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Dynamic Estimation of Volatility Risk

Premia and Investor Risk Aversion from

Option-Implied and Realized Volatilities

Abstract

This paper proposes a method for constructing a volatility risk premium, or investor risk

aversion, index. The method is intuitive and simple to implement, relying on the sample

moments of the recently popularized model-free realized and option-implied volatility mea-

sures. A small-scale Monte Carlo experiment confirms that the procedure works well in

practice. Implementing the procedure with actual S&P500 option-implied volatilities and

high-frequency five-minute-based realized volatilities indicate significant temporal dependen-

cies in the estimated stochastic volatility risk premium, which we in turn relate to a set of

underlying macro-finance state variables. We also find that the extracted volatility risk

premium helps predict future stock market returns.

JEL Classification: G12, G13, C51, C52.

Keywords: Stochastic Volatility Risk Premium, Model-Free Implied Volatility, Model-Free
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1 Introduction

Model-free volatility measures have figured prominently in the recent academic and finan-

cial market practitioner literatures. On one hand, several studies have argued for the use

of so-called “model-free realized volatilities” computed by summing squared returns from

high-frequency data over short time intervals during the trading day. As demonstrated in

the literature, these types of measures afford much more accurate ex-post observations of

the actual volatility than the more traditional sample variances based on daily or coarser fre-

quency data (Andersen et al., 2001; Barndorff-Nielsen and Shephard, 2002; Meddahi, 2002;

Andersen et al., 2003a,b; Barndorff-Nielsen and Shephard, 2004a; Andersen et al., 2004).

On the other hand, the recently developed so-called “model-free implied volatilities” provide

ex-ante risk-neutral expectations of the future volatilities. Importantly, and in contrast to

more traditional option-implied volatilities based on the Black-Scholes pricing formula or

some variant thereof, the model-free implied volatilities are computed from option prices

without the use of any particular option-pricing model (Carr and Madan, 1998; Demeterfi

et al., 1999; Britten-Jones and Neuberger, 2000; Lynch and Panigirtzoglou, 2003; Jiang

and Tian, 2004; Carr and Wu, 2004).1 In this paper, we combine these two new volatility

measures to improve on existing estimates of the risk premium associated with stochastic

volatility risk and investor risk aversion.

Because the method we present here directly uses the model-free realized and implied

volatilities to extract the stochastic volatility risk premium, it is much easier to implement

than other methods which rely on the joint estimation of both the underlying asset return

and the price(s) of one or more of its derivatives, leading to quite complicated modeling and

estimation procedures (see, e.g., Bates, 1996; Chernov and Ghysels, 2000; Jackwerth, 2000;

Äıt-Sahalia and Lo, 2000; Benzoni, 2002; Pan, 2002; Eraker, 2004, among many others).

In contrast, the method of this paper relies on standard GMM estimation of the cross

conditional moments between risk-neutral and objective expectations of integrated volatility

to identify the stochastic volatility risk premium. As such, the method is simple to implement

1Market participants have also recently developed several new products – realized variance futures, VIX
futures, and over-the-counter (OTC) variance swaps – that are based on these two model-free volatility
measures. Specifically, the Chicago Board Option Exchange (CBOE) recently changed its implied volatility
index (VIX) to use the model-free implied volatility approach and the more popular S&P500 index options
(CBOE Documentation, 2003), while the CBOE Futures Exchange began to trade futures on the VIX on
March 26, 2004 and realized variance futures on the S&P500 on May 18, 2004. Demeterfi et al. (1999) discuss
OTC variance swaps.
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and can easily be extended to allow for a time-varying volatility risk premium. Indeed, one

feature of our estimation strategy is that it afford a characterization of the temporal variation

in the volatility risk premium, or investor risk aversion, possibly driven by a set of economic

state variables.2

To validate the performance of the new estimation strategy, we perform a small scale

Monte Carlo experiment focusing directly on our ability to precisely estimate the risk pre-

mium parameter. While the estimation strategy applies generally, the Monte Carlo study

focuses on the popular Heston (1993) stochastic volatility model. The results confirm that

using model-free implied volatility from options with one month to maturity and realized

volatility from five-minute returns, we can estimate the volatility risk premium nearly as

well as if we were using the actual (unobserved and infeasible) risk-neutral implied volatility

and continuous time integrated volatility. However, using Black-Scholes implied volatility

and/or realized volatility from daily returns generally results in biased and (highly) inefficient

estimates of the risk premium parameter and corresponding unreliable statistical inference.

To illustrate the procedure empirically, we apply the method in estimating the volatility

risk premium associated with the S&P500 market index. We extend the method to allow

for two types of time variation in the stochastic volatility risk premium. In the first, the

premium follows a specific autoregressive process. In the second, it varies over time with other

macro-finance variables. We find statistically significant effects on the volatility risk premium

from several macro-finance variables, including the market volatility itself, the price-earnings

(P/E) ratio of the market, a measure of credit spread, industrial production, the producer

price index, and nonfarm employment.3 Our results give structure to the intuitive notion

that the difference between implied and realized volatilities reflects a volatility risk premium

that responds to economic state variables. As such, our findings should be of direct interest

to market participants and monetary policymakers alike concerned with the links between

2The general strategy developed here is also related to the literature on market implied risk aversion
(see, Jackwerth, 2000; Aı̈t-Sahalia and Lo, 2000; Rosenberg and Engle, 2002; Brandt and Wang, 2003; Bliss
and Panigirtzoglou, 2004; Gordon and St-Amour, 2004, e.g.). The closest to ours is arguably that of Garcia
et al. (2001), who estimate jointly the risk-neutral and objective dynamics, using a series expansion of option
implied volatilities around the Black-Scholes formula.

3For directly traded assets like equities or bonds, the links between the risk premium—expected excess
return—and macro-finance state variables are already well established. For example, the equity risk premium
is predicted by the dividend–price ratio and short-term interest rates (see, Campbell, 1987; Fama and French,
1988; Campbell and Shiller, 1988a,b, e.g.), while bond risk premia may be predicted by forward rates (see,
Fama and Bliss, 1987; Cochrane and Piazzesi, 2004, e.g.). However, with the notable exception of the recent
study by (Carr and Wu, 2004), academic studies on the behavior of the volatility risk premium are rare, let
alone its linkage to the overall economy.
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the financial markets and the overall economy.4 Further strengthening our results, we also

find that the estimated time-varying volatility risk premium better predicts future stock

market returns than several other well-established predictor variables.

The rest of the paper is organized as follows. Section 2 outlines the basic theory behind

our simple GMM estimation procedure, while Section 3 provides finite sample simulation

evidence on the performance of the estimator. Section 4 applies the estimator to the S&P500

market index, explicitly linking the temporal variation in the volatility risk premium to a

set of underlying macro-finance variables. This section also documents our findings related

to return predictability. Section 5 concludes.

2 Identification and Estimation

Consider the general continuous-time stochastic volatility model for the logarithmic stock

price process (pt = log St),

dpt = µt(·)dt +
√

VtdB1t,
dVt = κ(θ − Vt)dt + σt(·)dB2t,

(1)

where the instantaneous corr(dB1t, dB2t) = ρ denotes the familiar leverage effect, and the

functions µt(·) and σt(·) must satisfy the usual regularity conditions. Assuming no arbitrage

and a linear volatility risk premium, the corresponding risk-neutral distribution then takes

the form

dpt = r∗t dt +
√

VtdB∗
1t,

dVt = κ∗(θ∗ − Vt)dt + σt(·)dB∗
2t,

(2)

where corr(dB∗
1t, dB∗

2t) = ρ, and r∗t denotes the risk-free interest rate. Importantly, the risk-

neutral parameters in (2) are directly related to the parameters of the actual price process

in equation (1) by the relationships, κ∗ = κ + λ and θ∗ = κθ/(κ + λ), where λ refers to the

volatility risk premium parameter of interest. Note that the functional forms of µt(·) and

σt(·) are completely flexible as long as they avoid arbitrage.

2.1 Model-Free Volatility Measures and Moment Restrictions

The point-in-time volatility Vt entering the stochastic volatility model above is latent and

its consistent estimation through filtering is complicated by a host of market microstructure

4See e.g., Tarashev et al. (2003) and Liang and Zhou (2003) for a discussion from the perspective of
central bank policy makers.
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complications. Alternatively, the model-free realized volatility measures afford a simple

approach for quantifying the integrated volatility over non-trivial time intervals. In our

notation, let Vn
t,t+∆ denote the realized volatility computed by summing the squared high-

frequency returns over the [t, t + ∆] time-interval:

Vn
t,t+∆ ≡

n∑
i=1

[
pt+ i

n
(∆) − pt+ i−1

n
(∆)

]2

(3)

It follows then by the theory of quadratic variation (see, e.g., Andersen et al. (2003a), for a

recent survey of the realized volatility literature),

lim
n→∞

Vn
t,t+∆

a.s.−→ Vt,t+∆ ≡
∫ t+∆

t

Vs ds (4)

In other words, when n is large relative to ∆, the realized volatility should be a good

approximation for the unobserved integrated volatility Vt,t+∆.5

Moments for the integrated volatility for the model in (1) have previously been derived

by Bollerslev and Zhou (2002) (see also Meddahi (2002) and Andersen et al. (2004)). In

particular, it follows that the first conditional moment under the physical measure satisfies

E(Vt+∆,t+2∆|Ft) = α∆ E(Vt,t+∆|Ft) + β∆ (5)

where the coefficients α∆ = e−κ∆ and β∆ = θ
(
1 − e−κ∆

)
are functions of the underlying

parameters κ and θ of (1).

Using option prices, it is also possible to construct a model-free measure of the risk-

neutral expectation of the integrated volatility. In particular, let IV∗
t,t+∆ denote the time t

implied volatility measure computed as a weighted average, or integral, of a continuum of

∆-maturity options,

IV∗
t,t+∆ = 2

∫ ∞

0

C(t + ∆, K) − C(t, K)

K2
dK (6)

where C(t, K) denotes the price of a European call option maturing at time t with strike

price K. As formally shown by Britten-Jones and Neuberger (2000), this model-free implied

volatility then equals the true risk-neutral expectation of the integrated volatility,6

IV∗
t,t+∆ = E∗ (Vt,t+∆| Ft) , (7)

5The asymptotic distribution (for n → ∞ and ∆ fixed) of the realized volatility error has been formally
characterized by Barndorff-Nielsen and Shephard (2002) and Meddahi (2002). Also, Barndorff-Nielsen and
Shephard (2004b) have recently extended these asymptotic distributional results to allow for leverage effects.

6Carr and Madan (1998) and Demeterfi et al. (1999) have previously derived a closely related expression.
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where E∗(·) refers to the expectation under the risk-neutral measure. Although the original

derivation of this important result in Britten-Jones and Neuberger (2000) assumes that the

underlying price path is continuous, this same result has recently been extended by Jiang

and Tian (2004) to the case of jump diffusions. Moreover, Jiang and Tian (2004) also

demonstrates that the integral in the formula for IV∗
t,t+∆ may be accurately approximated

from a finite number of options in empirically realistic situations.

Combining these results, it now becomes possible to directly and analytically link the

expectation of the integrated volatility under the risk-neutral dynamics in (2) with the

objective expectation of the integrated volatility under (1). As formally shown by Bollerslev

and Zhou (2004),

E (Vt,t+∆| Ft) = A∆IV∗
t,t+∆ + B∆, (8)

where A∆ = (1−e−κ∆)/κ

(1−e−κ∗∆)/κ∗ and B∆ = θ[∆ − (1 − e−κ∆)/κ] − A∆θ∗[∆ − (1 − e−κ∗∆)/κ∗] are

functions of the underlying parameters κ, θ, and λ. This equation, in conjunction with

the moment restriction in (5), provides the necessary identification of the risk premium

parameter, λ.7

2.2 GMM Estimation and Statistical Inference

Using the moment conditions (5) and (8), we can now construct a standard GMM type

estimator. To allow for overidentifying restrictions, we augment the moment conditions with

a lagged instrument of realized volatility, resulting in the following four dimensional system

of equations:

ft(ξ) =




Vt+∆,t+2∆ − α∆Vt,t+∆ − β∆

(Vt+∆,t+2∆ − α∆Vt,t+∆ − β∆)Vt−∆,t

Vt,t+∆ −A∆IV∗
t,t+∆ − B∆

(Vt,t+∆ −A∆IV∗
t,t+∆ − B∆)Vt−∆,t


 (9)

where ξ = (κ, θ, λ)′. By construction E[ft(ξ0)|Gt] = 0, and the corresponding GMM estimator

is defined by ξ̂T = arg min gT (ξ)′WgT (ξ), where gT (ξ) refers to the sample mean of the

7When implementing the conditional moment restrictions (5) and (8), it is useful to distinguish between
two information sets—the continuous sigma-algebra Ft = σ{Vs; s ≤ t}, generated by the point-in-time
volatility process, and the discrete sigma-algebra Gt = σ{Vt−s−1,t−s; s = 0, 1, 2, · · · ,∞}, generated by the
integrated volatility series. Obviously, the coarser filtration is nested in the finer filtration (i.e., Gt ⊂ Ft), and
by the Law of Iterated Expectations, E[E(·|Ft)|Gt] = E(·|Gt). The GMM estimation method implemented
later is based on the coarser information set Gt.
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moment conditions, gT (ξ) ≡ 1/T
∑T−2

t=2 ft(ξ), and W denotes the asymptotic covariance

matrix of gT (ξ0) (Hansen, 1982). Under standard regularity conditions, the minimized value

of the objective function J = minξ gT (ξ)′WgT (ξ) multiplied by the sample size should be

asymptotically chi-square distributed, allowing for an omnibus test of the overidentifying

restrictions. Moreover, inference concerning the individual parameters is readily available

from the standard formula for the asymptotic covariance matrix, (∂ft(ξ)/∂ξ′W∂ft(ξ)/∂ξ)/T .

Further, since the lag structure in the moment conditions in equations (5) and (8) entails

a complex dependence, we use a heteroscedasticity and autocorrelation consistent robust

covariance matrix estimator with a Bartlett-kernel and a lag length of five in implementing

the estimator (Newey and West, 1987).

3 Finite Sample Distributions

3.1 Monte Carlo Design

To determine the finite sample performance of the GMM estimator based on the moment

conditions described above, we conducted a small scale Monte Carlo study for the specialized

Heston (1993) version of the model in (1) and (2) with σt(·) = σ
√

Vt. To illustrate the

advantage of the new model-free volatility measures, we estimated the model using three

different implied volatilities:

1. RNIV: risk-neutral expectation of integrated volatility (this is, of course, not observ-

able in practice but can be calculated inside the simulations where we know both the

latent volatility state Vt and the risk neutral parameters κ∗ and θ∗);

2. MFIV: model-free implied volatility computed from one-month maturity option prices

using a truncated and discretized version of equation (6);

3. BSIV: Black-Scholes implied volatility from a one-month maturity, at-the-money op-

tion as a (misspecified) proxy for RNIV.

We also use three different realized volatility measures to assess how the mis-measurement

of realized volatility affects the estimation:

1. Integrated Volatility: The monthly true integrated volatility
∫ t+∆

t
Vs ds (again, this

is not observable in practice but can be calculated inside the simulations);
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2. Realized Volatility, 5-minute: monthly realized volatilities computed from five-

minute returns;

3. Realized Volatility, daily: monthly realized volatilities computed from daily returns.

The dynamics of (1) are simulated with the Euler method. We calculate model-free implied

volatility for a given level of Vt with the discrete version of (6) presented by Jiang and

Tian (2004). The call option prices needed to compute model-free implied volatility are

computed with the Heston (1993) formula. The Black-Scholes implied volatility is generated

by calculating the price of an at-the-money call and then inverting the Black-Scholes formula

to extract the implied volatility.

The accuracy of the asymptotic approximations are illustrated by contrasting the results

for sample sizes of 150 and 600. The total number of Monte Carlo replications is 500. To

focus on the volatility risk premium, the drift of the stock return in (1) and the risk-free rate

in (2) are both set equal to zero. The benchmark scenario is labeled (a) and sets κ = 0.10,

θ = 0.25, σ = 0.10, λ = −0.20, ρ = −0.50. Three additional variations we consider are (b)

high volatility persistence, or κ = 0.03; (c) high volatility-of-volatility, or σ = 0.20; and (d)

pronounced leverage, or ρ = −0.80.8

3.2 Simulation Results

Tables 1-3 summarize the parameter estimation for the volatility risk premium. The use

of model-free implied volatility (MFIV) achieves a similar root-mean-squared error (RMSE)

and convergence rate as the true infeasible risk-neutral implied volatility (RNIV). On the

other hand, the misspecified Black-Scholes implied volatility (BSIV) shows slow convergence

in estimating the volatility risk premium. Also, using realized volatility from five-minute

returns (over a monthly horizon) has virtually the same small bias and high efficiency as

the estimates based on the (infeasible) integrated volatility. In contrast, using the realized

volatility from daily returns generally results in a larger bias and significantly lower efficiency.

Figures 1-3 report the Wald test for the risk premium parameter, which should be asymp-

totically X 2(1) distributed. In the cases of (infeasible) integrated volatility and five-minute

realized volatility, the test statistics for the MFIV and RNIV measures are generally indis-

tinguishable and closely approximated by the asymptotic distribution, the only exception

8The first three designs are the same as in Bollerslev and Zhou (2002), and the estimation results for
the κ and θ parameters (available upon request) mirror the results reported therein based on the moment
conditions for the model in (1) only.
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being the high volatility persistence scenario (b) for which the MFIV measure results in slight

over-rejection. In contrast, the (misspecified) BSIV measure is clearly biased for all of the

different scenarios. When the realized volatility is constructed from daily squared returns,

the Wald test systematically loses power to detect any misspecification, and the RNIV and

MFIV measures now both show some under-rejection bias.9

In a sum, the Monte Carlo results clearly demonstrate that it is possible to accurately

estimate the volatility risk premium from the model-free implied volatilities and the five-

minute based realized volatilities. On the other hand, the use of Black-Scholes implied

volatilities and/or realized volatilities from daily squared returns both produce biased and

inefficient estimates, and generally do not allow for reliable inference concerning the true

value of the risk premium parameter.

4 Estimates for the Market Volatility Risk Premium

4.1 Time-Varying Volatility Risk Premium and Relative Risk Aver-

sion

There is an intimate link between the stochastic volatility risk premium and the coefficient of

risk aversion for the representative investor within the standard intertemporal asset pricing

framework. In particular, assuming a linear volatility risk premium along with an affine

version of the stochastic volatility model corresponding to σt(·) = σ
√

Vt in (1), as in Heston

(1993), it follows that −λVt = covt

(
dmt

mt
, dVt

)
, where mt denotes the pricing kernel, or

marginal utility of wealth for the representative investor. Moreover, assuming that the

representative agent has a power utility function

Ut = e−δt W
1−γ
t

1 − γ
, (10)

where δ denotes a constant subjective time discount rate, and that in equilibrium the agent

holds the market portfolio. The marginal utility then equals mt = e−δtW−γ
t , and it follows

9The GMM omnibus test also has the correct size for the RNIV and MFIV measures, but often cannot
reject for the misspecified BSIV. This is because even for BSIV the objective moment (5) is still correctly
specified, only the cross moment (8) is misspecified. These additional graphs are omitted to conserve space
but available upon request.
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by Itô’s formula that10

−λVt = covt

(
dmt

mt
, dVt

)
= −γρσVt. (11)

Thus, in this situation the constant relative risk aversion coefficient is directly proportional

to the volatility risk premium γ = λ/(ρσ). Moreover, given the estimated values of ρ =

−0.8 and σ = 1.2 for the S&P500 data analyzed below, −λ is approximately equal to the

representative investor’s risk aversion, γ.

Meanwhile, a number of studies have argued that the assumption of constant risk aversion,

or by the equivalence discussed above a constant volatility risk premium parameter, is too

restrictive for satisfactorily describing asset return dynamics.11 The development of a formal

preference-based model for explaining temporal variation in the risk aversion coefficient is

beyond the scope of the present paper. Instead, suppose simply that the utility function for

the representative investor may be expressed as

Ut = e−δt W
1−γt
t

1 − γt

, (12)

where γt now represents a possibly time-varying relative risk aversion coefficient. Moreover,

assume that the evolution in γt may be described by the separate diffusion process,

dγt = µ(γt)dt + σ(γt)dB3t, (13)

where importantly the preference shocks are exogenous, in the sense that the dB3t innovation

process is uncorrelated with the two Brownian motions driving the log-price and volatility

processes, dB1t and dB2t, respectively. On applying Itô’s formula, it follows then by similar

arguments to the ones in Gordon and St-Amour (2004) that in equilibrium

−λtVt = covt

(
dmt

mt

, dVt

)
= −γtρσVt. (14)

In particular, the no-arbitrage requirement implies the following modification to the risk-

neutral distribution for the volatility in equation (2),

dVt = κ∗
t (θ

∗
t − Vt)dt + σt(·)dB∗

2t, (15)

10A similar argument is made by Bakshi and Kapadia (2003).
11Constant relative risk aversion is also not consistent with more general utility functions, like the habit

persistence model of Campbell and Cochrane (1999) or the relative social status model of Bakshi and Chen
(1996).
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where now κ∗
t = κ + λt and θ∗t = κθ/(κ + λt).

12 This expression directly motivates our

estimation of a time-varying volatility risk premium λt, or equivalently a time-varying risk

aversion coefficient, γt = λt/(ρσ). With the caveat that more generally this equivalence is

at best an approximation, we will continue to use the phrases volatility risk premium and

investor risk aversion interchangeably in the following discussion.

4.2 Empirical Approximations for the Volatility Risk Premium

The discussion in the previous section suggests that the volatility risk premium is likely

time-varying. We will explore two different empirical approximations which explicitly link

the period-by-period variation in the estimated risk premium parameter through a simple

dynamic model for λt+1.

Our first approximation is based on the AR(1) model

λt+1 = a + bλt + cut, (16)

where we allow the time-variation in the risk premium to be driven by the fitted error in

the cross moment between the realized and implied volatility, ut = Vt−1,t −A1IV
∗
t−1,t − B1.

This formulation has a precedent in ARCH-GARCH type modeling, where the shock to the

volatility equation comes from the previous period’s mean equation error. Importantly, it is

also consistent with the no-arbitrage requirement that the preference parameter λt+1 be a

pre-determined function of time-t state variables. To identify the additional two parameters

a and b, we add the lag squared realized volatility as an instrument to the moment conditions

in (5) and (8), leaving us with the same single degree of freedom for the chi-square omnibus

test.

Our second approach explores whether the observed difference between the implied and

realized volatility can further be explained by a set of macro-finance state variables in a

manner consistent with the underlying theoretical option pricing framework. Specifically,

we approximate the volatility risk premium parameter as the following augmented AR(1)

process,

λt+1 = a + bλt +
K∑
k

ck × statet,k (17)

12The option pricing formula in Heston (1993) also allow for time-dependent coefficients, although the
closed-form solutions are complicated by any dynamic dependencies in λt.
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where statet,k will be chosen from around thirty popular candidate variables. Previous efforts

to explain time-varying volatility risk premia with economic variables have been rare and

challenging at best. In contrast, the model and GMM estimation procedure that we use here

is quite simple to implement. Again, to be consistent with no-arbitrage, the macro-finance

shocks “statet,k” must be interpreted either as fixed covariates or predetermined functions

of the time-t state variables, St and Vt. When actually implementing the estimation below

we used the lagged realized volatility, the lagged squared realized volatility, and the lagged

implied volatility as instruments for the cross moment in (8), while leaving the moment for

the realized volatility in (5) the same as in the constant risk premium case. This in turn

results in the identical X 2(1) asymptotic distribution for the GMM omnibus test.

4.3 Data Sources and Summary Statistics

Our empirical analysis is based on monthly implied and realized volatilities for the S&P500

index from January 1990 through May 2004. For the risk-neutral implied volatility measure,

we rely on the VIX index provided by the Chicago Board of Options Exchange (CBOE). The

VIX index, available back to January 1990, is based on the liquid S&P500 index options,

and more importantly, it is calculated with the model-free approach advocated by Carr and

Madan (1998), Demeterfi et al. (1999), and Britten-Jones and Neuberger (2000).13 As shown

in the Monte Carlo study, the model-free implied volatility should be a good approximation to

the true (unobserved) risk-neutral expectation of the integrated volatility, and, in particular,

a much better approximation than the one afforded by the Black-Scholes implied volatility.

Our realized volatilities are based on the summation of the five-minute squared returns

on the S&P500 index within the month.14 Thus, for a typical month with 22 trading days,

we have 22×78 = 1, 716 five-minute returns, where the 78 five-minute subintervals cover the

normal trading hours from 9:30am to 4:00pm. Again, as indicated by the Monte Carlo sim-

ulations in the previous section, the monthly realized volatilities based on these five-minute

returns should provide a very good approximation to the true (unobserved) continuous-time

integrated volatility, and, in particular, a much better approximation than the one based on

13In September 2003, CBOE replaced the old VIX index, based on S&P100 options and Black-Scholes
implied volatility, with the new VIX index based on S&P500 options and model-free implied volatilities
involving a discrete approximation to the theoretical result in Carr and Madan (1998), Demeterfi et al.
(1999), and Britten-Jones and Neuberger (2000). Historical data on both the old and new VIX are directly
available from the CBOE.

14The high-frequency data for the S&P500 index is provided by the Institute of Financial Markets.
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the sum of the daily squared returns.

Figure 4 plots realized volatility, implied volatility, and their difference.15 Both of the

volatility measures were generally higher during the latter half of the sample, although they

have also both decreased more recently. Summary statistics are reported in Table 4. Realized

volatility is systematically lower than implied volatility, and its unconditional distribution

deviates more from the normal. Both measures exhibit pronounced serial correlation with

extremely slow decay in their autocorrelations.

There is a long history of market participants (and some academic researchers) using

the level of the VIX implied volatility as a gauge of market fear or, in the economists’

jargon, investor risk aversion. Along similar lines, the difference between the implied and

realized volatilities are also sometimes associated with the market-implied risk aversion.16

Unfortunately, the raw difference, as depicted in the bottom panel in Figure 4, is typically

very noisy and uninformative, and essentially just follows the level of the volatility. A more

structured approach for extracting the volatility risk premium (or implied risk aversion), as

discussed in the previous sections, thus holds the promise of revealing a deeper understanding

of the way in which the volatility risk premium evolves over time, and its relationship to the

macroeconomy. We next turn to a discussion of our pertinent estimation results.

4.4 GMM Estimation Results

Table 5 reports the GMM estimation results for the three volatility risk premium speci-

fications: (i) a constant λ; (ii) a time-varying λt+∆ driven by the time-t error from the

cross moment as in equation (16); and (iii) a time-varying λt+∆ determined by the time-t

macro-finance variables as in equation (17).17

First, restricting the risk premium to be constant results in a highly significant estimate

of -1.79. However, the chi-square omnibus test of overidentifying restrictions rejects the

overall specification at the 10% (although not at the 5%) level.

The second column of the table presents the result allowing for temporal variation in

the risk premium driven by the error from the cross moment. The corresponding estimated

15Here and throughout the paper, monthly standard deviations are ”annualized” by multiplying by
√

12.
16In support of this, Rosenberg and Engle (2002) also find that their empirical risk aversion measure is

positively related to the difference between implied and objective volatility.
17In order to conserve space, we only report the results pertaining to the parameters for the volatility

risk premium. The results for the other parameters in the model are directly in line with previous results
reported in the literature, and consistent with the summary statistics in Table 3, point toward a high degree
of volatility persistence in the (latent) Vt process.
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coefficient (c = 0.02) is highly statistically significant. Interestingly, the estimates for this

specification also point toward a high degree of persistence (b = 0.80) in the volatility risk

premium, with an implied average value for the full sample of a/(1 − b) = −1.99. Yet, the

overall specification test continues to (barely) reject the model at the 10% (but not at the

5%) level.

To circumvent these shortcomings, the third column presents the results obtained by

explicitly including the macro-finance covariates. To select the macro-finance variables in

the time-varying risk premium specification, we did an extensive search with 29 monthly

data series (listed in Table 8). If part of the temporal variation in investor risk aversion

reflects investors focusing on different aspects of the economy at different points in time, as

seems likely, some flexibility in specifying the set of covariates seems both appropriate and

unavoidable. Hence, we select the group of variables that jointly achieves the highest p-

value of the GMM omnibus specification test and that are significant (at the 5% level) based

on their individual t-test statistics.18 To facilitate the subsequent discussion, the resulting

seven variables have all been standardized to have mean zero and variance one so that their

marginal contribution to the time-varying risk premium are directly comparable.19

The results for the autoregressive part of the specification implies an average risk pre-

mium of a/(1 − b) = −1.82, and, without figuring in the dynamic impact of the macro

state variables, an even higher degree of own persistence, b = 0.93. As necessitated by the

specification search, all of the individual parameters for the macro-finance covariates are

statistically significant at the 5% level, and the overall GMM specification test is greatly

improved, with a p-value of 0.92. The resulting estimate for the volatility risk premium,

along with the seven macro-finance input variables, are plotted in Figure 5.

Both the signs and magnitudes of the macro-finance shock coefficients are important in

understanding the time-variation of the volatility risk premium. Sticking to the convention

that (−λ) represents the risk premium, or risk aversion, the realized volatility has the biggest

contribution (-0.32) and a positive impact (i.e., when volatility is high so is risk aversion).20

18We are, of course, aware of the danger of data mining that such a specification search presents. However,
we have attempted to limit the degree of data mining by choosing a limited set of candidate macro-finance
covariates, as listed in Table 8. Also, it is not the case that adding more covariates in the GMM estimation
automatically improves the fit of the model, as judged by the p-value for the over-identifying restrictions.

19For stationary variables the unit is the level, while for non-stationary variables the unit is the logarithmic
change for the past twelve months.

20This result contradicts the counter-intuitive findings in Bliss and Panigirtzoglou (2004) that risk aversion
appears to be lower when volatility is higher. However, this finding may possibly be explained by their
omission of other important macro-finance variables for jointly describing the time-variation in the estimated
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The impact of AAA bond spread over Treasuries (0.19) likely reflects a business cycle effect

(i.e., credit spreads tend to be high before a downturn which usually coincides with low risk

aversion). Conversely, housing starts have a positive impact on the risk premium (-0.19) (i.e.,

a real estate boom usually precedes higher risk aversion). The S&P 500 P/E ratio is the

fourth most important factor (0.14), and impacts the premium negatively (i.e., everything

else equal, higher P/E ratios lowers the degree of risk aversion). The fifth variable in the

table is industrial production growth (0.10), which also has a negative impact (i.e., higher

growth leads to a lower volatility risk premium). On the contrary, the sixth PPI inflation

variable leads to higher risk aversion (-0.05). Finally, the last significant macro state variable,

payroll employment, marginally raises the volatility risk premium (-0.04), possibly as a result

of wage pressure.

4.5 Alternative Estimation Strategies

Several alternative procedures for estimating the time-varying volatility risk premium have

previously been implemented in the literature. One such approach is to vary the risk premium

parameter each time period to best match that period’s market data. In the context of

volatility modeling, that approach would vary the risk premium parameter to match each

month’s difference between realized and implied volatility. Such an approach would produce

the time-varying risk premium shown in the middle panel of Figure 6, the general shape of

which matches the earlier plot in the bottom panel of Figure 4 (the simple difference between

implied and realized volatilities).

As previously noted, the problem with this approach is that by attributing each wiggle

in the data to changes in the risk premium, it produces an excessively volatile time series of

monthly risk premia. Economic theory argues that an asset’s risk premium should depend on

deep structural parameters. For example, in the consumption CAPM (C-CAPM), an asset’s

risk premium varies with investors’ risk aversion and the asset’s covariance with investors’

consumption. By definition, deep structural parameters should be relatively stable over

time. Yet the approach of period-by-period estimation of a time-varying risk premia forces

the parameters to vary (almost independently) from one period to the next. As such, we

find the monthly volatility risk premium series shown in the middle panel of Figure 6 to be

implausibly volatile.21

risk aversion coefficient.
21Several recent papers have charts that look similar to the middle panel of Figure 6. For example, see

15



A second approach for estimating investors’ “risk appetite,” more popular among market

participants, is to construct a weighted-average of macro-finance variables.22 The bottom

panel of Figure 6 shows such a weighted-average index constructed from the 29 macro-finance

variables listed in Table 8, all standardized to have mean zero and variance one. In addition

to concerns that such indexes are too ad hoc to be reliable, indexes constructed in this way

also tend to be excessively and implausibly volatile.

A third approach to estimating risk premium parameters comes from the macroeconomic,

or consumption-based asset pricing literature. This approach typically assumes that risk

premia are constant, or if the risk preference are allowed to vary over time, they end up

being implausibly smooth and possibly nonstationary. For example, Campbell and Cochrane

(1999) generate time variation in risk aversion through habit formation in which the level of

habit reacts only gradually to changes in consumption.23 Such a modeling strategy explicitly

prevents the risk premia from being excessively variable in the short-run.24

In contrast, consider the top panel of Figure 6 which plots our estimated volatility risk

premium parameter based on the model involving the seven macro-finance covariates. Peaks

and troughs in the series are generally multiple years apart, and reassuringly the series is

void of the excessive month-by-month fluctuations that plague both of the other two series

in that same figure. The estimated risk premium also rises sharply during the two NBER-

dated macroeconomic recessions (the shaded areas in the plots), as well as the periods of

slow recovery and job growth after the 1991 and 2001 recessions. Moreover, the peaks in the

series are readily identifiable with major macroeconomic or financial market developments,

including the 1994 rate hike and soft landing, the 1998 Russian debt crisis, and the bursting

of the stock market “bubble” in 2000. There is also a peak in the risk premium in 1996

that does not appear to directly line up with any major economic event, except perhaps

the worry about over-valuation in the stock market sometimes labeled as the period of

“Irrational Exuberance”. Lastly, the estimates also suggest that the risk premium often

rises fairly sharply but in general declines only gradually.

Rosenberg and Engle (2002) page 363, Tarashev et al. (2003) page 62, and Gordon and St-Amour (2004)
page 249.

22Chaboud (2003) discusses several such indexes constructed by J.P. Morgan, State Street Bank, and
Credit Suisse First Boston.

23In a similar vein, Cochrane and Piazzesi (2004) model a slowly varying risk premia on Treasury bonds
as a function of current forward rates.

24Along these lines, note that except for the 1978-82 monetary experiment period, the estimated risk
aversions of Brandt and Wang (2003) do not pick out most recessions.
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4.6 Stock Return Predictability

Our characterization of the volatility risk premium has the potential of being informative

about other risk premia in the economy. To illustrate, we compare its predictive power for

aggregate stock market returns with that of other traditionally-used macro-finance variables.

To that end, the top panel of Table 6 reports the results of simple univariate regressions of

the monthly S&P500 excess returns on the most significant individual variables from the

pool of covariates listed in Table 8. As evidenced by the results, the extracted volatility risk

premium has the highest predictive power with an R2 of 3.67%.25 The next best predictor

is the S&P500 P/E ratio with an R2 of 2.80%. Next in order are industrial production and

nonfarm payrolls with R2’s of 1.53% and 1.06%, respectively. Dividend yields - a significant

predictor according to many other studies - only explains 0.85% of the monthly return

variation. All-in-all, these results are consistent with previous findings that macroeconomic

state variables do predict returns, though the predictability measured by R2 is usually in

the low single digits. Nonetheless, it is noteworthy that of all the predictor variables, the

volatility risk premium results in the single highest R2.

Combining all of the marginally significant variables into a single multiple regression,

results in the estimates shown in the bottom panel of Table 6. Interestingly, none of the

macro-finance variable remains significant when the volatility risk premium is included, while

only the P/E ratio is significant in the regression excluding the premium. Of course, the es-

timate for the volatility risk premium already incorporates some of the same macroeconomic

variables (see Table 5), so the finding that these variables are “driven out” when included

together with the premium is not necessarily that surprising. However, the macro variables

entering the model for λt+∆ only impact the returns indirectly through the temporal vari-

ation in the premium, and the volatility risk premium itself is also estimated from a very

different set of moment conditions involving only the model-free realized and options implied

volatilities.

Our examination of the monthly stock excess return in Table 6 singles out the volatility

risk premium and the stock market P/E ratio as the two most important predictor vari-

ables. Table 7 augments these results with regressions involving longer-run quarterly excess

returns spanning 1990Q1 through 2003Q2. In addition to the volatility risk premium and

the P/E ratio from the last month of the previous quarter, we now also include the quarterly

25The use of the volatility risk premium as a second-stage regressor suffers from a standard errors-in-
variables type problem, resulting in too large a standard error for the estimated slope coefficient.
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consumption-wealth ratio popularized by Lettau and Ludvigson (2001) in the regressions.

The consumption-wealth ratio, termed CAY, has previously been found to be significant in

explaining longer horizon returns. The first three regressions in the table show that each of

the three variables are indeed individually significant. At the same time, it is noteworthy

that the risk premium results in the highest individual R2 of 11.6%, much higher than the

monthly R2 of 3.7%. Adding the P/E ratio and/or the CAY variable further increase the

quarterly R2’s in excess of 14%. The risk premium remains significant in all of the multiple

regressions, while combining the P/E ratio and the CAY variable in the same regression

renders both insignificant, and does not increase the R2 by much. As such, these results

further reinforce the earlier findings for the monthly returns in Table 6 and the role of the

estimated volatility risk premium as a new and powerful stock market predictor over longer

quarterly horizons.

5 Conclusion

This paper develops a simple consistent approach for estimating the volatility risk premium.

The approach exploits the linkage between the objective and risk-neutral expectations of the

integrated volatility. The estimation is facilitated by the use of newly available model-free

realized volatilities based on high-frequency intraday data along with model-free option-

implied volatilities. The approach allows us to explicitly link any temporal variation in the

risk premium to underlying state variables within an internally consistent and simple-to-

implement GMM estimation framework. A small scale Monte Carlo experiment indicates

that the procedure performs well in estimating the volatility risk premium in empirically

realistic situations. In contrast, the estimates based on the Black-Scholes implied volatilities

and/or monthly sample variances based on daily squared returns result in highly inefficient

and statistically unreliable estimates of the risk premium. Applying the methodology to the

S&P500 market index, we find significant evidence for temporal variation in the volatility

risk premium, which we directly link to a set of underlying macro-finance state variables.

Interestingly, the extracted volatility risk premium also appears to be helpful in predicting

the return on the market itself.

The volatility risk premium (or risk aversion index) extracted in our paper differs sharply

from other approaches in the literature. In particular, earlier estimates relying directly on

period-by-period differences in the estimated risk-neutral and objective distributions tend
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to produce implausibly volatile estimates. On the other hand, earlier procedures based on

structural macroeconomic/consumption-type pricing models typically result in implausibly

smooth estimates. In contrast, the model-free realized and implied volatility-based procedure

developed here results in an estimated premium that avoids the excessive period-by-period

random fluctuations, yet responds to recessions, financial crises, and other economic events

in an empirically realistic fashion.

It would be interesting to more closely compare and contrast the risk aversion index

estimated here to other popular gauges of investor fear or market sentiment. Also, how do

the estimated volatility risk premium for the S&P500 compare to that of other markets?

The results in the paper show that the extracted volatility risk premium for the current

month is useful in predicting next month’s aggregate S&P500 return. It would interesting

to further explore the cross sectional pricing implications of this finding. Does the volatility

risk premium represent a systematic priced risk factor?26 Also, what is the link between

stock and bond market volatility risk premia? Lastly, better estimates for the volatility risk

premium is, of course, of direct importance for derivatives pricing. We leave further work

along these lines for future research.

26The recent results in Ang et al. (2005) suggest that volatility risk may indeed be a priced factor.
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Table 1: Monte Carlo Result for λ with Risk-Neutral Implied Volatility

Mean Bias Median Bias Root-MSE
T = 150 T = 600 T = 150 T = 600 T = 150 T = 600

Scenario (a), Benchmark Case
κ = 0.10, θ = 0.20, σ = 0.10, λ = −0.20, ρ = −0.50

Integrated Vol. -0.0046 -0.0015 -0.0041 -0.0013 0.0202 0.0091
Realized, 5-min. -0.0043 -0.0014 -0.0027 -0.0014 0.0201 0.0090
Realized, 1-day -0.0129 -0.0036 -0.0169 -0.0040 0.0576 0.0260

Scenario (b), High Volatility Persistence
κ = 0.03, θ = 0.20, σ = 0.10, λ = −0.20, ρ = −0.50

Integrated Vol. -0.0097 -0.0029 -0.0079 -0.0017 0.0244 0.0099
Realized, 5-min. -0.0088 -0.0026 -0.0059 -0.0014 0.0237 0.0098
Realized, 1-day -0.0172 -0.0051 -0.0187 -0.0039 0.0615 0.0275

Scenario (c), High Volatility-of-Volatility
κ = 0.10, θ = 0.20, σ = 0.20, λ = −0.20, ρ = −0.50

Integrated Vol. -0.0166 -0.0054 -0.0127 -0.0049 0.0463 0.0193
Realized, 5-min. -0.0162 -0.0054 -0.0119 -0.0048 0.0457 0.0190
Realized, 1-day -0.0278 -0.0089 -0.0288 -0.0085 0.0804 0.0342

Scenario (d), High Leverage
κ = 0.10, θ = 0.20, σ = 0.20, λ = −0.20, ρ = −0.80

Integrated Vol. -0.0046 -0.0016 -0.0040 -0.0015 0.0200 0.0093
Realized, 5-min. -0.0042 -0.0014 -0.0043 -0.0012 0.0200 0.0092
Realized, 1-day -0.0130 -0.0032 -0.0165 -0.0025 0.0569 0.0253
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Table 2: Monte Carlo Result for λ with Model-Free Implied Volatility

Mean Bias Median Bias Root-MSE
T = 150 T = 600 T = 150 T = 600 T = 150 T = 600

Scenario (a), Benchmark Case
κ = 0.10, θ = 0.20, σ = 0.10, λ = −0.20, ρ = −0.50

Integrated Vol. 0.0013 0.0044 0.0015 0.0048 0.0199 0.0101
Realized, 5-min. 0.0017 0.0045 0.0030 0.0045 0.0199 0.0101
Realized, 1-day -0.0068 0.0021 -0.0103 0.0017 0.0569 0.0258

Scenario (b), High Volatility Persistence
κ = 0.03, θ = 0.20, σ = 0.10, λ = −0.20, ρ = −0.50

Integrated Vol. -0.0005 0.0064 0.0000 0.0071 0.0248 0.0130
Realized, 5-min. 0.0003 0.0066 0.0020 0.0068 0.0244 0.0130
Realized, 1-day -0.0081 0.0036 -0.0093 0.0053 0.0598 0.0276

Scenario (c), High Volatility-of-Volatility
κ = 0.10, θ = 0.20, σ = 0.20, λ = −0.20, ρ = −0.50

Integrated Vol. -0.0034 0.0075 -0.0008 0.0078 0.0475 0.0221
Realized, 5-min. -0.0030 0.0077 -0.0018 0.0086 0.0471 0.0219
Realized, 1-day -0.0166 0.0029 -0.0170 0.0041 0.0796 0.0341

Scenario (d), High Leverage
κ = 0.10, θ = 0.20, σ = 0.20, λ = −0.20, ρ = −0.80

Integrated Vol. 0.0016 0.0045 0.0021 0.0046 0.0198 0.0103
Realized, 5-min. 0.0020 0.0047 0.0016 0.0048 0.0198 0.0104
Realized, 1-day -0.0068 0.0029 -0.0101 0.0035 0.0561 0.0253
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Table 3: Monte Carlo Result for λ with Black-Scholes Implied Volatility

Mean Bias Median Bias Root-MSE
T = 150 T = 600 T = 150 T = 600 T = 150 T = 600

Scenario (a), Benchmark Case
κ = 0.10, θ = 0.20, σ = 0.10, λ = −0.20, ρ = −0.50

Integrated Vol. 0.0089 0.0119 0.0094 0.0122 0.0209 0.0147
Realized, 5-min. 0.0092 0.0120 0.0106 0.0121 0.0211 0.0148
Realized, 1-day 0.0010 0.0100 -0.0019 0.0094 0.0562 0.0276

Scenario (b), High Volatility Persistence
κ = 0.03, θ = 0.20, σ = 0.10, λ = −0.20, ρ = −0.50

Integrated Vol. 0.0045 0.0107 0.0065 0.0120 0.0214 0.0139
Realized, 5-min. 0.0055 0.0111 0.0079 0.0118 0.0214 0.0142
Realized, 1-day -0.0015 0.0094 -0.0007 0.0105 0.0601 0.0285

Scenario (c), High Volatility-of-Volatility
κ = 0.10, θ = 0.20, σ = 0.20, λ = −0.20, ρ = −0.50

Integrated Vol. 0.0215 0.0321 0.0247 0.0324 0.0444 0.0361
Realized, 5-min. 0.0220 0.0321 0.0258 0.0322 0.0443 0.0361
Realized, 1-day 0.0136 0.0312 0.0144 0.0311 0.0742 0.0450

Scenario (d), High Leverage
κ = 0.10, θ = 0.20, σ = 0.20, λ = −0.20, ρ = −0.80

Integrated Vol. 0.0127 0.0156 0.0134 0.0156 0.0227 0.0179
Realized, 5-min. 0.0131 0.0158 0.0128 0.0160 0.0230 0.0181
Realized, 1-day 0.0041 0.0141 0.0002 0.0153 0.0555 0.0288
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Table 4: Summary Statistics for Monthly Implied and Realized Volatilities

Statistics Realized Volatility Implied Volatility
Mean 12.68 20.08
Std. Dev. 5.84 6.39
Skewness 1.21 0.84
Kurtosis 4.63 3.87
Minimum 4.73 10.63
5% Qntl. 5.92 11.73
25% Qntl. 7.93 14.79
50% Qntl. 11.56 19.52
75% Qntl. 15.42 24.19
95% Qntl. 24.62 31.17
Maximum 36.61 44.28
ρ1 0.81 0.83
ρ2 0.68 0.69
ρ3 0.61 0.60
ρ4 0.54 0.56
ρ5 0.55 0.55
ρ6 0.55 0.53
ρ7 0.52 0.50
ρ8 0.53 0.49
ρ9 0.53 0.52
ρ10 0.53 0.54
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Table 5: Estimation of Volatility Risk Premium

Constant Time-Varying Macro-Finance
λ -1.793 (0.216)
a -0.394 (0.107) -0.122 (0.051)
b 0.803 (0.070) 0.933 (0.030)
c 0.022 (0.003)
c1 Realized Volatility -0.319 (0.042)
c2 Moody AAA Bond Spread 0.194 (0.034)
c3 Housing Start -0.191 (0.055)
c4 S&P500 P/E Ratio 0.140 (0.015)
c5 Industrial Production 0.097 (0.026)
c6 Producer Price Index -0.047 (0.023)
c7 Payroll Employment -0.040 (0.019)
X 2(d.o.f. = 1) (p-Value) 2.889 (0.089) 2.722 (0.099) 0.169 (0.919)

All of the macro-finance variables are standardized to have mean zero and variance one. The
growth variables (Industrial Production, Producer Price Index, and Payroll Employment)
are expressed in terms of the logarithmic difference over the past twelve months. The lag
length in the Newey-West weighting matrix employed in the estimation is set at 25.

Table 6: Monthly Stock Market Return Predictability

Variables Intercept (s.e.) Slope (s.e.) R-Square
Volatility Risk Premium -18.51 (10.58) 12.49 (5.18) 0.04
S&P500 PE Ratio 35.94 (13.75) -1.27 (0.57) 0.03
Industrial Production -0.93 ( 5.50) 1.99 (1.23) 0.02
Nonfarm Payroll Employment -0.31 ( 5.48) 3.64 (2.62) 0.01
26 Other Macro-Finance Variables <0.01

Joint Estimation Including λt Excluding λt

Variables Parameter (s.e.) Parameter (s.e.)
Intercept 3.58 (20.30) 32.62 (15.31)
Volatility Risk Premium 8.34 ( 5.49)
S&P500 PE Ratio -0.71 ( 0.57) -1.26 ( 0.59)
Industrial Production 2.07 ( 2.26) 2.72 ( 2.20)
Nonfarm Payroll Employment -1.94 ( 4.70) -3.31 ( 4.66)
R-Square 0.05 0.04

The table reports predictive regressions for the monthly excess return on S&P500 index
measured in annualized percentage term. Industrial Production and Payroll Employment
numbers represent the past year logarithmic changes in annualized percentages.
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Table 7: Quarterly Stock Market Return Predictability

Intercept (s.e.) Risk Premium (s.e.) PE Ratio (s.e.) CAY (s.e.) R-Square
-22.039 (12.840) 13.63 (6.28) 0.12
41.044 (16.289) -1.54 (0.69) 0.10

2.412 ( 4.307) 5.38 (2.03) 0.09
8.740 (17.576) 9.51 (5.45) -0.95 (0.59) 0.14

-16.755 (13.545) 10.49 (6.83) 3.19 (1.79) 0.14
29.736 (27.887) -1.10 (1.14) 2.48 (3.35) 0.11
2.403 (23.700) 9.03 (5.64) -0.66 (0.96) 1.75 (3.04) 0.15

The quarterly data range from 1990Q1 to 2003Q2. The consumption-wealth-ratio, or CAY,
variable is defined in Lettau and Ludvigson (2001), and the data is downloaded from their
website.
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Table 8: List of Macro-Finance Variables

Macro-Finance Variables Data Source
S&P500 Realized Volatility Constructed from IFM (CME)
S&P500 Implied Volatility CBOE
S&P500 Market Return Standard & Poors
S&P500 PE Ratio Standard & Poors
S&P500 Dividend Yield Standard & Poors
NYSE Trading Volume NYSE
Unemployment Rate Bureau of Labor Statistics
Nonfarm Payroll Employment Bureau of Labor Statistics
Industrial Capacity Utilization Federal Reserve
Industrial Production Federal Reserve
CPI Inflation Bureau of Labor Statistics
Producer Price Index Bureau of Labor Statistics
Expected CPI Inflation Michigan Survey
Treasury Spread 5yr-6mn Federal Reserve
Treasury Spread 10yr-6mn Federal Reserve
Mortgage Spread (over 10yr Treasury) Federal Reserve
Swap Spread (over 10yr Treasury) Bloomberg
AAA Corporate Spread (over 10yr Treasury) Moody
BAA Corporate Spread (over 10yr Treasury) Moody
AA Corporate Spread (over 10yr Treasury) Merrill Lynch
BBB Corporate Spread (over 10yr Treasury) Merrill Lynch
Consumer Sentiment Michigan Survey
Consumer Sentiment (Expected) Michigan Survey
Consumer Confidence Conference Board
Consumer Confidence (Expected) Conference Board
Housing Permit Number HUD
Housing Start Number HUD
Money Supply (M2) Federal Reserve
Business Cycle Indicator NBER
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Figure 1: Wald Test for Risk Premium with True Integrated Volatility.
The X-axis gives the nominal level of the test and Y-axis the probability of rejection. The
dotted line represents the uniform reference distribution, the dash line is T = 150, and the
solid line is T = 600.
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Figure 2: Wald Test for Risk Premium with Five-Minute Return Realized Volatility.
The X-axis gives the nominal level of test and the Y-axis the probability of rejection. The
dotted line represents the uniform reference distribution, the dash line is T = 150, and the
solid line is T = 600.
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Figure 3: Wald Test for Risk Premium with Daily Return Realized Volatilities.
The X-axis gives the nominal level of the test and the Y-axis the probability of rejection.
The dotted line represents the uniform reference distribution, the dash line is T = 150, and
the solid line is T = 600.
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Figure 4: Model-Free Realized and Implied Volatilities
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Figure 5: Standardized Macro-Finance Covariates
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Figure 6: Time-Varying Volatility Risk Premium and Other Indices
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