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Abstract This paper explores a possible explanation of the forecast combination puzzle, that
simple combinations of point forecasts are repeatedly found to outperform sophisticated
weighted combinations in empirical applications. The explanation lies in the effect of finite-
sample error in estimating the combining weights. A small Monte Carlo study and a
reappraisal of an empirical study by Stock and Watson (2003a) support this explanation. The
Monte Carlo evidence, together with a large-sample approximation to the variance of the
combining weight, also supports the popular recommendation to ignore forecast error
covariances in estimating the weight.
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1. INTRODUCTION

The idea that combining different forecasts of the same event might be worthwhile has gained
wide acceptance since the seminal article of Bates and Granger (1969). Twenty years later,
Clemen (1989) provided a review and annotated bibliography containing over 200 items,
which he described as “an explosion in the number of articles on the combination of
forecasts”. These mostly concerned point forecasts of the future realisation of a random
variable, which has been a continuing focus of attention of the forecast combination literature;
a companion paper by Wallis (2004) considers extensions to the combination of interval and
density forecasts. Despite the explosion of activity, Clemen found a variety of issues that
remained to be addressed, the first of which was “What is the explanation for the robustness
of the simple average of forecasts?” (1989, p.566). That is, why is it that, in comparisons of
combinations of point forecasts, a simple average, with equal weights, often outperforms
more complicated weighting schemes. This empirical finding continually reappears, for
example in several recent papers by Stock and Watson (1999, 2003a, 2004), and remains a
puzzle. A possible explanation is explored in this paper.

The explanation rests on the observation that, in comparing weighted and unweighted
forecast combinations in real or pseudo out-of-sample testing, the underlying statistical
problem shares two key features with a model comparison problem recently addressed by
Clark and West (2004), and is amenable to similar analysis. The first common feature is that
the models being compared are nested, and in this situation many forecast evaluation
procedures available in the literature, which apply to non-nested comparisons, are inadequate.
The second feature is that the optimal combining weights are not known a priori, but must be
estimated, and in finite samples the resulting estimation error may cause a reversal of the

underlying theoretical optimality result.

The paper proceeds as follows. Section 2 presents the general framework for analysis,
beginning with the case of two competing forecasts and then considering generalisations to
combinations of many forecasts. Section 3 contains two empirical applications, the first a
small Monte Carlo study of combinations of two forecasts with equal error variances, the
second a reappraisal of a study of combination forecasts of US output growth by Stock and
Watson (2003a). Section 4 concludes.



2. WEIGHTED AND UNWEIGHTED COMBINATIONS OF FORECASTS

2.1  Optimal weights
We first follow Bates and Granger (1969) and consider the case of two competing point
forecasts, fi; and f,;, made h periods earlier, of the quantity y;. The forecast errors are

e =Y, —fir, 1=12.
It is usually assumed that the forecasts are unconditionally unbiased, or “unbiased on
average” in Granger and Newbold’s (1986, p.144) term, so that

E(e;)=0, i=12.
We denote the forecast error variances as o7, i =1,2, and their covariance as o;,. The
combined forecast is the weighted average

for =kfy + (@ —K) Ty, 1)
which is also unbiased in the same sense. Its error variance is minimised by setting the
weight k equal to

2
o5 —0.
Kopt = 55—, (2)
o, +o; 20,

noting a sign error in Bates and Granger’s equation (1). This expression can also be

recognised as the coefficient in a regression of e on (e, —e,;), which suggests a way of

estimating kop: from data on forecasts and outcomes. A further interpretation is that this is

equivalent to the extended realisation-forecast regression

Yo =a + By + B, 1y +u, 3)
subject to the restrictions a =0, g, + 3, =1. Although weights outside the (0,1) interval
might be thought to be hard to justify, all these interpretations admit this possibility. An

estimate based on (2) is negative whenever sample moments satisfy s, > s§ , and exceeds one

if 5, >s7.

The minimised error variance of the combined forecast is no greater than the smaller
of the two individual forecast error variances, hence in general there is a gain from combining
using the optimal weight. Equality occurs if the smaller variance is that of a forecast which is

already the minimum mean square error (mmse) forecast; there is then no gain in combining it

with an inferior forecast. If the mmse forecast is f,, say, with error variance o7, then it also



holds that o, = o for any other forecast fy; based on the same information set, whereupon

Kopt =0 Inthis case, and if h=1, the error term in (3) is non-autocorrelated. In all other cases

the error term is expected to exhibit autocorrelation, hence k,, or its regression equivalent is

not in general fully efficient.

The simple average, with equal weights, is the case k = 2. This is optimal if 012 = 022 ,

that is, the two competing forecasts are equally good (or bad), irrespective of any covariance
between their errors. A further possibility suggested by Bates and Granger is to neglect any
covariance term, or assume it to be zero, and use the expression
=9

ol +0;
This also gives equal weights if the error variances are equal, and restricts the weights to the
(0,1) interval. However, if fy is the mmse forecast and fy; is any other forecast this does not
deliver weights of 0 and 1 as in the previous paragraph. That k' is the weight attached to the
first forecast, f1;, can be emphasised by expressing it in the alternative form

1

i E
o o

k'

This makes it clear that the weights are inversely proportional to the corresponding forecast

error variances, and gives an expression which is more amenable to generalisation below.

2.2 Pseudo out-of-sample comparisons of combined forecasts

The general approach to forecast evaluation that is followed in the literature is called pseudo
out-of-sample forecasting by Stock and Watson in their textbook (2003b, §12.7) and
empirical studies cited above, because it mimics real-time out-of-sample forecasting yet the
“future” outcomes are known, and so forecast performance can be assessed. To this end, a
sample of available data, real or artificial, is divided into two subsamples: the first is used for
estimating the forecasting relationships; the second for evaluating their forecast performance.
Forecasting with a constant lead time, say one step ahead, implies that the information set on
which the forecast is based is updated as the forecast moves through the evaluation
subsample, and it is an open question whether and, if so, how the estimated relationships

should also be updated. The three possibilities that figure prominently in the literature are



referred to as fixed, recursive and rolling schemes (see McCracken and West, 2002, for a

recent review).

In the fixed scheme, the forecast relationships are estimated only once, using the
original estimation subsample, and are not re-estimated as forecasting moves forward in time.
In the recursive scheme re-estimation takes place as the forecast origin advances and more
“past” data become available, with the estimation dataset gradually increasing in size. The
rolling scheme also updates the estimates but keeps the size of the estimation dataset constant,
by removing an observation from the beginning as each new observation is added to the end
of the dataset. In the present context of comparisons of different combinations of forecasts
the estimation subsample is sometimes divided further, into a first portion used for the
estimation of the individual forecasting relationships and a second portion used for a
preliminary evaluation of their performance from which combination weights can be
estimated. The performance of the combined forecasts is then assessed in the evaluation
subsample as above. Which of the three estimation schemes is used has a bearing on the
asymptotics of the various available tests (Clark and McCracken, 2001). However many
studies of combined forecasts are based on informal comparisons of mean squared forecast
errors (MSFES) over the evaluation subsample rather than formal inference procedures,
whereupon the choice of updating scheme is immaterial. The comparisons developed below

remain in this informal mode.

We adopt the Clark-McCracken-West notational conventions and denote, in one-step-
ahead forecasting, the size of the available sample as T+1. This is divided into the initial
estimation (“regression”) subsample of R observations and the second evaluation

(“prediction”) subsample of P observations, with R+P=T+1. The first forecast is made at time

R of observation yg:1, and the last (the P™) is made at time T of observation yr.1. The sample
MSFE of the combined forecast (1) is then

. 1 T+1
chz =35 z (Yt - fCt)Z '

t=R+1

We consider two such statistics: one, denoted 652 , Is the MSFE of the simple average of
forecasts, fs say, with k =1 in (1); the other, denoted 6V2v, is the MSFE of a weighted average

fut USing some estimate K in Q).



In comparing the simple average with the weighted average of forecasts we note that

the models being compared are nested. The null model has k =4 ; under the alternative,
k #1. We follow Clark and West (2004) and consider the difference in MSFEs, &7 - &7,

under the null. Expanding the t™ term in this difference gives
(Yt - fst)2 _(yt - fwt)2 :(yt _fst)2 _(yt —fy _(fwt _fst))z
= 2(Yt - fst)( fue = fst) _( fut _fst)2

=2(y, ~ £)((K-4) fu + (LK 4) ) (e -F)° . )
Assuming that an unbiased estimator of k is used, and neglecting any correlation between its
sampling error, which is a function of the estimation subsample, and the evaluation
subsample, the first term has expected value zero. However the second term is strictly

positive so in sum, under the null, we expect to find

1 T+l

5s2 - szv = _Et=R+1(th - fst)

?<0.

Thus the simple average is expected to outperform the weighted average systematically, in a
situation in which they are theoretically equivalent. Estimating k gives the weighted average
a better fit in the estimation period, but this amounts to overfitting in the present
circumstances, and does not carry through to the forecast period.

We note that the approximate discrepancy in the above inequality can be calculated
directly, and consider Clark and West’s (2004) suggestion that comparisons be based on an
adjusted MSFE

> . ap 1 T+ 9
Go-adj=6y, = > (f —fy) . (6)
P t=R+1
Before discussing estimation of k, we consider generalisations to more than two competing
forecasts, since the number of forecasts being combined may be relevant to the choice of

estimator.

2.3  Combining many forecasts
The general framework presented above readily extends to more than two competing
forecasts, although some practical issues arise. With n competing point forecasts

fi., 1=1,...,n, the combined forecast is



n
for = zki fie
i=1
with Zk; =1 if the individual forecasts are unbiased and this is also desired for the combined

forecast. Granger and Ramanathan (1984) consider estimation of the corresponding
generalisation of regression equation (3), namely

ye=a+B fy +. B Ty U, (7)
and the question of whether or not the coefficient restrictions a =0 and/or %5, =1 should be

imposed. The unconstrained regression clearly achieves the smallest error variance ex post,
and gives an unbiased combined forecast even if individual forecasts are biased. If the
practical objective is to improve ex ante forecast performance, however, then the imposition

of the restrictions improves forecast efficiency, as shown by Clemen (1986), for example.

Estimation of the regression equation (7) runs into difficulty if the number of
individual forecasts being combined, n, is close to the number of observations in the
regression subsample, R. This is a feature of the applications by Stock and Watson in the
three articles referred to in the Introduction. The first article (Stock and Watson, 1999)
analyses the performance of 49 linear and nonlinear univariate forecasting methods, in
combinations with weights estimated over 60 or 120 months; this is done for 215 different
series. The second article (2003a) considers combinations of up to 37 forecasts of U.S. output
growth based on individual leading indicators, with weights estimated recursively, with an
initial sample of 68 quarterly observations. The third article (2004) extends the growth
forecasts to the G-7 countries, and the number of individual leading indicators considered for
each country ranges between 56 and 75. (A further article (Stock and Watson, 2003c)
similarly studies the role of asset prices as indicators of future inflation and output growth in
the G-7 countries, but is not relevant for our present purposes, because no weighted

combinations of forecasts are considered.)

In these circumstances Stock and Watson abandon estimation of the optimal
combining weights by regression or, as they put it, abandon estimation of the large number of
covariances among the different forecast errors. They follow the suggestion of Bates and
Granger (1969) noted in the final paragraph of Section 2.1 and base estimated weights on the
generalisation of expression (4), thus



L i=1..n, 8)

where s?, i =1,...,n, is the MSFE of f;; over an estimation dataset. Earlier empirical studies

summarised by Clemen (1989, p.562) also support the suggestion “to ignore the effects of
correlations in calculating combining weights.” Stock and Watson use several variants of this
estimator, of which two are of particular interest. The first is to raise each MSFE term in the
above expression to the power w. With 0 < <1 this shrinks the weights towards equality,

the case w =0 corresponding to the simple average with k; =1/n. Or with w>1 more

weight is placed on the better performing forecasts than is indicated by the inverse MSFE
weights. The second variant is to calculate MSFEs as discounted sums of past squared
forecast errors, so that forecasts that have been performing best most recently receive the
greatest weight.

The common finding of the three cited studies in respect of comparisons of different
combined forecasts is described as the “forecast combination puzzle — the repeated finding
that simple combination forecasts outperform sophisticated adaptive combination methods in
empirical applications” (Stock and Watson, 2004, p.428). The differences are not necessarily
large, for example in the second article the MSFE improvement of the simple average does

not exceed four percent (2003a, Table 4), but there are no reversals.

The explanation advanced in Section 2.2 carries over to the case of n >2 competing
forecasts. Under the null the simple average is expected to outperform the weighted average

in terms of their MSFEs, in the absence of the adjustment defined in equation (6). Given nx1
vectors of forecasts and estimated weights, the weighted combination forecast is ft'lz . Taking
expectations in the R-sample, and conditioning on the P-sample, the expected difference in

MSFE is equal to trace(zﬁvlz) , Where X« is the P-sample moment matrix of the forecasts

and V, is the mean square error matrix of k around the true value of equal weights. Thus the

expected discrepancy is smaller the more accurate, in this sense, are the estimates of the
weights. This effect diminishes as R increases, whereas the discrepancy remains of the same

order of magnitude as P increases.



3. EMPIRICAL APPLICATIONS

3.1 A Monte Carlo study
Our first experiment describes the behaviour of the MSFE discrepancy 87 — 2 analysed in
Section 2.2 in the same circumstances, namely under the null that k = 5. Thus the two

competing forecasts have equal error variances, and their simple average is compared to a
weighted average with an estimated weight. The data generating process is the Gaussian
AR(2) process

Vi =@AYia t BYip tE &~ N (O’Usz)v
subject to the stationarity conditions @ <1+ ¢, @<1- @ -1 < @<l. The first two

autocorrelation coefficients are then

pﬁ%, p=an+4.

We set up two cases of competing one-step-ahead forecasts with equal error variances.
Case 1. In the first case both forecasts are based only on the most recent observation. The
first forecast is the naive “no-change” forecast, and the second forecast is a first-order

autoregression with the same forecast error variance. Thus

fi = Yeur T =20, -1) yu, 0f =2(1-p) 07, i=12.
The contemporaneous correlation between the two forecast errors is equal to ©,. We consider
values of ¢ of 0.4 and 0.8, with ¢ taking values in the range -1< ¢ <1 —¢, hence the
forecast errors are positively correlated, with p, lying in the range 0.2< p, <1 or
0.4 < p, <1 respectively. In our experiments the ¢ -values are varied by steps of 0.1, except

that the non-stationary boundaries are avoided by taking a minimum value of —-0.98 and a

maximum value of 0.58 or 0.18 respectively.

Case 2. In the second case the two forecasts are again based on only a single observation, but
now with either a one-period or a two-period lag; each forecast is unbiased, conditional on its
limited information set. Thus

fit = O Y ai2=(1_/)|2)03’ i=12.



To equate the error variances we choose parameter values such that pf = p22, specifically
@ = @ todeliver p, = p,,or ¢ = —@ todeliver p, = —p,. With these restrictions
stationarity requires that -1 <@, <0.5, with ¢ = +¢ as appropriate. If g = @ =0 there s

an obvious singularity: the series is white noise, the forecasts are equal to the mean of zero

and have the same error, and Ko is indeterminate.

In each case 1000 artificial time series samples are generated for each parameter
combination. After discarding a “start-up” portion, each sample is divided into an estimation
subsample of R observations and an evaluation subsample of P observations. The forecast
parameter values are assumed known, and the estimation subsample is used simply to

estimate the combining weight, via the above expressions for ko, and k'. Estimates based on

~

equation (2) need not satisfy 0<k ., <1, as noted in Section 2.1, especially if the correlation

opt
between the competing forecast errors is large and positive, and we consider two possibilities.
One is to use the actual point estimate, whatever value materialises; the second, following
widespread practice endorsed by Granger and Newbold (1986, §9.2), is to replace an estimate
outside this range by the nearest boundary value, 0 or 1 as appropriate. There are then four

combined forecasts whose MSFEs are calculated over the last P observations: three weighted

~

averages, in turn using k" and the initial and truncated k. , and the simple average using

opt

k =2. The estimation cost of each weighted average is expressed as the percentage increase

in MSFE above that of the simple average, namely 100(5\,2v —652)/5_3 :

Results for Case 1. Figure 1 shows the mean (over 1000 replications) percentage increase in
MSFE over the simple average for the three combined forecasts based on estimated weights,
with subsample sizes R =30 and P =6. The cost of estimating k is in general positive, as
anticipated. However the different estimates give substantially different performance, for

both values of ¢ used in these examples. First, estimating the optimal weight, including the

covariance term, increases the MSFE of the weighted average by a rather greater amount than
using the estimate that neglects the forecast error correlation. Second, restricting the point
estimate of the optimal weight to the (0,1) interval makes little difference when the correlation
between the forecast errors is low, but improves the performance of the combined forecast as

this correlation increases. The forecast error correlation increases with ¢, and is equal to 0.4



at the point at which the two upper plots begin to diverge in panel (a) of Figure 1; its value is
0.57 at the equivalent point in panel (b). In each panel the last points plotted refer to an
almost degenerate case in which the first-order autocorrelation coefficient of the data is close
to 1 and the two competing forecasts, and hence their errors, are close to equality.

The key to the differences shown in Figure 1 is the sampling distribution of the
different estimates of the weight. These are shown in Figure 2 for a parameter combination at
which the two upper plots in panel (b) of Figure 1 are clearly separated, but not extremely so:

the values are @ =0.8, @ = -0.1, at which the forecast error correlation, neglected in the k'

formula, is equal to 0.73. The distribution of the initial estimate of the optimal weight is
shown in panel (a) of Figure 2. In our sample of 1000 there are 44 negative estimates, and
these are set equal to zero in panel (b), which results in an improvement in relative MSFE of
some 0.5%, as shown in Figure 1(b). Note the changes in scale between the panels of Figure
2: in particular, panels (b) and (c) have the same horizontal scale, to emphasise the much

smaller dispersion of the estimate k', which in turn calls for a change in vertical scale. The

better performance of K" in this experiment is striking, and supports the recommendation to

ignore the error covariances noted above, based on practical applications.

A

Further support for a preference for k' over k., is provided by the asymptotic

opt
approximations to the variances of these estimators calculated in the Appendix. These obey

the relation
N ) -
asy var (k ) =(1-p) asy var (kOpt )
where p is the forecast error correlation coefficient. This correlation is positive in our

experiments, and can be expected to be positive more generally, since the innovation &, is

common to the competing forecast errors. The formulae developed in the Appendix are seen
to provide a good approximation to the simulation variance of the estimates obtained from
samples of R=30 observations. More generally these results offer an explanation of the

relatively poor performance of combinations based on the optimal weight.
Results for Case 2. The results shown in Figure 3 are qualitatively similar to those reported
for Case 1. The cost of estimating k is in general positive. Again the different estimates of

the weights yield substantially different performance, the ranking of the different estimates

10



remaining as seen in Case 1, with the performance of K’ again markedly superior to that of

~

k..., thanks to the much smaller dispersion of its sampling distribution. Comparing the

opt 1

performance of the two estimates of k, , Figure 3(a) shows that at ¢ = ¢ =-0.5, at which

opt !
the forecast error correlation, neglected in the k' expression, is 0.833, truncating the original
estimate gives an improvement in relative MSFE of 0.4%: this is the result of setting 39
negative estimates equal to zero and 34 estimates equal to one, in our sample of 1000. For

@ =—-@ =0.5(see Figure 3(b)) there is an improvement in relative MSFE of 0.35%; here the

~

error correlation is slightly smaller, at 0.805, and slightly fewer k., values are set to the

opt
boundary values, 35 and 23 respectively. An example of the sampling distributions of the

weights presented in Figure 4 shows the truncation effects diagrammatically, also that K’
again has much smaller dispersion. In both panels of Figure 3 the truncation effect increases

as ¢ approaches zero from above or below, when the correlation between the forecast errors

increases towards 1 and we approach the singularity at ¢ = @ =0 noted above.

The behaviour of the estimates of the optimal weight differs between the examples of
Case 1 and Case 2 discussed above. In the first case truncation of the initial estimate is
necessary on only one side, thus in Figure 2(b) there is a pile-up at zero but not at one. In the

second case the (0,1) interval is breached on both sides, as shown in Figure 4. Recalling that
Ko <0 if 5% <5, and Ky, >1 if s7 <s;,, and that the experiment is designed with o = o3,
the explanation of the asymmetry lies in the sampling distribution of the variance estimates.
In the example of Case 1 shown in Figure 2 the sample variance of 522 is some 35% greater

than that of s?, resulting in a tail of the distribution such that s5 <s,, on 44 out of 1000

occasions, whereas the equivalent condition for k., >1 never occurs in this sample. In

neither Case 1 nor Case 2 does estimating an intercept term in the extended realisation-
forecast regression equation (3) improve the MSFE of the associated combined forecast. In
those experiments in which estimating a has a noticeable effect the result is an increase in

the combined forecast MSFE, associated with greater imprecision in the estimate of k.

The effects under discussion are finite-sample estimation effects, as noted initially in

general terms and more precisely in the closing paragraph of Section 2. These effects relate to

11



the size of the “regression” sample, R, not the “prediction” sample, P. Increasing P in our

experiments has little effect on the mean of the MSFE costs, such as those plotted in Figures 1
and 3, although their sampling variance falls, as expected. Increasing R, however, reduces the
MSFE cost of the weighted average, due to increased accuracy of the estimated weight, and at

R=1200 there is essentially no gain in using the simple average, and hence no puzzle.

Departures from equal weights. These examples show that if the optimal combining weights
are equal, then the simple average beats estimated combinations. A practical next question
might be, but what if the optimal weights are not equal? How different must the optimal
weights be for the bias effect from assuming them equal to dominate the estimation variance
effect, so that the combination with estimated weights beats the simple average? A little
evidence on this question is contained in Figures 5 and 6. For particular parameter
combinations of Case 1 and Case 2 respectively, we change the coefficient on the second
forecast in each case, in order to change its forecast error variance and hence the required
combining weight. This is indicated by the associated value of k', using the expression
without the covariance term that the preceding experiments clearly indicate is to be preferred.
Otherwise the experimental design remains unaltered, 1000 replications being undertaken to
estimate the percentage MSFE cost at each of a range of values of k'. When this is equal to
0.5 the results correspond to those given above; departures from 0.5 are indicated by referring

to the experiments as Case 1* and Case 2* respectively.

The results show that, in these examples, large departures from equal weights are not
required in order to turn the comparison around. The MSFE cost of the weighted estimate

using |20pt is greater than that using k', hence positive costs persist for greater departures

from equality. But in all the cases presented, the cost has turned negative, that is, the simple
average has lost its advantage, before the weights are as different as (0.4, 0.6). This
combination is appropriate if one forecast has MSFE 50% greater than its competitor, and

how relevant this is in practice is for the user to judge.

3.2 Forecasts of US output growth during the 2001 recession
For a practical application we revisit the study of Stock and Watson (2003a), which evaluates
the performance of leading indicator forecasts during the 2001 recession in the United States.

This recession differed in many ways from its predecessors, and Stock and Watson find that

12



individual leading indicators also performed differently before and during this recession.

Some previously reliable leading indicators provided little or no indication of the slowdown.

Of particular interest for our present purpose is their Table 4, which reports relative
MSFEs of various combination forecasts of annual growth rates of real GDP and the Index of
Industrial Production over the period 1999Q1-2002Q3, at lead times of h=2 and h=4 quarters.
As noted in Section 2.3, the simple average of individual leading indicator-based forecasts
dominates a weighted average using inverse MSFE weights as in equation (8). The weights
are based on MSFEs calculated as discounted sums of past squared forecast errors, with a
quarterly discount factor of 0.95. From their programs and database we recreate the
combined forecast MSFEs on which the relative MSFEs reported in their table are based.
(Throughout their article Stock and Watson report the MSFEs of individual and combined
forecasts relative to the MSFE of a benchmark autoregressive forecast, whereas we need the
numerators of these ratios.) We then undertake further calculations following the algebra
developed above, with results as shown in Table 1. These examples use n=35 component
forecasts, while P=13 when h=2 and P=11 when h=4.

Table 1. MSFEs of combined quarterly forecasts of output growth (annual percentage rates)

RGDP IP
h=2 h=4 h=2 h=4
52 1.0078 3.8730 4.4663 23.0034
szv 1.0319 4.0194 4.4926 23.2114
5V2V — adj 1.0314 4.0165 4.4894 23.2032
52 - 62 -0.0241 -0.1464 -0.0263 -0.2080
adj 0.0005 0.0029 0.0032 0.0082
remainder  —0.0236 -0.1435 -0.0231 -0.1998

The first two rows of the table give the MSFEs of the simple and weighted average
forecasts and show that the simple average does better in all four cases. In the third row we
make the adjustment defined in equation (6) and given in the fifth row, but in no case does
this change the ranking. Decomposing the MSFE difference, given in the fourth row, into the

13



two components developed in equation (5), shows that the (sample mean of) the first
component, which has expected value zero under the equal-weight null, heavily dominates the
second, “adjustment”, component. This second component is the average squared difference
between the two combination forecasts, or equivalently, between their forecast errors, and its

small size relative to the separate MSFEs indicates that these forecasts are very close to one

another. From equation (5), second line, the remainder term is equal to 2(652 —6SW) , and if

this is negative in a situation in which the two forecast MSFEs are close to one another then
the forecast error correlation must be close to 1. Calculation of the forecast error correlation

coefficient from the data in the first column of Table 1 gives 0.99981.

We plot the forecast errors for all four cases under consideration in Figure 7, which
confirms these interpretations of the data in Table 1. The two combination forecast errors are
virtually indistinguishable, and the difference between the two combination forecasts is
unlikely to be of any importance in the context of a practical decision problem. The dates
shown correspond to the date of the forecast, the final outcome available being that for
2002Q3. Stock and Watson note that at the time of writing the NBER had not yet dated the
trough: on 17 July 2003 this was announced as November 2001 which, with the previous peak
at March 2001, gave a contraction duration of 8 months. Figure 7 shows that the combination
forecasts substantially overestimated growth throughout this period, starting from the quarter
before the peak and, in the year-ahead forecasts, extending well into the recovery phase. We
beg to differ from Stock and Watson’s conclusion that the combination forecast performance

IS “encouraging”.

In this example the forecast combination puzzle is of no importance from a practical
point of view. From a statistical point of view it is an example of the gain in efficiency that
can be obtained by imposing, rather than estimating, a restriction that is approximately true.
The distribution of estimated weights at the start of the prediction period for the example in
column 1 of Table 1 is presented in Figure 8, and this shows rather little variation around the
value of 1/n=0.029 used by the simple average. The performance of the individual indicators
varies over time, hence so do their optimal combining weights, but when the relative weights

are small this variation is also likely to have little practical significance.
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4. CONCLUSIONS

Three main conclusions emerge from the foregoing analysis.

(1) If the optimal combining weights are equal or close to equality, a simple average of
competing forecasts is expected to be more accurate, in terms of MSFE, than a combination
based on estimated weights.

(2) However if estimated weights are to be used, then it is better to neglect any covariances
between forecast errors and base the estimates on inverse MSFEs alone, than to use the
optimal formula originally given by Bates and Granger for two forecasts, or its regression
generalisation for many forecasts.

(3) When the number of competing forecasts is large, so that under equal weighting each has
a very small weight, the simple average can gain in efficiency by trading off a small bias
against a larger estimation variance. Nevertheless, in an example from Stock and Watson
(2003a), we find that the “forecast combination puzzle” rests on a gain in MSFE that has no

practical significance.
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APPENDIX: THE VARIANCES OF THE COMBINING WEIGHTS

We calculate large-sample approximations to the variances of the two estimators of the
combining weight, in the case of two forecasts with equal error variances o7 = g = a7, say.

We first consider the “inverse MSFE” coefficient, which neglects the covariance between the
forecast errors, namely
2
£ _ 5 _ 1
Fep+hzey  si4s; Ll4sP/sy

~
L

retaining R to denote the estimation sample size. Standard results on the variance of functions
of random variables (Stuart and Ord, 1994, §10.6) give, for the nonlinear transformation,

12
var (1+x)™ =£a(l;—xx)] var(x)

and evaluating the derivative at the mean of 1 gives

~y 1 s?
var(k') ~—var| = |.
16 S5
Also using the expression for the variance of a ratio of positive random variables, we have

1 E(sf) i var(sf)+var(522)_2cov(sf,s§)

var(‘z')~ﬁ E(s§) 52(512) 52(522) E(sf).E(SZZ)
:1610;‘ [var(sf)+var(s§)—Zcov(sf,sg)]. (A1)

Turning to the optimal weight given in equation (2), the estimate is

15a2 —1 2
S _ R2Ex Tp2Euty - S"S, 1
opt 1 2 ,1 2 _2 2 2 _ 2 _ )
RZC YR Zen TR 2By S TS 28, 4 S S,
2
S2 7S

This last expression is of the same form as k', with s’ —s,, replacing s?, i =1,2. To follow

the same development as above we first note that
2 - 2
E(Si _512) —(1—,0)0'6 '
where o is the forecast error correlation coefficient. On expanding expressions for the

variances and covariance of s? —s,,, i =1,2, and collecting terms, we then obtain
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var( Aopt) =m[var(sf) +var(s§) —Zcov(sf,szz)}

= 7 _1p)2 var (IZ) . (A.2)

Or, more directly, we observe that the expression in square brackets in (A.1) is the variance of

sf —s5, and that this is equal to the variance of (sf - 512) —(522 —512). Since the errors of

competing forecasts are in general positively correlated, the estimation variance of the optimal

weight can be expected to exceed that of the inverse MSFE weight.

To implement expressions (A.1) and (A.2) further development of the terms in square
brackets is needed. The asymptotic variance of the sample variance of a normally distributed

autocorrelated series with autocorrelation coefficients p; is

var(sz)z%_ipf.

This result is given in many time-series texts, whose authors usually cite Bartlett (1946). In
this article Bartlett stated a more general result, for the covariance of two sample
autocovariances, and he subsequently gave an outline derivation in his book (1955, §9.1).

Following the same approach gives the covariance term we require as
2 .
cov(57.57) =2 3120
where y,,(j) is the cross-lagged covariance function of e, and e,. So altogether we have

var (k') =8iR(Acsl +ACS, —2CCS)
where ACS; is the (doubly infinite) sum of squared autocorrelation coefficients of series ej,
i=1,2, and CCS is the corresponding sum of their squared cross-lagged correlation
coefficients. In the set-up of our Monte Carlo experiments these coefficients are obtained

from the autocovariance generating function of the AR(2) process for y, and the related
generating functions for the filtered series e, =h;(L)y,. The infinite sums are truncated once

the individual terms are sufficiently small, and possible sensitivity of the final result to the

truncation point is checked.
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The resulting “theoretical” standard deviations of the distributions of the two
estimators are shown in Table A.1 for a selection of the parameter values used in our
experiments, alongside their “empirical” counterparts calculated from the simulation sample
distributions. With 1000 independent replications at each parameter combination, the
standard error of the estimated standard deviation (sd) is equal to sd/ /2000 =0.022sd . With
this in mind, the large-sample approximation is seen to provide reliable guidance to the
simulation results for sample sizes as small as 30, for most of the parameter combinations
considered. The approximation becomes less good as the autocorrelation of the forecast error
series increases, and in these circumstances somewhat larger sample sizes are required before

the equivalence is restored. Nevertheless the theoretical analysis of this Appendix provides
more general support for a preference for K" over |20pt : neglecting the covariances of the

competing forecast errors can be expected to lead to improved performance of combined

forecasts based on estimated weights.

18



Table A.1. Empirical and theoretical standard deviations of k' and lzopt

~

K’ Kopt
A 1Y Empirical Theoretical Empirical Theoretical
Casel: ¢ =04
0.4 0.67 0.086 0.104 0.323 0.243
0.2 0.50 0.087 0.097 0.193 0.174
0.0 0.40 0.079 0.084 0.139 0.131
-0.2 0.33 0.069 0.070 0.107 0.102
-04 0.29 0.059 0.057 0.083 0.078
-0.6 0.25 0.048 0.044 0.065 0.058
-0.8 0.22 0.036 0.030 0.047 0.038
Casel: ¢ =038
0.1 0.89 0.040 0.046 0.549 0.416
-0.1 0.73 0.053 0.057 0.228 0.208
-0.3 0.62 0.051 0.053 0.146 0.137
-0.5 0.53 0.046 0.045 0.103 0.096
-0.7 0.47 0.037 0.034 0.072 0.064
-0.9 0.42 0.027 0.019 0.046 0.032
Case2: ¢=¢
-0.9 0.57 0.043 0.037 0.106 0.086
-0.7 0.71 0.051 0.049 0.184 0.172
-0.5 0.83 0.046 0.046 0.285 0.274
-0.3 0.93 0.033 0.032 0.480 0.468
-0.1 0.99 0.012 0.012 1.374 1.347
0.1 0.99 0.014 0.014 1.242 1.219
0.3 0.87 0.044 0.044 0.351 0.343
Case2: ¢ =-¢
0.3 0.87 0.042 0.044 0.347 0.343
0.1 0.99 0.013 0.014 1.205 1.219
-0.1 0.99 0.011 0.012 1.315 1.347
-0.3 0.93 0.030 0.032 0.456 0.468
-0.5 0.83 0.043 0.046 0.270 0.274
-0.7 0.71 0.048 0.049 0.175 0.172

-0.9 0.57 0.041 0.037 0.103 0.086
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Figure 1. Percentage MSFE cost of weighted combination forecasts; Case 1.
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Figure 2. Histograms of estimated weights; Case 1, ¢ =0.8, @ =-0.1, R=30.
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Relative MSE

Figure 3. Percentage MSFE cost of weighted combination forecasts; Case 2.
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Figure 4. Histograms of estimated weights; Case 2, ¢ = -¢ =0.5, R=30.
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Figure 5. Percentage MSFE cost of weighted combination forecasts; Case 1*.
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Figure 6. Percentage MSFE cost of weighted combination forecasts; Case 2*.
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Figure 7. Errors of combined quarterly forecasts of output growth

(annual percentage rates)
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Figure 8. Distribution of weights in weighted average RGDP forecast

(n=35, h=2, first period)
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