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Abstract
Switching VARMA Term Structure Models

The purpose of the paper is to propose a global discrete-time modeling of the term struc-
ture of interest rates able to capture simultaneously the following important features :
(i) interest rates with an historical dynamics involving several lagged values, and switch-
ing regimes; (ii) a specification of the stochastic discount factor (SDF) with time-varying
and regime-dependent risk-premia; (iii) the possibility to derive explicit or quasi explicit
formulas for zero-coupon bond and interest rate derivative prices; (iv) the positiveness
of the yields at each maturity. We develop the Switching Autoregressive Normal (SAN)
Term Structure model of order p and the Switching Autoregressive Gamma (SAG) Term
Structure model of order p, and regime shifts are described by a Markov chain with state-
dependent transition probabilities. In both cases multifactor generalizations are proposed.
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1 INTRODUCTION

In this paper we propose a global discrete-time modeling of the term struc-
ture of interest rates, which captures simultaneously the following important
features :

- interest rates with an historical dynamics involving several lagged val-
ues, and switching regimes;

- a specification of the stochastic discount factor (SDF) with time-
varying and regime-dependent risk-premia;

- the possibility to derive explicit or quasi explicit formulas for zero-
coupon bond and interest rate derivative prices;

- the positiveness of the yields at each maturity.

It is well known in the literature that interest rates show an historical
dynamics characterized by a strong dependence from several of their lagged
values, and by switching in the regimes [see, among the others, Hamilton
(1988), Cai (1994), Garcia and Perron (1996), Gray (1996), Cochrane and
Piazzesi (2005)]; indeed, changes in the business cycle conditions or mone-
tary policy may affect real rates and expected inflation and cause interest
rates to behave quite differently in different time periods. In addition, there
is a large (discrete-time and continuous-time) empirical literature on bond
yields (in particular, short-term rates), based, in general, on the class of
Affine Term Structure Models (ATSMs)3, suggesting that regime switching
models describe the historical interest rates data better than single-regime
models [see, for example, Driffill and Sola (1994), Ang and Bekaert (2002),
Bansal and Zhou (2002), Dai, Singleton and Yang (2003), Driffill, Kenc and
Sola (2003), Evans (2003)]. This aspect lead us to propose dynamic term
structure models (DTSMs) where the yield curve is driven by an univariate
or multivariate factor (xt) which is function of its p most recent lagged values
and for which all the coefficients depend on a latent J-states non homoge-
neous Markov Chain (st) describing different regimes in the economy. The

3The Affine family of DTSMs is characterized by the fact that the zero-coupon bond
yields are affine functions of Markovian state variables, and it gives closed-form expressions
for zero-coupon bond prices which greatly facilitates pricing and econometric implemen-
tation [see Duffie and Kan (1996), Duffie, Filipovic and Schachermayer (2003)]. Observe
that the Affine Term Structure family is much larger that it has been considered in the
literature : indeed, it has been observed recently that the family of Quadratic Term Struc-
ture Models (QTSMs) is a special case of the Affine class obtained by stacking the factor
values and their squares [see Gourieroux and Sufana (2003), Cheng and Scaillet (2004)].
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factor (xt) is considered as an exogenous variable or an endogenous variable:
in the second case the factor is a vector of several yields.

We consider an exponential-affine SDF with time-varying and regime-
dependent risk correction coefficients; consequently, in our models, both
factor risk and regime-shift risk are priced and investors are assumed to
observe the current and past values of the factor and of the regime-indicator
variable.

At the same time, we want to maintain the tractability of affine mod-
els, that is, we want to obtain explicit or quasi explicit formula for zero-
coupon bond and interest rate derivative prices. This result is achieved
by matching the historical distribution and the SDF in order to get a Car
risk-neutral (pricing) dynamics4. We develop the Switching Autoregressive
Normal (SAN) Term Structure model of order p and the Switching Autore-
gressive Gamma5 (SAG) Term Structure model of order p, and in both cases
we propose multifactor generalizations.

Even if the Gaussian family of models does not guarantee the positive-
ness of the yields for every time to maturity [see, among the others, Vasicek
(1977), Dai and Singleton (2000), Bekaert and Grenadier (2001), Ang and
Bekaert (2002), Ang and Piazzesi (2003)], we study the Switching Autore-
gressive Normal model, in our SDF framework, because it extends many
standard models, like the ones just mentioned above and the more recent
ones like Dai, Singleton and Yang (2003). Indeed, the historical and risk-
neutral dynamics of (xt) depends from several of their lagged values and of
the regime-indicator variable; in addition, we are able to derive formulas,
for the yield curve and for the price of derivatives, with simple analytical or
quasi explicit representations.

The second kind of models we propose in the paper, based on the Switch-
ing Autoregressive Gamma process of order p, [ that is, a Regime-Switching
positive AR(p) process with a martingale difference error], implies the posi-
tiveness of the yields for each time to maturity, and regardless of an exoge-
nous or endogenous specification for the factor (xt). Moreover, the ARG(p)
assumption gives the possibility to replicate complex nonlinear dynamics and

4A Car process is a Markovian process with an exponential-affine conditional Laplace
transform. An important difference between the discrete-time and continuous-time affine
framework is that all continuous-time affine processes sampled at discrete points are Car,
while there exists a large number of Car processes without a continuous time counterpart
[see Darolles, Gourieroux, Jasiak (2002) and Duffie, Filipovic and Schachermayer (2003)
for details]

5The Autoregressive Gamma (ARG) process is a Car process, and the ARG(1) speci-
fication is the discrete-time counterpart of the Cox-Ingersoll-Ross process [Cox-Ingersoll-
Ross (1985)].
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provides explicit or tractable formulas for zero-coupon bond and derivative
prices. In a related study, Bansal and Zhou (2002) propose an (approximate)
discrete-time Cox-Ingersoll-Ross DTSM with regime shifts. We extend their
framework, by means of the exact discrete-time equivalent of the CIR pro-
cess generalized to an autoregressive order p larger than one [the ARG(p)
process], allowing for a non homogeneous historical transition matrix for
(st) [in Bansal and Zhou (2002) (st) is an homogeneous Markov chain], and
pricing the regime-shift risk [in Bansal and Zhou (2002), the risk correction
coefficient for regime-switching is assumed equal to zero].
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2 LAPLACE TRANSFORMS, CAR(p) PROCESSES
AND SWITCHING REGIMES

It is now well documented [see e.g. Darolles, Gourieroux and Jasiak (2003),
Gourieroux and Monfort (2002), Gourieroux, Monfort and Polimenis (2002,
2003), Polimenis (2001)] that the Laplace transform (or moment generating
function) is a very convenient mathematical tool in many financial domains.
It is, in particular, a crucial notion in the theory of Car(p) processes [see
Darolles, Gourieroux and Jasiak (2003) for details].

2.1 Definition of a Car(p) process

Definition 1 [Car(p) process]: A n-dimensional process x̃ = (x̃t, t ≥ 0) is
a compound autoregressive process of order p [Car(p)] if the distribution of
x̃t+1 given the past values x̃t = (x̃t, x̃t−1, . . .) admits a real Laplace transform
of the following type:

E
[
exp(u′x̃t+1) | x̃t

]

= Et[exp(u′x̃t+1)]

= exp
[
ã1(u)′x̃t + . . . + ãp(u)′x̃t+1−p + b̃(u)

]
, u ∈ Rn ,

(1)

where ai(u), i ∈ {1, . . . , p}, and b(u) are nonlinear functions, and where
ap(u) 6= 0, ∀u ∈ Rn. The existence of this Laplace transform in a neigh-
borhood of u = 0, implies that all the conditional moments exist, and that
the conditional expectations and variance-covariance matrices (and all con-
ditional cumulants) are affine functions of (x̃′t, x̃′t−1, . . . , x̃

′
t+1−p).

2.2 Univariate Index-Car(p) process

An important class of Car(p) processes are the Index-Car(p) processes, which
are built from a Car(1) process. In this section we consider a univariate
process xt and the multivariate case will be considered in sections 2.6 and
2.7.

Definition 2 [Univariate Index-Car(p) process]: Let exp[a(u)yt +b(u)]
be the conditional Laplace transform of a univariate Car(1) process, xt+1

admitting a conditional Laplace transform defined by:

E
[
exp(uxt+1) |xt

]
= exp [a(u)(β1xt + . . . + βpxt+1−p) + b(u)] , u ∈ R ,

(2)
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is called an Univariate Index-Car(p) process.

Note that, if yt is a positive process and if the parameters β1, . . . , βp are
positive, the process xt will be positive.

Using the notation β = (β1, . . . , βp)′ and Xt = (xt, xt−1, . . . , xt+1−p)′,
the Laplace transform (2) can be written as:

E
[
exp(uxt+1) |xt

]
= exp [a(u)β′Xt + b(u)] . (3)

2.3 Examples of Univariate Index-Car(p) processes

a. Gaussian model

If yt is a Gaussian AR(1) process defined by:

yt+1 = ν + ρyt + εt+1

where εt+1 is a gaussian white noise distributed as N (0, σ2), the conditional
Laplace transform of yt+1 given yt is:

E
[
exp(uyt+1) | yt

]
= exp

[
uρyt + uν + σ2

2 u2
]

.

The process is Car(1) with a(u) = uρ and b(u) = uν + σ2

2 u2. The associated
Index-Car(p) process has a conditional Laplace transform defined by:

E
[
exp(uxt+1) |xt

]
= exp

[
uρ(β1xt + . . . + βpxt+1−p) + uν + σ2

2 u2
]

;

so, using the notation ϕi = ρβi, we have that xt+1 is the Gaussian AR(p)
process defined by:

xt+1 = ν + ϕ1 xt + . . . + ϕp xt+1−p + εt+1 (4)

and its conditional Laplace transform becomes:

E
[
exp(uxt+1) |xt

]
= exp

[
uϕ′Xt + uν + σ2

2 u2
]

, (5)

where ϕ = (ϕ1, . . . , ϕp)′.

b. Gamma model

Let us now consider an autoregressive gamma of order one [ARG(1)]
process yt. The conditional Laplace transform is [see Gourieroux and Jasiak
(2005) for details]:

E
[
exp(uyt+1) | yt

]
= exp

[
ρu

1−uµ yt − ν log(1− uµ)
]

, ρ > 0 , µ > 0 , ν > 0 ,
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and it is well known that, given yt, yt+1 can be obtained by first drawing a
latent variable Ut+1 in the Poisson distribution P(ρyt

µ ) and, then, drawing
yt+1

µ in the gamma distribution γ(ν+Ut+1). The process yt+1 is positive and
the associated Index-Car(p) process xt+1 is also positive. The conditional
Laplace transform of this process is:

E
[
exp(uxt+1) |xt

]
= exp

[
ρu

1−uµ(β1xt + . . . + βpxt+1−p)− ν log(1− uµ)
]

,

with βi ≥ 0, for i ∈ {1, . . . , p}, or using the same notation as above:

E
[
exp(uxt+1) |xt

]
= exp

[
u

1−uµϕ′Xt − ν log(1− uµ)
]

. (6)

Similarly, given Xt, xt+1 can be obtained by drawing Ut+1 in P(ϕ′Xt

µ )
and xt+1

µ in γ(ν+Ut+1). It easily seen that the conditional mean and variance
of xt+1, given xt, are respectively given by νµ + ϕ′Xt and νµ2 + 2µϕ′Xt; so,
the process xt+1 has the weak AR(p) representation:

xt+1 = νµ + ϕ′Xt + εt+1 , (7)

where εt+1 is a conditionally heteroscedastic martingale difference, whose
conditional variance is νµ2 + 2µϕ′Xt; the process is stationary if and only
if ϕ′e < 1 [where e = (1, . . . , 1) ∈ Rp] and, in this case, the processes xt+1

and εt+1 have finite unconditional variance given by νµ2 + 2νµ2 ϕ′e
1−ϕ′e ; the

unconditional mean of xt+1 is given by νµ
1−ϕ′e .

2.4 Univariate Switching regimes Car(p) process

Let us first consider a J-states homogeneous Markov Chain zt+1, which can
take the values ej ∈ RJ , j ∈ {1, . . . , J}, where ej is the jth element of the
(J × J) identity matrix. The transition probability, from state ei to state
ej is π(ei, ej) = Pr(zt+1 = ej | zt = ei). It is first worth noting that zt+1 is
a Car(1) process.

Proposition 1 : The Markov chain process zt+1 is a Car(1) process with a
conditional Laplace transform given by:

E[exp(v′zt+1)| zt] = exp(az(v, π)′zt) , (8)

where

az(v, π) =


log




J∑

j=1

exp(v′ej)π(e1, ej)


 , . . . , log




J∑

j=1

exp(v′ej)π(eJ , ej)






′

.
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[Proof : straightforward.]

Let us now consider a univariate Index-Car(p) process with a conditional
Laplace transform given by exp [a(u)β′Xt + b(u)], and let us assume the b(u)
can be written:

b(u) = b̃(u)′λ where

b̃(u) = (b1(u), . . . , bm(u))′ and λ = (λ1, . . . , λm)′ .
(9)

We are now going to generalize this model by assuming that the pa-
rameters λi are stochastic and linear function of Zt = (z′t, . . . , z′t−p)

′. More
precisely, we assume that the conditional distribution of xt+1 given xt and
zt+1 has a Laplace transform given by:

E[exp(uxt+1)|xt , zt+1] = exp
[
a(u)β′Xt + b̃(u)′ΛZt

]
, (10)

where Λ is a [m, (p + 1)J ] matrix. Note that we assume no instantaneous
causality between xt+1 and zt+1 and we admit one more lag in Zt that in Xt;
if the process zt is not observed the no instantaneous causality assumption is
not really important at this stage since we could rename zt as zt+1, however it
will be useful at the pricing level in order to obtain simple pricing procedures
[Dai, Singleton and Yang (2003) also make this kind of assumption]. The
joint process (xt+1, z

′
t+1)

′ is easily seen to be a Car(p + 1) process.

Proposition 2 : The conditional Laplace transform of (xt+1, z
′
t+1)

′ given
xt , zt has the following form:

E
[
exp(uxt+1 + v′zt+1) | zt, xt

]

= exp
{

a(u)β′Xt +
[
e′1 ⊗ az(v, π)′ + b̃(u)′Λ

]
Zt

}
,

(11)

where e1 is the first component of the canonical basis in Rp+1, and where ⊗
denotes the Kronecker product.

[Proof : straightforward.]
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2.5 Examples of Univariate Switching regimes Car(p) pro-
cesses

a. Gaussian case

Let us start from the AR(p) model (4). Its conditional Laplace transform
is given by (5):

E
[
exp(uxt+1) |xt

]
= exp

[
uϕ′Xt + uν + σ2

2 u2
]

,

and the function b(u) has the form (9) with b̃(u)′ =
(
u, u2

2

)
and λ′ = (ν, σ2).

If λ is replaced by ΛZt, the joint process (xt+1, z
′
t+1)

′ is Car(p + 1) with
a conditional Laplace transform given by:

E
[
exp(uxt+1 + v′zt+1) | zt, xt

]

= exp
[
uϕ′Xt +

(
u, u2

2

)
ΛZt + az(v, π)zt

]
.

(12)

More precisely, the dynamics is given by [using the notation Λ =
(

λ′1
λ′2

)
]:

xt+1 = λ′1Zt + ϕ′Xt + (λ′2Zt)1/2εt+1 , (13)

where εt+1 is a gaussian white noise distributed asN (0, σ2), Zt = (z′t, . . . , z′t−p)
′

and zt is a Markov chain such that Pr(zt+1 = ej | zt = ei) = π(ei, ej).
In particular, let us consider the case:

Λ =
[
(1,−ϕ1, . . . ,−ϕp)⊗ ν∗′

e′1 ⊗ σ∗2′
]

(14)

and ν∗′ = (ν∗1 , . . . , ν∗J), σ∗2′ = (σ∗21 , . . . , σ∗2J ), the conditional distribution
of xt+1 given xt and zt+1 is the one corresponding to the switching AR(p)
model defined by:

xt+1 − ν∗′zt = ϕ1 (xt − ν∗′zt−1) + . . . + ϕp (xt+1−p − ν∗′zt−p) + (σ∗′zt)εt+1 .
(15)

b. Gamma case

Let us now start from the ARG(p) process associated with the condi-
tional Laplace transform (6):

E
[
exp(uxt+1) |xt

]
= exp

[
u

1−uµϕ′Xt − ν log(1− uµ)
]

.
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Here we have b̃(u) = − log(1−uµ) and λ = ν. If ν is replaced by ΛZt, where
ΛZt > 0, the process xt has a weak AR(p) representation given by:

xt+1 = µΛZt + ϕ1 xt + . . . + ϕp xt+1−p + ζt+1 , (16)

where ζt+1 is a conditionally heteroscedastic martingale difference. For in-
stance, we can take

Λ = e′1 ⊗
ν̃

µ

′
(17)

where ν̃ ′ = (ν̃1, . . . , ν̃J), ν̃j ≥ 0. We have ΛZt = ν̃
µ

′
zt and, conditionally to

the process zt, the process xt has a weak AR(p) representation given by:

xt+1 = ν̃ ′zt + ϕ1 xt + . . . + ϕp xt+1−p + ζt+1 . (18)

It is also possible to consider a Λ of the form (1,−ϕ1, . . . ,−ϕp) ⊗ ν̃
µ

′ if

min(ν̃i) > max(ν̃i)
∑J

i=1 ϕj , since in this case ΛZt = 1
µ

(
ν̃ ′zt −

∑J
i=1 ϕj ν̃ ′zt−i

)

≥ 0. The weak conditional AR(p) process is then given by:

xt+1 − ν̃ ′zt = ϕ1 (xt − ν̃ ′zt−1) + . . . + ϕp (xt+1−p − ν̃ ′zt−p) + ζt+1 .
(19)

2.6 Specification of multivariate Car(1) processes

In order to have simple notations we will consider the bivariate case, but
all the results are easily extended to the general case. A bivariate Car(1)
process yt = (y1,t, y2,t)′ will be defined in a recursive way. We consider two
univariate exponential affine Laplace transform

exp [a1(u1)w1,t + b1(u1)] ,

and exp [a2(u2)w2,t + b2(u2)] .
(20)

Then, we assume that the conditional distribution of y1,t+1 given (y2,t+1, y1,t, y2,t)
has a Laplace transform given by

Et[exp(u1y1,t+1) | y2,t+1, y1t, y2t]

= exp [a1(u1)(βoy2,t+1 + β11y1,t + β12y2,t) + b1(u1)]
(21)
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and the conditional distribution of y2,t+1, given (y1,t, y2,t), has a Laplace
transform given by

Et[exp(u2y2,t+1) | y1,t, y2,t] = exp [a2(u2)(β21y1,t + β22y2,t) + b2(u2)] .

(22)
Note that, if the Laplace transforms (20) correspond to positive variables

and if the parameters βo, β11, β12, β21, β22 are positive the bivariate process
yt has positive components. Moreover, the joint conditional distribution of
yt+1 given yt has a Laplace transform given by:

E[exp(u1y1,t+1 + u2y2,t+1)| y1,t, y2,t]

= E
[
exp(u2y2,t+1)E

(
exp(u1y1,t+1)| y1,t, y2,t+1

)
| y1,t, y2,t

]

= exp [a1(u1)(β11y1,t + β12y2,t) + b1(u1)]Et

[
(u2 + a1(u1)βo)y2,t+1 | y1,t, y2,t

]

= exp [a1(u1)(β11y1,t + β12y2,t) + b1(u1)

+a2(u2 + a1(u1)βo)(β21y1,t + β22y2,t) + b2(u2 + a1(u1)βo)]

= exp {[a1(u1)β11 + a2(u2 + a1(u1)βo)β21]y1,t

+[a1(u1)β12 + a2(u2 + a1(u1)βo)β22]y2,t + b1(u1) + b2(u2 + a1(u1)βo)} .
(23)

So, we have the following proposition.

Proposition 3 : The bivariate process yt defined by the conditional dy-
namics (21), (22) is a bivariate Car(1) process with a conditional Laplace
transform given by (23).

2.7 Specification of multivariate Index-Car(p) processes

We consider a bivariate process x̃t = (x1,t, x2,t)′ and we introduce the no-
tations : X1t = (x1,t, . . . , x1,t+1−p)′, X2t = (x2,t, . . . , x2,t+1−p)′. Given the
univariate Laplace transforms like (20), a bivariate Index-Car(p) is defined
in the following way.

Definition 3 : A bivariate Index-Car(p) dynamics is defined by the condi-

10



tional Laplace transforms:

Et[exp(u1x1,t+1) |x2,t+1, x1,t, x2,t]

= exp [a1(u1)(βox2,t+1 + β′11X1t + β′12X2t) + b1(u1)] ,

Et[exp(u2x2,t+1) |x1,t, x2,t] = exp [a2(u2)(β′21X1t + β′22X2t) + b2(u2)] ,

(24)
where the βij are p-vectors. It is easily seen that the process x̃t is a Car(p)
process with a conditional Laplace transform given by (23) in which y1,t is
replaced by X1t and y2,t by X2t and the βij by the β′ij , i.e.

E
[
exp(u′x̃t+1) | x̃t

]

= exp{[a1(u1)β11 + a2(u2 + a1(u1)βo)β21]′X1t

+[a1(u1)β12 + a2(u2 + a1(u1)βo)β22]′X2t

+ b1(u1) + b2(u2 + a1(u1)βo)} .

(25)

From the properties of Car(p) processes we get a representation of the form:




x1,t+1 = α1 + αox2,t+1 + α′11X1t + α′12X2t + ε1,t+1

x2,t+1 = α2 + α′21X1t + α′22X2t + ε2,t+1

(26)

where the errors terms satisfy :

E[ε1,t+1 |x2,t+1, x̃t ] = 0

E[ε2,t+1 | x̃t] = 0 ;
(27)

in particular, we get

E[ε1,t+1 | x̃t ] = 0

E[ε2,t+1 | x̃t] = 0

Cov(ε1,t+1, ε2,t+1) = E(ε1,t+1ε2,t+1 | x̃t)

= E
[
ε2,t+1E(ε1,t+1 | x2,t+1, x̃t) | x̃t

]

= 0 .

(28)
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So, the error terms are non correlated, conditionally heteroscedastic, mar-
tingale differences. In particular, in the stationary case, ε1,t and ε2,t are
uncorrelated weak white noises and (26) is a weak recursive VAR(p) repre-
sentation of the process x̃t.

In the rest of the paper we will consider two important particular cases.

a) Normal VAR(p) or VARN(p) processes

In this case the conditional distributions defined by (20) are gaussian, with
affine expectations and fixed variances. In other words:

a1(u1) = ρ1u1 , b1(u1) = ν1u1 + σ2
1u2

1
2

a2(u2) = ρ2u2 , b2(u2) = ν2u2 + σ2
2u2

2
2 .

(29)

Using the notations ϕo = ρ1βo, ϕ11 = ρ1β11, ϕ12 = ρ1β12, ϕ21 = ρ2β21,
ϕ22 = ρ2β22, we have the following strong VAR(p) recursive representation
for the process x̃t = (x1,t, x2,t)′:





x1,t+1 = ν1 + ϕox2,t+1 + ϕ′11X1t + ϕ′12X2t + σ1η1,t+1

x2,t+1 = ν2 + ϕ′21X1t + ϕ′22X2t + σ2η2,t+1 ,
(30)

where ηt = (η1,t, η2,t)′ is a bivariate gaussian white noise distributed as
N (0, I2), where I2 denotes the (2× 2) identity matrix.

b) Gamma VAR(p) or VARG(p) processes

In this case we have:

a1(u1) = ρ1u1

1−u1µ1
, b1(u1) = −ν1 log(1− u1µ1)

a2(u2) = ρ2u2

1−u2µ2
, b2(u2) = −ν2 log(1− u2µ2) ,

(31)

and the process x̃t = (x1,t, x2,t)′ has the following weak VAR(p) represen-
tation (using the same notation as above, and where all the parameters are
positive):





x1,t+1 = ν1µ1 + ϕox2,t+1 + ϕ′11X1t + ϕ′12X2t + ξ1,t+1

x2,t+1 = ν2µ2 + ϕ′21X1t + ϕ′22X2t + ξ2,t+1 ,
(32)

where ξ1,t and ξ2,t are non correlated, conditionally heteroscedastic, mar-
tingale differences. The conditional variances of ξ1,t+1 and ξ2,t+1 are given
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by:

V [ξ1,t+1 | x̃t ] = ν1µ
2
1 + 2µ1[ϕo(ν2µ2 + ϕ′21X1t + ϕ′22X2t)

+ϕ′11X1t + ϕ′12X2t]

V [ξ2,t+1 | x̃t] = ν2µ
2
2 + 2µ2(ϕ′21X1t + ϕ′22X2t) .

(33)

It is important to stress that the components of this VARG(p) process are
positive.

2.8 Switching Multivariate Index-Car processes

Switching regimes can be introduced in a multivariate Index-Car(p) model
using a method extending the one retained in the univariate case. If we
assume that the functions b1(u1), b2(u2) appearing in definition 3 can be
written, respectively, as b̃1(u1)′λ1 and b̃2(u2)′λ2, and if we replace λ1 and λ2,
respectively by Λ1Zt and Λ2Zt, we obtain the following conditional Laplace
transform for the distribution of (x1,t+1, x2,t+1, zt+1) given (x1,t, x2,t, zt):

E[exp(u1x1,t+1 + u2x2,t+1 + v′zt+1)|x1,t, x2,t, zt]

= exp {[a1(u1)β11 + a2(u2 + a1(u1)βo)β21]′X1t

+[a1(u1)β12 + a2(u2 + a1(u1)βo)β22]′X2t

+[ e′1 ⊗ az(v, π)′ + b̃1(u1)′Λ1 + b̃2(u2 + a1(u1)βo)′Λ2]Zt

}
,

(34)
where az(v, π) is given in proposition 1. So we obtain a multivariate Car(p+
1) process.

Proposition 4 : The Laplace transform of (x1,t+1, x2,t+1, zt+1), condition-
ally to (x1,t, x2,t, zt), has the form given in (34) and the process (x1,t, x2,t, zt)
is Car(p + 1).
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2.9 Examples of Switching Multivariate Index-Car processes

a. Gaussian case

Taking

a1(u1) = ρ1u1, b1(u1) = ν1u1 + σ2
1
2 u2

1, b̃1(u1)′ =
(
u1,

u2
1
2

)
,

a2(u2) = ρ2u2, b2(u2) = ν2u2 + σ2
2
2 u2

2, b̃2(u2)′ =
(
u2,

u2
2
2

)
,

Λ1 =
(

λ′11

λ′12

)
, Λ2 =

(
λ′21

λ′22

)
,

and denoting ϕo = ρ1βo, ϕ11 = ρ1β11, ϕ12 = ρ1β12, ϕ21 = ρ2β21, ϕ22 =
ρ2β22, we obtain the Switching VARN(p) model:





x1,t+1 = λ′11Zt + ϕox2,t+1 + ϕ′11X1t + ϕ′12X2t + (λ′12Zt)1/2η1,t+1

x2,t+1 = λ′21Zt + ϕ′21X1t + ϕ′22X2t + (λ′22Zt)1/2η2,t+1 ,
(35)

where ηt = (η1,t, η2,t)′ is a gaussian white noise distributed as N (0, I2),
Zt = (z′t, . . . , z′t−p)

′, and where zt is a homogeneous J-states Markov chain
with transition probability π(ei, ej). Note that (35) can also be written as:




x1,t+1 = λ̃′11Zt + ϕ̃′11X1t + ϕ̃′12X2t + ϕo(λ′22Zt)1/2η2,t+1 + (λ′12Zt)1/2η1,t+1

x2,t+1 = λ′21Zt + ϕ′21X1t + ϕ′22X2t + (λ′22Zt)1/2η2,t+1 ,
(36)

with λ̃11 = λ11 + ϕoλ21, ϕ̃11 = ϕ11 + ϕoϕ21, ϕ̃12 = ϕ12 + ϕoϕ22 or, with
obvious notations

x̃t+1 = λ̃′Zt + Φ̃′X̃t +
[
(λ′12Zt)1/2 ϕo(λ′22Zt)1/2

0 (λ′22Zt)1/2

]
ηt+1 . (37)

b. Gamma case

If we take

a1(u1) = ρ1u1

1−u1µ1
, b1(u1) = −ν1 log(1− u1µ1), b̃1(u1) = log(1− u1µ1),

a2(u2) = ρ2u2

1−u2µ2
, b2(u2) = −ν2 log(1− u2µ2), b̃2(u2) = log(1− u2µ2) ,
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we obtain the positive Switching VARG(p) model




x1,t+1 = µ1Λ′1Zt + ϕox2,t+1 + ϕ′11X1t + ϕ′12X2t + ξ1,t+1

x2,t+1 = µ2Λ′2Zt + ϕ′21X1t + ϕ′22X2t + ξ2,t+1 ,
(38)

where ξ1,t and ξ2,t are non correlated, conditionally heteroscedastic, martin-
gale differences, the conditional variances being respectively given by:

V [ξ1,t+1 | x̃t ] = Λ′1Ztµ
2
1 + 2µ1[ϕo(Λ′2Ztµ2 + ϕ′21X1t + ϕ′22X2t)

+ϕ′11X1t + ϕ′12X2t]

V [ξ2,t+1 | x̃t] = Λ′2Ztµ
2
2 + 2µ2(ϕ′21X1t + ϕ′22X2t) .

(39)

3 SWITCHING AUTOREGRESSIVE NORMAL
(SAN) TERM STRUCTURE MODEL OF OR-
DER p

We first consider the case of univariate exogenous factor; the endogenous
case and the multivariate case will be discussed, respectively, in sections 3.7
and 3.8.

3.1 The historical dynamics

The first set of assumptions of a SAN(p) Term Structure Model deals with
the historical dynamics. We assume that the historical dynamics of the
exogenous factor xt is given by

xt+1 = ν(Zt) + ϕ1(Zt)xt + . . . + ϕp(Zt)xt+1−p + σ(Zt)εt+1 , (40)

where εt+1 is a gaussian white noise with N (0, 1) distribution, Zt = (z′t, . . . ,
z′t−p)

′, and zt is a J-states non-homogeneous Markov chain such that P (zt+1 =
ej | zt = ei;xt) = π(ei, ej ; Xt) (ei is the ith column of the identity matrix
IJ). Equation (40) will be also written

xt+1 = ν(Zt) + ϕ(Zt)′Xt + σ(Zt)εt+1 , (41)

where Xt = (xt, . . . , xt+1−p)′, ϕ(Zt) = (ϕ1(Zt), . . . , ϕp(Zt))′. This model
can also be rewritten in the following vectorial form:

Xt+1 = Φ(Zt)Xt + [ν(Zt) + σ(Zt)εt+1] e1 (42)
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where

Φ(Zt) =




ϕ1(Zt) . . . . . . ϕp(Zt)
1 0 . . . 0
0 1 . . . 0
...

. . .
...

0 . . . 1 0




is a (p × p)-matrix, and where e1 is the first column of the identity matrix
Ip. Note that, since the coefficients ϕi are allowed to depend on Zt and since
the Markov chain zt may not be homogeneous, the dynamics of (xt, zt) is
not Car in general.

3.2 The Stochastic Discount Factor

The second element of a SAN(p) modeling is the SDF. We denote by Mt,t+1

the stochastic discount factor (SDF) between the date t and t + 1 and in
order to get time-varying risk-premia we specify it as an exponential affine
function of the variables (xt+1, zt+1) but with coefficients depending on the
information at time t. More precisely we assume that:

Mt,t+1 = exp [−c′Xt − d′Zt + Γ(Zt, Xt) εt+1

−1
2Γ(Zt, Xt)2 − δ(Zt, Xt)′zt+1

]
,

(43)

where Γ(Zt, Xt) = γ(Zt)+ γ̃′(Zt)Xt. Observe that this specification extends
to the multi-lag case the one proposed by Dai, Singleton, Yang (2003). It
is well known that the existence of a positive stochastic discount factor is
equivalent to the absence of arbitrage opportunity condition and that the
price pt at t of a payoff Wt+1 at t + 1 is given by:

pt = E[Mt,t+1Wt+1 | It]

= Et[Mt,t+1Wt+1] ,

where the information It, available for the investors at the date t, is given
by (xt, zt). More generally, the price pt,h at t of an asset paying Wt+h at
t + h is:

pt,h = Et [Mt,t+1 · . . . ·Mt+h−1,t+hWt+h] .

Now, using the absence of arbitrage assumption for the short-term interest
rate between t and t + 1, denoted by rt+1 and known at t, we get:

exp(−rt+1) = Et (Mt,t+1)

= exp [−c′Xt − d′Zt]×
∑J

j=1 π (ei, ej ;Xt) exp [−δ(Zt, Xt)′ej ] ,
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and assuming the normalisation condition:
∑J

j=1 π (ei, ej ;Xt) exp [−δ(Zt, Xt)′ej ] = 1 ∀Zt, Xt , (44)

we obtain:
rt+1 = c′Xt + d′Zt . (45)

3.3 Risk premia

In this paper we will use the following definition of a risk premium.

Definition 4 : Let pt the price of a given asset at time t. The risk premium
of this asset between t and t + 1 is ωt = log(Etpt+1)− log pt − rt+1.

Using this definition we obtain interpretations of the Γ and δ functions
appearing in the SDF which are similar to that obtained by Dai, Single-
ton and Yang (2003). Let us first consider an asset providing the payoff
exp(−θxt+1) at t + 1; the price at t of this asset is

pt = Et[Mt,t+1 exp(−θxt+1)]

= exp
[−rt+1 − θν(Zt)− θϕ(Zt)′Xt − 1

2Γ(Xt, Zt)2
]×

Et {exp [[Γ(Xt, Zt)− θσ(Zt)] εt+1]}

= exp
[
−rt+1 − θν(Zt)− θϕ(Zt)′Xt − θΓ(Xt, Zt)σ(Zt) + θ2

2 σ2(Zt)
]

,

and
Etpt+1 = Et[exp(−θxt+1)]

= exp [−θν(Zt)− θϕ(Zt)′Xt]×

Et {exp [[−θσ(Zt)] εt+1]}

= exp
[
−θν(Zt)− θϕ(Zt)′Xt + θ2

2 σ2(Zt)
]

.

Finally, the risk premium is:

ωt(θ) = θΓ(Xt, Zt)σ(Zt) . (46)

Therefore, θ, Γ and σ can be seen respectively as a risk sensitivity of the
asset, a risk price and a risk measure.
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Similarly, if we consider a digital asset providing one money unit at t+1
if zt+1 = ej , we get:

pt = Et[Mt,t+1I(ej)(zt+1)]

= exp[−rt+1] exp[−δj(Xt, Zt)]π (zt, ej ;Xt) ,

and
Etpt+1 = Et[I(ej)(zt+1)]

= π (zt, ej ;Xt) .

Therefore, the risk premium is

ωt(θ) = δj(Xt, Zt) , (47)

and the jth component of δ can be seen as the risk premium associated with
the digital asset.

3.4 Risk-Neutral dynamics

The assumptions on the historical dynamics and on the SDF imply a risk-
neutral dynamics. The probability density function of the one-period con-
ditional risk-neutral probability with respect to the corresponding histori-
cal probability is Mt,t+1

Et(Mt,t+1)
= exp(rt+1)Mt,t+1. Note that using EQt as the

conditional expectation with respect to this risk-neutral distribution, the
risk-premium ωt can be written log(Etpt+1) − log(EQt pt+1). The Laplace
transform of the one-period conditional risk-neutral probability is:

EQt [exp(uxt+1 + v′zt+1)]

= Et{exp[Γ(Xt, Zt) εt+1 − 1
2Γ(Xt, Zt)2 − δ′(Zt, Xt)zt+1

+u[ν(Zt) + ϕ(Zt)′Xt + σ(Zt)εt+1] + v′zt+1]}

= exp
{

u[ ϕ′(Zt)Xt + Γ(Xt, Zt)σ(Zt)] + uν(Zt) + 1
2u2σ(Zt)2

} ×
∑J

j=1 π (zt, ej ;Xt) exp [(v − δ(Zt, Xt))′ej ]

= exp
{

u[ ϕ(Zt) + γ̃(Zt)σ(Zt)]′Xt + u[ν(Zt) + γ(Zt)σ(Zt)] + 1
2u2σ(Zt)2

} ×
∑J

j=1 π (zt, ej ;Xt) exp [(v − δ(Zt, Xt))′ej ] .

(48)
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Therefore, we get the following result.

Proposition 5 : The risk-neutral dynamics of the process (xt, zt) is given
by:

xt+1
Q= ν(Zt) + γ(Zt)σ(Zt) + [ϕ(Zt) + γ̃(Zt)σ(Zt)]′Xt + σ(Zt)ξt+1 ,

(49)

where Q= denotes the equality in distribution (associated to the probability
Q), ξt+1 is (under Q) a gaussian white noise with N (0, 1) distribution, and
where Zt = (z′t, . . . , z′t−p)

′, zt being a Markov chain such that:

Q(zt+1 = ej | zt; xt) = π (zt, ej ; Xt) exp [(−δ(Zt, Xt))′ej ] .

Note that, from (44), these probabilities add to one.

Now, in order to get a generalized linear term structure we impose that
the risk-neutral dynamics is switching regime gaussian Car(p). Using (13),
this impose that the dynamics has to satisfy the following specification:

xt+1
Q= ν∗ ′Zt + ϕ∗ ′Xt + (σ∗ ′Zt)ξt+1 , (50)

where Zt = (z′t, . . . , z′t−p)
′, with zt a J-states Markov chain such that

Q(zt+1 = ej | zt = ei) = π∗ (ei, ej) . (51)

From proposition 5, this implies the following restrictions on the histor-
ical dynamics and on the SDF:

i) σ(Zt) = σ∗′Zt : the historical stochastic volatility must be linear in
Zt;

ii)

γ(Zt) =
ν∗′Zt − ν(Zt)

σ∗′Zt
:

for a given historical stochastic drift ν(Zt) and stochastic volatility
σ∗′Zt, the coefficient γ(Zt) belongs to the previous family indexed by
the free parameter vector ν∗.

iii)

γ̃(Zt) =
ϕ∗ − ϕ(Zt)

σ∗′Zt
:

for a given historical stochastic slope parameter ϕ(Zt) and stochastic
volatility σ∗′Zt the coefficient vector γ̃(Zt) belongs to the previous
family indexed by the free parameter vector ϕ∗.
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iv)

δj(Xt, Zt) = log
[
π (zt, ej ; Xt)

π∗(zt, ej)

]
:

for a given historical transition matrix π (zt, ej ; Xt), the coefficient
δj(Xt, Zt) depend on zt only and belongs to the previous family in-
dexed by the entries π∗(zt, ej) of a transition matrix.

Note that condition iv) implies that the risk premia coefficients δj , j ∈
{1, . . . , J}, cannot be all positive [or all negative] since this would imply
π (zt, ej ;Xt) > π∗(zt, ej), ∀j [or π (zt, ej ; Xt) < π∗(zt, ej), ∀j], which is
impossible since

∑J
j=1 π (zt, ej ; Xt) =

∑J
j=1 π∗(zt, ej) = 1. Also note that

condition iv) implies the normalisation condition (44).

3.5 The Generalised Linear Term Structure

We have seen in the previous section that the risk-neutral dynamics is defined
by relations (50), (51); now, relation (50) can be rewritten:

Xt+1
Q= Φ∗Xt +

[
ν∗′Zt + (σ∗′Zt)ξt+1

]
e1 (52)

where

Φ∗ =




ϕ∗1 . . . . . . ϕ∗p
1 0 . . . 0
0 1 . . . 0
...

. . .
...

0 . . . 1 0




is a (p× p)−matrix ,

Xt = (xt, . . . , xt+1−p)′ ,

and where e1 is the first column of the identity matrix Ip.
Denoting by B(t, h) the price at t of a zero-coupon with residual maturity

h, we have the following result.

Proposition 6 : In the univariate SAN(p) model the price at date t of the
zero-coupon bond with residual maturity h is :

B(t, h) = exp (C ′
h Xt + D′

h Zt) , for h ≥ 1 , (53)

where the vectors Ch and Dh satisfy the following recursive equations :




Ch = Φ∗′Ch−1 − c

Dh = −d + C1,h−1 ν∗ + 1
2 C2

1,h−1 σ∗2 + D̃h−1 + F (D1,h−1) ,

(54)
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where C1,h−1 denotes the first component of the p-dimensional vector Ch−1,
D1,h−1 and D2,h−1 are, respectively, the first J-dimensional component
and the remaining (pJ)-dimensional component of Dh−1, i.e. Dh−1 =
(D′

1,h−1, D
′
2,h−1)

′, D̃h−1 = (D′
2,h−1, 0)′, and where F (D1,h−1) = e1⊗az(D1,h−1,

π∗), e1 being the vector (1, 0, . . . , 0)′ of size (p + 1) and az is the J-vector
given in proposition 1; σ∗2 is the vector whose components are the squares
of the entries of σ∗. The initial conditions are C0 = 0, D0 = 0 (or C1 = −c,
D1 = −d). [Proof : see Appendix 1.]
For clarity we give again the expression of az(D1,h−1, π

∗) :

az(D1,h−1, π
∗)

=


log




J∑

j=1

exp(D′
1,h−1ej)π∗(e1, ej)


 , . . . , log




J∑

j=1

exp(D′
1,h−1ej)π∗(eJ , ej)






′

.

From proposition 6 we see that the yields to maturity are:

R(t, h) = −1
h

log B(t, h)

(55)

= −C ′
h

h
Xt − D′

h

h
Zt , h ≥ 1 .

So, they are linear functions of Xt, Zt, i.e. of the present and past values
of xt and zt. We observe that there is, in general, instantaneous causality
between xt and zt.

3.6 The yield curve process

The result presented in Proposition 6 describes, conditionally to Xt and Zt,
the yields as a deterministic function of the time to maturity h, for a fixed
date t. Nevertheless, in many financial and economic contexts one needs, for
instance, also to study which are the effects of a shock, in the state variables,
on the yield curve at different future instant times and for several maturities
(e.g.: a Central Bank that needs to set a monetary policy). This means that
we are interested in the dynamics of the process RH = [R(t, h), 0 ≤ t <
T, h ∈ H ], for a given set of residual time to maturities H = (1, . . . , H).

Now, if we consider a fixed h, we have that the process R = [R(t, h), 0 ≤
t < T ] can be described by the following proposition.
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Proposition 7 : For a fixed time to maturity h, the process R = [ R(t, h), 0 ≤
t < T ] is, under the historical probability, a switching ARMA(p, p− 1) pro-
cess of the following type :

Ψ(L,Zt) R(t + 1, h) = Dh(L)Ψ(L,Zt) zt+1 + Ch(L) ν(Zt)

+Ch(L)[(σ∗′Zt) εt+1] .
(56)

where

Ch(L) = −1
h

(C1,h + C2,hL + . . . + Cp,hLp−1)

Dh(L) = −1
h

(D1,h + D2,hL + . . . + Dp+1,hLp)

Ψ(L,Zt) = 1− ϕ1(Zt)L− . . .− ϕp(Zt)Lp ,

are lag polynomials in the backward shift operator L, and where the AR
polynomial Ψ(L,Zt) applies to t. [Proof : see Appendix 2].

Proposition 8 : For a given set of residual time to maturities H =
(1, . . . , H), the stochastic evolution of the yield curve process RH = [ R(t, h),
0 ≤ t < T, h ∈ H ] takes the following particular switching H-variate
VARMA(p, p− 1) representation:

Ψ(L,Zt)




R(t + 1, 1)
R(t + 1, 2)

...
R(t + 1,H)


 =




C1(L)
C2(L)

...
CH(L)


 (σ∗′Zt)εt+1

+




D1(L)
D2(L)

...
DH(L)


Ψ(L,Zt) zt+1 +




C1(L)
C2(L)

...
CH(L)


 ν(Zt) .

(57)
Similar results are easily obtained in the risk-neutral world.

3.7 Endogenous case

In the previous sections the factor xt was exogenous. It is often assumed, in
term structure models, that the factor xt is the short rate process rt+1. In
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this case the previous results remain valid, and the only modification comes
from the absence of arbitrage opportunity condition for rt+1, which imposes:

c = e1 , d = 0 , (58)

with e1 the first column of the identity matrix Ip; consequently, the initial
conditions in the recursive equations of proposition 6 become:

C1 = −e1 , D1 = 0 . (59)

Moreover, the switching ARMA(p, p−1) representation (56), or its analogous
in the risk-neutral world, could be used to analyse how a shock on εt, i.e.
on rt+1 = R(t, 1), is propagated on the surface [R(t + τ, h), τ ∈ T , h ∈ H ],
where T = {0, . . . , T − t − 1} and H = (1, . . . , H) (for instance when the
process zt is exogenous).

3.8 Multi-Factor generalization [Switching VARN(p) model]

For sake of notational simplicity we consider the two factor case but an ex-
tension to more that two factors is straightforward. The historical dynamics
of x̃t = (x1,t, x2,t)′ is a switching bivariate VARN(p) model given by:




x1,t+1 = ν1(Zt) + ϕo(Zt)x2,t+1 + ϕ11(Zt)′X1t + ϕ12(Zt)′X2t + σ1(Zt)ε1,t+1

x2,t+1 = ν2(Zt) + ϕ21(Zt)′X1t + ϕ22(Zt)′X2t + σ2(Zt)ε2,t+1 ,
(60)

where ε1,t and ε2,t are independent standard normal white noises, X1t =
(x1,t, . . . , x1,t+1−p)′, X2t = (x2,t, . . . , x2,t+1−p)′, Zt = (z′t, . . . , z′t−p)

′, with
zt a J-states non-homogeneous Markov chain such that P (zt+1 = ej | zt =
ei; x̃t) = π(ei, ej ; X̃t), and where X̃t = (X ′

1t, X
′
2t)

′. The recursive form (60)
is equivalent to the canonical form :




x1,t+1 = ν̃1(Zt) + ϕ̃11(Zt)′X1t + ϕ̃12(Zt)′X2t + σ1(Zt)ε1,t+1 + ϕo(Zt)σ2(Zt)ε2,t+1

x2,t+1 = ν2(Zt) + ϕ21(Zt)′X1t + ϕ22(Zt)′X2t + σ2(Zt)ε2,t+1 ,
(61)

where ν̃1 = ν1+ϕoν2, ϕ̃11 = ϕ11+ϕoϕ21, ϕ̃12 = ϕ12+ϕoϕ22 or, with obvious
notations:

x̃t+1 = ν̃(Zt) + Φ̃(Zt)X̃t + S(Zt)εt+1 , (62)

where

S(Zt) =
[
σ1(Zt) ϕo(Zt)σ2(Zt)

0 σ2(Zt)

]
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Using the notation

Γ(Zt, X̃t) =
[
Γ1(Zt, X̃t), Γ2(Zt, X̃t)

]′

where Γi(Zt, X̃t) = γi(Zt) + γ̃i(Zt)′X̃t, i ∈ {1, 2} and Γ(Zt, X̃t) = γ(Zt) +
Γ̃(Zt, X̃t)X̃t, with γ(Zt) = [γ1(Zt), γ2(Zt)]′, Γ̃(Zt, X̃t) = [γ̃1(Zt)′, γ̃2(Zt)′]′,
the SDF is defined as :

Mt,t+1 = exp
[
−c′X̃t − d′Zt + Γ(Zt, X̃t)′ εt+1

−1
2Γ(Zt, X̃t)′Γ(Zt, X̃t)− δ(Zt, X̃t)′zt+1

]
.

(63)

Assuming the normalisation condition (44) and the absence of arbitrage
opportunity for rt+1 we get:

rt+1 = c′X̃t + d′Zt . (64)

It is also easily seen that the risk premium for an asset providing the payoff
exp(−θ′x̃t+1) at t + 1 is ω(θ) = θ′S(Zt)Γ(Zt, X̃t) and that the risk premium
associated with the digital payoff I(ej)(zt+1) is unchanged.

The Laplace transform of the one-period conditional risk-neutral distri-
bution is :

EQt [exp(u′x̃t+1 + v′zt+1)]

= Et{exp[Γ(X̃t, Zt)′ εt+1 − 1
2Γ(X̃t, Zt)′Γ(X̃t, Zt)− δ′(Zt, X̃t)zt+1

+u′[ν̃(Zt) + Φ̃(Zt)X̃t + S(Zt)εt+1] + v′zt+1]}

= exp
{

u′[ Φ̃(Zt)X̃t + S(Zt)Γ(X̃t, Zt)] + u′ν̃(Zt) + 1
2u′S(Zt)S(Zt)′u

}
×

∑J
j=1 π(zt, ej ; X̃t) exp

[
(v − δ(Zt, X̃t))′ej

]

= exp
{

u′[ Φ̃(Zt) + S(Zt)Γ̃(Zt, X̃t)]X̃t + u′[ ν̃(Zt) + S(Zt)γ(Zt)] + 1
2u′S(Zt)S(Zt)′u

}
×

∑J
j=1 π(zt, ej ; X̃t) exp

[
(v − δ(Zt, X̃t))′ej

]
.

(65)
Therefore, we get:
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Proposition 9 : The risk-neutral dynamics of the process (x̃t, zt) is given
by:

x̃t+1
Q= ν̃(Zt) + S(Zt)γ(Zt) + [Φ̃(Zt) + S(Zt)Γ̃(Zt, X̃t)]X̃t + S(Zt)ξt+1 ,

(66)

where Q= denotes the equality in distribution (associated to the probability
Q), ξt+1 is (under Q) a bivariate gaussian white noise with N (0, I2) distri-
bution, and where Zt = (z′t, . . . , z′t−p)

′, with zt a Markov chain such that:

Q(zt+1 = ej | zt; x̃t) = π(zt, ej ; X̃t) exp
[
(−δ(Zt, X̃t))′ej

]
.

If we want to obtain a Switching bivariate Car process, we must have using
(37) :

i)
σ1(Zt) = σ∗′1 Zt

σ2(Zt) = σ∗′2 Zt

ϕo(Zt) = ϕ∗o ,

and, therefore,

S(Zt) =
[
σ∗′1 Zt ϕ∗oσ∗

′
2 Zt

0 σ∗′2 Zt

]

ii)
γ(Zt) = [S(Zt)]−1[ν∗Zt − ν̃(Zt)] ,

where ν∗ is a (2× (p + 1)J)-matrix.

iii)
Γ̃(Zt, X̃t) = [S(Zt)]−1

[
Φ∗ − Φ̃(Zt)

]
,

where Φ∗ is a (2× 2p)-matrix.

iv)

δj(X̃t, Zt) = log

[
π(zt, ej ; X̃t)

π∗(zt, ej)

]
.
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The risk-neutral dynamics can be written:




x1,t+1
Q= ν∗1Zt + Φ∗1X̃t + S∗1(Zt)ξt+1

x2,t+1
Q= ν∗2Zt + Φ∗2X̃t + S∗2(Zt)ξt+1 ,

(67)

where ν∗i , Φ∗i , S
∗
i are the ith row of ν∗, Φ∗, S∗, with i ∈ {1, 2}, or

X̃t+1
Q= Φ̃∗X̃t + [ν∗1Zt + S∗1(Zt)ξt+1] e1 + [ν∗2Zt + S∗2(Zt)ξt+1] ep+1 ,

where e1 (respectively, ep+1) is of size 2p, with entries equal to zero except
the first (respectively, the (p + 1)th) one which is equal to one, and

Φ̃∗ =




Φ∗11 Φ∗12

Ĩ 0̃

Φ∗21 Φ∗22

0̃ Ĩ




where Φ∗1 = (Φ∗11,Φ
∗
12), Φ∗2 = (Φ∗21, Φ

∗
22), and where 0̃ is a [(p−1)×p ]-matrix

of zeros and Ĩ is a [(p− 1)× p ]-matrix equal to (Ip−1, 0), where 0 is a vector
of size (p− 1).
The term structure is given by the following proposition:

Proposition 10 : In the bivariate SAN(p) model the price at date t of the
zero-coupon bond with residual maturity h is :

B(t, h) = exp
(
C ′

h X̃t + D′
h Zt

)
, for h ≥ 1 (68)

where the vectors Ch and Dh satisfy the following recursive equations :




Ch = Φ̃∗′Ch−1 − c

Dh = −d + C1,h−1 ν∗′1 + 1
2 C2

1,h−1(σ
∗2
1 + ϕ∗2o σ∗22 )

+Cp+1,h−1 ν∗′2 + 1
2 C2

p+1,h−1σ
∗2
2 + D̃h−1 + F (D1,h−1) ,

(69)

where D̃h−1 and F (D1,h−1) have the same meaning as in proposition 6, and
the initial conditions are C0 = 0, D0 = 0 (or C1 = −c, D1 = −d) [Proof :
see Appendix 3].
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So, proposition 10 shows that the yields to maturity are:

R(t, h) = −C ′
h

h
X̃t − D′

h

h
Zt , h ≥ 1 . (70)

In the endogenous case we can take x1t = rt+1, and x2t = R(t, H) for a
given time to maturity H. In this case the absence of arbitrage conditions
for rt+1 and R(t,H) imply:

(i) C1 = −e1, D1 = 0 , or c = e1, d = 0

(ii) CH = −H ep+1, DH = 0 .

Using the notations Ch = (C1,h, C∗
1,h, Cp+1,h, C∗

2,h)′, C̃1,h = (C∗ ′
1,h, 0)′, C̃2,h =

(C∗ ′
2,h, 0)′ (where the zeros are scalars), and C̃h = (C̃ ′

1,h, C̃ ′
2,h)′, it easily seen

that the recursive equation Ch = Φ̃∗′Ch−1 − c can be written :

Ch = Φ∗
′

1 C1,h−1 + Φ∗
′

2 Cp+1,h−1 + C̃h−1 − c .

The first set of conditions is used as initial values in the recursive procedure
of proposition 10; the second set of conditions implies restrictions on the
parameters Φ̃∗, ν∗1 , ν∗2 , σ∗1, σ

∗
2, ϕ

∗
o, π

∗(zt, ej) which must be taken into account
at the estimation stage.

4 SWITCHING AUTOREGRESSIVE GAMMA
(SAG) TERM STRUCTURE MODEL OF OR-
DER p

Like for SAN(p) models we start the description of the SAG(p) modeling by
the case of one exogenous factor.

4.1 The historical dynamics

We assume that the Laplace transform of the conditional distribution of
xt+1, given (xt, zt), is:

E
[
exp(uxt+1) |xt, , zt

]
= exp

[
u

1−uµ(Xt,Zt)
[ϕ1(Zt)xt + . . . + ϕp(Zt)xt−p+1]

− ν(Zt) log(1− uµ(Xt, Zt))] ,
(71)
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where Zt = (z′t, . . . , z′t−p)
′, with zt a J-states non-homogeneous Markov

chain such that P (zt+1 = ej | zt = ei; xt) = π(ei, ej ; X̃t), and where Xt =
(xt, . . . , xt+1−p)′. Using the notation:

A[u;ϕ(Zt), µ(Xt, Zt)] = u
1−uµ(Xt,Zt)

[ϕ1(Zt), . . . , ϕp(Zt)]′ = u
1−uµ(Xt,Zt)

ϕ(Zt)

b[u; ν(Zt), µ(Xt, Zt)] = − ν(Zt) log(1− uµ(Xt, Zt)) ,

relation (71) can be written:

E
[
exp(uxt+1) |xt, , zt

]
= exp {A[u; ϕ(Zt), µ(Xt, Zt)]′Xt

+ b[u; ν(Zt), µ(Xt, Zt)]} .
(72)

The process (xt) can also be written:

xt+1 = ν(Zt)µ(Xt, Zt) + ϕ1(Zt)xt + . . . + ϕp(Zt)xt+1−p + εt+1

= ν(Zt)µ(Xt, Zt) + ϕ(Zt)′Xt + εt+1 ,
(73)

where εt+1 is a martingale difference sequence with conditional Laplace
transform given by:

E
[
exp(uεt+1) |xt, , zt

]
= exp {−u[ν(Zt)µ(Xt, Zt) + ϕ(Zt)′Xt]

+A[u;ϕ(Zt), µ(Xt, Zt)]′Xt

+ b[u; ν(Zt), µ(Xt, Zt)]}

= exp {[A[u;ϕ(Zt), µ(Xt, Zt)]− uϕ(Zt)]′Xt

+ b[u; ν(Zt), µ(Xt, Zt)]− u ν(Zt)µ(Xt, Zt)} .
(74)

Note that the dynamics of (xt, zt) is in general not Car.

4.2 The Stochastic Discount Factor

In the SAG(p) model the SDF is specified in the following way:

Mt,t+1 = exp {−c′Xt − d′Zt + Γ(Zt, Xt)εt+1 + Γ(Zt, Xt) [ν(Zt)µ(Xt, Zt) + ϕ(Zt)′Xt]

−A[Γ(Zt, Xt);ϕ(Zt), µ(Xt, Zt)]′Xt

−b[Γ(Zt, Xt); ν(Zt), µ(Xt, Zt)]− δ(Zt, Xt)′zt+1} ,
(75)
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where Γ(Zt, Xt) = γ(Zt) + γ̃′(Zt)Xt, or, equivalently

Mt,t+1 = exp {−c′Xt − d′Zt + Γ(Zt, Xt)xt+1 − A[Γ(Zt, Xt);ϕ(Zt), µ(Xt, Zt)]′Xt

−b[Γ(Zt, Xt); ν(Zt), µ(Xt, Zt)]− δ(Zt, Xt)′zt+1} ,
(76)

Assuming the normalisation condition (44), we get that:

rt+1 = c′Xt + d′Zt . (77)

4.3 A useful Lemma

In the subsequent sections we will use several times the following lemmas.
Let us consider the functions:

ã(u; ρ, µ) =
ρu

1− uµ
and b̃(u; ν, µ) = −ν log(1− uµ) ;

we have:

Lemma 1 :

ã(u + α; ρ, µ)− ã(α; ρ, µ) = ã(u; ρ∗, µ∗)

b̃(u + α; ν, µ)− b̃(α; ν, µ) = b̃(u; ν, µ∗)

with ρ∗ =
ρ

(1− αµ)2
, µ∗ =

µ

1− αµ
,

[Proof : see Appendix 4.]

Lemma 1 immediately implies lemma 2.

Lemma 2 :

A[u + α; ϕ(Zt), µ(Xt, Zt)]−A[α; ϕ(Zt), µ(Xt, Zt)] = A[u;ϕ∗(Zt), µ∗(Xt, Zt)]

b[u + α; ν(Zt), µ(Xt, Zt)]− b[α; ν(Zt), µ(Xt, Zt)] = b[u; ν(Zt), µ∗(Zt, Xt)]

with ϕ∗(Zt) =
ϕ(Zt)

[1− αµ(Zt, Xt)]2
, µ∗(Zt, Xt) =

µ(Xt, Zt)
1− αµ(Xt, Zt)

.
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4.4 Risk-neutral dynamics

The Laplace transform of the risk-neutral conditional distribution of (xt+1, zt+1)
is, using the notation Γt = Γ(Xt, Zt):

EQt [exp(uxt+1 + v′zt+1)]

= Et{exp [(u + Γt)xt+1 −A[Γt; ϕ(Zt), µ(Xt, Zt)]′Xt

−b[Zt; ν(Zt), µ(Xt, Zt)] + (v − δ(Xt, Zt))′zt+1]}

= exp {[(A[u + Γt; ϕ(Zt), µ(Xt, Zt)]−A[Γt; ϕ(Zt), µ(Xt, Zt)])′Xt

+ b[u + Γt; ν(Zt), µ(Xt, Zt)]− b[Γt; ν(Zt), µ(Xt, Zt)]]}

× ∑J
j=1 π(zt, ej ; Xt) exp [(v − δ(Zt, Xt))′ej ] ;

(78)
now, using lemma 2, (79) can be written:

EQt [exp(uxt+1 + v′zt+1)]

= exp{A[u; ϕ∗(Zt), µ∗(Xt, Zt)]′Xt + b[u; ν(Zt), µ∗(Zt, Xt)]}

× ∑J
j=1 π(zt, ej ; Xt) exp [(v − δ(Zt, Xt))′ej ] ,

(79)

with ϕ∗(Zt) =
ϕ(Zt)

[1− Γtµ(Zt, Xt)]2
and µ∗(Zt, Xt) =

µ(Xt, Zt)
1− Γtµ(Xt, Zt)

.

So, from (72), we see that the risk-neutral conditional distribution of
xt+1, given (xt, zt), is in the same class as the historical one and obtained
by replacing ϕ(Zt) with ϕ∗(Zt), and µ(Xt, Zt) with µ∗(Zt, Xt).

In order to get a generalize linear term structure we impose that the
risk-neutral dynamics is a switching regime Gamma Car(p) process. So,
using the results in section 2.5.b, we get that ϕ∗(Zt) and µ∗(Zt, Xt) must be
constant, ν(Zt) = ν∗′Zt and π (zt, ej ; Xt) = π∗ (zt, ej) exp [(δ(Zt, Xt))′ej ].
Also note that µ∗ must be positive as well as the components of ν∗ and ϕ∗.
This implies the following constraint on the historical dynamics and on the
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SDF:
µ(Xt, Zt) = µ∗[1− Γ(Xt, Zt)µ(Xt, Zt)]

ϕ(Zt) = ϕ∗[1− Γ(Xt, Zt)µ(Xt, Zt)]2

ν(Zt) = ν∗′Zt

δj(Xt, Zt) = log
[

π(zt,ej ;Xt)
π∗(zt,ej)

]
.

We see that ϕ(Zt) = ϕ∗
µ∗2 µ(Xt, Zt)2, so µ(Xt, Zt) must depend only on Zt,

and therefore the same is true for Γ(Xt, Zt). Finally, we have the constraint:

i)
µ(Zt) = µ∗[1− Γ(Zt)µ(Zt)]

ii)
ϕ(Zt) = ϕ∗[1− Γ(Zt)µ(Zt)]2

iii)
ν(Zt) = ν∗′Zt

iv)

δj(Xt, Zt) = log
[
π (zt, ej ; Xt)

π∗(zt, ej)

]
;

In particular, since ϕ(Zt) = ϕ∗
µ∗2 µ(Zt)2, the random vector must be propor-

tional to a deterministic vector.
Moreover, it is easily seen that the risk premium corresponding to the

payoff exp(−θxt+1) at t + 1 is:

ωt(θ) = {A[−θ; ϕ(Zt), µ(Zt)]−A[−θ; ϕ∗, µ∗]}′Xt

+ b[−θ; ν∗′Zt, µ(Zt)]− b[−θ; ν∗′Zt, µ
∗] .

Like in the gaussian case, we obtain an affine function in Xt also depending
on Zt. The risk premium associated with the digital asset providing one
money unit at t + 1 if zt+1 = ej , is still given by (47).

31



4.5 The Generalised Linear Term Structure

Let us introduce the notations:

A∗(u) = A(u; ϕ∗, µ∗)

C̃h = (C2,h, . . . , Cp,h, 0)′ .
(80)

As usual, B(t, h) is the price at t of a zero-coupon bond with residual ma-
turity h.

Proposition 11 : In the univariate SAG(p) model the price at date t of
the zero-coupon bond with residual maturity h is :

B(t, h) = exp (C ′
h Xt + D′

h Zt) , for h ≥ 1 , (81)

where the vectors Ch and Dh satisfy the following recursive equations :




Ch = −c + A∗(C1,h−1) + C̃h−1

Dh = −d − ν∗ log(1− C1,h−1µ
∗) + D̃h−1 + F (D1,h−1) ,

(82)

where D̃h−1 and F (D1,h−1) have the same meaning as in proposition 6; the
initial conditions are C0 = 0, D0 = 0 (or C1 = −c, D1 = −d) [Proof : see
Appendix 5].

Again, we obtain a generalised linear term structure given by:

R(t, h) = −C ′
h

h
Xt − D′

h

h
Zt , h ≥ 1 , (83)

and, in the same spirit of propositions 7 and 8 for the univariate SAN(p)
model [see section 3.6], it is easy to verify that the processes R = [ R(t, h), 0 ≤
t < T ] and RH = [ R(t, h), 0 ≤ t < T, h ∈ H ] are, respectively, a
weak switching ARMA(p, p − 1) process and a weak H-variate switching
VARMA(p, p− 1) process.
In the endogenous case, where xt = rt+1, the previous results remains valid
with C1 = −e1, D1 = 0.

4.6 Positiveness of the yields

Since rt+1 = R(t, 1) = c′Xt + d′Zt, and since the components of Xt are
positive, the short term process will be positive as soon as the compo-
nents of c and d are nonnegative. The positiveness of rt+1 implies that of
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R(t, h), for every instant time t and time to maturity h, because R(t, h) =
− 1

h log EQt [exp(−rt+1 − . . .− rt+h)].
This positiveness can also be observed from the recursive equations of

proposition 11. Indeed, using the fact that µ∗ and the components of ϕ∗

and ν∗ are positive and that 0 < π∗ij < 1, it easily seen that, for any u < 0,
the components of A∗(u) and −ν∗ log(1 − C1,h−1µ

∗) are negative and the
result follows.

4.7 Multi-Factor generalizations [Switching VARG(p) model]

The bivariate process x̃t = (x1,t, x2,t) is a switching VARG(p) model defined
by the following conditional Laplace transforms:

Et[exp(u1x1,t+1) |x2,t+1, x1,t, zt ]

= exp
{

u1

1− u1µ1(Zt)
[
ϕo(Zt)x2,t+1 + ϕ11(Zt)′X1t + ϕ12(Zt)′X2t

]

−ν1(Zt) log(1− u1µ1(Zt))} ,
(84)

Et[exp(u2x2,t+1) |x1,t, x2,t, zt ]

= exp
{

u2

1− u2µ2(Zt)
[
ϕ21(Zt)′X1t + ϕ22(Zt)′X2t

]

−ν2(Zt) log(1− u2µ2(Zt))} .

(85)

We will use the notations:

ϕo(Zt) = ϕo,t ,

[ ϕ11(Zt)′, ϕ12(Zt)′ ] = ϕ′1,t , [ϕ21(Zt)′, ϕ22(Zt)′ ] = ϕ′2,t ,

µi(Zt) = µi,t , νi(Zt) = νi,t , i ∈ {1, 2} ,

and using the functions ã, b̃, A, B defined in lemmas 1 and in section 4.1, we
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will introduce the notations:

a1,t(u1) = ã(u1; ϕo,t, µ1,t)

b1,t(u1) = b̃(u1; ν1,t, µ1,t) , b2,t(u2) = b̃(u2; ν2,t, µ2,t)

A1,t(u1) = A(u1; ϕ1,t, µ1,t) , A2,t(u2) = A(u2; ϕ2,t, µ2,t) .

With these notations, the Laplace transforms (84) and (85) become respec-
tively:

Et[exp(u1x1,t+1) |x2,t+1, x1,t, zt ]

= exp
[
a1,t(u1)x2,t+1 + A1,t(u1)′X̃t + b1,t(u1)

]
,

(86)

Et[exp(u2x2,t+1) |x1,t, x2,t, zt ]

= exp
[
A2,t(u2)′X̃t + b2,t(u2)

]
,

(87)

where X̃t = (X ′
1t, X

′
2t)

′. Moreover, the joint conditional Laplace transform
of (x1,t+1, x2,t+1), given (x1,t, x2,t, zt), is:

Et[exp(u1x1,t+1 + u2x2,t+1) |x1,t, x2,t, zt ]

= exp
{

[A1,t(u1) + A2,t(u2 + a1,t(u1))]′X̃t + b1,t(u1) + b2,t(u2 + a1,t(u1))
}

.

(88)
The process zt is assumed to be a non-homogeneous Markov chain such that
P (zt+1 = ej | zt = ei; x̃t) = π(ei, ej ; X̃t).

We now introduce the SDF:

Mt,t+1 = exp{−c′X̃t − d′Zt + Γ1tx1,t+1 + Γ2tx2,t+1

− [A1,t(Γ1t) + A2,t(Γ2t + a1,t(Γ1t))]′X̃t

− [b1,t(Γ1t) + b2,t(Γ2t + a1,t(Γ1t))]− δ(Zt, X̃t)′zt+1} ,
(89)

where Γ1t = Γ1(Zt) and Γ2t = Γ2(Zt).
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4.8 Risk-neutral dynamics in the multifactor case

It can now be seen that the joint conditional Laplace transform of (x1,t+1, x2,t+1)
in the risk-neutral world is:

EQt [exp(u1x1,t+1 + u2x2,t+1) |x1,t, x2,t, zt ]

= exp
{

A2,t [u2 + Γ2t + a1,t(u1 + Γ1t)]
′ X̃t + b2,t(u2 + Γ2t + a1,t(u1 + Γ1t))

+A1,t(u1 + Γ1t)′X̃t + b1,t(u1 + Γ1t)

−A2,t(Γ2t + a1,t(Γ1t))′X̃t − b2,t(Γ2t + a1,t(Γ1t))

−A1,t(Γ1t)′X̃t − b1,t(Γ1t)
}

.

(90)
Using lemma 2 we get:

A2,t [u2 + Γ2t + a1,t(u1 + Γ1t)]−A2,t(Γ2t + a1,t(Γ1t))

= A [u2 + a1,t(u1 + Γ1t)− a1,t(Γ1t);ϕ∗2t, µ
∗
2t] ,

with
ϕ∗2t =

ϕ2t

{1− [Γ2t + a1,t(Γ1t)]µ2t}2

µ∗2t =
µ2t

{1− [Γ2t + a1,t(Γ1t)]µ2t} ,

and using lemma 1

A [u2 + a1,t(u1 + Γ1t)− a1,t(Γ1t);ϕ∗2t, µ
∗
2t]

= A [u2 + ã(u1 + Γ1t; ϕot, µ1,t)− ã(Γ1t; ϕot, µ1,t);ϕ∗2t, µ
∗
2t]

= A
[
u2 + ã(u1; ϕ∗ot, µ

∗
1,t);ϕ

∗
2t, µ

∗
2t

]

= A∗2,t[u2 + a∗1,t(u1)] (say)

with
ϕ∗ot =

ϕot

(1− Γ1t µ1t)
2

µ∗1t =
µ1t

(1− Γ1tµ1t)
.
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Similarly, we get:

b2,t [u2 + Γ2t + a1,t(u1 + Γ1t)]− b2,t(Γ2t + a1,t(Γ1t))

= b̃
[
u2 + ã(u1; ϕ∗ot, µ

∗
1,t); ν

∗
2t, µ

∗
2t

]

= b∗2,t[u2 + a∗1t(u1)] (say) ,

b1,t(u1 + Γ1t)− b1,t(Γ1t)

= b̃1(u1; ν∗1t, µ
∗
1t)

= b∗1,t(u1) (say) ,

A1,t(u1 + Γ1t)− A1,t(Γ1t)

= A1(u1; ν∗1t, µ
∗
1t)

= A∗1,t(u1) (say) ,

with
ϕ∗1t =

ϕ1t

(1− Γ1t µ1t)
2 .

And finally, the joint conditional Laplace transform (90) becomes:

EQt [exp(u1x1,t+1 + u2x2,t+1) |x1t, x2t, zt ]

= exp
{

[A∗1,t(u1) + A∗2,t[u2 + a∗1,t(u1)]]′X̃t

+ b∗2,t[u2 + a∗1,t(u1)] + b∗1,t(u1)
}

.

(91)

So, (91) has exactly the same form as (88) with different parameters. In
other words the risk-neutral dynamics belongs to the same class as the his-
torical one.

In order to have a Car process in the risk-neutral world, we know from
section 2.9 that we must have the following constraint between the SDF and
the historical dynamics:
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i)
µ1t

1− Γ1tµ1t
= µ∗1

ii)
ϕ1t

(1− Γ1tµ1t)2
= ϕ∗1

iii)
ν1(Zt) = ν∗′1 Zt

iv)
ϕot

(1− Γ1tµ1t)2
= ϕ∗o

v)
µ2t

1− [Γ2t + a1,t(Γ1t)]µ2t
= µ∗2

vi)
ϕ2t

(1− [Γ2t + a1,t(Γ1t)]µ2t)2
= ϕ∗2

vii)
ν2(Zt) = ν∗′2 Zt .

Moreover, the constraint on the dynamics of the Markov chain are the same
as in the gaussian case, namely:

viii)

δj(X̃t, Zt) = log

[
π(zt, ej ; X̃t)

π∗(zt, ej)

]
.

It is worth noting that, if there is no instantaneous causality between x1,t+1

and x2,t+1, that is if ϕot = 0, function a1t is also equal to zero and constraint
v) and vi) are simpler and become similar to i) and ii).

37



4.9 The Generalised Linear Term Structure in the multifac-
tor case

Using the notations:

a∗1(u1) = ã(u1; ϕ∗o, µ∗1)

A∗1(u1) = A(u1; ϕ∗1, µ
∗
1)

A∗2(u2) = A(u2; ϕ∗2, µ
∗
2)

C̃h = (C2,h, . . . , Cp,h, 0, Cp+2,h, . . . , C2p,h, 0)′ ,

we have

Proposition 12 : In the bivariate SAG(p) model the price at date t of the
zero-coupon bond with residual maturity h is :

B(t, h) = exp
(
C ′

h X̃t + D′
h Zt

)
, for h ≥ 1 (92)

where the vectors Ch and Dh satisfy the following recursive equations :




Ch = −c + A∗1(C1,h−1) + A∗2[Cp+1,h−1 + a∗1(C1,h−1)] + C̃h−1

Dh = −d − ν∗1 log(1− C1,h−1µ
∗
1)− ν∗2 log[1− (Cp+1,h−1 + a∗1(C1,h−1))µ∗2]

+ D̃h−1 + F (D1,h−1) ,

(93)

where D̃h−1 and F (D1,h−1) have the same meaning as in proposition 6; the
initial conditions are C0 = 0, D0 = 0 (or C1 = −c, D1 = −d) [Proof : see
Appendix 6].
So, proposition 12 shows that, also for the Switching VARG(p) model, yields
to maturity are linear functions of X̃t and Zt.

With regard to the endogenous case, where we can consider x1t = rt+1,
and x2t = R(t,H) for a given time to maturity H, we have the same results
as for the Switching VARN(p) case [see section 3.7].

It is also easily seen that the risk premium of the payoff pt+1 = exp(−θ1x1,t+1
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−θ2x2,t+1) is:

ωt(θ1, θ2) = {A2,t[−θ2 + a1,t(−θ1)] + A1,t(−θ1)

−A∗2[−θ2 + a∗1(−θ1)]−A∗1(−θ1)}′Xt

+ b2,t[−θ2 + a1,t(−θ1)] + b1,t(−θ1)

− b∗2,t[−θ2 + a∗1(−θ1)]− b∗1,t(−θ1) ,

with
b1,t(u1) = −ν∗′1 Zt log(1− u1µ

∗
1)

b2,t(u2) = −ν∗′2 Zt log(1− u2µ
∗
2) ,

and the risk premium of the digital asset is given once more by relation (47).

5 DERIVATIVE PRICING

5.1 Generalization of the recursive pricing formula

In the previous sections we have derived recursive formulas for the zero-
coupon bond price B(t, h) in various contexts which share the feature that
the process (x̃t, zt) is Car in the risk-neutral world. In fact the recursive
approach can be generalized to other assets.

Let us consider a class of payoffs g(X̃t+h, Zt+h), (t, h) varying, for a given
g function and let us assume that the price at t of this payoff is of the form:

Pt(g, h) = exp
[
Ch(g)′X̃t + Dh(g)′Zt

]
. (94)

It is clear that:

exp
[
Ch(g)′X̃t + Dh(g)′Zt

]

= Et

[
Mt,t+1 exp

(
Ch−1(g)′X̃t+1 + Dh−1(g)′Zt+1

)]

= exp(−c′X̃t − d′Zt)E
Q
t

[
exp

(
Ch−1(g)′X̃t+1 + Dh−1(g)′Zt+1

)]
;

so, for a given g function, the sequences Ch(g), Dh(g), h ≥ 1, follow recursive
equations which does not depend on g and, therefore, are identical to the
case g = 1, that is to say to the zero-coupon bond pricing formulas given in

39



the previous sections. The only condition for (94) to be true is to hold for
h = 1 and, of course, this initial condition depends on g.

Formula (94) is valid for h = 1 if g(X̃t+h, Zt+h) = exp(ũ′X̃t+h + ṽ′Zt+h)
for some vector ũ and ṽ. Indeed, using the notations

ũ′X̃t+1 = u′1x̃t+1 + u′−1X̃t

ṽ′Zt+1 = v′1zt+1 + v′−1Zt ,

with u′−1 = (u′2, . . . , u
′
p, 0), v′−1 = (v′2, . . . , v

′
p, 0), we get:

Pt(ũ, ṽ; 1) = exp(−c′X̃t − d′Zt + u′−1X̃t + v′−1Zt)

×EQt [exp (u′1x̃t+1 + v′1zt+1)] ,

(95)

which, using the Car representation of (x̃t+1, zt+1) under the probability Q,
has obviously the exponential linear form (94) and provides the initial con-
ditions of the recursive equations. The standard recursive equation provide
the price Pt(ũ, ṽ; h) at date t for the payoff exp(ũ′X̃t+h + ṽ′Zt+h). So we
have the following proposition.

Proposition 13 : The price Pt(ũ, ṽ; h) at time t of the payoff g(X̃t+h, Zt+h) =
exp(ũ′X̃t+h + ṽ′Zt+h) has the exponential form (94) where Ch(g) and Dh(g)
follow the same recursive equations as in the zero-coupon bond case with
initial values C1(g) and D1(g) given by the coefficients of X̃t and Zt in the
equation (95).

When ũ and ṽ have complex components, Pt(ũ, ṽ;h) provides the complex
Laplace transform Et[Mt,t+h exp(ũ′X̃t+h + ṽ′Zt+h)].

5.2 Explicit and quasi explicit pricing formulas

The explicit formulas for zero-coupon bond prices also immediately provide
explicit formulas for some derivatives like swaps. Moreover, the result of
section 5.1, where ũ and ṽ have complex components, can be used to price
payoffs of the form:

[
exp(ũ′1X̃t+h + ṽ′1Zt+h)− exp(ũ′2X̃t+h + ṽ′2Zt+h)

]+
,

like caps, floors or options on zero-coupon bonds. Let us consider, for in-
stance, the problem to price, at date t, a European call option on the zero-
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coupon bond B(t + h,H − h), then the pricing relation is :

pt(K,h) = Et

[
Mt,t+h (B(t + h,H − h)−K)+

]

= Et

[
Mt,t+h (exp[−(H − h)R(t + h,H − h)]−K)+

]
,

(96)

and, substituting here the yield to maturity formula (70), for the Switching
VARN(p) model, or formula (92), for the Switching VARG(p) model, we can
write :

pt(K, h) = Et

[
Mt,t+h

(
exp[C ′

H−hX̃t+h + D′
H−hZt+h]−K

)+
]

= Et

[
Mt,t+h

(
exp[C ′

H−hX̃t+h + D′
H−hZt+h]−K

)
I[−C′H−hX̃t+h−D′H−hZt+h<− log K]

]

= Et

[
Mt,t+h

(
exp[C ′

H−hX̃t+h + D′
H−hZt+h]

)
I[−C′H−hX̃t+h−D′H−hZt+h<− log K]

]

−KEt

[
Mt,t+hI[−C′H−hX̃t+h−D′H−hZt+h<− log K]

]

= Gt(CH−h, DH−h,−CH−h,−DH−h,− log K;h)

−KGt( 0, 0,−CH−h,−DH−h,− log K; h) ,
(97)

where I denotes the indicator function, and where

Gt(ũ0, ṽ0, ũ1, ṽ1,K;h)

= Et

[
Mt,t+h

(
exp[ũ′0X̃t+h + ṽ′0Zt+h]

)
I[−ũ′1X̃t+h−ṽ′1Zt+h<K]

]

denotes the truncated real Laplace transform that we can deduce from the
(untruncated) complex Laplace transform. In particular, we have the fol-
lowing formula :

Gt(ũ0, ṽ0, ũ1, ṽ1,K;h) =
Pt(ũ0, ṽ0, h)

2

− 1
π

∫ +∞

0

[
Im[Pt(ũ0 + iũ1y, ṽ0 + iṽ1y; h)] exp(−iyK)

y

]
dy

(98)
where Im(z) denotes the imaginary part of the complex number z. So, for-
mula (97) is quasi explicit since it only requires a simple (one-dimensional)
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integration to derives the values of Gt, which is equivalent to the computa-
tion of cumulative gaussian distribution function in the Black-Scholes model
[see Duffie, Pan, Singleton (2000) for details].

6 Applications

7 Conclusions
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Appendix 1

Proof of Proposition 6

B(t, h) = exp(C ′
hXt + D′

hZt)

= exp (−rt+1) EQ
t [B(t + 1, h− 1)]

= exp [−c′Xt − d′Zt] EQ
t

[
exp

(
C ′

h−1Xt+1 + D′
h−1Zt+1

)]

= exp [−c′Xt − d′Zt]×

EQ
t

[
exp

(
C ′

h−1

[
Φ∗Xt +

(
ν∗′Zt + σ∗′Zt ξt+1

)
e1

]
+ D′

1,h−1zt+1 + D̃′
h−1Zt

)]

= exp
[(

Φ∗′Ch−1 − c
)′

Xt +
(
−d + C1,h−1ν

∗ + 1
2C2

1,h−1σ
∗2 + D̃h−1

)′
Zt

]
×

EQ
t

[
exp

(
D′

1,h−1zt+1

)]

= exp
{(

Φ∗′Ch−1 − c
)′

Xt +

[
−d + C1,h−1ν

∗ + 1
2C2

1,h−1σ
∗2 + D̃h−1 + F (D1,h−1)

]′
Zt

}
,

and the result follows by identification.
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Appendix 2

Proof of Proposition 7

Using the lag polynomials:

Ch(L) = −1
h

(C1,h + C2,hL + . . . + Cp,hLp−1)

Dh(L) = −1
h

(D1,h + D2,hL + . . . + Dp+1,hLp)

Ψ(L,Zt) = 1− ϕ1(Zt)L− . . .− ϕp(Zt)Lp ,

we get from (55):

R(t, h) = Ch(L)xt + Dh(L)′zt ,

and

Ψ(L,Zt) R(t + 1, h) = Ch(L)Ψ(L, Zt) xt+1 + Dh(L)Ψ(L,Zt) zt+1,

= Dh(L)Ψ(L,Zt) zt+1 + Ch(L) ν(Zt) + Ch(L)[(σ∗′Zt) εt+1] .
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Appendix 3

Proof of Proposition 10

B(t, h) = exp(C ′
hX̃t + d′hZt)

= exp (−rt+1) EQ
t [B(t + 1, h− 1)]

= exp
[
−c′X̃t − d′Zt

]
EQ

t

[
exp

(
C ′

h−1X̃t+1 + D′
h−1Zt+1

)]

= exp
[
−c′X̃t − d′Zt

]
×

EQ
t

[
exp

(
C ′

h−1Φ̃
∗X̃t + C1,h−1(ν∗1Zt + S∗1(Zt)ξt+1)

+Cp+1,h−1(ν∗2Zt + S∗2(Zt)ξt+1) + D′
1,h−1zt+1 + D̃′

h−1Zt

)]

= exp
[(

Φ̃∗′Ch−1 − c
)′

Xt +
[
−d + C1,h−1ν

∗′
1 + 1

2C2
1,h−1(σ

∗2
1 + ϕ∗2o σ∗22 )

+Cp+1,h−1ν
∗′
2 + 1

2C2
p+1,h−1σ

∗2
2 + D̃h−1 + F (D1,h−1)

]′
Zt

]
,

and the result follows by identification.
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Appendix 4

Proof of Lemma 1

ã(u + α; ρ, µ)− ã(α; ρ, µ) =
ρ(u + α)

1− (u + α)µ
− ρα

1− αµ

= ρ
u

(1− αµ)2 − uµ(1− αµ)

=
ρ

(1− αµ)2
u

1− uµ
1−αµ

=
ρ∗u

1− uµ∗
= ã(u; ρ∗, µ∗) ;

b̃(u + α; ν, µ)− b̃(α; ν, µ) = −ν log(1− (u + α)µ) +−ν log(1− αµ)

= −ν log
[
1− (u + α)µ

1− αµ

]

= −ν log
[
1− uµ

1− αµ

]

= −ν log(1− uµ∗)

= b̃(u; ν, µ∗) .
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Appendix 5

Proof of Proposition 11

B(t, h) = exp(C ′
hXt + D′

hZt)

= exp [−c′Xt − d′Zt] EQ
t

[
exp

(
C ′

h−1Xt+1 + D′
h−1Zt+1

)]

= exp
(
−c′Xt − d′Zt + C̃ ′

h−1Xt + D̃′
h−1Zt

)

EQ
t

[
exp

(
C1,h−1xt+1 + D′

1,h−1zt+1

)]

= exp
[
−c′Xt − d′Zt + C̃ ′

h−1Xt + D̃′
h−1Zt + A∗(C1,h−1)′Xt

−ν∗′Zt log(1− C1,h−1µ
∗) + F ′(D1,h−1)Zt

]
,

and the result follows by identification.
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Appendix 6

Proof of Proposition 12

B(t, h) = exp(C ′
hX̃t + D′

hZt)

= exp
[
−c′X̃t − d′Zt

]
EQ

t

[
exp

(
C ′

h−1X̃t+1 + D′
h−1Zt+1

)]

= exp
(
−c′X̃t − d′Zt + C̃ ′

h−1X̃t + D̃′
h−1Zt

)

EQ
t

[
exp

(
C ′

1,h−1x1,t+1 + C ′
p+1,h−1x2,t+1 + D′

1,h−1zt+1

)]

= exp
[
−c′X̃t − d′Zt + C̃ ′

h−1X̃t + D̃′
h−1Zt + A∗1(C1,h−1)′X̃t

−ν∗′1 Zt log(1− C1,h−1µ
∗
1) + A∗2[Cp+1,h−1 + a∗1(C1,h−1)]′X̃t

−ν∗′2 Zt log[1− (Cp+1,h−1 + a∗1(C1,h−1))µ∗2] + F ′(D1,h−1)Zt

]
,

and the result follows by identification.
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