We obtain ex post risk contributions at the benchmark weights 

of 8.5% for market, 53.1% for credit, and 38.4% for operational risk.  As expected, these values 

differ significantly from the ex ante business mix weights, which were 3.1% for market, 29.1% 

for credit, and 67.8% for operational risk.  However, our ex post contributions are generally 

comparable to industry economic capital benchmarks; recall these are 20%, 55% and 25% for 

market, credit and operational risk respectively.   

KSW note that the bulk of the economic capital attributed to market risk using bank 

internal models arises from asset-liability management (ALM), which is not subject to capital 

regulation and not incorporated in our weights. This difference helps to explain our smaller 

market risk attribution.  Operational risk is difficult to measure precisely, and KSW report large 

differences in operational capital share allocations across industry studies.  Therefore, it is not 

surprising that our estimate differs somewhat from the industry benchmark. 

We start our discussion by focusing on the copula-based results across the two sets of 

experiments: varying business mix (Fig. 4 and Table 8) and inter-risk correlations (Fig. 5 and 

Table 9).  In the figures, the line labeled Copula uses a normal copula with the benchmark inter-

risk correlations, and the next three are approximations that are discussed in detail in Section 

6.2.3.  Following the legend, the first is the total risk using a normal copula.  The second is the 

hybrid approach, which is based on an elliptical density formula for portfolio VaR and defined in 

Eq. (3.6).  The third is “Additive,” the VaR obtained by simply adding up the VaRs of the 

                                                                                                                                                             

credit correlation at rho = 0.50 is equal to 0.47 and the market/credit versus operational correlation at rho = 0.20 is 
0.16.  See also Table 10. 
19 We choose a relatively straightforward approach to risk attribution by applying the H-VaR formula given in Eq. 
(3.6).  This approach takes into account the business mix weights, the marginal VaRs or levels of economic capital, 
and correlations.  More involved methods could be applied, but that would go beyond the scope of our paper; see for 
instance, Gourieroux, Laurent and Scaillet (2000) and Koyluoglu and Stoker (2002) for discussion on this topic. 
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marginals.  Finally, the line labeled “Normal” is the VaR under joint normality implying, of 

course, that the marginal distributions are also normal. 

6.2.1. Impact of business mix 

In Fig. 4, we see the impact of a change in business mix on the 99.9% VaR (0.1st 

percentile) for total risk distribution at the benchmark correlations.  This percentile is commonly 

used in industry and conforms to the tolerance level of the New Basel Accord.  Table 8 reports 

weights for the three risk types, standardized quantiles, volatilities, Copula-VaRs, and the 

approximation error for N-VaR and Add-VaR relative to Copula-VaR.  Some intermediate 

values (rows) are omitted for space reasons.  The standardized quantile (VaR/volatility) provides 

a measure of left tail thickness.  A normal distribution has a standardized 0.1% quantile of -3.1, 

so larger negative values indicate a relatively fat left tail. 

The top panel in Fig. 4 displays the effects of varying market versus credit weight while 

holding the operational weight constant at its benchmark level of 67.8%.  Thus, the leftmost set 

of points corresponds to 0% market and 32.2% credit risk, the next is 3.2% market and 29.0% 

credit, and at the other extreme we have 32.2% market and 0% credit.  Naturally, the extreme 

points are rather unrealistic, but in-between we can view these weights as reasonably reflecting 

different business mixes from, for example, little to more intensive trading activity. 

Initially, with 0% market and 32.2% credit weight, the volatility of the total risk 

distribution is 0.071% and the 0.1% standardized quantile is –6.15 standard deviations (Table 8, 

Panel A, first row).  At first, VaR declines as market exposure increases.  The initial decrease in 

left tail thickness (market has thinner tails than credit) outpaces the volatility increase (market 

has higher volatility than credit).  At a market risk share larger than 30%, corresponding to a 

market weight of around 9%, the volatility increase dominates giving the VaR curve a parabolic 
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shape.  VaR ranges from low of -0.434% to a high of -0.630% with the lowest risk achieved near 

the benchmark exposure weights, corresponding to the italicized row in Table 8, Panel A. 

The bottom panel of Fig. 4 and Panel B of Table 8 show the impact of a change in 

operational risk share, while holding the relative proportion of the market and credit exposure 

constant.  In the bottom panel, 0% on the horizontal axis represents the benchmark weighting, 

3.1% market, 29.1% credit and 67.8% operational.  A shift of +10% from market and credit 

towards operational would result in weights, in the same order, of 2.8%, 26.2% and 71.0%, and 

so on (see also Panel B in Table 8).  Since it is conceptually not reasonable to assign a weight of 

zero to operational risk, we adopt this approach based on deviations from the benchmark 

weighting. 

As weights are shifted from market and credit risk, there is an increase in tail thickness 

(Table 8, Panel B, where the italicized row corresponds to the benchmark).  The left tail gets 

thicker as operational exposure rises.  The standardized quantile at baseline weights is –5.71 

standard deviations, and it increases to -9.09 standard deviations for a bank with all operational 

risk.  At the same time, as the operational weight increases, the volatility of total risk declines 

(from 0.105% to 0.041%).  The net effect is that the VaR curve first declines as volatility 

decreases more quickly than tail-thickness increases.  At operational weights greater than 50% 

above the benchmark, the curve flattens reflecting the offsetting effects of decreased volatility 

and fatter tails. 

If we decrease the weight on operational risk and shift it proportionately to market and 

credit risk, i.e. we move to the left in Fig. 4, overall volatility and risk (as measured by 99.9% 

Copula-VaR) increase.  The standardized quantile at first declines (in absolute value) from -5.71 

to -5.66, only to rise again to about the benchmark level past a 20% shift in the weights from 
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operational to market and credit risk.  The much larger volatility of both market and credit risk 

dominate the reduction in kurtosis from the operational risk distribution.  To be sure, credit risk 

is itself also quite leptokurtic (κcr = 16.1). 

6.2.2. Impact of inter-risk correlation 

In Fig. 5, we explore the impact of inter-risk correlation on 99.9% VaR (the 0.1st 

percentile) of the total risk distribution at the benchmark risk weights.  Its companion table 

(Table 9) shows standardized quantiles, volatilities, Copula-VaRs and the approximation error 

for N-VaR and Add-VaR relative to Copula-VaR.  We italicize the row corresponding to the 

benchmark correlations.  The top panels of Fig. 5 and Table 9 display the impact of changing 

correlation between market and credit risk while correlation of both risk types with operational 

risk remains constant at the benchmark level of 20%.  The bottom panels examine the impact of 

changing correlation between operational and the other two risk types while keeping the 

correlation between market and credit constant at benchmark level of 50%.20 

As expected, higher levels of market and credit risk correlation lead to higher levels of 

risk as measured by VaR (Fig. 4, top panel, and Table 9, Panel A).21  VaR increases from  

-0.402% at a correlation of zero to -0.438% for a correlation of 0.9.  We see that higher market 

and credit correlation is associated with higher volatility and a slightly thinner left tail.  Overall, 

however, the impact of changing the inter-risk correlation between market and credit risk has a 

rather small impact on total risk. 

                                                 

20 Of course, one can not construct a correlation matrix from arbitrarily assigned correlations.  The Cholesky 
factorization used for simulation requires the correlation matrix to be invertible.  Thus, for some experiments we 
will not be able to set ρi,j for any risk type i or j to be arbitrarily high.   
21 Embrechts, McNeil and Straumann (2002) give examples of increased ρ leading to lower VaR. 
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Looking now to the bottom panel in Fig. 5 and Panel B in Table 9, VaR increases as we 

raise the correlation between operational risk and market/credit risk.  From initial level of  

-0.401% at zero correlation, VaR increases to -0.582% at a correlation of 0.8.  In this case, 

higher correlation results in higher volatility and a fatter left tail.  Since both of these effects are 

in the same direction, total risk is more sensitive to the level of operational risk correlation with 

other risk types than the level of market versus credit correlation. 

Deviation from normality in the marginal distributions drives a wedge between ρ and the 

correlation coefficient.  This is illustrated in Table 10, where we display the relation between the 

two from simulated returns using a normal copula.  The first column corresponds to the top panel 

of Fig. 5 while the second column corresponds to the bottom panel. 

While the market and credit correlation (column 1) is always quite close to the specified 

ρ (within 0.03), the operational versus market/credit correlation is somewhat lower (column 2).  

As ρ varies from 0.10 to 0.80, market and credit correlation moves from 0.09 to 0.77 but 

operational correlation moves from 0.08 to 0.67.  Even though operational risk correlation has a 

smaller range for these experiments, VaR is more sensitive to changes in operational rho than 

market versus credit rho.  In our calculation of VaR approximations (including N-VaR), we use 

the empirical correlation matrix, rather than the ρ matrix, so that comparison across VaR 

estimates are based on equal correlations. 

6.2.3. Approximations to Copula-VaR 

In comparing the three VaR approximations to the copula method (Fig. 4 to Fig. 7, Table 

8 and Table 9), we see several patterns.  First, Add-VaR always provides the largest VaR 

estimate, and N-VaR always provides the smallest estimate.  Both are significantly biased 

relative to Copula-VaR.  Add-VaR overestimates risk, since it fixes the correlation matrix at 
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unity, when in fact the empirical correlations are much lower.  N-VaR underestimates risk since 

it uses the lowest standardized quantiles for the marginals, i.e. Φ-1(0.001) = -3.09 versus actual 

quantiles of -3.12 (market), -6.29 (credit), and -9.09 (operational).  The hybrid approach (H-

VaR) tracks Copula-VaR well, but it is also upwardly biased and thus conservative. 

In Table 8 and Table 9, we constrast the approximate VaRs with Copula-VaR by 

computing the approximation error, which is (approximation VaR – Copula-VaR) / Copula-VaR.  

In the business mix experiment (Fig. 4 and Table 8), Add-VaR is monotonically decreasing as 

we shift to a lower volatility risk-type.  If we assume the joint distribution is normal (N-VaR), 

then total risk increases modestly (Fig. 4, top panel, and Table 8, Panel A).  Indeed, N-VaR 

initally underestimates VaR by about 50%, but comes within 5% as the share of market vs. credit 

risk goes to 100%.  Note that, of the three risk types, the market risk distribution is closest to 

normal.  H-VaR is within 14% (no market risk exposure) to 7% (no credit exposure) and has the 

same parabolic shape as the copula measurement.  Add-VaR overestimates Copula-VaR by 

between 33% (no credit exposure) and 60% (market and credit risk weights of 12.88% and 

19.31%). 

In the bottom panel of Fig. 4 and Panel B of Table 8, we see that as the business mix 

shifts entirely towards operational risk, copula, H-VaR and Add-VaR converge.  Copula-VaR 

and H-VaR pick up the tradeoff between lower volatility and heavier tails, so they both flatten 

out.  N-VaR shrinks steadily as it is driven entirely by volatility (which is lowest for operational 

risk) and ignores the very heavy tails inherited from the operational risk distribution. 

Moving on to the correlation experiments (Fig. 5 and Table 9), we find that H-VaR tracks 

Copula-VaR fairly well, although H-VaR is always more conservative.  The maximum deviation 

of H-VaR from Copula-VaR is 17% across all correlation experiments with an average 



-39- 

approximation error of 14% for market/credit and 9% for operational correlations.  The average 

approximation error for N-VaR is -45% when varying market versus credit correlations and  

-48% when varying the operational correlation.  This reflects the overly thin left tail of the 

normal distribution compared to the actual risk distributions.  N-VaR also changes linearly with 

rho, while Copula-VaR and H-VaR reflect non-linear interactions of the tails with the 

correlation.  

For the correlation experiments, we also compute a “diversification benefit,” which is the 

percentage decrease in VaR using the copula approach versus Add-VaR: (Add-VaR – Copula-

VaR) / Add-VaR.  This is of interest because it provides a benchmark for the degree of 

conservatism that comes with the additive VaR rule.  This conservatism might be thought of as 

providing a buffer against parameter and model uncertainty.  Given the benchmark business mix 

weights, we find diversification benefits of 33% to 39% when varying market versus credit 

correlations and 11% to 39% when varying the operational correlation.  These are generally 

higher than the 15% diversification benefit reported by KSW, although KSW use the 99% VaR 

level and assume joint normality.  Our results are closer to the 20+% reported by Dimakos and 

Aas (2004), who also use a normal copula and look at the far tail (99.97% in their case).   

Taken together these results imply that the interaction between measures of correlation 

and the higher moments of the marginals is quite subtle and complicated.  Add-VaR 

systematically overestimates total risk while N-VaR underestimates total risk.  H-VaR provides a 

fairly close approximation. 



-40- 

6.3. Robustness tests 

6.3.1. Risk measure 

Since VaR is not a coherent risk measure, we repeat the set of experiments using the 

expected shortfall (ES) measure as defined in Eq. (3.2).  The general conclusions are no different 

from our previous findings using VaR.  By way of illustration, we present in Fig. 6 two 

experiments focusing on the risk sensitivity to operational exposure and operational correlation. 

The top panel of Fig. 6 shows the impact on 99.9% ES of a change in operational risk 

weight, while holding the relative proportion of the market and credit weight constant.  This is 

analogous to the VaR results displayed the bottom panel in Fig. 4.  Similarly, the correlation 

experiment in the bottom panel of Fig. 6 examines the impact on 99.9% ES of changes in 

correlation between operational and the other two risk types while keeping the correlation 

between market and credit constant at benchmark level of 50%.  This figure is analogous to the 

bottom panel of Fig. 5.   

While expected shortfall is always greater than VaR (as guaranteed by the definition), 

their sensitivities to changes in business mix and correlation are very similar.  For example, in 

the bottom panel of Fig. 6, copula ES follows the same pattern as copula VaR (bottom panel of 

Fig. 5), but is consistently about 5% to 10% larger.  Remarkably, even for expected shortfall, the 

hybrid ES comes quite close to the copula ES (on average within 13%, nearly the same as for 

VaR), albeit always with a positive bias.  

6.3.2. Copula choice 

To measure VaR sensitivity to the choice of copula, we repeat the experiments forming 

joint distributions using Student-t copulas to allow for tail dependence, which is determined by 
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the degrees of freedom parameter (ν).  Choices for strong tail dependence in the literature range 

from ν of 3 to 7 (Glasserman, Heidelberger and Shahabuddin, 2002) or 3 to 8 (Demarta and 

McNeil, 2004), so we take a mid-point of ν = 5.  As a case between strong tail dependence (ν = 

5) and tail independence (normal copula, ν = ∞), we use ν = 10.  See also Embrechts, McNeil 

and Straumann (2002). 

The results are presented in Fig. 7, where the top panel shows the business mix 

experiment with operational risk, and the bottom panel shows the inter-risk correlation 

experiment, analogous to the previous figure on expected shortfall.  Two features stand out in 

both experiments.  First, there is relatively little difference in risk across copula choice, although 

as expected, measured risk is higher when allowing for tail dependence.  In the top panel where 

we vary business mix, the average difference of VaR using the t(10) (t(5)) instead of the 

Gaussian copula is 4% (9%).  The maximum deviation is 9% (17%) when operational exposure 

is 30% higher than the benchmark.  Looking at the correlation experiment in the bottom panel, 

the average differences are very similar to the previous experiment at 4% (10%).  The maximum 

deviation of 5% (14%) occurs at rho = 0.1, which is slightly below the benchmark correlation of 

0.2. 

Second, in both experiments, risk implied by the hybrid method is very close to the t(5) 

copula.  The average deviation in both cases is just 1% with a maximum of 2% for the business 

mix and 3% for the correlation experiment.  The positive bias of the hybrid method relative to 

the Gaussian copula observed earlier is on the order of incorporating some tail dependence, 

which from a practical perspective is perhaps not an unreasonable degree of conservatism.22 

                                                 

22 Although we report only results for these two experiments, they are very similar across all experiments, whether 
risk is measured by VaR or ES.  
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6.3.3. Residual risk 

As discussed in Section 5.4, the regressions for market and credit risk are unlikely to 

capture all relevant risk for each risk type.  Some of the “residual” in both cases will be 

operational risk as defined here, as well as business and other types of risk.  Nonetheless, it can 

be instructive to examine the impact of this “residual” risk on the total risk distribution by adding 

the simulated residuals for market and credit risk, as described in Section 5.5, to their respective 

risk types.  Since operational risk is not modeled using the factor approach, we have no 

“residual” here. 

In keeping with the set of experiments presented in Section 6.3, the top panel in Fig. 8 

shows the business mix experiment with operational risk. This can be compared to the bottom 

panel in Fig. 4.  The bottom panel of Fig. 8 shows the inter-risk correlation experiment, which 

can be compared to the bottom panel in Fig. 5.  

These new results are broadly in line with the experiments without residual risk.  

Consider first copula-VaR; we notice immediately by looking at the scale of the vertical axis that 

the total amount of risk has nearly doubled.  This reflects the large share of unexplained variance 

in our factor regressions.  However, the basic features of the residual risk distributions, as 

characterized by their moments, are quite similar to the systematic risk distributions (see 

previous discussion in Section 5.7 as well as Table 5).  Thus, we find that while the scaling has 

changed, the basic shapes of the VaR curves are similar with or without residual risk.   

The results of the business mix experiment shown in the top panel of Fig. 8 are 

comparable to the no residual risk experiment in the bottom panel of Fig. 4, albeit with a steeper 

slope.  At 100% operational risk weight, total risk is unchanged from the earlier experiment. 

When residual volatility is added to the high volatility risk types (market and credit), total risk is 
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higher when these types have positive weight.  Note that the flattening of the total risk curve 

happens later when residual risk is included.  In this case, a greater operational weight is required 

for the fat left tail of operational risk to offset the new higher volatilities of market and credit 

risk. 

These basic observations carry over to the correlation experiment shown in the bottom 

panel of Fig. 8.  Copula-VaR is substantially higher now that residual risk is included for market 

and credit risk.  However, copula-VaR is now much less sensitive to changes in operational 

correlation with the other risk types so the VaR curves are flatter.  As this correlation increases 

from 0.0 to 0.8, the proportional VaR increase with no residual risk is 45% (bottom panel of Fig. 

5) compared to 7% with residual risk.  Interestingly, the hybrid approximation seems to pick up 

more of the fat-tails in operational risk as rho increases.  Previously H-VaR converged to copula-

VaR, whereas now it remains below (i.e. risk is higher) across the spectrum of rho values. 

6.4. Sensitivity analysis 

Finally, to assess the relative importance of variation in the determinants of total risk 

across all of the business mix and correlation experiments, we calculate the range of VaRs across 

each experiment type.  Then, we take the absolute difference between the largest and smallest 

VaR (within the experiment) and divide by the average VaR.  The result is the proportional range 

of VaRs due to variation of the chosen factor (Table 11).  A wide range of VaRs indicates high 

sensitivity to the factor being varied.  As an example, for changes in operational risk correlation, 

we have the largest VaR of –0.582% at a correlation of 0.8 and the smallest VaR of -0.401% at a 

correlation of zero.  Using the average VaR of –0.482%, the relative sensitivity is 45%.  To 

measure sensitivity to approximation choice, we average the approximation errors across 

business mix and correlation experiments.  For risk sensitivity to copula choice, we take the 
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average proportional VaR difference using a Student-t(5) copula versus a normal copula across 

the business mix and correlation experiments reported in Fig. 7.  For these last two measures, we 

first average within each experiment and then across experiments. 

The greatest risk sensitivities are to operational risk exposure, approximation choice (for 

Add-VaR and N-VaR), and operational risk correlation.  These are followed by market versus 

credit risk exposure, copula choice, and market versus credit correlation.  From this ordering, we 

see that assumptions about operational exposures and correlations are much more important for 

accurate risk estimates than assumptions about relative market and credit exposures or 

correlations.  Risk measurements are also quite sensitive to approximation choice.  Adding up 

the marginal risks or using joint normal risk distribution result in approximation errors of 45% or 

-42%.  Finally, the choice of copula seems to have a relatively modest impact with the next to 

lowest risk sensitivity of 10%. 

 

7. Final Comments 

How would one aggregate market, credit, and operational risk distributions to arrive at a 

total risk distribution for a financial institution?  One solution is to simply add up the risk for 

each type.  Among other things, this assumes no diversification benefits that might accrue across 

risk types due to non-perfect correlation.  Our analysis shows that the additive approach 

overestimates risk by more than 40%.  A typical alternative, assuming joint normality of the 

risks, underestimates risk by a similar amount. 

In this paper, we implement an alternative method to combine these risks using copulas.  

Our approach forms a joint distribution from specified marginals in an internally consistent and 

realistic manner while preserving important properties about the individual risks.  We find that 
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interaction at the portfolio level between measures of correlation and the higher moments of the 

marginals is quite subtle and complicated.  

Because the operational risk distribution has much heavier tails than a normal 

distribution, we find that risk is especially sensitive to the chosen level of operational exposure 

and correlation with market and credit risk.  Our results suggest that approximations that might 

work well for combining market and credit risk tend to fail in combining the three risks because 

of the operational risk’s unique characteristics.  This could have important implications for risk 

managers and regulators since not only is operational risk difficult to measure, but it also 

requires special care in aggregation. 

We also identify a hybrid approximation that tracks the copula method quite well, 

especially if the risks are thought to exhibit tail dependence.  The hybrid approach has the 

advantage of being relatively easy to compute as only information about the marginals and the 

correlation matrix are needed. 

What are some implications of our findings for the capital allocation problem faced by 

the financial institution?  We take as given business mix weights, although, of course, these are 

the result of an internal process that balances risk and expected return.  We abstract from this 

decision process by setting expected returns to zero.  To be sure, the choice of business mix 

depends not only on risk but also on expected profits, lest one conclude that all banks would 

optimally choose to lower their risk by reducing lending and trading activities.  When the risk 

measure used is sensitive to tail events, business lines with low volatility and high skewness 

could be less attractive, require more capital, and require higher expected return. 
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Table 1: Summary table for 17 bank holding companies (BHCs) in the sample, millions US dollars, year-end 2002.  Stocks (e.g. assets) are year-end, flows (e.g. net 
income) are the sum of four quarters.  Means and medians are taken over the four quarters.  The data source is Y-9C BHC regulatory reports. 

Bank Holding Company Total 
Assets 

Lending 
Assets 

Trading 
Assets 

Percent 
Lending 
Assets 

Percent 
other 
Assets 

Net 
Income 

Net 
Interest 
Income 

Provisions Trading 
Revenue 

Minimum 
Market Risk 

Capital 
Requirement 

Market Risk 
Share of 
Capital 

Requirement 

Return 
on 

Assets 

ABN Amro N. America  139,605 61,343 3,106 43.9% 53.8% 434 2,349 145 147 121 0.16% 0.31% 
Bank of America 660,458 356,451 95,829 54.0% 31.5% 9,249 20,210 1,165 778 2,313 0.44% 1.40% 
Bank One 277,383 148,125 11,000 53.4% 42.6% 3,295 8,569 628 224 140 0.06% 1.19% 
Citigroup 1,097,190 477,323 155,208 43.5% 42.3% 15,276 37,882 2,690 4,513 2,446 0.35% 1.39% 
FleetBoston Financial  190,589 119,427 4,486 62.7% 35.0% 1,188 6,369 813 584 251 0.14% 0.62% 
HSBC N. America 113,371 59,649 14,592 52.6% 34.5% 860 2,813 42 96 172 0.24% 0.76% 
J.P. Morgan Chase 758,800 216,253 248,301 28.5% 38.8% 1,663 11,526 921 2,594 2,663 0.58% 0.22% 
Keycorp 84,710 62,457 2,561 73.7% 23.2% 979 2,762 147 65 15 0.02% 1.16% 
Mellon Financial  36,306 8,420 1,911 23.2% 71.5% 682 697 6 183 60 0.23% 1.88% 
PNC  66,410 37,089 926 55.8% 42.8% 1,184 2,198 65 95 16 0.03% 1.78% 
State Street  85,794 5,128 3,435 6.0% 90.0% 1,015 979 1 259 27 0.10% 1.18% 
Suntrust Banks 117,323 80,916 1,718 69.0% 29.6% 1,332 3,244 97 120 20 0.02% 1.14% 
Deutsche Bank (Taunus) 224,278 16,843 64,270 7.5% 63.8% -2,109 1,029 97 -165 243 0.00% -0.94% 
Bank of New York 77,576 32,015 7,309 41.3% 49.3% 902 1,739 93 234 43 0.06% 1.16% 
U.S. Bancorp 180,027 120,410 898 66.9% 32.6% 3,289 6,840 349 227 47 0.03% 1.83% 
Wachovia  341,839 171,801 33,155 50.3% 40.0% 3,579 10,021 308 24 505 0.19% 1.05% 
Wells Fargo 349,259 254,453 10,167 72.9% 24.2% 5,435 14,858 438 321 374 0.13% 1.56% 
Mean 277,241 127,009 37,591 48% 44% 2,839 7,887 456 606 559 0.18% 1.07% 
Median 177,941 76,343 8,131 53% 39% 1,188 3,244 195 224 168 0.14% 1.19% 
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Table 2: We estimate a diagonalized asymmetric multivariate GARCH model (Kroner and Ng, 1998) for market and 
credit risk factors using the method of maximum likelihood.  For the market risk factor model, equation 1 is for 
equity returns, equation 2 is for currency returns, and equation 3 is for log-differenced interest rates.  This model is 
specified using variance targeting, so standard errors are not computed for the parameters of the omega matrix, which 
are functions of sample covariances and volatility model parameters.  For the credit risk factor model, equation 1 is 
for AA credit spreads and equation 2 is for BBB credit spreads.  Data definitions are given in Section 5.3.  Note that 
the volatility parameters ω, a, b, g correspond to the square root of the corresponding parameters in a univariate 
GARCH model.  Ljung-Box p-values are reported for 20 lags in the market model and 3 lags in the credit model for 
squared returns and standardized squared returns (εt/√ht) using estimated conditional volatilities. 
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Estimated Asymmetric Multivariate GARCH Risk Factor Models 
 Market risk factor model Credit risk factor model 

 Parameter 
estimate 

Standard 
error P-Value 

Parameter 
estimate 

Standard 
error P-Value 

µ1 2.51E-04 1.07E-04 0.0188 0.5300 1.0357 0.6089 
µ2 2.52E-05 3.80E-05 0.5067 1.6946 1.3182 0.1986 
µ3 1.73E-05 8.87E-05 0.8456    
α1 0.0819 0.0130 <0.001 0.2420 0.0634 <0.001 
α2 0.0495 0.0118 <0.001 0.3086 0.0948 0.0011 
α3 0.0970 0.0119 <0.001    
ω11 1.12E-06   2.7851 0.5576 <0.001 
ω22 3.89E-08   1.9908 0.4310 <0.001 
ω33 4.34E-07      
ω21 2.20E-08   -0.0069 34.1960 0.9998 
ω31 -3.00E-07      
ω32 1.37E-08      
a1 0.1830 0.0075 <0.001 0.1563 0.1603 0.3295 
a2 0.1760 0.0038 <0.001 0.0787 0.1922 0.6823 
a3 0.2217 0.0050 <0.001    
b1 0.9635 0.0013 <0.001 0.8630 0.0449 <0.001 
b2 0.9831 0.0007 <0.001 0.9117 0.0246 <0.001 
b3 0.9725 0.0013 <0.001    
g1 0.2367 0.0047 <0.001 0.6818 0.1187 <0.001 
g2    0.7266 0.0857 <0.001 

Number of observations (log-likelihood) 7199 (78621) 169 (-1141)  
Eq. 1: Ljung-Box p-value (squared  returns) <0.001  0.030   
Eq. 2: Ljung-Box p-value (squared  returns) <0.001  0.101   
Eq. 3: Ljung-Box p-value (squared  returns) <0.001     
Eq. 1: Ljung-Box p-value 
           (squared  standardized residuals) 0.953 

 
0.842 

  

Eq. 2: Ljung-Box p-value  
           (squared  standardized residuals) 0.048 

 
0.949 

  

Eq. 3: Ljung-Box p-value  
           (squared  standardized residuals) 0.532 
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Table 3: Estimates of market risk regressions using pooled OLS with bank fixed effects.  Dependent variable is as 
annualized trading revenue divided by trading assets.  Data is from Y-9C bank holding company regulatory reports 
over the period 1994Q1-2002Q4 using the bank holding company sample discussed in Section 5.1.  Equity return is 
the annualized log-return of the S&P500 from Datastream.  ∆ interest rate is the change in the 10-year Constant 
Maturity Treasury (CMT) rate from the Federal Reserve Board H.15 release.  Currency return is the annualized log 
difference of the trade-weighted currency index from the Federal Reserve Board G.5 release.  Equity, interest rate, 
and currency volatilities are the log of daily variances from the trivariate GARCH model (Table 2) summed over the 
quarter and then scaled to annual terms. 

Variable Parameter 
Estimate ( )β̂  

Standard 
Error 

P-value 

Equity return  0.0204 0.0058 0.0005 

Equity volatility 0.0122 0.0033 0.0002 

∆ interest rate -0.0056 0.0042 0.1896 

Interest rate volatility -0.0030 0.0052 0.5591 

Currency return -0.0048 0.0148 0.7442 

Currency volatility -0.0113 0.0052 0.0302 

2R  fixed effects only 58.3% 

2R  fixed effects and factors 59.7% 

Average 2R  from bank-
level regressions 

10.2% 

Number of observations 612 
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Table 4:  Estimates of credit risk regressions using pooled OLS with bank fixed effects.  Dependent variable is 
annualized net interest income less provisions.  Data is from Y-9C bank holding company regulatory reports over the 
period 1994Q1-2002Q4 using the bank holding company sample discussed in Section 5.2.  Explanatory variables are 
change in the AA and BBB spreads.  We use monthly data on the yield-to-maturity and Macaulay duration from the 
Merrill Lynch AA and BBB-rated corporate bond indices obtained from Bloomberg.  We compute spreads by 
subtracting from each yield-to-maturity a weighted average of the 5, 7, and 10 year Constant Maturity Treasury 
(CMT) rates.  The weights are based on the difference between the duration of the relevant index and the duration of 
a par 5, 7, or 10 year Treasury paying the relevant CMT rate.  

Variable Parameter 
Estimate ( )β̂  

Standard 
Error 

P-value 

∆ AA spread 5.80×10-5 1.59×10-5 0.0003 

∆ BBB spread -3.38×10-5 9.36×10-6 0.0003 

2R  fixed effects only 56.2% 

2R  with fixed effects and 
factors 

56.8% 

Average 2R  from bank-
level regressions 

4.8% 

Number of observations 612 
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Table 5: Characteristics of moments of residuals across 17 bank specific regressions.  These bank specific regressions 
are estimated using the same specification as the pooled OLS models.  Details of market risk regression are given in 
Table 3, while details of credit risk regression are given in Table 4.  In the top panel, the first row represents the 
cross-sectional average of the standard deviation, skewness and kurtosis of the 17 market risk regression residuals.  
The bottom panel reports the same statistics for the credit risk regression residuals.  Because these distributions are 
skewed, the median is different from the mean.  The rows labeled “Simulated” denote the moments of the simulated 
residuals; see Section 5.4. 

Market Risk Residuals 

 Std. Dev. Skewness Kurtosis 

Mean 2.27% 0.5 8.4 

Median 1.18% 0.3 7.5 

Simulated 1.18% 0.5 6.4 

Credit Risk Residuals 

Mean 1.25% -0.6 7.3 

Median 1.04% -0.8 5.5 

Simulated 1.04% -0.6 6.0 
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Table 6: Characteristics of simulated marginal risk distributions for 200,000 bank-years using methods described in 
Section 5.7.  All values are annualized, and the mean is zero by construction.  The total risk distribution is generated 
by simulating the weighted average of market (3.1%), credit (29.1%), and operational (67.8%) returns from a joint 
distribution defined using a normal copula with the benchmark correlations (market versus credit = 0.5, market/credit 
versus operational = 0.2).  Assets at risk for market risk is equal to trading assets, for credit risk is equal to lending 
assets, and for operational risk is equal to total assets.  Total book is the the sum of these three assets at risk. 

 Market Risk Credit Risk Operational Risk Total Risk 

σ (assets at risk) 0.58% 0.19% 0.04% 0.11% 

σ (total book) 0.02% 0.05% 0.03% 0.08% 

Skewness 0.2 -1.3 -4.5 -1.1 

Kurtosis 3.7 16.1 35.3 9.6 

0.1 percentile -1.81% -1.20% -0.37% -0.43% 

0.5 percentile -1.47% -0.72% -0.27% -0.29% 

1st percentile -1.32% -0.57% -0.17% -0.24% 
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Table 7: Inter-risk correlations (Table 4 from Kuritzkes, Schuermann and Weiner (KSW), 2003).  The entries 
correspond to examples of inter-risk correlations from three studies (academic and industry), as summarized in KSW, 
that are closely related to the risk types analyzed in this paper.  The first set is taken from Dimakos and Aas (2004).  
The second set comes from Ward and Lee (2002) who have separate correlations for market and asset-liability 
management risk; the table entry is the higher of the two correlations.  The third set is cited in Joint Forum (2001, p. 
25), and is based on interview findings and reflect the values used by Dutch and other financial conglomerates in 
their internal capital models. 

 Credit Market/Asset-
Liability 

Management 

Operational 
and Other 

 

Credit 

 
100% 

30% 
30% 
80% 

20% 
44% 
40% 

Market/Asset-
Liability 

Management 

30% 
30% 
80% 

 
100% 

20% 
13% 
40% 

Operational and 
Other 

20% 
44% 
40% 

20% 
13% 
40% 

 
100% 
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Table 8: Standardized quantile and volatility for 99.9% VaR (0.1% tail) of the total risk distribution as business mix 
changes.  Business mix and risk weights are defined in Section 5.2.  In Panel A, each row represents market weight 
versus credit weight while holding the operational weight constant.  The italicized row is closest to the benchmark 
risk weights: 3.1% for market risk, 29.1% for credit risk and 67.8% for operational risk.  Some intermediate values 
(rows) are omitted for space reasons.  In Panel B, each row represents the change in operational weight, while 
holding the relative weights of market and credit constant.  The italicized row represents the benchmark risk weights.  
The standardized quantiles for the market, credit and operational risk distributions are –3.12, –6.29 and –9.09 
respectively.  The marginal volatilities in same order are 0.58%, 0.19% and 0.04%.  Add-VaR (Eq. (3.7)) adds the 
VaRs of the marginal risk distributions, N-VaR (Eq. (3.8)) assumes joint normality, and H-VaR (Eq. (3.6)) combines 
marginal risks a formula that would apply to an elliptical distribution.  Approximation error is (approximation VaR – 
Copula VaR) / Copula VaR.  See also Fig. 4. 

Business Mix 
Panel A: Market versus Credit Risk 

      Approximation Error Share of 
Market vs. 

Credit  
Market 
Weight 

Credit 
Weight 

Operat. 
Weight 

99.9% 
VaR 

Volatility Standar
dized 

Quantile 

N-VaR 
to 

Copula 

H-VaR 
to 

Copula 

Add-
VaR to 
Copula 

0% 0.00% 32.19% 67.81% -0.439% 0.071% -6.15 -50% 13% 46% 

10% 3.22% 28.97% 67.81% -0.434% 0.076% -5.70 -46% 13% 52% 

20% 6.44% 25.75% 67.81% -0.434% 0.084% -5.15 -40% 13% 56% 

40% 12.88% 19.31% 67.81% -0.449% 0.107% -4.21 -27% 14% 60% 

60% 19.31% 12.88% 67.81% -0.481% 0.133% -3.61 -14% 14% 57% 

80% 25.75% 6.44% 67.81% -0.549% 0.163% -3.37 -8% 10% 45% 

90% 28.97% 3.22% 67.81% -0.591% 0.178% -3.32 -7% 8% 38% 

100% 32.19% 0.00% 67.81% -0.630% 0.194% -3.26 -5% 7% 33% 
Panel B: Operational versus Market and Credit Risk 

      Approximation Error Share Shifted 
from Market 
and Credit to 
Operational 

Market 
Weight 

Credit 
Weight 

Operat. 
Weight 

99.9% 
VaR 

Volatility Standar
dized 

Quantile 

N-VaR 
to 

Copula 

H-VaR 
to 

Copula 

Add-
VaR to 
Copula 

-50% 4.65% 43.64% 51.71% -0.599% 0.105% -5.72 -46% 5% 34% 
-30% 4.03% 37.82% 58.15% -0.530% 0.093% -5.70 -46% 8% 40% 

-20% 3.72% 34.91% 61.37% -0.497% 0.087% -5.70 -46% 9% 44% 

-10% 3.41% 32.00% 64.59% -0.461% 0.082% -5.66 -45% 12% 49% 

0% 3.10% 29.09% 67.81% -0.434% 0.076% -5.71 -46% 13% 52% 

10% 2.79% 26.18% 71.03% -0.408% 0.071% -5.77 -46% 14% 54% 

20% 2.48% 23.27% 74.25% -0.387% 0.065% -5.91 -48% 15% 55% 

30% 2.17% 20.36% 77.47% -0.366% 0.061% -6.05 -49% 16% 56% 

50% 1.55% 14.55% 83.90% -0.355% 0.052% -6.86 -55% 10% 45% 

80% 0.62% 5.82% 93.56% -0.362% 0.043% -8.47 -64% 2% 19% 

100% 0.00% 0.00% 100.00% -0.373% 0.041% -9.09 -66% 0% 0% 
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Table 9: Standardized quantile and volatility for 99.9% VaR (0.1% tail) of the total risk distribution as inter-risk 
correlation changes.  The first set are the results of changing correlation between market and credit risk while the 
correlation of both risk types to operational risk remains constant at benchmark level of 20%.  The second set 
describes the impact of changing correlation between operational and the other two risk types while keeping the 
correlation between market and credit constant at benchmark level of 50%.  Note that the maximum correlation 
possible for the operational risk experiment (bottom panel) is 0.8; see also Footnote 20 and Table 10 below.  The 
italicized row represents the benchmark correlations.  Both sets of results: benchmark weights are 3.1% for market 
risk, 29.1% for credit risk and 67.8% for operational risk.  Add-VaR (Eq. (3.7)) adds the VaRs of the marginal risk 
distributions, N-VaR (Eq. (3.8)) assumes joint normality, and H-VaR (Eq. (3.6)) combines marginal risks a formula 
that would apply to an elliptical distribution.  Approximation error is (approximation VaR – Copula VaR) / Copula 
VaR.  Diversification benefit in the last column is (Add-VaR – Copula VaR)/Add-VaR.  Note that the standardized 
quantile for the market, credit and operational risk distributions are –3.12, -6.29 and –9.09 respectively.  The 
marginal volatilities in the same order are 0.58%, 0.19% and 0.04%.  See also Fig. 5. 

Correlation 
Panel A: Market versus Credit 

    Approximation Error  

Rho 99.9% 
VaR 

Volatility Standard
ized 

Quantile 

N-VaR to 
Copula 

H-VaR to 
Copula 

Add-VaR 
to Copula 

Diversification 
Benefit (Copula) 

0 -0.402% 0.069% -5.79 -47% 17% 63% 39% 

0.1 -0.406% 0.071% -5.74 -46% 17% 62% 38% 

0.2 -0.414% 0.072% -5.74 -46% 14% 58% 37% 

0.3 -0.426% 0.073% -5.80 -47% 13% 54% 35% 

0.4 -0.426% 0.075% -5.70 -46% 14% 54% 35% 

0.5 -0.434% 0.076% -5.71 -46% 13% 52% 34% 

0.6 -0.433% 0.077% -5.60 -45% 15% 53% 35% 

0.7 -0.437% 0.079% -5.56 -44% 14% 50% 34% 

0.8 -0.434% 0.080% -5.44 -43% 14% 50% 33% 

0.9 -0.438% 0.081% -5.40 -43% 15% 50% 33% 

 Panel B: Operational versus Market and Credit 

0 -0.401% 0.072% -5.59 -45% 14% 65% 39% 
0.1 -0.418% 0.074% -5.66 -45% 13% 58% 37% 

0.2 -0.434% 0.076% -5.71 -46% 13% 52% 34% 

0.3 -0.452% 0.078% -5.78 -47% 12% 45% 31% 

0.4 -0.473% 0.080% -5.90 -48% 10% 39% 28% 

0.5 -0.499% 0.082% -6.05 -49% 8% 32% 24% 

0.6 -0.522% 0.085% -6.17 -50% 6% 26% 20% 

0.7 -0.554% 0.087% -6.38 -52% 3% 19% 16% 

0.8 -0.582% 0.089% -6.54 -53% 1% 13% 11% 
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Table 10: Relation between rho and correlation from a multivariate distribution created using simulated returns (see 
Table 6) and a normal copula with benchmark weights (3.1% for market risk, 29.1% for credit risk and 67.8% for 
operational risk).  The second column corresponds to the top panel in Fig. 5 where the correlation between market 
and credit is allowed to change while each of their correlations with operational risk remains fixed at the benchmark 
level (ρ = 20%).  The third column corresponds to the bottom panel of Fig. 5 where the correlation between market 
and credit stays fixed at the benchmark level (ρ = 50%) as it changes with respect to operational risk and the other 
two risk types. 

rho correlation 
(market, 
credit) 

correlation 
(operational, 

{market, credit}) 

0.1 0.09 0.08 

0.2 0.19 0.16 

0.3 0.28 0.24 

0.4 0.38 0.32 

0.5 0.47 0.40 

0.6 0.57 0.49 

0.7 0.67 0.58 

0.8 0.77 0.67 
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Table 11: Risk sensitivities.  Range of 99.9% VaRs (0.1% tail) across different factors and experiments in descending 
order.  Average risk sensitivity is |Maximum VaR – Minimum VaR| / Average VaR, using the maximum or minimum 
VaR entries across the respective business mix (Table 8) and correlation (Table 9) experiments.  Risk sensitivities for 
exposure experiments are from Table 8 and for correlation experiments from Table 9.  We calculate approximation 
error as (approximation VaR – Copula VaR) / Copula VaR.  We report averages of these values under 
“Approximation choice” in the table.  Add-VaR (Eq. (3.7)) adds the VaRs of the marginal risk distributions, N-VaR 
(Eq. (3.8)) assumes joint normality, and H-VaR (Eq. (3.6)) combines marginal risks a formula that would apply to an 
elliptical distribution.  Copula choice is the average proportional difference for VaR using the Student-t(5) copula 
versus the normal copula versus across the business mix and correlation experiments reported in Fig. 7. 

Factor Average Risk 
Sensitivity 

Operational risk exposure 58% 

Approximation choice  

Add-VaR 45% 

N-VaR -42% 

H-VaR 11% 

Operational risk correlation 45% 

Market versus credit risk exposure 40% 

Copula choice 10% 

Market versus credit risk correlation 8% 
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Fig. 1: Conditional volatilities and correlations from estimated multivariate GARCH model (Table 2).  Top two panels plot market risk 
factor volatilities and correlations over the period 1974-2002.  Bottom two panels plot credit risk factor volatilities and correlations over the 
period 1989-2002.  Data definitions are given in Section 5.3. 
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Fig. 2: Market, credit and operational risk distributions estimated using simulated factor 
returns and estimated factor exposures based on methods described in Section 5.7 and 
summarized in Table 6.  The three panels display kernel density plot (Epanechnikov 
kernel, Silverman’s optimal bandwidth) of simulated marginal risk distributions for 
200,000 bank-years. 
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Fig. 3:  Total risk distribution estimated using market, credit and operational risks (see 
Table 6 and Fig. 2).  These are combined using a normal copula, benchmark weights 
(3.1% for market risk, 29.1% for credit risk and 67.8% for operational risk) and 
benchmark correlations (50% for market and credit, and 20% of those two risk types with 
operational risk).  The figure displays a kernel density plot (Epanechnikov kernel, 
Silverman’s optimal bandwidth) using 200,000 simulated bank years.  Total book is the 
the sum of trading assets, lending assets, and total assets. 
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Business Mix: Market versus Credit
99.9% VaR (0.1st percentile), normal copula, benchmark correlation
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Business Mix: Operational versus Market and Credit
99.9% VaR (0.1st percentile), normal copula, benchmark correlation
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Fig. 4: Impact of business mix; 99.9% VaR (0.1% tail) of the total risk distribution.  
Additional detail given in Table 8.  Top panel: Impact of market weight relative to credit 
weight while holding operational weight constant.  Bottom panel: Impact of shift in 
market and credit weight to operational weight while holding relative market and credit 
weights constant.  Both panels: normal copula with the benchmark inter-risk correlations 
of 50% for market and credit, and 20% of those two risk types with operational risk.  In 
the legend, Copula is VaR computed using the copula-based total risk distribution, 
Hybrid (Eq. (3.6)) is an approximate VaR approach that combines marginal risks using a 
formula that would apply to an elliptical distribution, Additive adds up the marginal 
VaRs (Eq. (3.7)), and Normal (Eq. (3.8)) is VaR computed assuming joint normality. 
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Correlation: Market versus Credit
 99.9% VaR (0.1st percentile), normal copula, benchmark weights
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Correlation: Operational versus Market and Credit
99.9% VaR (0.1st percentile), normal copula, benchmark weights

-1.00%

-0.90%

-0.80%

-0.70%

-0.60%

-0.50%

-0.40%

-0.30%

-0.20%

-0.10%

0.00%
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Rho

99
.9

%
 V

aR
 (p

er
ce

nt
 o

f b
oo

k)

Copula Hybrid Additive Normal

  

Fig. 5: Impact of inter-risk correlation (rho); 99.9% VaR (0.1% tail) of the total risk 
distribution.  Additional detail given in Table 9.  Top panel: Impact of changing 
correlation between market and credit risk while correlation of both risk types to 
operational risk remains constant at benchmark level of 20%.  Bottom panel: impact of 
changing correlation between operational and the other two risk types while keeping the 
correlation between market and credit constant at benchmark level of 50%.  Both panels: 
benchmark weights are 3.1% for market risk, 29.1% for credit risk and 67.8% for 
operational risk.  In the legend, Copula is VaR computed using the copula-based total risk 
distribution, Hybrid (Eq. (3.6)) is an approximate VaR approach that combines marginal 
risks using a formula that would apply to an elliptical distribution, Additive adds up the 
marginal VaRs (Eq. (3.7)), and Normal (Eq. (3.8)) is VaR computed assuming joint 
normality. 
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Business Mix: Operational versus Market and Credit
99.9% Expected Shortfall, normal copula, benchmark correlation
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Correlation: Operational versus Market and Credit
99.9% Expected Shortfall, normal copula, benchmark weights
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Fig. 6: Impact of business mix and inter-risk correlation on the 99.9% expected shortfall 
(ES) of the total risk distribution.  Top panel: Impact of shift in market and credit weight 
to operational weight while holding relative market and credit weights constant; 
analogous to bottom panel of Fig. 4.  Bottom panel: impact of changing correlation 
between operational and the other two risk types while keeping the correlation between 
market and credit constant at benchmark level of 50%; analogous to bottom panel of Fig. 
5.  In the legend, Copula is VaR computed using the copula-based total risk distribution, 
Hybrid (Eq. (3.6)) is an approximate VaR approach that combines marginal risks using a 
formula that would apply to an elliptical distribution, Additive adds up the marginal 
VaRs (Eq. (3.7)), and Normal (Eq. (3.8)) is VaR computed assuming joint normality. 
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Business Mix: Operational versus Market and Credit
99.9% VaR (0.1st percentile), benchmark correlation
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Correlation: Operational versus Market and Credit

99.9% VaR (0.1st percentile), benchmark weights
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Fig. 7: Sensitivity to choice of copula.  The 99.9% VaR (0.1% tail) is computed for joint 
distributions created using three different copulas: Normal is computed using the normal 
copula, t(10) and t(5) are computed using the Student-t(ν) copula for ν = 5, 10.  Hybrid 
(Eq. (3.6)) is an approximate VaR approach that combines marginal risks using a formula 
that would apply to an elliptical distribution.  Impact of business mix (top panel) and 
inter-risk correlation (bottom panel) on the 99.9% VaR (0.1% tail) of the total risk 
distribution (analogous to Fig. 6 above).   
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Business Mix: Operational versus Market and Credit,
including Residual Risk
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Correlation: Operational versus Market and Credit,
including Residual Risk
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Fig. 8: Impact of residual risk on the 99.9% VaR (0.1% tail) of the total risk distribution.  
Top panel: Impact of shift in market and credit weight to operational weight while 
holding relative market and credit weights constant; analogous to bottom panel of Fig. 4.  
Bottom panel: impact of changing correlation between operational and the other two risk 
types while keeping the correlation between market and credit constant at benchmark 
level of 50%; analogous to bottom panel of Fig. 5. In the legend, Copula is VaR 
computed using the copula-based total risk distribution, Hybrid (Eq. (3.6)) is an 
approximate VaR approach that combines marginal risks using a formula that would 
apply to an elliptical distribution, Additive adds up the marginal VaRs (Eq. (3.7)), and 
Normal (Eq. (3.8)) is VaR computed assuming joint normality. 


