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Abstract

In this paper, several bivariate generalizations of the Autoregressive
Conditional Duration model are proposed. An important feature shared
by all the proposed models is that all of them allow for Granger non-
causality analysis in a simple way. The models are illustrated using NYSE
data on trades and quotes. Our results suggest that transactions Granger
cause quotes, but not vice versa, which seems to confirm information-
based microstructural theories
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1 Introduction
Since the early nineties, automated electronic systems of trading have been
intoduced in most financial markets. These systems allow to record all the
quotes posted and all the trades executed, along with their characteristics. The
availability of these data has stimulated the development of new tools for the
econometric analysis of the trading mechanisms, the intraday characteristics of
the markets and the price formation process.
One relevant feature of these ultra high frequency data is that they are irreg-

ularly spaced over time, so that the usual time series methods can not be used.
Engle and Russel (1998) introduce the ACD model as a statistical device to
extract meningful information out of the duration between two financial events.
Different kinds of financial durations can be defined, such as the distance be-
tween trades or quotes or the distance between price changes. The duration of
interest is regarded as a random variable, which can be studied conditionally on
relevant related information by employing the tools of duration analysis. The
ACD model assumes that the relevant information for the probability structure
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of future durations is given by the past evolution of the process. The basic
version of the model assumes that durations are conditionally exponentially
distributed with a mean that follows an ARMA process.
The Exponential distribution is extremely rigid, and therefore other versions

of the ACD model have been also proposed, where other specifications of the
conditional distribution of durations are assumed (generalized gamma, gamma,
Burr, Weibull, exponential, Pareto).
The simple linear ARMA assumption for the conditional expectation has

also been criticized and relaxed in the literature. The Log-ACD model is a log-
aritmic version which have been introduced by Bauwens and Giot (2000) to deal
with the problem that, when explanatory variables are added linearly, the ex-
pected value may become negative, which is not admissible. Another variant is
the threshold ACD (TACD by Zhang, Russel and Tsay, 1999), where instead of
the simple linear specifications of the expected value assumed in the standard
ACD setting, a more flexible specification is assumed, with different regimes
which are allowed to have different duration persistence and error distribution.
Fernandes and Grammig (2001) develop a family of ACD models based on Box
and Cox (1964) transformation which encompasses many existing formulations
existing in the literature. Jasiak (1998) introduces a class of fractionally in-
tegrated ACD models (FIACD) aimed at accointing for the highly persistent
pattern of the autocorrelations of intertrade durations, displaying a slow, hy-
perbolic rate of decay, which is inconsistent with the exponential decline pattern
implied by the ACD model and most of its derivations. Other specifications are
derived by introducing a latent factor; this gives rise to the Stochastic Volatility
Duration (SVD) model proposed by Ghysels, Gourieroux and Jasiak (1997) and
the Stochastic Conditional Duration (SCD) model proposed by Bauwens and
Veredas (1999). Finally, Galli (2003) proposes a nonparametric approach to
estimate the conditional expectation.
Other generalizations of the ACD models are aimed at extending the analysis

towards a joint model of price dynamics and duration between financial events.
Engle and Russell (1998b) develop a marked point process where price changes
play the role of marks; the authors propose to decompose the joint distribu-
tions of arrival times and price changes into the products of the conditional
distribution of price changes and the marginal distribution of arrival time, the
latter being modelled as an ACD. Engle (2000) applies the ACD model to de-
velop semiparametric hazard estimates and conditional intensities; combining
these intensities with a GARCH model of prices gives rise to the UHF-GARCH
model, where the dynamics of volatility are conditioned on transaction times.
Ghysels and Jasiak (1998) develop a class of ARCH models for series sampled at
unequal time intervals set by trade or quote arrivals. The class of models they
introduce is called ACD-GARCH and can be described as a random coefficient
GARCH, where the durations between transaction determine the parameter
dynamics. Dufour and Engle (1999) use an ACD model to study the effect of
trading intensity in the price formation process.
This paper tries to contribute to another niche of the literature on ultra

high frequency financial data, namely multivariate ACD models. While the
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literature on volatility processes abounds with multivariate specifications, in
the ACD analysis of point processes the extensions in this direction are still
a limited. The difficulties inherent to this analysis are mainly due to the fact
that, while in an univariate point process durations can be easily ordered, so
that only the duration of the spells and their relative positions need to be
considered, in a multivariate setup a clear ordering of the durations of different
processes is difficult to obtain and the study of the density of durations needs
to be performed conditionally to calendar time too. As it is pointed out in Cox
and Isham (1980), a point process can be analyzed under three main different
perspectives: instantaneous probability of an occurence (termed as intensity of
the process), distribution of the number of occurrence in an arbitrarily fixed
span of time, and distribution of the duration between events. The attempts to
obtain a joint model of financial point processes have followed these three lines
of research.1

The intensity of the multivariate process is the object of the analysis of Rus-
sell (1999), who proposes to model the instantaneous arrival rate conditionally
of the multivariate filtration of arrival times and associated marks. Though the
ensuing Autocorrelated Conditional Intensity (ACI) model is conceptually sim-
ple and appealing, it is analytically difficult and its estimation requires a great
amount of computations. An interesting extension of this approach is provided
by Bauwens and Hautsch (2002) who, in the Stochastic Conditional Intensity
(SCI) model, add a latent factor to the specification of the conditional inten-
sity function. This stochastic parametrization seems to improve the descriptive
power of the model, though it obliges to recur to numerical methods in order to
study the likelihood.
The Multivariate Autoregressive Conditional Poisson (MACP) model, a mul-

tivariate counting specification is proposed by Heinen and Rengifo (2003), who
employ a Poisson and a double Poisson (with an additional parameter) distri-
butions to model the number of financial events that take place during a fixed
span of time. Conditionally on past observations, the vector of the means of
the occurrences follow a VAR process. The interdependence between the differ-
ent univariate processes is furtherly modelled via a multivariate normal copula,
which introduces contemporaneous correlation between the series. The model
can be estimated by maximum likelihood. This framework of analysis seems to
be very flexible, as it can be applied to a series of point processes representing
in principle any financial event.
For what concerns the direct study of the distribution of the durations be-

tween events (the very same perspective employed in the most of the literature
on univariate processes), Engle and Lunde (1999) propose a censored bivariate
ACD model. The goal of their work us to assess how quickly information in the
transaction process impacts the prices via quote adjustments. Their primary in-
terest lies therefore in the time between transactions, considered as the "driving
process", and subsequent quote revisions. The two processes are not treated

1Remember to quote Davis, Rydberg and Shephard (2001) and Spierdijk, Nijman and van
Soest (2002).
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symmetrically and some information is lost if multiple quote revisions occur
without intervening transactions. This paper is in the same line, but avoids this
asymmetry by extending to the dynamic framework the bivariate competing
risks approach: whenever either event occurs, two spells (residual durations)
start, which are referred to as latent : in fact they can not be both completely
observed, since they censor each other. One key feature of the proposed model
is that non-causality may be easily defined and tested for. Moreover, in the
absence of causality in either direction, the model collapses into two univari-
ate ACD models. Finally, our approach allows for a natural generalization to
the k-variate setting (k > 2). The model can also be extended in many of
the directions illustrated above, by replacing the linear ARMA framework with
non linear specifications of the conditional expectations or by considering joint
models for price dynamics and bivariate durations between financial events: an
attempt in the latter direction, in the line of Engle and Russell (1998b), is in
Mosconi-Olivetti (2000).
The paper is organized as follows. Section 2 briefly describes the univariate

ACD model, to set up the notation used in this paper. After a general introduc-
tion to the problems involved in the bivariate generalization of the ACD model,
Section 3 introduces our basic bivariate ACD model, which is based on the
simplifying assumptions of constant hazard and independence of the durations.
These assumptions are relaxed in Section 4, where two alternative versions of
the model are introduced based on the Weibull and Gumbel distributions re-
spectively. Section 5 briefly illustrate how Engle and Russel (1998) approach
to deal with the strong "time of the day" seasonality may be extended to the
bivariate case. An empirical illustration of the three specifications is provided
in Section 6, using data on trades and quotes extracted from the TAQ database,
delivered by the New York Stock Exchange.

2 Univariate ACD modelling

Let Xi = Ti−Ti−1 be the random variable which indicates the temporal interval
between the i-th event (occurring at time Ti) and the preceding one; we will refer
to this variable with the name of duration. Engle and Russell (1998) define the
model by the conditional intensity, conditioning on past realized durations. Let
ψi be the i-th duration’s conditional expected value and Fi = {Xi,Xi−1, ...,X1}
the filtration of the duration process up to time Ti:

ψi = E (Xi|Fi−1; θ) = ψ (xi−1, xi−2, ..., x1; θ) (1)

The dynamic specification can be generalized by introducing into (1) some marks
associated to past realizations of the duration process.
Let us now assume:

Xi = ψiεi (2)

where:
εivi.i.d. with density p0 (ε;φ) (3)
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Given the multiplicative impact of the stochastic error εi, p0 must have unit
expectation.
In order to derive a general form for the conditional intensity, let us con-

sider the hazard function λ0 (.) associated with p0 (.); since the model can be
interpreted as an accelerated life model, it holds:

λi (xi|Fi−1) = λ0

µ
xi
ψi

¶
· 1
ψi

where λi (.) indicates the hazard function associated to the i -th duration. This
expression is very useful since it allows to derive estimators for the parameters
through the maximization of the log-likelihood function, which is given by:

log L =

N(T )X
i=1

µ
log λi (xi|Fi−1)−

Z xi

0

λi (u|Fi) du
¶

where N (t) is the number of transaction up to time t, and T is the end of the
observation period.
Expressions (1)-(3) define the structure of the ACD model; the number of

specifications is almost infinite, depending on both the functional form for ψ (.)
and the density for p0 (.). In the ACD(m,q) model introduced by Engle and
Russell (1998), the following linear specification is assumed for (1):

ψi = ω +
mX
j=1

αjxi−j +

qX
j=1

βjψi−j

As shown by Engle and Russel, this is equivalent to the assumption of an
ARMA(max (m, q) , q) specification for xi. This is usually more parsimonious
than the pure AR(p) specification

ψi = ω +

pX
j=1

αjxi−j

The main problem with this specification is that it does not assure positivity
of the conditional mean when at least one coefficient is negative. Actually, in
many applications this is irrelevant, since values of coefficients and variables
often keep the conditional mean far from zero. To address situations where neg-
ativity becomes a problem, Bauwens and Giot (2000) suggest either to restrict
coefficients to be positive,2 or to use a non-linear functional form, such as the
exponential:

ψi = exp

⎛⎝ω +
mX
j=1

αj log xi−j +

qX
j=1

βj logψi−j

⎞⎠
2The major drawback of this solution is that it does not allow to test hypotheses on the

coefficients’ sign deriving from economic theory.
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As for the distribution p0 (.), Engle and Russel propose both the Exponential
and the Weibull distribution, which, combined with the linear form, define the
EACD and the WACD model. It’s easy to prove that also the conditional
durations are Exponential and Weibull distributed respectively and that log-
likelihood functions are:

logL = −
N(T )X
i=1

µ
logψi +

xi
ψi

¶
for the EACD model and

logL =

N(T )X
i=1

∙
log

γ

xi
+ γ log

µ
Γ (1 + 1/γ)xi

ψi

¶
−
µ
Γ (1 + 1/γ)xi

ψi

¶γ¸
for the WACDmodel, where γ is the shape parameter of the Weibull distribution
and Γ (.) is the gamma function. When ψi depends on its own past values, both
the log-likelihood functions are recursive, and therefore have to be maximized
numerically.
In many applications, durations behavior significally depends on calendar

time. For example, in stock markets intra-day seasonal effects cannot be ignored.
In this case Engle and Russell propose to decompose the conditional mean into
two components, one stochastic and one deterministic:

ψi = φi (ti−1; θφ) eψi ³exi−1, exi−2, ..., ex1; θeψ´
where ex is the diurnally adjusted duration series (exi = xi/φi (ti−1; θφ)) and φi (.)
is usually specified by a cubic spline function (see Engle and Russell, 1998, for
details).

3 Bivariate ACD modelling

In order to derive a bivariate generalization of the ACD model illustrated in the
previous Section, let us introduce the following notation:

• T1,i: time of the i-th event of type 1 (e.g. transaction);

• T2,i: time of the i-th event of type 2 (e.g. quote);

• X1,i = T1,i − T1,i−1: i-th duration of the first process;

• X2,i = T2,i − T2,i−1: i-th duration of the second process;

• N1(t): number of events of type 1 in (0; t];

• N2(t): number of events of type 2 in (0; t];
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It could seem natural to set up a bivariate model forX1,i andX2,i conditional
on past observations of the same variables. Notice however that the average
frequency of occurrence of the two events could be different, and therefore X1,i

and X2,i could be far from each other in terms of calendar time. Such time
mismatch makes any attempt to derive a joint model for X1,i and X2,i devoid of
meaning. In order to find a more sound specification, we introduce the pooled
process of events of type 1 or 2:

• Ti: time of the i-th event of the pooled process (e.g. either transaction or
quote);3

• Xi = Ti − Ti−1: i-th duration of the pooled process (time between two
consecutive events of any kind);

• N(t): number of events of the pooled process in (0; t];

• N(t1, t2): number of events of the pooled process in (t1; t2];

• Yi: dummy variable which is 1 if the i-th event of the pooled process is of
type 1, and 0 otherwise;

• Fi = {X1,X2, ...,Xi, Y1, Y2, ..., Yi}: filtration of the pooled process until
Ti.

Next, in the line of the Competing Risks literature (see among others, Coxes
and Oakes, 1984) we introduce the notion of Latent Residual Duration (LRD)
for both events. The idea is that, when either event occurs, we start measuring
the time to the next event of both types, i.e. the residual durations. The purpose
is to measure such residual durations in the absence of the other event. The
LRD is observable only for one of the two processes, namely the one occurring
first. The other LRD is censored. More formally:

• Z1,i: i-th latent residual duration of the first process. If at Ti one event of
the first type occurs, Z1,i is observable and it takes on the value: Z1,i =
Ti − Ti−1 = Xi. Conversely, if at Ti one event of the second type occurs,
then Z1,i is censored, since we observe only that Z1,i > Xi;

• Z2,i: i-th latent residual duration of the second process. If at Ti one event
of the second type occurs, Z2,i is observable and it takes on the value:
Z2,i = Ti − Ti−1 = Xi. Conversely, if at Ti one event of the first type
occurs, then Z2,i is censored, since we observe that Z2,i > Xi.

Figure 1 illustrates the relationship among the variables introduced above.
The reason for focusing on the unobserved LRD’s rather than on the ob-

served residual durations is that, whenever a new event of any type occurs, the
filtration, and hence probabilistic structure of the process, is changed. This is

3We assume that events of type 1 and 2 cannot occur simultaneously. Also, we exclude
simultaneous occurrence of two or more events of the same kind. In other words, following
Cox (....), we assume that both individual processes, as well as the pooled process, are orderly.
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process 1

process 2

pooled
process

T1,1

process 1

process 2

pooled
process

t = 0

T1,2 T1,m

T2,1 T2,2 T2,n

T1 T2 T3 T4 Ti Ti+1

t = 0

x1,1 x1,2 x1,3 x1,m x1,m+1

x2,1 x2,2 x2,3 x2,n x2,n+1

x1 x2 x3 x4 x5 xi xi+1 xi+2

= process 1 event

= process 2 event

z1,1= x1

z2,1> x1

y1= 1

z1,2> x2

z2,2= x2

y2= 0

z1,3> x3

z2,3= x3

y3= 0

z1,4= x4

z2,4> x4

y4= 1

Figure 1: Illustration of the stochastic processes and notation

reflected in the proposed model, which is based on the specification of a joint
distribution for the random variables Z1,i e Z2,i, conditioning on the filtration.
Let’s generically indicate this distribution in the following way:

fZ1,i,Z2,i (z1,i, z2,i|Fi−1; θ) (4)

where θ is a set of parameters to be estimated. In order to define the likelihood
function, let’s introduce the following expressions:

c1,i (k; θ) = lim
δ→0+

1

δ
Pr (Z1,i ∈ [k, k + δ) , Z2,i ∈ (k,∞) |Fi−1; θ) (5)

=

Z ∞
k

fZ1,i,Z2,i (k, z2|Fi−1; θ) dz2

c2,i (k; θ) = lim
δ→0+

1

δ
Pr (Z1,i ∈ (k,∞) , Z2,i ∈ [k, k + δ) |Fi−1; θ) (6)

=

Z ∞
k

fZ1,i,Z2,i (z1, k|Fi−1; θ) dz1
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Expression (5) is the contribution to the likelihood function when one event of
the first type is observed (Yi = 1), while (6) is the contribution to the likelihood
function when one event of the second type is observed (Yi = 0). Therefore, the
likelihood function for a sample of N (T ) observations on (Xi, Yi) is given by:

L (θ) =

N(T )Y
i=1

c1,i (xi; θ)
yi c2,i (xi; θ)

(1−yi) (7)

Parameter estimates may be obtained by maximizing (7) with respect to θ.

3.1 Basic specification: EBACD

Within the framework illustrated above, we will now introduce our basic spec-
ification for (4), namely the Exponential Bivariate ACD, or EBACD. One key
feature of the proposed model is that non-causality may be easily defined and
tested for. Moreover, unlike other specifications proposed in the literature, in
the absence of causality in either direction, the model collapses into two uni-
variate ACD models. Finally, our approach allows for a natural generalization
to the k-variate setting (k > 2). The basic model is based on two simplifying
assumptions, which will be relaxed in the next Section:

• independence of the Latent Residual Durations conditional on the history
of the process

• constancy of the hazard function (i.e. exponential distribution for the
LRD’s)

More specifically Z1,i and Z2,i are assumed to be independent, conditionally
on the filtration:

fZ1,i,Z2,i (z1,i, z2,i|Fi−1; θ) = fZ1,i (z1,i|Fi−1; θ1) fZ2,i (z2,i|Fi−1; θ2) (8)

where if θ1 ∈ Θ1 and θ2 ∈ Θ2 than θ ∈ Θ1×Θ2. The independence assumption
is rather unrealistic, end will be removed later.
Since our purpose is to generalize the univariate specification, it seems nat-

ural to make the same steps as in Engle and Russell (1998). Therefore, at first
we propose the Exponential distribution for the LRD’s:

Z1,i|Fi−1 ∼ Exp

µ
1

ψ1,i

¶
(9a)

Z2,i|Fi−1 ∼ Exp

µ
1

ψ2,i

¶
where:

ψ1,i = E (Z1,i|Fi−1) = ψ1,i (Fi−1; θ1) (10)

ψ2,i = E (Z2,i|Fi−1) = ψ2,i (Fi−1; θ2)
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As in the univariate case, a simple way to paramatrize the expressions (10) is
by specifying them as a linear function of past durations of both processes. For
notational convenience, let us define the following variables:

• x
∗(j)
1,i = x1,N1(Ti−1)+1−j : j-th last complete duration of process 1 when the

i-th interval of the pooled process begins.

• x
∗(j)
2,i = x2,N2(Ti−1)+1−j : j-th last complete durations of process 2 when
the i-th interval of the pooled process begins.

Using this notation, an Auto Regressive like specification for the bivariate
conditional expectation is given by:

ψ1,i = ω1 +

m1,1X
j=1

α1,1,jx
∗(j)
1,i +

m1,2X
j=1

α1,2,jx
∗(j)
2,i (11)

ψ2,i = ω2 +

m2,1X
j=1

α2,1,jx
∗(j)
1,i +

m2,2X
j=1

α2,2,jx
∗(j)
2,i

wherema,b is the number of autoregressive terms of process b into the conditional
mean equation of process a. Notice that model (11) is not exactly an Auto
Regressive model. In fact, the conditional expectation of the i-th LRD’s are
not defined in terms of past LRD’s, since these are not observable, but rather
in terms of past observed durations. However, this seems a natural way to
use the information in Fi−1 in order to make predictions on the future. As in
the univariate ACD models, a more parsimonious representation of the process
might be obtained by including past conditional expectations into expressions
(11), corresponding to past durations. One possible specification is the following

ψ1,i = ω1 +
m1,1P
j=1

α1,1,jx
∗(j)
1,i +

m1,2P
j=1

α1,2,jx
∗(j)
2,i +

q1,1P
j=1

β1,1,jψ
∗(j)
1,i +

q1,2P
j=1

β1,2,jψ
∗(j)
2,i

(12)

ψ2,i = ω2 +
m2,1P
j=1

α2,1,jx
∗(j)
1,i +

m2,2P
j=1

α2,2,jx
∗(j)
2,i +

q2,1P
j=1

β2,1,jψ
∗(j)
1,i +

q2,2P
j=1

β2,2,jψ
∗(j)
2,i

where:

• ψ
∗(j)
1,i = E

µ
Z
1,i−N

³
T1,N1(Ti−1)−j

,Ti−1
´ |F

i−N
³
T1,N1(Ti−1)−j

,Ti−1
´
−1

¶
: con-

ditional expectation of the LRD of type 1 starting when the complete
duration x

∗(j)
1,i = x1,N1(Ti−1)+1−j starts

• ψ
∗(j)
2,i = E

µ
Z
2,i−N

³
T2,N2(Ti−1)−j

,Ti−1
´ |F

2,i−N
³
T2,N2(Ti−1)−j

,Ti−1
´
−1

¶
: con-

ditional expectation of the LRD of type 2 starting when the complete
duration x

∗(j)
2,i = x2,N2(Ti−1)+1−j starts;
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i-th period of the 
pooled process 

( )1*
,1 ix  

( )1*
,2 ix  ( )1*

,1 iψ  ( )1*
,2 iψ  

1 x1,0 x2,0 ψ1,0 ψ2,0 
2 x1,1 x2,0 ψ1,1 ψ2,0 
3 x1,1 x2,1 ψ1,1 ψ2,1 
4 x1,1 x2,2 ψ1,1 ψ2,3 
5 x1,2 x2,2 ψ1,2 ψ2,3 

process 1 

process 2 

pooled 
process

t = 0 

x1,1 x1,2 x1,3

x2,1 x2,2 x2,3

x1 x2 x3 x4 x5

= process 1 event 

= process 2 event 

Figure 2: Illustration of the notation

The notation is illustrated in Figure 2. Notice that, as discussed above,
model (12) is not exactly an ARMA model, since the unobserved past LRD’s are
replaced by the corresponding past complete durations. Expressions (12), added
to the Exponential and independence assumptions give the structure of this
model which, in analogy with the univariate specification, we call Exponential
Bivariate ACD, or EBACD(m,q), where m = max (mi,j) and q = max (qi,j).
These structure allows to test for causality very easily; for instance, if we

want to test for absence of causality of process 1 on process 2 and vice versa,
we just have to test (with traditional techniques) the following hypothesis:

αa,b,k = βa,b,k = 0 ∀a, b, k; a 6= b (13)

When condition (13) holds, neither process causes the other, and the BACD
collapses into two independent univariate ACD processes.
As in the univariate model, the main problem with the linear specification of

(10) is that the conditional mean might turn negative if at least one coefficient
is negative. In applications where this drawback is not irrelevant, we can use
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other functional forms as, for instance:

ψ1,i = exp

Ã
ω1 +

Pm1,1

j=1 α1,1,j log x
∗(j)
1,i +

Pm1,2

j=1 α1,2,j log x
∗(j)
2,i +

+
Pq1,1

j=1 β1,1,j logψ
∗(j)
1,i +

Pq1,2
j=1 β1,2,j logψ

∗(j)
2,i

!
(14)

ψ2,i = exp

Ã
ω2 +

Pm2,1

j=1 α2,1,j log x
∗(j)
1,i +

Pm2,2

j=1 α2,2,j log x
∗(j)
2,i +

+
Pq2,1

j=1 β2,1,j logψ
∗(j)
1,i +

Pq2,2
j=1 β2,2,j logψ

∗(j)
2,i

!
Whatever the functional form defined for the dynamic equations, the likelihood
function is easily obtained by using the well known property of lack of memory
of the Exponential distribution, which implies that if complete durations are
Exponential distributed, residual durations are Exponential distributed as well.
Therefore (7) becomes:

L =

N(T )Y
i=1

fZ1,i (xi)
yi SZ1,i (xi)

(1−yi) fZ2,i (xi)
(1−yi) SZ2,i (xi)

yi =

=

N(T )Y
i=1

µ
1

ψ1,i

¶yi µ 1

ψ2,i

¶1−yi
exp

µ
−xi

ψ1,i + ψ2,i
ψ1,iψ2,i

¶

4 Extending the model
In this Sections we propose two alternative specifications for (4), relaxing the
restrictive assumptions of the EBACD model in two directions. Both models
share with the EBACD model the properties that non-causality may be easily
defined and tested for and that in the absence of causality in either direction,
the model collapses into two univariate ACD models.

4.1 Relaxing constancy of the hazard: WBACD

The exponential distribution, although is often used in applications for its ana-
litical semplicity, is not always appropriate for empirical data, since it implies
constancy of the hazard function. Following Engle and Russell (1998), our ap-
proach is generalized to the Weibull distribution. Weibull distribution does not
share the property of lack of memory of the Exponential distribution; therefore,
in order to develope a bivariate Weibull model, we need the probability function
for the LRD’s in the Weibull case. Let us assume the complete duration X is
Weibull distributed:

fX (x) = κγ (κx)γ−1 exp [− (κx)γ ]

then the residual duration Z = X − x is distributed as follows:

fZ (z) =
fX (x)

SX (x)
= κγ [κ (z + x)]γ−1 exp {−κγ [(z + x)γ − xγ ]} (15)
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We will refer to (15) as the Generalized Weibull distribution. Obviously, this
distribution is Weibull only for x = 0. The survival function for the Generalized
Weibull is:

SZ (z) = exp {−κγ [(z + x)
γ − xγ ]}

Expected residual duration can be easily obtained using the following relation,
see Johnson, Kotz and Balakrishnan (1994), p. 630:

E (Z) = E (X − x|X ≥ x) =

Z ∞
x

SX (u)

SX (x)
du

which in our case gives:

E (Z) =

Z ∞
x

exp [− (κu)γ ]
exp [− (κx)γ ]du = exp [(κx)

γ ]

Z ∞
x

exp [− (κu)γ ] du (16)

Raja Rao and Talwalker (1989) derived upper and lower bound for this func-
tion. Formula (16) shows that the relation between expected residual duration
and Weibull parameters is much more complex than for Exponential distrib-
ution. This makes the derivation of the bivariate Weibull ACD model rather
complicated, even if there is no major conceptual difference with respect to the
Exponential case. We will now show how is it possible to proceed operatively.
What follows is based on process 1, but obviously analogous remarks are

valid for process 2 as well. This specification of the BACD model raises from
the idea that complete durations are Weibull distributed. Let us assume that
the distribution of the j-th complete duration of the process 1 is a Weibull of pa-
rameters κ1,j and γ1,j . In the spirit of the approach of Engle and Russell (1998),
we assume the shape parameter γ1,j (which makes the hazard function increas-
ing or decreasing) to be constant for all the complete durations. Moreover, since
the model is based on the recursive structure of the expected duration, the scale
parameter κ1,j is expressed as a function of the expected duration ψ1,j and of
the shape parameter:

κ1,j =
Γ (1 + 1/γ1)

ψ1,j

in order to have:

E (X1,j) =
Γ (1 + 1/γ1)

κ1,j
= ψ1,j

As we previously discussed, if complete durations are Weibull distributed, resid-
ual durations are Generalized Weibull distributed; so we have:

Z1,i|Fi−1˜GW (κ1,i, γ1, x1,i)

where:

• γ1 = constant (shape parameter)

• κ1,i = Γ (1 + 1/γ1) /ψ1,i (scale parameter)

13



• x1,i = Ti−1 − T1,N1(Ti−1) (portion of duration already completed)

We want to remark the role of ψ1,i: in this case it is not the expected
latent residual duration (as it is for the EBACD model), since it represents the
expected value the duration would have if a portion of it should not be already
completed (i.e. if x1,i were 0). In order to get the expected residual duration,
the only way is to compute with numerical tecniques the integral (16).
Let us complete the specification of this model, which we refer to as the

WBACD model. Assuming

Z1,i|Fi−1˜GW (κ1,i, γ1, x1,i)

Z2,i|Fi−1˜GW (κ2,i, γ2, x2,i)

and Z1,i, Z2,i independent (conditionally to past history), (4) becomes:

fZ1,i,Z2,i (z1,i, z2,i|Fi−1; θ) = κ1,iγ1κ2,iγ2

[κ1,i (z1,i + x1,i)]
γ1−1 [κ2,i (z2,i + x2,i)]

γ2−1

exp{−κγ11,i
£
(z1,i + x1,i)

γ1 − x
γ1
1,i

¤
−κγ22,i

£
(z2,i + x2,i)

γ2 − x
γ2
2,i

¤
}

If γ1 = γ2 = 1 we get back the EBACD model. ψ1,i and ψ2,i can be specified
in terms of past history as discussed above for the EBACD model, i.e. by
expressions (12) or (14). This allows correct testing for causality.
Given the independence assumption, the likelihood function becomes:

L =

N(T )Y
i=1

fZ1,i (xi)
yi SZ1,i (xi)

(1−yi) fZ2,i (xi)
(1−yi) SZ2,i (xi)

yi =

=

N(T )Y
i=1

n
κ1,iγ1 [κ1,i (xi + x1,i)]

γ1−1
oyi n

κ2,iγ2 [κ2,i (xi + x2,i)]
γ2−1

o(1−yi)
exp

©
−κγ11,i

£
(xi + x1,i)

γ1 − x
γ1
1,i

¤
− κ

γ2
2,i

£
(xi + x2,i)

γ2 − x
γ2
2,i

¤ª
4.2 Relaxing independence of LRD’s: GBACD

The EBACD and WBACD specifications share the condition of independence
of residual durations. This condition in some applications may result too re-
strictive, so we have developed a third formulation of the BACD model with
potential correlation between residual durations. This was done generalizing
the EBACD formulation by the second bivariate Exponential distribution of
Gumbel (1960):

fZ1,i,Z2,i (z1,i, z2,i|Fi−1; θ) =
1

ψ1,iψ2,i
exp

∙
−
µ
z1,i
ψ1,i

+
z2,i
ψ2,i

¶¸
∙
1 + α

µ
2e
− z1,i
ψ1,i − 1

¶µ
2e
− z2,i
ψ2,i − 1

¶¸
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with −1 ≤ α ≤ 1. The parameter α captures the potential correlation between
residual duration and is related to the coefficient of linear correlation ρ simply by
ρ = α/4. So correlation is negative for −1 ≤ α ≤ 0 and positive for 0 ≤ α ≤ 1;
moreover, since |α| ≤ 1, ρ can not exceed 0.25 and can not be lower than −0.25.
Conditional expected residual duration can be specified in terms of past

history by equations (12) or (14), in order to complete the specification of the
Gumbel BACD model (GBACD).
Contributes to likelihood function are:

c1,i (xi) =
1

ψ1,i
exp

∙
−
µ
ψ1,i + ψ2,i
ψ1,iψ2,i

¶
xi

¸ h
1 + α

³
2e
− xi
ψ1,i − 1

´³
e
− xi
ψ2,i − 1

´i
c2,i (xi) =

1

ψ2,i
exp

∙
−
µ
ψ1,i + ψ2,i
ψ1,iψ2,i

¶
xi

¸ h
1 + α

³
2e
− xi
ψ2,i − 1

´³
e
− xi
ψ1,i − 1

´i
The resulting likelihood function is:

L =

N(T )Y
i=1

exp

∙
−
µ
ψ1,i + ψ2,i
ψ1,iψ2,i

¶
xi

¸
½
1

ψ1,i

h
1 + α

³
2e
− xi
ψ1,i − 1

´³
e
− xi
ψ2,i − 1

´i¾yi

½
1

ψ2,i

h
1 + α

³
2e
− xi
ψ2,i − 1

´³
e
− xi
ψ1,i − 1

´i¾(1−yi)

5 Modelling the effect of calendar time in the

bivariate framework
In this section we extend to the bivariate case the approach adopted by Engle
and Russell (1998) in modelling the impact of calendar time on durations. Let
us decompose the expected i-th residual duration of process a in a stochastic
component eψa,i (explained by the BACD model) and a deterministic component
φa (function of the calendar time):

E (Za,i|Fi−1) = ψa,i = φa
¡
ta,Na(Ti−1); θa,φ

¢
eψa,i ³ex1,N1(Ti−1), ..., ex1,1, ex2,N2(Ti−1), ..., ex2,1; θa,eψ´

where exa,ia represents the ia-th complete duration diurnally adjusted of process
a:

exa,ia = xa,ia/φa (ta,ia−1; θa,φ)

We remark that the argument of φa indicates when the ia-th complete duration
of process a begins: the diurnal factor, as in the univariate case, is assumed to
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depend on the starting time of the duration and to be constant until the end of
the duration itself. In the bivariate framework, this means that when an event
of process b realizes, the diurnal factor for the residual duration of process a
does not change. In this way, we can properly test for causality: infact, if causal
relations are absent between processes, when an event of type b happens, the
probability structure of the next event of type a does not change, not only for
the autoregressive component, but for the deterministic one as well.

We will show now how to implement this method for a EBACD(1,1) model.
The parameters in expressions (9a) become:

ψ1,i = φ1
¡
t1,N1(Ti−1)

¢ eψ1,i
ψ2,i = φ2

¡
t2,N2(Ti−1)

¢ eψ2,i
Including diurnal factors, the model is even more complex than before, so we ad-
vise to estimate the two components separately, starting from the deterministic
one. As in the univariate case, diurnal factors may be specified by a cubic spline
function, subjected to continuity and derivability restrictions at each node. Cu-
bic spline functions are:

φ1 (t1,i1−1) =
kX

j=1

I
(1)
j,i1

"
b
(1)
0,j + b

(1)
1,j (t1,i1 − kj)

+b
(1)
2,j (t1,i1 − kj)

2 + b
(1)
3,j (t1,i1 − kj)

3

#
(17)

φ2 (t2,i2−1) =
kX

j=1

I
(2)
j,i2

"
b
(2)
0,j + b

(2)
1,j (t2,i2 − kj)

+b
(2)
2,j (t2,i2 − kj)

2
+ b

(2)
3,j (t2,i2 − kj)

3

#

where kj is the j-th node (j-th trading hour), I(a)j,ia
is a dummy which is 1

if the ia-th complete duration of process a started between kj and kj+1 (i.e.
kj ≤ ta,ia−1 ≤ kj+1) and 0 otherwise.

Once estimated diurnal factors, we can specify properly the autoregressive
components:

eψ1,i = ω1 + α1,1ex∗(1)1,i + α1,2ex∗(1)2,i + β1,1
eψ∗(1)1,i + β1,2

eψ∗(1)2,ieψ2,i = ω2 + α2,1ex∗(1)1,i + α2,2ex∗(1)2,i + β2,1
eψ∗(1)1,i + β2,2

eψ∗(1)2,i

where ex∗(1)a,i is last diurnally adjusted complete duration of process a when the

i-th interval of the pooled process begins, i.e. x∗(1)a,i /φa
¡
ta,Na(Ti−1)−1

¢
, and eψ∗(1)a,i

the expected value of that duration when it started.

6 Application
The data used in the application are extracted from the database Trade and
Quote (TAQ), delivered by the New York Stock Exchange, which includes data
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Figure 3: Intra-day pattern for transactions process

on single transaction and quote. Data refer to the asset Federal National Mort-
gage (FNM ), one of the highest capitalization security traded at NYSE. The
sample is formed by the 42 trading days between 1st August 1997 and 30th
September 1997. Trading procedures operating at NYSE are well discussed in
Schwartz (1993) and Hasbrouck, Sofianos and Sosebee (1993).
Transaction data arising from initial batch auction were deleted: since some-

times the first transction in continuous auction takes place after 9.45 (despite
batch auction officially ends at 9.30), all data between 9.30 and 9.50 were
deleted, while data between 9.50 and 10.00 were used to initialize both processes
every day. Data after 16.00 (unusual transaction) were deleted as well.
Both stochastic processes present significative diurnal effects, so we need to

diurnally adjust the data in order to properly apply the bivariate models spec-
ified above. Nodes were fixed at exact hours and expressed in terms of seconds
after 10.00. OLS estimates of calendar time coefficients are given in appendix,
while Figure 3 and Figure 4 show the intra-day pattern for transactions process
and quotes process respectively.Both processes present more events at opening
and closing time; patterns are similar, anyway they also show individual pe-
culiarities which are properly caught by the modelling proposed above. Every

trading day has been initilized by restricting past durations in the autoregressive
equations to be equal to the mean of the durations (for each process) realized
from 9.50 to 10.00. Past conditional expected values in the same equations have
been fixed to 1, that is the non conditional expected value of the autoregressive
component.
Transactions and quotes in the TAQ database are recorded with approxima-

tion to the nearest second, which is fine enough to apply our model efficiently,
but cannot exclude contemporaneous events. Two or more events of the same
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Figure 4: Intra-day pattern for quotes process

Transactions Quotes
Observations 22975 32114
Sample Mean 39.4 28.2
Standard Deviation 46.8 34.5
Skewness 2.88 3.61
Kurtosis 13.9 26.1

Table 1: Descriptive statistics for transactions and quotes.

kind must be treated carefully, since they are theoretically excluded in ACD
modelling, see Engle and Russell (1998) for details. In our sample we have 18
simultaneous transactions (out of almost 23000) and about 300 simultaneous
quotes (out of over 32000). Joint events of different types occur approximately
400 times, and could be handled by making the bivariate model more compli-
cated. However, we preferred to handle multiple events of all kinds by adding a
random draw from a Uniform(−0.5, 0.5) to the time of all simultaneous events.
This gives a random ranking and sets to zero the probability of ties.4 The num-
ber of multiple events is so small that such approximation does not have any
impact on results arising from our models. Descriptive statistics are shown in
Table 1, where we can notice that new quotes are on average more frequent than
transactions.
Our bivariate model is applied to test for causality relations between trans-

actions and quotes processes. Estimates were obtained using the numerical

4An alternative way to handle ties could be to aggregate multiple transactions since they
often represents block trade. Simultaneous quote revisions could be aggregated as well: infact
we noticed that they usually consisted in two separated revision, one for prices and one for
quantities, so aggregation should not cause any loss of information.
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COEFF. ESTIMATE STD DEV. T-TEST p-value
ω1 0.00771 0.00132 5.83 0.000
ω2 0.0255 0.00304 8.37 0.000
α1,1 0.0195 0.00148 13.11 0.000
α1,2 0.00201 0.000946 2.12 0.034
α2,1 0.00110 0.00117 0.94 0.345
α2,2 0.0624 0.00240 26.06 0.000
β1,1 0.975 0.00238 409.19 0.000
β1,2 −0.00392 0.00213 −1.84 0.066
β2,1 0.0141 0.00380 3.72 0.000
β2,2 0.895 0.00477 187.7 0.000

Table 2: Estimates of EBACD(1,1) model.

optimization algorithm of Berndt, Hall, Hall, Hausmann (1974) implemented
in RATS. In order to reduce complexity, each bivariate specification was taken
with just one autoregressive element of every kind, i.e. only (1,1) models were
estimated. EBACD(1,1) ML estimates, based on 52600 observations on the
pooled process, are shown in Table 2.
Two of the coefficients (α1,2 and β2,1) which incorporate the potential causal-

ity relation between this processes are significative and positive, so when du-
rations of one process are shorter, realizations of the other process tend to be
more frequent as well. Moreover all αk,k and βk,k are positive and highly signi-
ficative, which means that both processes are subjected to clustering of events.
In particular, β1,1 and β2,2 are close to 1, so that high persistence is found, as
it was in Engle and Russell (1998).
Let us discuss causality test results. First we have tested for the absence of

causality in both directions (H0 : α1,2 = β1,2 = α2,1 = β2,1 = 0). Maximized
log-likelihood under the null is −245291.308, so that the LR test rejects null
hypothesis at usual significance level (p-value: 0.00138). We have also tested
for unidirectional non-causality, i.e. ”transactions do not cause quotes” (α2,1 =
β2,1 = 0) and ”quotes do not cause transactions” (α1,2 = β1,2 = 0). Maximized
log-likelihood under the null are −245288.403 and −245284.298 respectively,
so that the first LR test rejects (p-value: 0.00255), while the second does not
(p-value: 0.15493).
This results suggest that the transactions process Granger causes the quotes

process, but not vice versa. The first result seems to confirm information-based
microstructural theories, since it seems that quote revision frequency depends
on the observed transaction density.5 The second result also seems consistent
with information-based theories, since in this paradigm informed traders trade
only when they have private information at their disposal (supposed exogenous
to the events observed in the market), while trade times of liquidity traders are

5Notice that this is not the same as Easley and O’Hara (1992) hypothesis, which implies
that transaction density has an impact on the Bid-Ask spread. This theory can be empirically
tested by an extension of the BACD model, which is presented in Mosconi-Olivetti (2000).
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COEFF. ESTIMATE STD DEV. T-TEST p-value
ω1 0.00769 0.00138 5.56 0.000
ω2 0.0255 0.00316 8.07 0.000
α1,1 0.0194 0.00154 12.55 0.000
α1,2 0.00194 0.000988 1.97 0.049
α2,1 0.00100 0.00122 0.83 0.409
α2,2 0.0624 0.00250 24.00 0.000
β1,1 0.975 0.00250 390.62 0.000
β1,2 −0.00379 0.00223 −1.70 0.090
β2,1 0.0143 0.00340 3.63 0.000
β2,2 0.895 0.00497 180.03 0.000
γ1 0.972 0.00569 170.73 0.000
γ2 0.974 0.00421 231.57 0.000

Table 3: Estimates of WBACD(1,1) model.

supposed totally random. Given these assumption, it seems natural that the
quotes process does not have any effect on the transactions process.
The same topics were analyzed with the WBACD(1,1) specification, whose

estimates are given in Table 3. γ1 and γ2 are close to 1, but the hypotheses
H0 : γ1 = γ2 = 1, H0 : γ1 = 1 and H0 : γ2 = 1 are all rejected, so that neither
duration process appears to be exponentially distributed. Causality tests yielded
the same results of the EBACD model: absence of causality in both directions
is rejected (p-value: 0.00232), ”transactions do not cause quotes” is rejected (p-
value: 0.00349) and ”quotes do not cause transactions” is not rejected (p-value:
0.19124).

GBACD(1,1) yielded slightly different results. First of all, remind that α
must be between −1 and 1; therefore we rewrite the model in terms of the
unrestricted parameter α0 which is related to α by:

α =
2

1 + eα0
− 1

Notice that when α
0
is 0, α is 0 as well. Maximum likelihood estimates are given

in Table 4. The correlation parameter α tends to his upper limit and the null
α = 0 is strongly rejected. Positive correlation between transactions and quotes
implies that, even conditioning on past information Fi−1, shorter transaction
durations are associated with more frequent quotes revisions. An economic
interpretation of this result may be found if we accept that the transaction den-
sity is related to informative factors. In this case, a positive correlation between
transactions and quotes indicates that the specialist is an informed agent, whose
behaviour partly reflects the same information set which drives the traders’ be-
haviour. In other words, when new information is available, informed traders
exploit their informative advantage by trading more frequently; on the other
hand the specialist, who shares at least part of the private information, reviews
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COEFF. ESTIMATE STD DEV. T-TEST p-value
ω1 0.00981 0.00130 7.540 0.000
ω2 0.0221 0.00215 10.270 0.000
α1,1 0.0194 0.00133 14.618 0.000
α1,2 0.00278 0.000835 3.327 0.001
α2,1 0.00208 0.000952 2.189 0.029
α2,2 0.0501 0.00188 26.573 0.000
β1,1 0.967 0.00266 363.260 0.000
β1,2 −0.00449 0.00203 −2.217 0.027
β2,1 0.00803 0.00324 2.475 0.013
β2,2 0.912 0.00390 233.474 0.000
α0 −31.936 0.000 0.000 0.000
α 1.000

Table 4: Estimates of GBACD(1,1) model.

his quotes more frequently. Notice that this interpretation is in contrast with the
assumption of non-informed specialist, which is standard in information-based
theory.
Let us now discuss whether the GBACD model confirms the causality rela-

tions discussed above. Absence of causality, ”transactions do not cause quotes”
and ”quotes do not cause transactions” null hypotheses are all rejected (p-values
are 0.00022, 0.00415, 0.00732, respectively). This means that in this case there
is also a significant impact of quotes process on transactions process. We can
intepret this result as follows: if the specialist is an informed agent (as sug-
gested by the correlation result), it seems reasonable that traders may infer
from quotes revision frequency whether the specialist holds private information
or not, and behave consequently. This is the same logic used by the specialist
inferring private information from transaction density. According to this inter-
pretation, the usual microstructural assumptions of non-informed specialist and
independence of trading activity on specialist’s behavior does not seem to be
empirically confirmed.
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