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1. I ntroduction

Different forecasts of the same event exist whenever forecasters have different information
sets or process given information in different ways. The ideathat combining such forecasts
might be worthwhile rests on the recognition that the combination of forecastsimplicitly
pools the information sets, and additional information is almost always helpful. The basic
idea applies to any kind of forecasts, and has spawned an extensive literature, but thisis
amost exclusively concerned with point forecasts of random variables. The review and
annotated bibliography by Clemen (1989), for example, mostly considers combinations of
point forecasts, noting that an issue still deserving attention is the robustness of the simple
average of forecasts. Likewise Granger (1989), in his personal commentary twenty years on
from the seminal article of Bates and Granger (1969), mostly considers “developments of the
basic idea” insofar as they concern point forecasts. Both articles go beyond this central case
to some extent: Clemen considers some event probability forecasting applications; Granger
suggests approaches to combining interval and density forecasts. His suggestions have had
little impact on subsequent practice, however, and possible reasons for this are discussed
below. The general forecast combination literature has maintained its focus on point
forecasts, asindicated in several contributions to the compendium edited by Clements and
Hendry (2002), and this paper aims to widen the focus to include interval and density

forecasts.

Therelative neglect of combined density forecasts is surprising once it is recalled that
they appeared in the original article on the U.S. Survey of Professional Forecasters (SPF),
then known as the ASA-NBER Survey (Zarnowitz, 1969), as mean probability distributions
of future changes in GNP and prices. Survey respondents are asked not only for their point
forecasts of several variables but aso to attach a probability to each of a number of
preassigned intervals, or bins, into which future GNP growth and inflation might fall. In this
way, respondents provide density forecasts of these two variables, in the form of histograms.
The probabilities are then averaged over respondents to obtain the mean or combined density
forecasts, again in the form of histograms. The reports on the survey results previously
published in the NBER Reporter and the American Satistician did not always refer to the
density forecasts, and sometimes combined bins, but mean density forecasts have been
included in the press releases of the Federal Reserve Bank of Philadelphia since it assumed
responsibility for the survey in 1990 (and changed its name). Initialy there wasllittle interest



in theindividual density forecasts, due to data processing difficulties and variation over time
in the number and identity of respondents, although Zarnowitz and Lambros (1987) isa
notable exception. More recently, increased interest in density forecasts in general, thanks to
publication of such forecastsin several arenas, and the increased accessibility of the SPF in
particular, has led to severa contributions. Diebold, Tay and Wallis (1999) use the SPF mean
density forecast of inflation to illustrate new methods for the evaluation of density forecasts,
and Wallis (2003) further extends these methods using the same illustration, among others.
The individual SPF responses are used to address several questions of interest by Lahiri,
Teigland and Zaporowski (1988), McNees and Fine (1996) and Giordani and Soderlind
(20034). These contributions are further discussed below, following presentation of our
preferred statistical framework.

The finite mixture distribution is presented as the appropriate way to think about a
combined density forecast in Section 2, and its implications for analyses of consensus and
uncertainty are discussed in Section 3. The alternative statistical framework of Giordani and
Soderlind (2003a) is considered in Section 4, and asimple examplein Section 5 illustrates the
difference between the two approaches. To combine interval forecastsit is recommended in
Section 6 that the implied density forecasts first be combined, then the combined interval
forecast with the required probability be read off from the combined density.

2. A finite mixture distribution

We denote n individual density forecasts of arandom variable Y at some future time as

f.(y),i=1,..,n. These may come from different forecasters and/or different models and

methods, and may be expressed numerically or analytically. For economy of notation time
subscripts and references to the information sets on which the forecasts are conditioned are
suppressed. The finite mixture distribution is proposed as an appropriate statistical
representation for a combined density forecast. It is defined as

n

fw(y)=é=1vwfi(y),

with weights w; 2 0, i =1,...,n, Sw; =1. The same expression appearsin statistical decision

theory as the linear opinion pool, the commonest form of group consensus probability



distribution (see French, 1985, and references therein); again the finite mixture distribution is
arelevant statistical model. For ageneral discussion of finite mixture distributions see Everitt
and Hand (1981) or, for a briefer introduction, Everitt’ s entry on mixture distributionsin Kotz
and Johnson (1985, pp.559-569), or Stuart and Ord (1994, §5.20-5.24).

Much of the literature on finite mixture distributions is concerned with the problem of
identifying and estimating the parameters of the component densities and the mixing
proportions. For a mixture of two normal distributions this problem was first considered by
Pearson (1894). Mixtures of normal distributions remain a leading case, and athough the
estimation problem is not our present concern, this case is relevant to many applicationsin
interval and density forecast combination. In reporting probabilities associated with interval
forecasts anormal distribution is often assumed, and some current density forecasts are
constructed as normal distributions with mean equal to an associated point forecast and
variance equal to that of past forecast errors. The perspective of a mixture distribution
immediately prompts the observation that a combination of such normal density forecastsis
not in general anormal distribution, contrary to what is often assumed (by Hendry and

Clements, 2004, 89, for example).

Various weighting schemes appear in the literature on the combination of point
forecasts and can be carried over to the present context. Given a series of past forecasts
weights can be estimated in aforecast evaluation regression or by Bayesian model averaging,
for example. However asurprisingly frequent finding is that, in combining point forecasts, a
simple average, with equal weights, outperforms more complicated weighting schemes. The
use of equal weightsis sufficiently general for our present purposes, hence in what follows we
restrict attention to the particular combined density forecast

fc(y):}én fi(y). (1)
Nz
This also reflects the use of simple averages in constructing the SPF aggregate density

forecasts.

The moments about the origin of f. (y) are given as the corresponding equally-

weighted combinations of the moments about the origin of the individual densities. We
assume that the individual point forecasts are the means of the individual forecast densities



and so denote these means as ¥, ; the individual variancesare s 2. Then for the first two
moments we have

m@-% = 5. @

|| Qo

namely the combined or average point forecast, and
ITQ_ - (yl *S; )
—1

Hence the variance of f; is

= ng- m@——as +na(A %) 3

The first term on the right-hand side of (3) isthe average individual variance, and the second
term is a measure of the dispersion of the individual point forecasts. This decomposition of
the variance of the aggregate distribution lies behind several analyses of uncertainty and

disagreement, to which we now turn.

3. Consensus and uncertainty

Zarnowitz and Lambros (1987) define “consensus’ as the degree of agreement among point
forecasts of the same variable by different forecasters, and “uncertainty” as the dispersion of
the corresponding probability distributions. Their emphasis on the distinction between them
was motivated by several previous studies in which high dispersion of point forecasts had
been interpreted as indicating high uncertainty. Those studies had not had access to any direct
measure of uncertainty, whereas the SPF data provided the opportunity for Zarnowitz and
Lambros to check this presumption, among other things. Their definitions are made
operational by calculating time series of (a) the mean of the standard deviations calcul ated
from the individual density forecasts, and (b) the standard deviations of the corresponding sets
of point forecasts, for two variables and four forecast horizons. These are analogous
measures to the two terms on the right-hand side of equation (3), although the use of standard
deviations rather than variances breaks the equation; in any event Zarnowitz and Lambros
seem unaware of the decomposition. They find that the “uncertainty” series (a) aretypically
larger and more stable than the (lack of) “consensus’ series (b), thus measures of uncertainty
based on the forecast distributions * should be more dependable”. The two series are



positively correlated, however, hence in the absence of direct measures of uncertainty a

measure of disagreement among point forecasts may be a useful proxy.

Lahiri et al. (1988) calculate the first four moments of the individual SPF density
forecasts of inflation, and use time series of their average values to examine the effect of
inflation uncertainty on the real rate of interest. In passing, they obtain aversion of the
decomposition in equation (3) above, athough the left-hand side, described as “total variation
in theindividual probabilistic forecasts’, is not presented as the variance of the aggregate
distribution. In their development they work directly with the individual forecast histograms,
and there is no consideration of the mean density forecast, nor any underlying statistical
model. Aswith the second moment relationships in equation (3), their average individual
skewness and kurtosis coefficients differ from the skewness and kurtosis coefficients of the

aggregate distribution.

4. Giordani and Soderlind’ s statistical framewor k

An aternative statistical model for the SPF mean density forecast is presented by Giordani
and Soderlind (2003a). They summarize the information set of forecaster i by a scalar signal

z and write the probability density function of inflation conditional on receiving the signal of
forecaster i as pdf (p fi). With p and z random variables, the latter having density function

pdf (i), they write the aggregate distribution pdf ,(p) as

F . . . '
pdf A(p) = Q, poff (p i) paf (i) di (1)
Thisis Giordani and Soderlind’ s equation (1), which they say “amounts to calculating the
“margina” distribution of p” (quotation marksin original). From the standard relation

between the variances of conditional and marginal distributions the variance of the aggregate
distribution is then written as

Var,(p) = E(si2)+Var(m), (2)

which isequation (2) in their article. These equations fulfil similar functionsto equations (1)
and (3) above, athough their statistical foundations are different.



One approach to a mixture distribution is, given a density function dependent on a
parameter g, f (x[a), and aweighting distribution for g, p(q) say, then integrating with
respect to g we obtain

¥
f(x)=0, f(xla)p(a)da (4)
(Stuart and Ord, 1994, p.181). The marginal distribution f (x) is sometimes known asa

compound distribution. One consequence of this approach isthat “any density function f (x)

can be viewed as a mixture density simply by imagining extra variables which have been
integrated over” (Everitt and Hand, 1981, p.4). Although (4) is at first sight of the form of
(19, it isan inappropriate model for a combined density forecast, because combination in
effect pools information sets, rather than integrates them out to obtain amargina density,
which Giordani and Soderlind may be acknowledging when they place marginal in quotation
marks. In practice the representation of diverse, overlapping information sets as random
variables with well-defined distributions, as required in this approach, presents conceptual
difficulties, and we recall Granger’s (1989) remark that “aggregating forecasts is not the same
as aggregating information sets’. The statistical framework in Section 2 is preferred because it
directly captures the SPF averaging of individual densities without introducing a conditioning
random variable. Moreover the sample average notation on the right-hand side of equation
(3) is statistically more accurate than the use of E and Var on the right-hand side of (2.

In the light of their smple model of many forecasters, Giordani and Soderlind find
that “it is not obvious what the aggregate distribution represents’. The point of view of the
present paper isthat it isacombined forecast in the tradition of the point forecast pooling
literature. In alater paper (Giordani and Soderlind, 2003b), however, they show that it isthe
correct approach to aggregation in an asset-pricing problem in which individual agents have
logarithmic utility functions. This last assumption makes aggregation straightforward, and

the correspondence does not hold otherwise.

The analysis of the SPF inflation forecasts by Giordani and Soderlind (2003a) extends
the line of research initiated by Zarnowitz and Lambros (1987) and strengthens their
conclusion — disagreement is a better proxy for inflation uncertainty than previously thought.
Like Zarnowitz and Lambros, Giordani and Soderlind calcul ate standard deviations, not

variances, so identity (3) cannot be checked; unlike them, the standard deviation calculations



are based on normal approximations to the forecast histograms. And the time series are now
longer, of course. From their evaluation of the individual density forecasts Giordani and
Soderlind conclude that the forecasters underestimated uncertainty. They contrast this finding
with that of Diebold et al. (1999) who, treating the mean density forecast as that of a
representative forecaster, found that it overestimated uncertainty. That such disagreement is
possible is obvious from equation (3), and which is the better measure of collective
uncertainty — the variance of the mean density forecast or the average individual variance —

remains an open question.

5. Example

A simple univariate example illustrates our statistical framework. Consider the Gaussian

AR(2) data generating process
Yo =t Y tfY, te, &~ N (O’Sez)’
for which the true forecast density of Y, given observations y,; and y,_, is

Y[ Yoo ~ N (f i1t yt—Z’Sez)'

However two competing forecasters use only a single past observation, lagged one and two

periods respectively, thus their density forecasts are
Y Yeei ~ N(riyt-i’siz)’ 1=1,2

wherer ; are autocorrelation coefficientsand s 2 = (1- r iz)s 2. The combined density

forecast is not the marginal distribution of Y;, as suggested by (1') above, but the mixture of
normals

YCt~%N(rlyt-lislz)-'-%N(rzyt-Z’SZZ)'

The composite information set for the combined density forecast is identical to the
information set of the true forecast density: both contain the same two observations. However
the combined forecast uses the information inefficiently, relative to the true forecast density.

If these two observations are sufficiently different from one another, the condition depending
on the parameter values of the data generating process, then the combined forecast density is
bimodal.



6. Combining interval forecasts

The representation of a combined density forecast as a finite mixture distribution leads to the
proposal that interval forecasts be combined viathe same route. A density forecast isimplicit
in an interval forecast, since the calculation of the probability to be attached to an interval
requires a distributional assumption, often normality. A combined interval forecast for any
required probability can then be obtained from the relevant combined density forecast,
whereas combining intervals directly will not in general give an interval with the correct
probability.

The proposal by Granger (1989), applied by Granger et al. (1989), attempts to
overcome this difficulty by estimating combining weights from data on past forecasts that in
effect recalibrate the forecast quantiles. For the forecast cumulative distribution function

F (y) define the corresponding quantile function Q(q) as

Q(q)=F*(a), O£q£l
A central interval with forecast coverage p, that isan interval with equal tail probabilities

q/2,where q=1- p, isthen (Q(q/2),Q(1- q/2)). Given apair of quantile estimates
Q*(q) and Q°(q), Granger suggests the combined estimate

Q%(a) =4,(a)Q%(a) +8,(a)Q°(a)-
The notation makes it clear that the weights vary with g , moreover this recalibration requires
ahistorical record of similar forecasts and their realizations, which may not always be

available. Hisfinal proposal isto base a combined density forecast on the distribution

function corresponding to Q° (q ) , presumably evaluated over agrid of valuesof q and so

requiring several forecast intervals with different coverages — almost a complete density. This
seems much more cumbersome than combining the density forecasts directly, as proposed

here.

A further example illustrates these issues. To simplify matters we consider two
forecast densities differing only in scale, not location, and assume normal distributions. Then
the combined density is a mixture of normals with the same mean, which we take to be zero

without loss of generality. Both forecasters report 50% and 90% intervals, and we weight the



forecasters equally. The density of forecaster 1is N (0,1), so the respective intervals are

+0.67 and +1.64, whereas forecaster 2 is much more uncertain, with forecast density

N (0,4)and associated intervals +1.35 and +3.29. With equal weights, combined intervals

arethen £1.01 and +2.47, and in the combined density these have coverage 54% and 88%
respectively, so the directly combined intervals are respectively too wide and too narrow.
Intervals with the correct 50% and 90% coverages in the combined density are +0.92 and
+2.62, respectively narrower and wider than the directly combined intervals. On seeking
unegual weights such that a combination of the individual intervals yields the correct

combined interval we find (0.64, 0.36) for the 50% intervals and (0.41, 0.59) for the 90%

intervals: the equally-weighted combination of the 50% intervalsistoo wide, so more weight
is needed on the narrower interval of forecaster 1, and vice versafor the 90% interval. These
weights vary with the required coverage, as anticipated above, and deriving intervals from the

combined density, rather than seeking to combine individual intervals, is recommended.
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