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Why Does Stock Market Volatility Change Over Time?

A Time-Varying Variance Decomposition for Stock Returns

Abstract

We extend the variance decomposition model of Campbell (1991) to allow for time-varying stock

market volatility. Specifically, we introduce a model in which the covariance matrix of the predictive

vector autoregression (VAR) follows a multivariate stochastic volatility (MSV) process. This new

VAR-MSV model permits the decomposition of unexpected real stock return variance into three

time-varying components: variance of “news about future dividends,” variance of “news about fu-

ture returns,” and a covariance term. We develop Bayesian Markov chain Monte Carlo (MCMC)

econometric techniques for estimating the VAR-MSV model. These methods are well-suited for

estimating models with latent stochastic volatilities, and are not subject to the small-sample biases

and unit root problems that plague frequentist estimation of predictive regressions. We report

strong evidence that real stock returns are predictable when the dividend-price ratio and a stochas-

tically detrended short-term interest rate are employed as forecasting variables. The time-varying

variance of “news about future returns” is the primary determinant of stock market volatility (both

levels and changes). The variance of “news about future dividends” increased dramatically during

the 1973–1974 recession and peaked during the 1980 recession before descending in the 1980s. How-

ever, its contribution to stock market volatility was offset by positive correlation between “news

about future dividends” and “news about future returns” from 1974–1984.

Key Words: Variance decomposition; Return predictability; Vector autoregression; Multivariate

stochastic volatility; Markov chain Monte Carlo; Gibbs sampling.

JEL Classification: G12 (Asset Pricing); C11 (Bayesian Analysis); C15 (Statistical Simulation

Methods; Monte Carlo Methods); C32 (Multiple Equation Time Series Models).



Campbell (1991) asks the fundamental question: What moves the stock market? Intuition de-

rived from a dynamic dividend growth model suggests that stock price movements are caused by

either changes in rational expectations of future dividends (i.e., “news about future dividends”) or

changes in rational expectations of future returns (i.e., “news about future returns”). Campbell

(1991) captures this intuition in a clever model where expected returns are time-varying. Camp-

bell’s model decomposes the variance of unexpected real stock returns into components associated

with uncertainty about future dividends and uncertainty about future real returns. The model

is composed of: (1) an asset pricing framework based on a log-linear approximation of a dynamic

dividend growth model, and (2) a vector autoregression (VAR) for forecasting stock returns. Camp-

bell finds that “the variability and persistence of expected stock returns account for a considerable

degree of volatility in unexpected stock returns.” He finds that the variance of news about future

dividends accounts for only one-third to one-half of the variance of unexpected stock returns.

In this paper we ask a different, but closely related, question: Why does stock market volatility

change over time? It is well-established that stock market volatility is time-varying. This fact has

important implications for asset pricing models, portfolio allocation decisions, risk management,

and derivative security pricing. Previous research on the question has examined both microstructure

explanations (e.g., trading volume, margin requirements, bid-ask spreads, etc.) and macroeconomic

explanations (e.g., levels and volatilities of macroeconomic variables).1 A well-known example is

Schwert (1989), which reports that stock market volatility is higher during recessions, but is puzzled

to find only weak evidence that it is associated with the time-varying volatility of macroeconomic

variables (e.g., inflation, monetary growth, industrial production).

Motivated by Campbell’s approach, this paper is the first to explore whether time-varying stock

market volatility is driven by uncertainty about future dividends or uncertainty about future real

returns.2 We introduce an extension of the Campbell (1991) model that allows the covariance matrix

of the VAR to vary over time. Specifically, we assume that the covariance matrix of the VAR follows

a multivariate stochastic volatility (MSV) process. The VAR-MSV model enables the decomposition

of unexpected real stock return variance into three time-varying components: variance of “news

about future returns,” variance of “news about future dividends,” and a covariance term. This

time-varying variance decomposition allows us to investigate how the variance components vary
1Bollerslev, Chou, and Kroner (1992) reviews some of this research.
2Using intuition similar to Campbell’s, Schwert (1989) suggests (p. 1116) that “If macroeconomic data provide

information about the volatility of either future expected cash flows or future discount rates, they can help explain
why stock return volatility changes over time.”
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over time, and how they contribute (in levels and changes) to the variance of unexpected returns.

We find that stock market volatility changes over time primarily because of the time-varying

volatility of “news about future returns.” A time-series plot of the variance of “news about future

returns” closely tracks (both in levels and in changes) the variance of unexpected real returns for

our post-war sample period (1952:1–2002:12). The share of return variance attributable to “news

about future returns” ranges from 0.71 to 1.20, but is typically less than one (the time-series average

is 0.84). Many, but not all, episodes of high variance of “news about future returns” are associated

with recessions. The other two components of stock market volatility play secondary roles. The

variance of “news about future dividends” is typically much smaller than the variance of “news

about future returns.” However, it did increase dramatically during the recessions of 1973–1975,

1980, and 1981–1982. The share of return variance attributable to “news about future dividends”

ranges from 0.10 to 0.61 (time-series average is 0.24) in the post-war period, but is always less

than the share attributable to “news about future returns.” When the variance of “news about

future dividends” is at its highest (i.e., 1974–1983), its contribution to return variance is tempered

by a covariance term that implies positive correlation between “news about future dividends” and

“news about future returns.” When this correlation is positive (negative), return variance is less

(more) than the sum of the variances of “news about future dividends” and “news about future

returns.” The share of return variance attributable to this covariance term ranges from 0.21 (when

the correlation is negative) to −0.79 (during the 1980 recession when the correlation is positive),

but is typically in the neighborhood of zero.

We find that monthly real stock returns are predictable using the dividend-price ratio and

the stochastically detrended short-term interest rate. Since the predictive regressors (especially

the dividend-price ratio) are highly autocorrelated, it follows that expected real stock returns are

highly persistent. When expectations regarding future returns are revised, they are revised for

many periods in the future. Since “news about future returns” is the discounted sum of such

revisions in expectations, a small innovation in the expected return can cause a relatively large

stock price movement. Likewise, a small increase in the volatility of expected return innovations

can contribute to a relatively large increase in stock market volatility. Such changes in the variance

of “news about future returns” are the primary reason that stock market volatility changes over

time.

We employ Bayesian Markov chain Monte Carlo (MCMC) methods to analyze the model. These
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methods are well-suited for making inferences regarding return predictability, and this paper makes

an important contribution in that area. Frequentist econometric methods (e.g., OLS) are problem-

atic for three main reasons. First, OLS estimators are biased in small samples when lagged en-

dogenous regressors are employed as predictive variables (see Stambaugh (1999)). Bayesian MCMC

methods, in contrast, provide exact small-sample posterior densities for the model’s parameters and

other functions of interest. Second, the correct asymptotic distribution theory is unclear if a predic-

tive variable is nearly integrated or exhibits a unit root (see Lewellen (2004), Campbell and Yogo

(2005) and Torous, Valkanov, and Yan (2005)). Inferences based on Bayesian posterior densities

are valid whether or not the predictive variable has a unit root (see Sims (1988) and Sims and Uh-

lig (1991)). Third, the OLS estimator bias corrections derived in Stambaugh (1999) and Lewellen

(2004) apply to univariate predictive regressions. Stambaugh (1999) finds that extending these

approaches to the VAR framework with multiple predictive regressors is not straightforward. In

contrast, Stambaugh shows that the Bayesian approach can be readily extended to VAR predictive

regressions. We implement just such an extension.3 The Bayesian approach has other attractive fea-

tures. Models with latent variables (stochastic volatilities in this case) are amenable to estimation

using MCMC methods. Using the Bayesian approach, the parameter space is augmented with the

stochastic volatilities and the Gibbs sampler algorithm effectively “integrates out” these nuisance

parameters. The model parameters and latent variables are estimated simultaneously, so poste-

rior densities implicitly incorporate estimation error (i.e., parameter uncertainty). Our Bayesian

MCMC estimation methodology for estimating SV models builds on techniques developed in Chib,

Nardari and Shephard (2002, 2005).

The VAR approach to forecasting asset returns is used in many strands of the asset pricing

literature. Following Campbell (1991), many researchers employ a VAR framework coupled with

a log-linear approximation of the present value relation to decompose unexpected asset returns.

Papers that employ this approach include Campbell (1993), Campbell and Ammer (1993), Campbell

(1996), Ammer and Mei (1996), Lamont (1998), Lamont and Polk (2001), Hollifield, Koop, and Li

(2003), and Campbell and Vuolteenaho (2004). Hodrick (1992) and Stambaugh (1999) examine the

statistical properties of predictive regressions (including VARs) using lagged endogenous regressors.

Kandel and Stambaugh (1996), Barberis (2000), and Shanken and Tamayo (2004) use a VAR

framework to examine the sensitivity of asset allocations to evidence about return predictability.
3In related work, Hollifield, Koop, and Li (2003) employ Bayesian MCMC methods to estimate VAR predictive

regressions where the VAR errors are homoskedastic.
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The VAR-MSV model introduced in this paper has potential applications in all of these strands of

the literature.

The remainder of the paper is organized as follows. Section I derives the VAR-MSV model.

Section II discusses our Bayesian MCMC estimation methodology. The more technical aspects are

included in the appendices. The data are described in Section III. We discuss our empirical results

in Section IV. Section V concludes and suggests directions for future research.

I The Model

A Decomposing Unexpected Stock Returns

We begin by decomposing unexpected real stock returns into components related to changes in

rational expectations of future real dividends and future real stock returns. We employ a model

derived by Campbell (1991). The model is based on a clever log-linear approximation of a dynamic

accounting identity.4

Let ht+1 denote the log real return on a stock held from times t to t + 1, and let dt+1 denote

the log real dividend paid during period t + 1. Campbell (1991) shows that unexpected real stock

returns can be decomposed into components related to changes in expectations regarding future

dividends and changes in expectations regarding future real returns:

ht+1 − Etht+1 = (Et+1 − Et)
∞∑

j=0

ρj∆dt+1+j − (Et+1 − Et)
∞∑

j=1

ρjht+1+j . (1)

The parameter ρ is the average ratio of the stock price to the sum of the stock price and the

dividend. It should be slightly less than one. In our empirical work, we set ρ = 0.997 for the

1952:1–2002:12 sample of monthly data. It is clear from this model that an unexpected positive

real return shock (i.e., good news) must be caused by either an upward revision in expected dividend

growth or a downward revision in expected future real returns.

Let ηt+1 ≡ ht+1−Etht+1 define the unexpected real stock return in period t+1. For notational
4Campbell derives the equation by taking a first-order Taylor series approximation of the present value relation

for a dividend-paying stock. The approximate equation is solved forward, imposing the terminal condition that the
log dividend-price ratio does not follow an explosive process. The log-linear approximation technique was originally
proposed in Campbell and Shiller (1988a, b).
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convenience, we express (1) more simply as:

ηt+1 = ηd,t+1 − ηh,t+1, (2)

where ηd,t+1 represents “news about future dividends” and ηh,t+1 represents “news about future

real returns.”

B VAR Approach to Estimating Unobservable Components

Following Campbell (1991), we employ a VAR model to forecast future real stock returns. Let zt+1

denote a k×1 state vector of variables known at the end of period t+1. The real stock return ht+1

is the first element in zt+1. The remaining elements of zt+1 are forecasting variables. We assume

that the state vector zt+1 follows a first-order VAR process:

zt+1 = Azt + wt+1 (3)

where zt is the lagged state vector, A is a conforming coefficient matrix, and wt+1 is the error vector.

In the homoskedastic VAR model employed by Campbell (1991), the error vector is assumed to be

distributed multivariate normal, wt+1 ∼ Nk(0,Σ).

Multi-period forecasts of the state vector are obtained by matrix multiplication, Etzt+j = Ajzt.

Let e1 denote a k × 1 vector with a 1 in the first row and zeroes in the others. e1 is designed

to pick the first element from a state or error vector. For example, e1′zt+1 = ht+1 picks the real

stock return from the state vector, and e1′wt+1 = ηt+1 = ht+1−Etht+1 picks the unexpected stock

return from the error vector.

Campbell (1991) combines the first-order VAR forecasting model with the previously described

asset pricing framework to decompose unexpected real stock returns into “news about future re-

turns” and “news about future dividends.” It follows from (1) that the “news about future returns”
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(i.e., the discounted sum of revisions in expected real returns) can be written as

ηh,t+1 = (Et+1 − Et)
∞∑

j=1

ρjht+1+j

= e1′
∞∑

j=1

ρjAjwt+1

= e1′ρA(I− ρA)−1wt+1

= λ′wt+1 (4)

where λ′ = e1′ρA(I−ρA)−1 is a nonlinear function of the VAR coefficients. Since ηt+1 = e1′wt+1,

it follows from the error decomposition in (2) that

ηd,t+1 = (e1′ + λ′)wt+1. (5)

The vectors λ′ and (e1′ + λ′) map the VAR innovations into “news about future returns” and

“news about future dividends,” respectively.

It should be emphasized that Campbell (1991) doesn’t explicitly model dividend growth or

“news about future dividends.” The term ηd,t+1, as defined in (5), is residual in nature. Although

Campbell refers to this term as “news about future dividends,” it might reasonably include a

“noise” component. Campbell doesn’t discuss the possible contribution of irrational mispricing or

noise trading (i.e., trading for reasons unrelated to fundamentals) to unexpected stock returns. It’s

not clear whether predictable variation in real stock returns tracks rational variation in the market

risk premium or is due to predictable corrections of irrational mispricing (e.g., mean reversion). The

model in (1) is based on a dynamic accounting identity, not an economic model of rational investor

behavior. Distinguishing between rational and irrational stories about return predictability is an

important pursuit, but it is not the focus of this paper.5 In his conclusion, Campbell emphasizes

several caveats that apply equally to this paper. In particular, he cautions that the return decom-

position “cannot be given an unambiguous structural interpretation.” Since the variables in the

VAR are determined simultaneously, it is probably overly simplistic to conclude that “news about

future returns” and “news about future dividends” determine unexpected stock returns.
5Shanken and Tamayo (2004) investigates the relative roles of played by risk and mispricing in explaining stock

return predictability.
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C Multivariate Stochastic Volatility

Campbell (1991) assumes that the error vector in (3) is homoskedastic (i.e., wt+1 ∼ Nk(0,Σ)).

A distinctive feature of our model is the multivariate stochastic volatility (MSV) specification for

the covariance matrix Σt+1. In extending the VAR model to the heteroskedastic case, we would

like a specification for Σt+1 that is sufficiently rich to allow for non-zero time-varying correlations

between VAR errors. However, our methodology for estimating stochastic volatility processes,

discussed Section II below, assumes that the errors are orthogonal. Thus, we need to transform

the covariance matrix Σt+1. This is not an obstacle. Because Σt+1 is a positive definite symmetric

matrix, there exists a unique triangular factorization Σt+1 = BVt+1B′ where B is a k × k lower

triangular matrix with unit elements on the main diagonal,

B =




1 0 · · · 0

b21 1 · · · 0
...

...
. . .

...

bk1 bk2 · · · 1




, (6)

and Vt+1 is a k × k diagonal matrix with positive elements on the main diagonal.6 With this

transformation, the VAR system in (3) can be rewritten

zt+1 = Azt + BV1/2
t+1εt+1 (7)

where εt+1 ∼ Nk(0, Ik) and Vt+1 is a diagonal matrix of stochastic variances. With this specifica-

tion, the VAR errors are permitted to have non-zero, time-varying contemporaneous correlations.

Let vj,t+1 denote the log of the jth element of Vt+1, such that

Vt+1 = diag{exp(v1,t+1), . . . , exp(vk,t+1)}. (8)

We assume that each of the log-variances in (8) follows an independent autoregressive (AR) process,

vj,t+1 = µj + φj(vj,t − µj) + σjζj,t+1, (9)

where ζj,t+1 ∼ N (0, 1) and E[ζt+1ζ
′
t+1] = Ik. Stochastic volatility (SV) models such as this offer an

6Section 4.4 of Hamilton (1994) discusses the triangular factorization.
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attractive alternative to models from the GARCH family. The chief difference between a GARCH

model and (9) is the variance innovation term σjζjt+1 in the SV model. The variance innovation

in a GARCH model is typically the lagged squared innovation from the return process. SV models

permit innovations in both the return and variance processes. Taylor (1994) and Ghysels, Harvey,

and Renault (1996) review SV models such as (9). Articles that develop econometric techniques for

estimating SV models include Taylor (1986), Harvey, Ruiz, and Shephard (1994), Jacquier, Polson,

and Rossi (1994), Kim, Shephard, and Chib (1998), and Chib, Nardari and Shephard (2002, 2005).

D Variance Decomposition

From (1), the variance of unexpected real returns can be decomposed into three terms,

Var(ηt+1) = Var(ηd,t+1 − ηh,t+1)

= Var(ηd,t+1)− 2Cov(ηd,t+1, ηh,t+1) + Var(ηh,t+1). (10)

Uncertainty about returns in period t + 1 can be expressed as

Var(ηh,t+1) = λ′Σt+1λ. (11)

Likewise, uncertainty about dividends in period t + 1 can be expressed as

Var(ηd,t+1) = (e1′ + λ′)Σt+1(e1′ + λ′)′. (12)

And, the covariance is

Cov(ηd,t+1, ηh,t+1) = (e1′ + λ′)Σt+1λ. (13)

Campbell (1991) reports ratios of the unconditional versions of these three terms to the uncon-

ditional variance of real returns. We plot corresponding time-varying ratios involving these three

terms. The denominator of each ratio is the variance of the unexpected real return, Var(ηt+1) =

Σ11,t+1 = e1′Σt+1e1. By construction, these three ratios sum to one at each point in time.

The difference between the shares of Var(ηt+1) attributable to Var(ηd,t+1) and Var(ηh,t+1) is an

8



intertemporal constant. Given the assumption that Σt+1 = BVt+1B′, this is a mechanical result:

Var(ηd,t+1)−Var(ηh,t+1)
Var(ηt+1)

=
(e1′ + λ′)Σt+1(e1′ + λ′)′ − λ′Σt+1λ

e1′Σt+1e1
= 1 + 2λ1 + 2λ2B21 + 2λ3B31. (14)

Var(ηt+1) and Var(ηh,t+1) are estimated directly. Recall from equations (2) and (5) that that ηd

is residual in nature. It follows that Var(ηd,t+1) and Cov(ηd,t+1, ηh,t+1) are also somewhat residual

in nature, and are estimated indirectly conditional on the variance decomposition in (10).

II Bayesian Estimation

OLS estimation of VAR predictive regressions is problematic for several reasons. Employing lagged

endogenous regressors, especially highly autocorrelated ones, can induce finite-sample biases in

predictive regressions.7 This is because return innovations are correlated with innovations in the

predictive regressors. Stambaugh (1999) derives the finite-sample properties of the OLS estimator

in this case and proposes a correction for the bias. However, the validity of the correction depends

critically on the assumed stationarity of the predictive variable (see Lewellen (2004) and Torous,

Valkanov, and Yan (2005)). For many well-known predictive variables, this is a heroic assumption.

If the predictive variable’s order of integration is uncertain, then the asymptotic distribution of the

OLS estimator is of non-standard form and traditional inferential tools (e.g., t-tests and p-values)

are invalid (see Campbell and Yogo (2005) and Torous, Valkanov, and Yan (2005)). Furthermore,

the bias corrections suggested in Stambaugh (1999) and Lewellen (2004) are for univariate predictive

regressions. As discussed in Stambaugh (1999), the extension to models with multiple predictive

variables is not straightforward.

We employ Bayesian Markov chain Monte Carlo (MCMC) methods to estimate the model.

Unlike frequentist methods, Bayesian methods treat the parameters as random variables given a

likelihood function and fixed data. The Bayesian approach is natural in this setting because the

regressors are stochastic rather than deterministic (i.e., fixed in repeated samples). The Bayesian

approach to estimating predictive regressions has many attractive features. Bayesian methods de-

liver exact finite-sample posterior densities for both parameters and features of interest. Inferences
7See Mankiw and Shapiro (1986), Nelson and Kim (1993), and Stambaugh (1999) for detailed discussions.
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made from posterior densities are valid even if the predictive regressor is nearly-integrated or ex-

hibits a unit root (see Sims (1988) and Sims and Uhlig (1991)). And, as shown in Stambaugh (1999),

the Bayesian approach can be readily extended to models with multiple predictive regressors. We

implement such an extension for the VAR forecasting model.

Bayesian estimation requires three elements: the data, a likelihood function dictated by the

model, and prior densities for the model’s parameters. For illustration of the general principle, let

D denote the data, p(D|ψ) denote the likelihood function, and π(ψ) denote the prior density for

the parameter set ψ. In Bayesian analysis, the object of interest is the joint posterior density of

the parameters given the data, π(ψ|D). Following Bayes rule, the joint posterior density for the

parameters is proportional to the product of the likelihood function and the prior density on the

parameters:

π(ψ|D) ∝ p(D|ψ)π(ψ).

Bayesian inference is accomplished by analyzing the joint posterior density of the model’s parame-

ters, or other functions of interest.

A Likelihood Functions

We consider two models: the homoskedastic VAR model in equation (3), and the VAR-MSV model

in (7). For notational convenience, let z = {z1, . . . , zT } denote the dependent variables of the VAR

systems in (3) and (7).

A.1 Homoskedastic VAR Model

Let ψH = {A,Σ} denote the parameters of the homoskedastic VAR model in (3). The likelihood

function (i.e., sampling density) for the homoskedastic VAR model is

p(z|ψH) =
T∏

t=1

p(zt|ψH, zt−1)

=
T∏

t=1

Nk(zt|Azt−1,Σ) (15)

where Nk a k-variate Normal density. Appendix A describes the probability distribution functions

and notation used in this paper.
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A.2 VAR-MSV Model

The parameters of the VAR-MSV model in (7) are the VAR matrix A and the lower triangular

matrix B. The latent variances in the diagonal matrix Vt+1 are generated by the k stochastic

volatility processes described in (9). Let θj = {µj , φj , σj} denote the parameters of the jth stochas-

tic volatility process. And, let ψMSV = {A,B, θ1, . . . , θk} denote the full parameter set for the

VAR-MSV model.

The likelihood function for the VAR-MSV model in (7) is

p(z|ψMSV) =
T∏

t=1

∫
p(zt|ψMSV, zt−1,vt)p(vt|ψMSV)dvt

=
T∏

t=1

∫
Nk(zt|Azt−1,BVtB′)p(vt|θ,Ft−1)dvt (16)

where Ft−1 = {v1, . . . ,vt−1} denotes the history of the latent log-variance processes through t− 1.

Note that the parameters θ = {θ1, . . . , θk} do not enter (16) directly. Rather, the likelihood function

is evaluated by integrating over the latent log-variances vt = [v1,t+1 · · · vk,t+1]′. Estimation of this

model using frequentist methods (e.g., maximum likelihood) is impractical because the integral

in (16) in analytically intractable. However, the model is amenable to estimation using Bayesian

MCMC methods. The Gibbs sampler, discussed below in Section II.C, effectively integrates over

the latent log-variances to obtain the joint posterior density of the model’s parameters and functions

of interest (e.g., variance components).

B Priors

In Bayesian econometrics, prior densities summarize the researcher’s prior beliefs about the model’s

parameters. Following Hollifield, Koop, and Li (2003), we consider four priors:

Prior 1 An uninformative base prior.

Prior 2 Base prior with covariance stationarity imposed.

Prior 3 Base prior with covariance stationarity imposed and stochastic initial condition.

Prior 4 Prior 3 with an additional “features of interest” prior.
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B.1 Base Prior

For the homoskedastic VAR model, we assume an independent Normal-Wishart prior. We will

refer to this as the “base prior” for the homoskedastic VAR model. Specifically, we assume that

the priors are independent and can be factored

π(A,Σ) = π(A)π(Σ), (17)

where

π(a) = Nk2

(
a|a0,A−1

0

)
(18)

π(Σ−1) = W (
Σ−1|S0, s0

)
. (19)

Note that a = vec(A′) where the vec(·) operator stacks the columns of its argument. We assume

that Σ−1 is distributed Wishart. This is equivalent to assuming that Σ is distributed inverse-

Wishart. Appendix A describes the probability distributions and notation used in the paper.

The researcher’s prior beliefs are reflected in the choice of hyperparameters a0, A0, s0 and S0.

The Normal-Wishart prior converges to the diffuse or flat prior employed by Stambaugh (1999)

as a0, A0, s0 and S0 all converge to zero. Our choice of hyperparameters for the base prior

corresponds to relatively uninformative prior beliefs regarding the parameters. We discuss our

choice of hyperparameters further with the empirical results.

For the VAR-MSV model, we assume the priors are independent and can be factored

π(A,B, θ1, . . . , θk) = π(A)π(B)π(θ1) · · ·π(θk). (20)

We assume π(A) is the same as the homoskedastic VAR model (see (18)). Let b denote the

(k(k − 1)/2)× 1 vector containing the free elements of B. The base prior for b is also Normal:

π(b) = Nk(k−1)/2

(
b|b0,B−1

0

)
. (21)

The priors π(θj) = π(µj)π(φj)π(σj) are chosen to be relatively uninformative regarding the

12



dynamics of the SV processes described in (9). For µj , the unconditional log variance, we assume:

π(µj) = N (µj |m0j ,M0j) . (22)

φj reflects the persistence of the SV process. We constrain φj to the region of stationarity (i.e.,

|φj | < 1) by invoking the change of variable φj = 2φ∗j −1 and assuming that φ∗j is distributed Beta:

π(φ∗j ) = B
(
φ∗j |φ(1)

0j , φ
(2)
0j

)
. (23)

We assume that σj , the volatility of the SV process, is distributed Inverse-Gamma:

π(σj) = IG (σj |α0j , β0j) . (24)

The choice of hyperparameters {m0j ,M0j , φ
(1)
0j , φ

(2)
0j , α0j , β0j} are discussed with the empirical

results.

B.2 Base Priors with Covariance Stationarity

When lagged endogenous regressors are employed in predictive regressions (including VARs), infer-

ence is very sensitive to high autocorrelation, and especially a unit root, in a predictive variable. If

the researcher has prior beliefs regarding the stationarity of the predictive variable (covariance sta-

tionarity in the case of a VAR), then inference can be enhanced by incorporating those prior beliefs.

The matrix A is covariance stationary if its eigenvalues lie inside the unit circle (i.e., ‖A‖ < 1).8 The

base prior does not restrict A to the region of covariance stationarity. As demonstrated in Hollifield,

Koop, and Li (2003), sampling A from outside the region of covariance stationarity has dramatic

(perhaps pathological) effects on posterior densities. Let S ≡ {A ∈ <k×k such that ‖A‖ < 1}
denote the region of covariance stationarity, and let I(A ∈ S) be the corresponding indicator vari-

able. Following Stambaugh (1999) and Hollifield, Koop, and Li (2003), we entertain prior beliefs

regarding the covariance stationarity of the VAR. Under this prior belief, A is constrained to the

region of covariance stationarity and (18) is rewritten as:

π(vec(A)) = Nk2

(
vec(A)|a0,A−1

0

)
I(A ∈ S). (25)

8See Hamilton (1994) p. 259.
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The covariance stationarity prior on A applies to both the homoskedastic VAR and VAR-MSV

models. Priors on all other parameters are identical to the base prior.

B.3 Base Prior with Covariance Stationarity and Stochastic Initial Condition

In the standard regression framework, the initial condition z0 is assumed to be deterministic. In that

case, it would be appropriate to work with the priors and likelihood functions discussed above. For

the application we consider, the assumption of deterministic regressors is clearly invalid. Following

Stambaugh (1999) and Hollifield, Koop, and Li (2003), we consider estimation of the VAR models

under the alternative assumption that the initial condition z0 is stochastic rather than deterministic.

First, consider the homoskedastic VAR model. Since the initial condition is stochastic, z0 can

be treated as a parameter with its own prior density. Our prior on z0 is a function of the other

parameters of the model. Given ψH and assuming covariance stationarity, we assume that z0 is

drawn from its unconditional or steady-state density,

p(z0|ψH) = Nk(z0|0,Ω0), (26)

where

vec(Ω0) = [I− (A⊗A)]−1 vec(Σ). (27)

Equations (26) and (27) imply that the vector z0 is drawn from a multivariate Normal density with

mean zero (since we work with demeaned data) and unconditional covariance matrix Ω0.

Stambaugh (1999) distinguishes between “conditional” and “exact” likelihood functions. In

Stambaugh’s terminology, the likelihood function in (15) is “conditional” on observing the initial

condition z0. When the initial condition is stochastic rather than deterministic, Stambaugh (1999)

employs an “exact” likelihood function which corresponds to the product of the “conditional”

likelihood in (15) and the density in (26). Hollifield, Koop, and Li (2003) treat the density in (26)

as a prior. So, depending on one’s perspective, the density in (26) could be considered a prior or

a component of the likelihood function. Since the posterior density is proportional to the product

of the likelihood function and the priors, the distinction is immaterial. The inference will be the

same.

Next, consider the VAR-MSV model. Given ψMSV, we assume that z0 is drawn from its uncon-
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ditional density,

p(z0|ψMSV) = Nk (z0|0,Ω0) (28)

where

vec(Ω0) = [I− (A⊗A)]−1 vec
(
BV0B′) (29)

V0 = diag
{

exp
(

µ1 +
1
2

σ2
1

(1− φ2
1)

)
, . . . , exp

(
µk +

1
2

σ2
k

(1− φ2
k)

)}
. (30)

The exponential term exp(µj + σ2
j /2(1− φ2

j )) in (30) is the unconditional or steady-state variance

of the jth independent SV processes described in (9). It follows that BV0B′ is the unconditional

covariance matrix for the VAR system error vector.

B.4 Features of Interest Prior

Hollifield, Koop, and Li (2003) suggests that parameters for a reduced-form VAR such as (3) are

difficult to interpret. This makes eliciting prior beliefs regarding the model’s parameters equally

difficult. However, researchers may have prior beliefs regarding “features of interest.” In the present

model, we are interested in the terms of the variance decomposition. These features of interest are

highly non-linear functions of the model’s parameters. We discuss technical aspects of the features

of interest prior in Appendix B.

C Prior-Posterior Analysis

Combining the likelihood function and the priors via Bayes rule, one obtains the joint posterior

density of the model’s parameters given the data. Given the form of the likelihood functions

in (15) and, especially, in (16), and given any of the priors described above, the joint posterior

cannot be estimated (i.e., sampled) directly. Fortunately, the Gibbs sampling method bypasses

the computation of the likelihood function and computation of the joint posterior density. Rather,

the Gibbs sampler algorithm generates draws from the conditional distribution of each block of

parameters (i.e., the distribution of each block given the data, the prior and the other blocks of

parameters). The draws from these conditional densities eventually converge to draws from the

joint posterior density. Inference is based on summary statistics (e.g., mean, standard deviation,

etc.) describing the distribution of the sample draws of the model’s parameters, and of functions
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thereof.

Bayesian estimation of the homoskedastic VAR model is discussed in detail in Hollifield, Koop,

and Li (2003). Our Bayesian treatment of the homoskedastic VAR model is essentially the same,

and we refer the reader to that paper for details.

For the VAR-MSV model, note that it is the latent log-variances (vt), and not the parameters of

the SV processes (θ), that appear in the likelihood function (16). Bayesian MCMC methods treat

latent variables as parameters and, thus, produce a sample from their posterior distribution as well.

The other parameters are then drawn conditioning not only on the data, but also on the simulated

values of the latent variables. This approach is known as data augmentation. Conditioning on the

latent variables, the sampling density of zt can be written

zt|A,B, zt−1,vt ∼ Nk(Azt−1,BVtB′) (31)

Let yjt = ln(B−1
j (zt −Azt−1))2 and {vj} = (v1, . . . , vk), where vj = (vj1, . . . , vjT ) denotes the

time series of the jth latent SV process. In similar fashion, let yj = (yj1, . . . , yjT ). Draws from the

(augmented) posterior density are obtained by cycling through the following steps.

1. Initialize B, z0 and vj for j = 1, . . . , k.

2. Sample A|z, {vj},B, z0.

3. Sample B|z, {vj},A, z0.

4. Compute yj and sample θj and {vj} by repeating the following steps for j = 1, . . . , k:

(a) Draw θj from θj |yj

(b) Draw vj from vj |yj , θj .

5. Sample z0|B, z, {vj},A

6. Go to step 2 and repeat.

Under Prior 1 and Prior 2, step 5 and any conditioning on z0 in the other steps are omitted. Details

on each step of the simulation are provided in Appendix B.
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III Data

We closely follow Campbell (1991) in constructing the data set. The vector zt = {ht (D/P )t rbt}′

includes three elements: a real stock index return, a dividend-price ratio, and a stochastically de-

trended short-term interest rate. The dividend-price ratio (or dividend yield) and relative T-bill

rate are chosen for their well-documented ability to forecast stock returns. Fama and Schwert (1977)

first document the forecasting power of short-term interest rates. Shiller (1984), Fama and French

(1988), and Campbell and Shiller (1988a) were among the first papers to report the significant

forecasting power of the dividend-price ratio. These results are not without controversy. Mankiw

and Shapiro (1986), Nelson and Kim (1993), and Stambaugh (1999) find that OLS estimates of

the dividend-price ratio’s predictive power are biased in small samples (i.e., forecasting power is

overstated) since the dividend-price ratio (a lagged endogenous regressor) is highly autocorrelated.

Stambaugh (1999) and Lewellen (2004) find that incorporating prior information about the sta-

tionarity of the predictive regressor strengthens evidence of predictability. Ang and Bekaert (2004)

report that the ability of the dividend-price ratio to predict returns is “best visible at short horizons

with the short rate as an additional regressor.”9 Given the state of the literature, we believe that

our choice of predictive regressors for the VAR is reasonable, and that estimation of the model

using Bayesian MCMC methods may provide useful insights on the predictability debate.

We study the period 1952:1–2002:12 (612 monthly observations). We choose this period because

of evidence that the data generating process was fundamentally different prior to 1952. As noted by

Schwert (1989) and Kim, Nelson, and Startz (1991), stock returns in the pre-war period (particularly

the depression years) were substantially more volatile than in any period since 1952. Furthermore,

interest rates were artificially smooth prior to the 1951 Fed-Treasury accord.

We construct a real total stock return index by deflating the CRSP monthly value-weighted

index of NYSE stocks (with dividends) using the Consumer Price Index (CPI) obtained from

CRSP. The log total return is defined ht = ln(Pt + dt)− ln(Pt−1) where Pt is the real index level at

t and dt is the real dividend paid between t − 1 and t. Real returns are expressed in percent per

month.

We compute the dividend-price ratio in the manner of Fama and French (1988). We construct

monthly dividend and price index series using the return series (with and without dividends) for
9Other recent papers in the debate include Goyal and Welch (2003) and Campbell and Yogo (2005).
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the CRSP monthly value-weighted index of NYSE stocks. The dividend-price ratio is the sum of

the dividends paid over the previous twelve months divided by the current level of the stock price

index,

(
D

P

)

t

=
1
Pt

11∑

j=0

dt−j .

The dividend-price ratio is expressed in percent per annum.

We construct the stochastically detrended short-term interest rate in the manner of Campbell

(1991) and Hodrick (1992). The relative bill rate is the one-month Treasury bill yield, y1,t+1, less

its twelve-month moving average,

rbt = y1,t − 1
12

12∑

i=1

y1,t−i.

The Treasury bill data are from Ibbotson & Associates. The relative bill rate is multiplied by 1200

to express it in percent per annum.

The time-series of (D/P )t and rbt are plotted in Figure 1.

Figure 1 goes about here.

IV Empirical Results

A Priors

We assume a prior for the A matrix that contains almost no information. Specifically, we set the

hyperparameters a0 = 0 and A−1
0 = 106 · Ik2 . This implies that VAR coefficients are normally

distributed with mean zero and standard deviation 1000 (i.e., nearly flat). For the homoskedastic

VAR model, the hyperparameters for the prior on the Σ matrix are S0 = Ik and s0 = 8. The latter

choice is the least informative within the values for which the prior mean of Σ exists. Our choices

for A and Σ are identical to Hollifield, Koop, and Li (2003).

For the B matrix in the VAR-MSV model, we set b0 = 0 and B−1
0 = 10 · Ik(k−1)/2. For µj ,

the average log-variance for error shocks, we set m0j = −2 and M0j = 25 for all j. At the prior

mean, this implies an average volatility of about 8.3% per month with a standard deviation of over
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200%. Again, this prior is very uninformative. For φj , we set φ1
0j = 20 and φ2

0j = 1.5 so that the

distribution has a mean of 0.86 with standard deviation of 0.11, reflecting the expected persistence

in the stochastic volatility dynamics. For σj , we set α0j = 2.39 and β0j = 0.347 implying a mean

of 0.25 and a standard deviation of 0.4 for the volatility of the log-variance.

B Homoskedastic VAR Models

The Campbell (1991) model allows us to address the question: What moves the stock market?

Table I reports summary statistics describing the posterior densities for parameters of the VAR

coefficient matrix A and the covariance matrix Σ for the homoskedastic VAR model. We report

results obtained under the four priors discussed in Section II. Since the posterior densities for A and

Σ are very robust to our different prior specifications, we discuss them together. Unless otherwise

noted, our discussion will focus on the posterior densities obtained under Prior 4 (i.e., the features

of interest prior).

We find that the dividend-price ratio and the relative bill rate do forecast future real stock

returns. Posterior estimates of A12 and A13 are 0.312 and −0.599, respectively. The inference is

statistically reliable. For the dividend-price ratio, the 90% Bayesian confidence interval for A12 is

[0.091, 0.548], and only 0.0077 of the posterior density is less than zero.10 For the relative bill rate,

the 90% Bayesian confidence interval for A13 is [−0.837, −0.361], and only 0.0006 of the posterior

density is greater than zero. High dividend-price ratios forecast higher than average future real

stock returns, and high relative short-term interest rates forecast lower than average future real

stock returns. The parameters in the second and third rows of A indicate that the dividend-price

ratio and the relative bill rate would be described well by univariate first-order autoregressions. As

expected, the dividend-price ratio is very highly autocorrelated. The posterior estimate of A22 is

0.988 with a 90% Bayesian confidence interval of [0.978, 0.997]. This is where one might reasonably

expect the covariance stationarity prior to play an important role. However, posterior estimates

of A22 are nearly unaffected by the imposition of covariance stationarity. The proportion of the

posterior density of A22 greater than one ranges from 0.0154 under Prior 1 to 0.0108 under Prior

4. We conclude that the dividend-price ratio is stationary for the 1952–2002 sample period. It is

important to note that our inferences regarding predictability are not sensitive to the existence of
10We use the term posterior estimate to denote the mean of the posterior density. The 90% Bayesian confidence

interval describes the region between the 5% and 95% quantiles of the posterior density. Alternatively, we could use
the standard deviation of the posterior density to describe the precision of the posterior estimate.
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a unit root in the predictive regressors. As discussed in Sims (1988) and Sims and Uhlig (1991),

Bayesian posterior densities, and hence inferences, are valid even when regressors are non-stationary.

Campbell and Yogo (2005) and Torous, Valkanov, and Yan (2005) show that traditional frequentist

inference tools (e.g., t-tests and p-values) may be invalid when regressors are nearly integrated.

Table I goes about here.

The posterior estimates of Σ and R2 reported in Table I are also very robust to prior spec-

ification. The unconditional variance of unexpected stock returns, Σ11, is 16.680. As expected,

the covariance between unexpected real stock returns and innovations in the dividend-price ratio

is strongly negative. The posterior estimate of Σ21 is −0.618, which corresponds to a contempora-

neous correlation of ρ21 = −0.895. Innovations in the relative bill rate are weakly correlated with

unexpected real returns (Σ31 = −0.260, ρ31 = −0.082) and innovations in the dividend-price ratio

(Σ32 = 0.010, ρ32 = 0.077). Note that the parameters of Σ are estimated simultaneously with the

parameters of A. Posterior estimates of R2 are 0.030, 0.978 and 0.558 for ht+1, (D/P )t+1 and rbt+1,

respectively.11 Campbell (1991) reported corresponding R2 statistics of 0.024, 0.937 and 0.450 for

1952:1–1988:12.

Posterior densities for the variance decompositions are reported in Table II. We report the shares

of unexpected real stock return variance attributable to the variance components defined in (10).

It is here that the importance of the covariance stationarity prior becomes evident. Under Prior 1

(i.e., the base prior), the posterior mean and standard deviation are “blown up” by a few MCMC

draws from outside the region of covariance stationarity. In contrast, the median, 5% and 95%

quantiles of the posterior densities appear reasonable and are very similar to those obtained under

the other priors. The results for Prior 1 are consistent with the “pathological” results reported in

Hollifield, Koop, and Li (2003).

Table II goes about here.

We find that most of the variance of unexpected real returns in the post-war period is at-

tributable to “news about real returns.” Under Prior 2, posterior estimates of the shares due to

Var(ηd), Var(ηh) and −2Cov(ηd, ηh) are 0.267, 0.786 and −0.054, respectively. Under Prior 4 (i.e.,

the features of interest prior), posterior estimates of the shares change very little (0.261, 0.739 and
11For each equation in the VAR, we sample R2 = 1− SSE/SST for each iteration of the Gibbs sampler.
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0.000), but the estimates are more precise (i.e., lower posterior standard deviations). These results

are reasonably consistent with Campbell (1991), which reports shares of 0.127, 0.772 and 0.101,

respectively, for the 1952:1–1988:12 period. Even when covariance stationarity is imposed (i.e.,

under Priors 2, 3 and 4), variance decompositions remain sensitive to draws of A near the edge of

the region of stationarity. The resulting skewness in the posterior densities of the shares of Var(η)

is evident in the differences between the posterior means and medians reported in Table II. Under

Prior 4, the posterior medians are 0.236, 0.711 and 0.070, respectively.

Bayesian posterior densities for two other features of interest are also reported in Table II. Sam-

ple draws for Corr(ηd, ηh) are constructed from the sample draws of the model’s other parameters.

The posterior mean {median} for Corr(ηd, ηh) is −0.068 {−0.090}, but the Bayesian confidence

interval [−0.520, 0.468] is relatively wide (i.e., imprecise) and includes zero. Thus, we can offer no

conclusive inference regarding the sign of Corr(ηd, ηh). Campbell (1991) reports the point estimate

of Corr(ηd, ηh) = −0.161 for 1952:1–1988:12, but is also inconclusive regarding the sign (std. error

= 0.256). Following Campbell (1991), we also define a VAR persistence measure. Let

Ph ≡
σ(ηh,t+1)
σ(ut+1)

=
(λ′Σλ)1/2

(e1′AΣA′e1)1/2
(32)

where ηh,t+1 is the previously defined “news about future returns,” ut+1 = e1′Awt+1 is the inno-

vation to the expected return, and the σ(·) operator gives the standard deviation of its argument.

The VAR persistence measure summarizes the economic effect of persistent expected returns: a

1% increase in the expected return causes a Ph% decrease in the real stock price index. We re-

port the posterior densities of Ph for the homoskedastic VAR model in Table II. Under Prior 4,

the posterior mean {median} is 7.252 {6.844} and the Bayesian 90% confidence interval is [4.076,

11.720]. For comparison, Campbell (1991) reports a point estimate of 5.794 (std. error = 1.469) for

1952:1–1988:12. Note that Campbell (1991) uses the delta method to compute standard errors for

these features of interest. The Bayesian MCMC approach produces exact small-sample posterior

densities for these features of interest.

Although the predictive regressors explain only a modest fraction of the variance in real stock

returns (i.e., R2 = 0.030), we conclude that “news about future returns” explains the lion’s share

of the variance in unexpected real returns. How do we reconcile these two seemingly disparate

conclusions? Expected real stock returns are very persistent. This characteristic is related to the

persistence of the predictive regressors, particularly the dividend-price ratio. Viewed through the
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lens of the asset pricing framework, a small innovation in the expected real return can cause a large

unexpected stock return (i.e., Ph = 7.252). If expected returns were constant (i.e., unforecastable),

we would expect all of the variance in unexpected real stock returns to be attributable to “news

about future dividends.” The data does not support this alternative hypothesis. Our results

are consistent with previous empirical evidence that aggregate dividend growth is approximately

constant (i.e., unforecastable).12

C VAR-MSV Models

The VAR-MSV model introduced in this paper allows us to address an additional question: Why

does stock market volatility change over time? Given the asset pricing framework and VAR-MSV

model for forecasting real stock returns, the variance of unexpected real returns has three time-

varying components: variance of “news about future returns,” variance of “news about future

dividends,” and a covariance term.

We first examine the predictability of real stock returns. Table III reports summary statistics

describing the posterior densities for parameters of the VAR-MSV model. Posterior estimates of

the A matrix are very robust to prior specification, and are not appreciably different than those

reported in Table I for the homoskedastic VAR model. We focus primarily on the posterior densities

under Prior 4. The first row of A indicates strong evidence of real stock return predictability. Future

real returns are positively related to the dividend-price ratio (A12 = 0.295) and inversely related to

the relative bill rate (A13 = −0.526). For A12, the proportion of the posterior density less than zero

ranges from 0.0378 under Prior 1 to 0.0049 under Prior 4. For A13, the proportion of the posterior

density greater than zero is less than 0.0003 for all four priors. The dividend-price ratio is highly

persistent. The posterior mean of A22 is 0.991 with a 90% Bayesian confidence interval of [0.983,

0.998]. The covariance stationarity prior appears to play a more important role for the VAR-MSV

model than for the homoskedastic VAR model. For A22, the proportion of the posterior density

greater than one ranges from 0.0904 under Prior 1 to 0.0123 under Prior 4. The relative bill rate is

less persistent. The posterior mean of A33 is 0.756 with a 90% Bayesian confidence interval of [0.738,

0.828]. Most of the persistence in expected returns is associated with the the forecasting power and

persistence of the dividend-price ratio. The vectors λ′ and (e1′ + λ′) (not reported in Table III)
12Cochrane (2001) provides a lucid review and interpretation of the empirical evidence on long-run stock return

predictability and excess volatility. Cochrane concludes (p. 405) that “Return forecastability follows from the fact
that dividends are not forecastable, and that the dividend/price ratio is highly but not completely persistent.”
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map the VAR innovations into “news about future returns.” and “news about future dividends,”

respectively. As defined in (4), λ′ = e1′ρA(I − ρA)−1 is a highly nonlinear function of the VAR

coefficient matrix A. The posterior densities of λ′ are easily simulated from the Gibbs sampler

output. Under Prior 4, the posterior means and standard deviations of λ′ are [0.017 23.97 0.588]

and [0.021 6.27 0.840], respectively. Only the second element of λ′ is reliably non-zero. This

indicates that innovations in the dividend-price ratio are positively correlated with innovations in

ηh,t+1, and is consistent with mean reversion in stock prices.

Table III goes about here.

Table III also reports summary statistics describing the posterior densities for the B matrix and

for parameters of the SV processes. Posterior estimates of B21 reflect the strong inverse relation

between unexpected real returns and innovations in the dividend-price ratio. This strong inverse

relation, along with the persistence of the dividend-price ratio, contributes to the small-sample

bias in univariate predictive regressions discussed in Stambaugh (1999). Bayesian estimates of the

predictive equation (i.e., the first row of the A) are free of this small-sample bias. For real stock

returns, posterior estimates of µj , the intercept of the log-variance specification, corresponds to a

standard deviation of about 3.8% per month.13 Posterior estimates of φj indicate that all three

SV processes are quite persistent. The posterior mean of φ1 is 0.917. From the posterior draws of

φ1 we can construct the posterior distribution of the half-life for volatility shocks. We find that a

shock to the log-variance of unexpected real stock returns has a half-life of about 10 months. This

level of volatility persistence for the U.S. stock market is consistent with estimates reported in the

GARCH literature. For example, Scruggs (1998) estimates a univariate EGARCH(1,1)-M model

for monthly excess stock index returns and reports persistence of about 0.90 for 1950:3–1994:12.

Stock market volatility varied widely in the 1952–2002 sample period. The top panel of Figure 2

plots the posterior mean of the variance of unexpected real stock returns, Var(ηt+1).14 Monthly

variance peaks in October 1974, and again in October 1987. Sustained periods of high volatility

are evident from 1978–1982 and later from 1998–2002. The vertical gray bars in Figure 2 indicate

recessions as defined by the National Bureau of Economic Research (NBER). Many, but not all,

periods of high stock market volatility are associated with recessions. This is consistent with
13We report on exp(µj/2) rather than µj to make interpretation easier.
14Variances and covariances are expressed in percent squared per month. Each point on the graph is based on

50,000 MCMC draws from the VAR-MSV model under Prior 4.
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Schwert (1989), which finds that volatility is significantly higher during recessions.

Figure 2 goes about here.

Real stock return variance changes over time primarily because of the time-varying variance of

“news about future returns.” The middle panel of Figure 2 plots the posterior medians (under Prior

4) of the three components of real return variance: Var(ηd,t+1), Var(ηh,t+1) and−2Cov(ηd,t+1, ηh,t+1).

Variation in Var(ηh,t+1) tracks the variation in Var(ηt+1) (see the top panel) very closely for much

of the sample period, and is responsible for most of the changes in real stock return variance.

The time-varying variance of “news about future dividends,” Var(ηd,t+1), and the covariance term,

−2Cov(ηd,t+1, ηh,t+1), play secondary roles for much of the sample period. However, there are

episodes during which Var(ηd,t+1) and −2Cov(ηd,t+1, ηh,t+1) play more prominent roles. The vari-

ance of “news about future dividends” increases dramatically during the 1973–1975 recession and

remains high well into the 1980s. During this period, the sum Var(ηd,t+1) + Var(ηh,t+1) exceeds

Var(ηt+1). The covariance term −2Cov(ηd,t+1, ηh,t+1) turns negative (as it must according to equa-

tion (10)) and increases dramatically in magnitude during this period. If −2Cov(ηd,t+1, ηh,t+1) < 0,

then Corr(ηd,t+1, ηh,t+1) > 0. A positive correlation between ηd,t+1 and ηh,t+1 implies that upward

revisions in expectations regarding future dividends (i.e., good news) are accompanied, on average,

by upward revisions in expectations regarding future returns (i.e., bad news). From (2), we know

that such revisions in expectations should have opposite effects on unexpected real stock returns,

and should thus dampen stock market volatility.

Campbell and Vuolteenaho (2004) recently proposed a two-beta variant of the ICAPM in which

the risk factors are “news about future dividends” and “news about future returns.” Since the model

is based on the unexpected return decomposition in (1), the two betas sum to the conventional

market beta. Their model suggests that exposure to “news about future dividends” should have

a higher price (hence the name “bad beta”) than exposure to “news about future returns” (i.e.,

“good beta”). They find that value stocks and small stocks have higher cash flow betas (i.e., “bad

betas”) than growth stocks and large stocks, and that this explains their higher average returns.

The plots in the middle panel of Figure 2 indicate that the volatilities of these two risk factors

change in interesting ways over time.

The bottom panel of Figure 2 plots posterior medians (under Prior 4) of the variance compo-

nents as shares of Var(ηt+1). The story is much the same as that in the preceding paragraphs.
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Although the share of Var(ηt+1) attributable to Var(ηh,t+1) varies over the sample period, it is

always the largest component of unexpected real return variance. This ratio is perhaps the most

meaningful of the three because Var(ηh,t+1) and Var(ηt+1) are estimated directly. The share of

Var(ηt+1) attributable to Var(ηd,t+1) increases dramatically starting in the 1973-1975 recession and

peaks during the 1980 recession. It then slowly descends back to previous levels during the 1980s.

However, as noted previously in equation (14), the difference between the shares of Var(ηt+1) at-

tributable to Var(ηd,t+1) and Var(ηh,t+1) is an intertemporal constant. This is evident in Figure 2.

The posterior mean of this difference is −0.603. Increases in the shares attributable to Var(ηd,t+1)

and Var(ηh,t+1) are offset exactly by increases in the share attributable to −2Cov(ηd,t+1, ηh,t+1).

Since the shares must sum to one, this is another mechanical result. The shares of Var(ηt+1)

attributable to Var(ηd,t+1), Var(ηh,t+1) and −2Cov(ηd,t+1, ηh,t+1) range from [0.10, 0.71, 0.21] to

[0.61, 1.20, −0.79] during the sample period.15 The time-series means of these shares are 0.24, 0.84,

and −0.04, respectively.

As was noted for the homoskedastic case, the posterior densities of the variance component

shares are skewed. Thus, posterior standard deviations don’t accurately describe the dispersion

of the posterior densities. We employ graphical methods to convey information regarding the

posterior densities of the time-varying shares of unexpected real stock return variance. The graphs

in Figure 3 plot the median, 5% and 95% quantiles of the posterior densities (under Prior 4) of the

shares attributable to Var(ηd,t+1), Var(ηh,t+1), and −2Cov(ηd,t+1, ηh,t+1).16 For each graph, the

median corresponds to the share plotted in the bottom graph of Figure 2. The posterior densities

of the shares are clearly skewed, and the degree of skewness changes over time. Of particular note

is the posterior density of the share attributable to −2Cov(ηd,t+1, ηh,t+1) plotted in the bottom

graph. The posterior median varies considerably over time, and even changes sign several times.

However, the 90% Bayesian confidence interval straddles zero for every date in the sample period.

The graphs in Figure 4 depict the posterior densities of three additional time-varying features

of interest: Corr(ηd,t+1, ηh,t+1), σ(ut+1), and Ph,t+1. Each graph plots the median, 5% and 95%

quantiles of the posterior density. The posterior median of Corr(ηd,t+1, ηh,t+1) ranges from less than

−0.4 to over 0.4, and changes sign several times. This pattern, which is a reflection of the previously

discussed results regarding the covariance term, is very intriguing. Theorists and empiricists alike
15These “triples” are posterior medians rather than posterior means. The posterior medians don’t necessarily sum

to exactly one.
16Quantiles describe samples based on 50,000 MCMC draws.
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are becoming more interested in the correlation between “news about future returns” and “news

about future dividends.” Menzly, Santos, and Veronesi (2004) derive a general equilibrium model

that predicts a positive correlation. Lettau and Ludvigson (2005) investigate a consumption-based

present-value relation. They report that dividend growth is forecastable at horizons from one

to six years, and that dividend forecasts are positively correlated with excess return forecasts.

Although our results regarding Corr(ηd,t+1, ηh,t+1) are intriguing, we hesitate to make too much of

them because the posterior density plotted in Figure 4 is relatively wide (i.e., imprecise) and the

Bayesian 90% confidence interval brackets zero for every date.

The volatility of expected real return innovations, σ(ut+1), also varies considerably over time.

The posterior median of σ(ut+1), plotted in the middle graph of Figure 4, ranges from as little as

20 basis points per month to over one percent per month in the post-war sample. The time-series

average is 37 basis points per month. The volatility of expected real return innovations tends to

increase during recessions and reaches its peak during the 1980 recession. This peak is driven by

the unusually high volatility of the relative bill rate at that time.

We also define a time-varying counterpart for the VAR persistence measure defined in (32). Let

Ph,t+1 ≡
σ(ηh,t+1)
σ(ut+1)

=
(λ′Σt+1λ)1/2

(e1′AΣt+1A′e1)1/2
. (33)

Note that the denominator of Ph,t+1, as defined in (33), is the same σ(ut+1) term plotted in the

middle graph of Figure 4. The bottom graph in Figure 4 plots the time series of the posterior

density of Ph,t+1. The posterior median of Ph,t+1 fluctuates widely, usually in the range from 5

to 20. The time-series average is 10.17. If the A matrix is constant, why does the “persistence”

measure vary over time? The explanation is simple. The level of Ph,t+1 is largely determined by

the persistence and time-varying volatilities of the predictive regressors. For example, the posterior

median of Ph,t+1 reaches its lowest level during the 1980 recession, when the volatility of expected

return innovations, σ(ut+1), reaches its highest level. As discussed above, the high levels of σ(ut+1)

during this period are due to the unusually high volatility of the relative bill rate. Since shocks to

the relative bill rate are much less persistent (A33 = 0.784, half-life of about 2.5 months) than shocks

to the dividend-price ratio (A22 = 0.991, half-life of over 50 months), expected return innovations

associated with shocks to the relative bill rate will cause smaller capital gains/losses. Hence, Ph,t+1

is low. It’s interesting to note that the posterior median of Ph,t+1 reaches its historical high near

the end of the sample in 2002. This is due largely to the confluence of very high levels of Σ22,t+1
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with very low levels of Σ33,t+1. Expected return innovations in this environment are likely to be

highly persistent and cause relatively large stock price changes. Hence, Ph,t+1 is high.

In summary, we conclude that time-series patterns in stock market volatility are primarily driven

by the time-varying variance of “news about future returns.” The variance of “news about future

returns,” in turn, is explained by the persistence and time-varying volatility of expected return

innovations. The variance of “news about future dividends” and the covariance term typically play

a secondary role. The variance of “news about future dividends” increases substantially from the

mid-1970s to the mid-1980s (a period which includes three recessions), but its contribution to stock

market volatility during that period is offset by positive correlation between “news about future

returns” and “news about future dividends.”

V Conclusions

This paper considers the question: Why does stock market volatility change over time? Using the

asset pricing framework of Campbell (1991), we decompose unexpected real stock market returns

into two components: “news about future dividends” and “news about future returns.” Where

Campbell (1991) uses a homoskedastic VAR to predict future returns, we introduce a VAR in

which the conditional covariance and correlation matrices are time-varying. Specifically, we assume

that the VAR covariance matrix follows a multivariate stochastic volatility (MSV) process. The

VAR-MSV model allows us to decompose the variance of unexpected real stock returns into three

time-varying components: variance of “news about future dividends,” variance of “news about

future returns,” and a covariance term.

We find that time-varying variance of “news about future returns” is the primary reason that

stock market volatility changes over time. Many, but not all, episodes of high uncertainty regarding

future returns are associated with recessions. Volatility of “news about future dividends” normally

plays a secondary role, but did increase dramatically during the recessions of 1973-1975, 1980,

and 1981-1982. However, the contribution of “news about future dividends” to unexpected return

variance during this period is offset by temporarily high positive correlation between “news about

future dividends” and “news about future returns.” The shares of unexpected real return variance

attributable to “news about future returns,” “news about future dividends” and the covariance

term, respectively, range from [0.10, 0.71, 0.21] to [0.61, 1.20, −0.79] during the sample period.
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The time-series means of these shares are 0.24, 0.84, and −0.04, respectively.

This study also contributes, both methodologically and empirically, to the debate on on stock

return predictability. We find that monthly real stock returns are predictable using the dividend-

price ratio and the stochastically detrended short-term interest rate. Since the predictive regressors

(especially the dividend-price ratio) are highly autocorrelated, it follows that expected real stock

returns are highly persistent. Therefore, small innovations in expected returns can cause relatively

large capital gains or losses. Estimates of the VAR-MSV model indicate that the volatility of

expected return innovations ranges from 20 basis points per month to one percent per month

during the post-war period. Taken together, results from the VAR-MSV model lead us to conclude

that observed time-series patterns in stock market volatility can be explained by the persistence

and time-varying volatility of expected real return innovations.

We employ innovative Bayesian MCMC methods to estimate the model. There are several ad-

vantages to employing Bayesian methods for this particular analysis. Bayesian methods are ideal

for making inferences regarding return predictability. Since they deliver exact small-sample pos-

terior densities for both the model’s parameters and functions of interest, they are not subject to

the small-sample biases that plague OLS estimators in predictive regressions with lagged endoge-

nous regressors. Furthermore, inferences remain valid when regressors are highly autocorrelated,

regardless of whether a unit root exists. We extend the Bayesian approach suggested in Stambaugh

(1999) to VAR forecasting models with multiple predictive variables and multivariate stochastic

volatility. Bayesian MCMC methods are also especially well-suited for estimating models with

latent variables. In the VAR-MSV model, the stochastic volatilities are latent. MCMC methods

essentially simulate and then integrate out these latent variables. We use the posterior densities of

the SV processes to construct posterior densities for the time-varying components of unexpected

real return variance.

The Campbell (1991) method for decomposing unexpected returns into “news about future

returns” and “news about future dividends” has now become a standard modeling tool in empirical

asset pricing. Allowing the volatilities of these unexpected return components to vary over time

has important implications for asset pricing models, and is an important area for future research.17

The VAR-MSV model and Bayesian MCMC methods introduced in this paper have potential

applications in many strands of the literature.
17One example of work in this area is Chen (2003), which introduces a VAR-GARCH generalization of the of

Campbell (1993, 1996) model.
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A Probability Distributions

The table below briefly describes the probability distribution functions (i.e., PDFs or densities) and

notation used in the paper. We use both π(·) and p(·) to denote a probability density. However, we

typically reserve the use of π(·) for prior or posterior densities of the parameters. Further details on

these probability distributions can be found in most elementary texts on Bayesian statistics (e.g.,

Zellner (1971), Poirier (1995), or Gelman, Carlin, Stern, and Rubin (1995)).

Distribution Notation Density Comments
Normal x ∼ N (µ, σ2) p(x|µ, σ2) = N (x|µ, σ2) µ and σ2 are scalars.
Multivariate
Normal

x ∼ Nd(µ,Σ) p(x|µ,Σ) = Nd(x|µ,Σ) µ is a d× 1 vector. Σ is a d×
d symmetric, positive definite
covariance matrix.

Inverse-
Gamma

x ∼ IG(α, β) p(x|α, β) = IG(x|α, β) x > 0. Shape parameter α >
0. Scale parameter β > 0.

Wishart X ∼ W(S, ν) p(X|S, ν) = W(X|S, ν) S is a d × d symmetric, posi-
tive definite scale matrix. ν is
degrees of freedom.

Beta x ∼ B(α, β) p(x|α, β) = B(x|α, β) x ∈ [0, 1], α > 0, β > 0.

B Prior-Posterior Analysis for VAR-MSV Model

As one varies the priors on the model parameters and/or on the functions of interest, the resulting

posterior distributions clearly change. As a consequence, although the steps of the Gibbs sampler

remain the same as those described in section II.C, the specific implementation of each step differs

depending on the prior. In what follows we will first detail the MCMC scheme under Prior 1 (the

base uninformative prior). We will then report the differentiating elements induced in each step by

the alternative priors. For notational convenience, let x = {z0, . . . , zT−1} denote the T × k matrix

containing the lagged dependent variables of the VAR system.

B.1 Sampling of A under Prior 1

The VAR model can be rewritten as

zt = Xta (B.1)

where Xt = Ik⊗zt−1. Using standard Bayesian results in multivariate regression with heteroskedas-

tic errors, the posterior distribution is then
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π(a|z,x,B, {vj}) ∼ Nk2(a1,A−1
1 ) (B.2)

where A1 = (A0 +
∑T

t=1 X
′
tΣ

−1
t Xt) and a1 = A−1

1 (A0a0 +
∑T

t=1 X
′
tΣ

−1
t zt)

B.2 Sampling of B under Prior 1

Conditioning on {vj} and A we can write the VAR as

z̃t = But

or

B−1z̃t = ut

where z̃t = zt −Azt−1 and ut ∼ Nk(0,Vt). Given the diagonal structure of Vt, the system can

then be treated as k independent regressions where the conditional posterior density for the free

elements of B are obtained again from standard Bayesian updating formulas.

B.3 Sampling of Volatilities and Volatility Parameters under Prior 1

Conditional on A and B, the independent error terms in (7) can be isolated as follows:

B−1(zt −Azt−1) = V1/2
t εt (B.3)

where εt ∼ Nk(0, I). We exploit a clever change of variable suggested by Kim, Shephard, and Chib

(1998). Let

yjt = ln(B−1
j (zt −Azt−1))2 = vjt + ln(ε2jt), j = 1, . . . , k (B.4)

Note that yjt is the sum of vjt and a log chi-square random variable with one degree of freedom.

Kim, Shephard, and Chib (1998) show that the density of a log chi-square random variable can

be approximated quite precisely with a seven-component mixture of Normal distributions. This

change of variable permits us to represent the vt vector as k independent, conditionally Normal
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state-space models

yjt|sjt, vjt ∼ N
(
vjt + msjt , υ

2
sjt

)
(B.5)

vjt = µj + φj(vjt−1 − µj) + σjζjt, j = 1, . . . , k (B.6)

where sjt is a discrete component indicator with mass function Pr(sjt) = qi, i = 1, . . . , 7, and

msjt , υ2
sjt

and qi are the parameters of each component as tabulated in Kim, Shephard, and Chib

(1998). Conditional on A and B, one can sample θj and the latent log-variances separately for each

independent process in Vt using methods developed for univariate SV models. See Kim, Shephard,

and Chib (1998) and Chib, Nardari and Shephard (2002, 2005) for details on sampling parameters

and latent log-variances for univariate SV processes.

B.4 Posterior Sampling under Prior 2

Imposing covariance stationarity on the VAR only restricts the sampling of A. This is achieved

by simply rejecting draws from (B.2) that violate the covariance stationarity condition and, in

such cases, keeping the previous valid Gibbs draw. In all our applications, the number of A draws

rejected under Prior 2 is never larger than 10 to 12 percent of the sample.

B.5 Posterior Sampling under Prior 3

With a slight change of notation, let q(A,B,θ) = p(z0|ψMSV) denote the prior on z0. Since the other

parameters enter this prior, q(·) will be part of their posterior density. Therefore, the posteriors

cannot be sampled as above. We need to rely on the Metropolis - Hastings (MH) algorithm (see Chib

and Greenberg (1995) for a thorough illustration) to sample these more involved densities. Briefly,

the MH algorithm requires draws from a candidate (or, proposal) density and accepts them with

a probability proportional to the proposal density and the actual posterior density, both evaluated

at the current draw and, respectively, the candidate draw. We now provide some additional details

for the sampling of the A matrix. Similar strategies are applied for B and θ.
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Sampling of A under Prior 3

The posterior density is proportional to π(a|z,B, {vj})q(A,B,θ). Let A(g) denote the draw at the

iteration g of the Gibbs sampler, and let A(∗) denote the candidate draw at Gibbs iteration g + 1.

The latter is generated from (B.2) and it is accepted with probability

αA = min

(
1,

q(A(∗),B(g), θ(g))
q(A(g),B(g), θ(g))

)
. (B.7)

If the candidate draw is rejected, the value of A(g+1) is set to A(g).

Sampling of z0 under Prior 3

The conditional posterior density of z0 is

π(z0|z,x,A,B, {vj}, θ) ∝ p(z0|ψMSV)p(z|x,A,B, {vj}) (B.8)

where the latter density is proportional to exp[−1
2

∑T
t=1(zt −Azt−1)′Σ−1

t (zt −Azt−1)].

This density is also of a non-standard form and, thus, requires the MH algorithm. In this

case the candidate draw, z(g+1)
0 , is generated according to the process z(g+1)

0 = z(g)
0 + c where

c is a vector simulated from a normal distribution with mean zero and covariance matrix equal

to Σ(g)
0 (B(g), θ(g)) that is, the unconditional covariance matrix of the errors as a function of the

current draws for B and θ. Since the proposal draw is equal to the current value plus noise, this

implementation of the MH algorithm is called a random walk chain. The probability of acceptance

is given by

αz0 = min

(
1,

p(z|x(g+1),A(g),B(g), {vj}(g))
p(z|x(g),A(g),B(g), {vj}(g))

p(z(g+1)
0 |ψ(g)

MSV)

p(z(g)
0 |ψ(g)

MSV))

)
(B.9)

where x(·) is x with the first row set equal to z(·)
0 . We find that the proposal density described

above works quite well for the problem at hand, as it generates draws whose acceptance rates are

steadily between 50 and 60 percent.
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B.6 Posterior Sampling under Prior 4

The features of interest prior implicitly imposes additional structure on the priors for A,B, and

θ. This is because the functions of interest (in this case, the variance decomposition ratios) are

functions of the model’s parameters. We choose to impose a prior on the unconditional variance

decomposition terms. Since the three ratios sum to one by construction, only two priors are

necessary. As we have a better sense for the variance terms than for the covariance term, we

impose independent normal priors on Var(ηd,t+1)/Var(ηt+1) and on Var(ηh,t+1)/Var(ηt+1). Let

p(Ψ(A,B, θ)) denote the joint prior, where Ψ(·) is the functional form linking the parameters

to the decomposition terms. We first assume a prior mean equal to 1/3 for the ratios implying

that, a priori, innovations in dividends and innovations in expected returns (and, consequently, the

covariance term as well) have the same impact on the variance of returns. To allow the data to

move the prior view, we set the prior variance to 2. We then experiment with prior means of 1/2

and 1/2 and the same prior variance. Although clearly subjective, we perceive these choices as

economically sensible. Hollifield, Koop, and Li (2003) propose a similar approach, although their

priors are significantly tighter (i.e., more informed) than ours.

Under the features of interest prior, the posterior distributions are modified by the inclusion of

one additional term for each parameter block. As a consequence, we can still use the Metropolis-

Hasting algorithm to generate posterior draws, as described for Prior 3. We can use the same

candidate densities, but the acceptance probabilities are different in this case because of the addi-

tional prior term.

It should be noted that the specific functional form for the priors is not dictated by computa-

tional convenience. Since the posterior sampling is done through the Metropolis-Hastings algorithm,

any functional form could be used. We next provide details for the sampling of the A matrix. Sim-

ilar strategies are applied for B and θ. No changes are necessary for the posterior sampling of z0

used under Prior 3.

Sampling of A under Prior 4

The posterior density is proportional to π(α|z,B, {vj})q(A,B, θ)p(Ψ(A,B, θ)). Let A(g) denote

the value at iteration g of the Gibbs sampler, and let A(∗) denote the candidate draw at Gibbs

iteration g + 1. The latter is generated from (B.2) and it is accepted with probability αA given by
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αA = min

(
1,

q(A(∗),B(g),θ(g))p(Ψ(A(∗),B(g), θ(g)))
q(A(g),B(g),θ(g))p(Ψ(A(g),B(g), θ(g)))

)
(B.10)

To compute p(Ψ(·)), the unconditional variance decomposition ratios are first computed from the

relevant parameter values and their prior densities are evaluated at the calculated points.
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Table I
Posterior Estimates of Parameters: Homoskedastic VAR Models

This table reports summary statistics describing the Bayesian posterior densities for parameters of the
homoskedastic VAR model:

zt+1 = Azt + wt+1

wt+1 ∼ Nk(0,Σ).

The sample period is 1952:1–2002:12. The mean and standard deviation (in parentheses) of the posterior
density are reported for each parameter. The posterior densities are based on 50,000 Gibbs sampler iterations
from a suitably constructed Markov chain.

Prior 1: Normal-Wishart; stationarity not imposed; z0 deterministic.
Prior 2: Normal-Wishart; stationarity imposed; z0 deterministic.
Prior 3: Normal-Wishart; stationarity imposed; z0 stochastic.
Prior 4: Normal-Wishart; stationarity imposed; z0 stochastic; features of interest prior.

Dependent A Σ
Variable ht (D/P )t rbt ht+1 (D/P )t+1 rbt+1 R2

Panel A: Prior 1
ht+1 0.026 0.351 -0.594 16.657 -0.617 -0.256 0.030

(0.040) (0.150) (0.144) (0.950) (0.037) (0.127) (0.004)
(D/P )t+1 -0.001 0.986 0.033 -0.617 0.029 0.010 0.978

(0.002) (0.006) (0.006) (0.037) (0.002) (0.005) (0.000)
rbt+1 0.013 -0.030 0.756 -0.256 0.010 0.597 0.558

(0.008) (0.028) (0.027) (0.127) (0.005) (0.034) (0.002)

Panel B: Prior 2
ht+1 0.027 0.354 -0.596 16.655 -0.617 -0.257 0.030

(0.040) (0.147) (0.144) (0.948) (0.037) (0.128) (0.004)
(D/P )t+1 -0.001 0.986 0.033 -0.617 0.029 0.010 0.978

(0.002) (0.006) (0.006) (0.037) (0.002) (0.005) (0.000)
rbt+1 0.013 -0.030 0.756 -0.257 0.010 0.597 0.558

(0.008) (0.028) (0.027) (0.128) (0.005) (0.034) (0.002)

Panel C: Prior 3
ht+1 0.027 0.316 -0.598 16.674 -0.618 -0.260 0.030

(0.040) (0.139) (0.143) (0.952) (0.038) (0.127) (0.004)
(D/P )t+1 0.000 0.988 0.034 -0.618 0.029 0.010 0.978

(0.002) (0.006) (0.006) (0.038) (0.002) (0.005) (0.000)
rbt+1 0.013 -0.025 0.756 -0.260 0.010 0.597 0.558

(0.008) (0.027) (0.027) (0.127) (0.005) (0.034) (0.002)

Panel D: Prior 4
ht+1 0.026 0.312 -0.599 16.680 -0.618 -0.260 0.030

(0.040) (0.139) (0.144) (0.953) (0.037) (0.127) (0.004)
(D/P )t+1 0.000 0.988 0.034 -0.618 0.029 0.010 0.978

(0.002) (0.006) (0.006) (0.037) (0.002) (0.005) (0.000)
rbt+1 0.013 -0.026 0.756 -0.260 0.010 0.597 0.558

(0.008) (0.027) (0.027) (0.127) (0.005) (0.034) (0.002)
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Table II
Variance Decomposition for Real Stock Returns: Homoskedastic Models

This table reports summary statistics describing the Bayesian posterior densities for components of the
variance of unexpected real stock returns and other features of interest. The sample period is 1952:1–
2002:12. The mean, median (in braces), standard deviation (in parentheses), and 5% and 95% quantiles
(in brackets) are reported for each parameter. The posterior densities are based on 50,000 Gibbs sampler
iterations from a suitably constructed Markov chain.

Prior 1: Normal-Wishart; stationarity not imposed; z0 deterministic.
Prior 2: Normal-Wishart; stationarity imposed; z0 deterministic.
Prior 3: Normal-Wishart; stationarity imposed; z0 stochastic.
Prior 4: Normal-Wishart; stationarity imposed; z0 stochastic; features of interest prior.

Share of Var(η) due to:
Var(ηd) Var(ηh) −2Cov(ηd, ηh) Corr(ηd, ηh) Ph

Panel A: Prior 1
9.686 10.210 -18.895 -0.027 7.964
{0.235} {0.735} {0.045} {-0.057} {7.074}
(1753) (1757) (3510) (0.320) (24.450)

[0.195, 0.447] [0.329, 1.407] [-0.770, 0.327] [-0.498, 0.549] [4.295, 12.539]

Panel B: Prior 2
0.267 0.786 -0.054 -0.033 7.519
{0.234} {0.737} {0.046} {-0.058} {7.065}
(0.165) (0.381) (0.471) (0.312) (2.633)

[0.194, 0.421] [0.331, 1.371] [-0.715, 0.326] [-0.496, 0.528] [4.294, 12.196]

Panel C: Prior 3
0.283 0.821 -0.104 -0.001 7.587
{0.239} {0.754} {0.026} {-0.032} {7.098}
(0.191) (0.443) (0.554) (0.340) (2.785)

[0.196, 0.492] [0.302, 1.518] [-0.911, 0.330] [-0.505, 0.597] [4.141, 12.561]

Panel D: Prior 4
0.261 0.739 0.000 -0.068 7.252
{0.236} {0.711} {0.070} {-0.090} {6.844}
(0.095) (0.302) (0.307) (0.304) (2.493)

[0.195, 0.406] [0.291, 1.274] [-0.582, 0.337] [-0.520, 0.468] [4.076, 11.720]

40



Table III
Posterior Estimates of Parameters: VAR-MSV Models

This table reports summary statistics describing the Bayesian posterior densities for parameters of the VAR-
MSV model:

zt+1 = Azt + BV1/2
t+1εt+1

εt+1 ∼ Nk(0, I)
Vt+1 = diag{exp(v1,t+1), . . . , exp(vk,t+1)}
vj,t+1 = µj + φj(vj,t − µj) + σjζj,t+1

The sample period is 1952:1–2002:12. The mean and standard deviation (in parentheses) are reported
for each parameter. The posterior densities are based on 50,000 Gibbs sampler iterations from a suitably
constructed Markov chain.

Prior 1: Normal-MSV; stationarity not imposed; z0 deterministic.
Prior 2: Normal-MSV; stationarity imposed; z0 deterministic.
Prior 3: Normal-MSV; stationarity imposed; z0 stochastic.
Prior 4: Normal-MSV; stationarity imposed; z0 stochastic; features of interest prior.

Dependent A B
Variable ht (D/P )t rbt ht+1 (D/P )t+1 rbt+1 exp(µj/2) φj σj R2

Panel A: Prior 1
ht+1 0.008 0.264 -0.527 1 0 0 3.799 0.917 0.221 0.029

(0.042) (0.149) (0.146) (0.268) (0.040) (0.056) (0.005)
(D/P )t+1 0.000 0.993 0.028 -0.034 1 0 0.058 0.975 0.223 0.977

(0.002) (0.006) (0.005) (0.001) (0.013) (0.013) (0.044) (0.000)
rbt+1 0.007 0.005 0.784 -0.011 0.233 1 0.554 0.960 0.282 0.556

(0.006) (0.020) (0.028) (0.006) (0.360) (0.096) (0.018) (0.047) (0.003)

Panel B: Prior 2
ht+1 0.009 0.297 -0.523 1 0 0 3.799 0.916 0.221 0.029

(0.042) (0.130) (0.147) (0.279) (0.041) (0.056) (0.004)
(D/P )t+1 0.000 0.991 0.028 -0.034 1 0 0.059 0.975 0.222 0.978

(0.002) (0.005) (0.005) (0.001) (0.015) (0.012) (0.044) (0.000)
rbt+1 0.007 0.002 0.784 -0.011 0.230 1 0.550 0.960 0.282 0.557

(0.006) (0.019) (0.028) (0.006) (0.362) (0.097) (0.017) (0.046) (0.003)

Panel C: Prior 3
ht+1 0.008 0.299 -0.525 1 0 0 3.804 0.916 0.221 0.029

(0.042) (0.128) (0.146) (0.261) (0.041) (0.055) (0.004)
(D/P )t+1 0.000 0.991 0.028 -0.034 1 0 0.059 0.975 0.225 0.978

(0.002) (0.005) (0.005) (0.001) (0.015) (0.013) (0.045) (0.000)
rbt+1 0.007 0.005 0.784 -0.010 0.154 1 0.538 0.960 0.283 0.557

(0.006) (0.018) (0.028) (0.006) (0.361) (0.093) (0.017) (0.047) (0.002)

Panel D: Prior 4
ht+1 0.008 0.295 -0.526 1 0 0 3.833 0.917 0.222 0.029

(0.042) (0.129) (0.146) (0.275) (0.041) (0.056) (0.004)
(D/P )t+1 0.000 0.991 0.028 -0.034 1 0 0.054 0.973 0.224 0.978

(0.002) (0.005) (0.005) (0.001) (0.010) (0.013) (0.045) (0.000)
rbt+1 0.007 0.005 0.783 -0.010 0.157 1 0.537 0.960 0.282 0.557

(0.006) (0.018) (0.028) (0.006) (0.363) (0.090) (0.017) (0.046) (0.002)
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Figure 1: Predictive Variables. Time-series plots of the dividend-price ratio and relative bill rate
(the one-month T-bill yield less its twelve-month moving average) for the period 1952:1-2002:12.
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Figure 2: Variance Decomposition for Unexpected Real Stock Returns. Top: Time-series
plot of the variance of unexpected real stock returns, Var(ηt+1). Middle: Plots of Var(ηd,t+1),
Var(ηh,t+1), and −2Cov(ηd,t+1, ηh,t+1). Bottom: Plots of shares of Var(ηt+1) attributable to
Var(ηd,t+1), Var(ηh,t+1), and −2Cov(ηd,t+1, ηh,t+1). The sample period is 1952:1-2002:12. Verti-
cal gray bars indicate NBER recessions.
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Figure 3: Posterior Densities of Variance Component Shares. Plots of median, 5% and 95%
quantiles of posterior densities for shares of the variance of Var(ηt+1) attributable to Var(ηd,t+1)
(top), Var(ηh,t+1) (middle), and −2Cov(ηd,t+1, ηh,t+1) (bottom). The sample period is 1952:1-
2002:12. Vertical gray bars indicate NBER recessions.
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Figure 4: Posterior Densities of Additional Features of Interest. Plots of median, 5%
and 95% quantiles of posterior densities for Corr(ηd,t+1, ηh,t+1) (top), σ(ut+1) (middle), and Ph,t+1

(bottom). The sample period is 1952:1-2002:12. Vertical gray bars indicate NBER recessions.
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