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1. Introduction

Different forecasts of the same event exist whenever forecasters have different information

sets or process given information in different ways.  The idea that combining such forecasts

might be worthwhile rests on the recognition that the combination of forecasts implicitly

pools the information sets, and additional information is almost always helpful.  The basic

idea applies to any kind of forecasts, and has spawned an extensive literature, but this is

almost exclusively concerned with point forecasts of random variables.  The review and

annotated bibliography by Clemen (1989), for example, mostly considers combinations of

point forecasts, noting that an issue still deserving attention is the robustness of the simple

average of forecasts.  Likewise Granger (1989), in his personal commentary twenty years on

from the seminal article of Bates and Granger (1969), mostly considers “developments of the

basic idea” insofar as they concern point forecasts.  Both articles go beyond this central case

to some extent: Clemen considers some event probability forecasting applications; Granger

suggests approaches to combining interval and density forecasts.  His suggestions have had

little impact on subsequent practice, however, and possible reasons for this are discussed

below.  The general forecast combination literature has maintained its focus on point

forecasts, as indicated in several contributions to the compendium edited by Clements and

Hendry (2002), and this paper aims to widen the focus to include interval and density

forecasts.

The relative neglect of combined density forecasts is surprising once it is recalled that

they appeared in the original article on the U.S. Survey of Professional Forecasters (SPF),

then known as the ASA-NBER Survey (Zarnowitz, 1969), as mean probability distributions

of future changes in GNP and prices.  Survey respondents are asked not only for their point

forecasts of several variables but also to attach a probability to each of a number of

preassigned intervals, or bins, into which future GNP growth and inflation might fall.  In this

way, respondents provide density forecasts of these two variables, in the form of histograms.

The probabilities are then averaged over respondents to obtain the mean or combined density

forecasts, again in the form of histograms.  The reports on the survey results previously

published in the NBER Reporter and the American Statistician did not always refer to the

density forecasts, and sometimes combined bins, but mean density forecasts have been

included in the press releases of the Federal Reserve Bank of Philadelphia since it assumed

responsibility for the survey in 1990 (and changed its name).  Initially there was little interest
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in the individual density forecasts, due to data processing difficulties and variation over time

in the number and identity of respondents, although Zarnowitz and Lambros (1987) is a

notable exception.  More recently, increased interest in density forecasts in general, thanks to

publication of such forecasts in several arenas, and the increased accessibility of the SPF in

particular, has led to several contributions.  Diebold, Tay and Wallis (1999) use the SPF mean

density forecast of inflation to illustrate new methods for the evaluation of density forecasts,

and Wallis (2003) further extends these methods using the same illustration, among others.

The individual SPF responses are used to address several questions of interest by Lahiri,

Teigland and Zaporowski (1988), McNees and Fine (1996) and Giordani and Soderlind

(2003a).  These contributions are further discussed below, following presentation of our

preferred statistical framework.

The finite mixture distribution is presented as the appropriate way to think about a

combined density forecast in Section 2, and its implications for analyses of consensus and

uncertainty are discussed in Section 3.  The alternative statistical framework of Giordani and

Soderlind (2003a) is considered in Section 4, and a simple example in Section 5 illustrates the

difference between the two approaches.  To combine interval forecasts it is recommended in

Section 6 that the implied density forecasts first be combined, then the combined interval

forecast with the required probability be read off from the combined density.

2. A finite mixture distribution

We denote n individual density forecasts of a random variable Y at some future time as

( )if y , 1,..., .i n=   These may come from different forecasters and/or different models and

methods, and may be expressed numerically or analytically.  For economy of notation time

subscripts and references to the information sets on which the forecasts are conditioned are

suppressed.  The finite mixture distribution is proposed as an appropriate statistical

representation for a combined density forecast.  It is defined as

( ) ( )
1

n

w i i
i

f y w f y
=

= ∑ ,

with weights 0, 1,..., ,  1i iw i n w≥ = Σ = .  The same expression appears in statistical decision

theory as the linear opinion pool, the commonest form of group consensus probability
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distribution (see French, 1985, and references therein); again the finite mixture distribution is

a relevant statistical model.  For a general discussion of finite mixture distributions see Everitt

and Hand (1981) or, for a briefer introduction, Everitt’s entry on mixture distributions in Kotz

and Johnson (1985, pp.559-569), or Stuart and Ord (1994, §5.20-5.24).

Much of the literature on finite mixture distributions is concerned with the problem of

identifying and estimating the parameters of the component densities and the mixing

proportions.  For a mixture of two normal distributions this problem was first considered by

Pearson (1894).  Mixtures of normal distributions remain a leading case, and although the

estimation problem is not our present concern, this case is relevant to many applications in

interval and density forecast combination.  In reporting probabilities associated with interval

forecasts a normal distribution is often assumed, and some current density forecasts are

constructed as normal distributions with mean equal to an associated point forecast and

variance equal to that of past forecast errors.  The perspective of a mixture distribution

immediately prompts the observation that a combination of such normal density forecasts is

not in general a normal distribution, contrary to what is often assumed (by Hendry and

Clements, 2004, §9, for example).

Various weighting schemes appear in the literature on the combination of point

forecasts and can be carried over to the present context.  Given a series of past forecasts

weights can be estimated in a forecast evaluation regression or by Bayesian model averaging,

for example.  However a surprisingly frequent finding is that, in combining point forecasts, a

simple average, with equal weights, outperforms more complicated weighting schemes.  The

use of equal weights is sufficiently general for our present purposes, hence in what follows we

restrict attention to the particular combined density forecast

( ) ( )
1

1 n

C i
i

f y f y
n =

= ∑ . (1)

This also reflects the use of simple averages in constructing the SPF aggregate density

forecasts.

The moments about the origin of ( )Cf y  are given as the corresponding equally-

weighted combinations of the moments about the origin of the individual densities.  We

assume that the individual point forecasts are the means of the individual forecast densities
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and so denote these means as ˆiy ; the individual variances are 2
iσ .  Then for the first two

moments we have

1
1

1 ˆ ˆ
n

i C
i

y y
n

µ
=

′ = =∑ , (2)

namely the combined or average point forecast, and

( )2 2
2

1

1 ˆ
n

i i
i

y
n

µ σ
=

′ = +∑ .

Hence the variance of Cf  is

( )22 2 2
2 1

1 1

1 1 ˆ ˆ
n n

C i i C
i i

y y
n n

σ µ µ σ
= =

′ ′= − = + −∑ ∑ . (3)

The first term on the right-hand side of (3) is the average individual variance, and the second

term is a measure of the dispersion of the individual point forecasts.  This decomposition of

the variance of the aggregate distribution lies behind several analyses of uncertainty and

disagreement, to which we now turn.

3. Consensus and uncertainty

Zarnowitz and Lambros (1987) define “consensus” as the degree of agreement among point

forecasts of the same variable by different forecasters, and “uncertainty” as the dispersion of

the corresponding probability distributions.  Their emphasis on the distinction between them

was motivated by several previous studies in which high dispersion of point forecasts had

been interpreted as indicating high uncertainty.  Those studies had not had access to any direct

measure of uncertainty, whereas the SPF data provided the opportunity for Zarnowitz and

Lambros to check this presumption, among other things.  Their definitions are made

operational by calculating time series of (a) the mean of the standard deviations calculated

from the individual density forecasts, and (b) the standard deviations of the corresponding sets

of point forecasts, for two variables and four forecast horizons.  These are analogous

measures to the two terms on the right-hand side of equation (3), although the use of standard

deviations rather than variances breaks the equation; in any event Zarnowitz and Lambros

seem unaware of the decomposition.  They find that the “uncertainty” series (a) are typically

larger and more stable than the (lack of) “consensus” series (b), thus measures of uncertainty

based on the forecast distributions “should be more dependable”.  The two series are
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positively correlated, however, hence in the absence of direct measures of uncertainty a

measure of disagreement among point forecasts may be a useful proxy.

Lahiri et al. (1988) calculate the first four moments of the individual SPF density

forecasts of inflation, and use time series of their average values to examine the effect of

inflation uncertainty on the real rate of interest.  In passing, they obtain a version of the

decomposition in equation (3) above, although the left-hand side, described as “total variation

in the individual probabilistic forecasts”, is not presented as the variance of the aggregate

distribution.  In their development they work directly with the individual forecast histograms,

and there is no consideration of the mean density forecast, nor any underlying statistical

model.  As with the second moment relationships in equation (3), their average individual

skewness and kurtosis coefficients differ from the skewness and kurtosis coefficients of the

aggregate distribution.

4. Giordani and Soderlind’s statistical framework

An alternative statistical model for the SPF mean density forecast is presented by Giordani

and Soderlind (2003a).  They summarize the information set of forecaster i by a scalar signal

iz and write the probability density function of inflation conditional on receiving the signal of

forecaster i as ( )pdf iπ .  With π  and iz  random variables, the latter having density function

( )pdf i , they write the aggregate distribution ( )pdf A π  as

( ) ( ) ( )pdf pdf  pdf  dA i i iπ π
∞

−∞
= ∫ . (1')

This is Giordani and Soderlind’s equation (1), which they say “amounts to calculating the

“marginal” distribution of π ” (quotation marks in original).  From the standard relation

between the variances of conditional and marginal distributions the variance of the aggregate

distribution is then written as

( ) ( ) ( )2Var E VarA i iπ σ µ= + , (2')

which is equation (2) in their article.  These equations fulfil similar functions to equations (1)

and (3) above, although their statistical foundations are different.
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One approach to a mixture distribution is, given a density function dependent on a

parameter ( ),  ,f xθ θ  and a weighting distribution for ( ),  pθ θ  say, then integrating with

respect to θ  we obtain

( ) ( ) ( ) df x f x pθ θ θ
∞

−∞
= ∫ (4)

(Stuart and Ord, 1994, p.181).  The marginal distribution ( )f x  is sometimes known as a

compound distribution.  One consequence of this approach is that “any density function ( )f x

can be viewed as a mixture density simply by imagining extra variables which have been

integrated over” (Everitt and Hand, 1981, p.4).  Although (4) is at first sight of the form of

(1'), it is an inappropriate model for a combined density forecast, because combination in

effect pools information sets, rather than integrates them out to obtain a marginal density,

which Giordani and Soderlind may be acknowledging when they place marginal in quotation

marks.  In practice the representation of diverse, overlapping information sets as random

variables with well-defined distributions, as required in this approach, presents conceptual

difficulties, and we recall Granger’s (1989) remark that “aggregating forecasts is not the same

as aggregating information sets”. The statistical framework in Section 2 is preferred because it

directly captures the SPF averaging of individual densities without introducing a conditioning

random variable.  Moreover the sample average notation on the right-hand side of equation

(3) is statistically more accurate than the use of E and Var on the right-hand side of (2').

In the light of their simple model of many forecasters, Giordani and Soderlind find

that “it is not obvious what the aggregate distribution represents”.  The point of view of the

present paper is that it is a combined forecast in the tradition of the point forecast pooling

literature.  In a later paper (Giordani and Soderlind, 2003b), however, they show that it is the

correct approach to aggregation in an asset-pricing problem in which individual agents have

logarithmic utility functions.  This last assumption makes aggregation straightforward, and

the correspondence does not hold otherwise.

The analysis of the SPF inflation forecasts by Giordani and Soderlind (2003a) extends

the line of research initiated by Zarnowitz and Lambros (1987) and strengthens their

conclusion – disagreement is a better proxy for inflation uncertainty than previously thought.

Like Zarnowitz and Lambros, Giordani and Soderlind calculate standard deviations, not

variances, so identity (3) cannot be checked; unlike them, the standard deviation calculations
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are based on normal approximations to the forecast histograms.  And the time series are now

longer, of course.  From their evaluation of the individual density forecasts Giordani and

Soderlind conclude that the forecasters underestimated uncertainty.  They contrast this finding

with that of Diebold et al. (1999) who, treating the mean density forecast as that of a

representative forecaster, found that it overestimated uncertainty.  That such disagreement is

possible is obvious from equation (3), and which is the better measure of collective

uncertainty – the variance of the mean density forecast or the average individual variance –

remains an open question.

5. Example

A simple univariate example illustrates our statistical framework.  Consider the Gaussian

AR(2) data generating process

( )2
1 1 2 2 ,  0,t t t t tY Y Y N εφ φ ε ε σ− −= + + ∼ ,

for which the true forecast density of tY  given observations 1ty −  and 2ty −  is

( )2
1 2 1 1 2 2, ,t t t t tY y y N y y εφ φ σ− − − −+∼ .

However two competing forecasters use only a single past observation, lagged one and two

periods respectively, thus their density forecasts are

( )2, ,   1,2t t i i t i iY y N y iρ σ− − =∼

where iρ  are autocorrelation coefficients and ( )2 2 21i i yσ ρ σ= − .  The combined density

forecast is not the marginal distribution of tY , as suggested by (1') above, but the mixture of

normals

( ) ( )2 2
1 1 1 2 2 2

1 1
, ,

2 2Ct t tY N y N yρ σ ρ σ− −+∼ .

The composite information set for the combined density forecast is identical to the

information set of the true forecast density: both contain the same two observations.  However

the combined forecast uses the information inefficiently, relative to the true forecast density.

If these two observations are sufficiently different from one another, the condition depending

on the parameter values of the data generating process, then the combined forecast density is

bimodal.
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6. Combining interval forecasts

The representation of a combined density forecast as a finite mixture distribution leads to the

proposal that interval forecasts be combined via the same route.  A density forecast is implicit

in an interval forecast, since the calculation of the probability to be attached to an interval

requires a distributional assumption, often normality.  A combined interval forecast for any

required probability can then be obtained from the relevant combined density forecast,

whereas combining intervals directly will not in general give an interval with the correct

probability.

The proposal by Granger (1989), applied by Granger et al. (1989), attempts to

overcome this difficulty by estimating combining weights from data on past forecasts that in

effect recalibrate the forecast quantiles.  For the forecast cumulative distribution function

( )F y  define the corresponding quantile function ( )Q θ  as

( ) ( )1 ,    0 1Q Fθ θ θ−= ≤ ≤ .

A central interval with forecast coverage p , that is an interval with equal tail probabilities

2q , where 1q p= − , is then ( ) ( )( )/ 2 , 1 / 2Q q Q q− .  Given a pair of quantile estimates

( )AQ θ  and ( )BQ θ , Granger suggests the combined estimate

( ) ( ) ( ) ( ) ( )1 2ˆ ˆC A BQ a Q a Qθ θ θ θ θ= + .

The notation makes it clear that the weights vary with θ , moreover this recalibration requires

a historical record of similar forecasts and their realizations, which may not always be

available.  His final proposal is to base a combined density forecast on the distribution

function corresponding to ( )CQ θ , presumably evaluated over a grid of values of θ  and so

requiring several forecast intervals with different coverages – almost a complete density.  This

seems much more cumbersome than combining the density forecasts directly, as proposed

here.

A further example illustrates these issues.  To simplify matters we consider two

forecast densities differing only in scale, not location, and assume normal distributions.  Then

the combined density is a mixture of normals with the same mean, which we take to be zero

without loss of generality.  Both forecasters report 50% and 90% intervals, and we weight the
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forecasters equally.  The density of forecaster 1 is ( )0,1N , so the respective intervals are

0.67±  and 1.64± , whereas forecaster 2 is much more uncertain, with forecast density

( )0,4N and associated intervals 1.35±  and 3.29± .  With equal weights, combined intervals

are then 1.01±  and 2.47± , and in the combined density these have coverage 54% and 88%

respectively, so the directly combined intervals are respectively too wide and too narrow.

Intervals with the correct 50% and 90% coverages in the combined density are 0.92±  and

2.62± , respectively narrower and wider than the directly combined intervals.  On seeking

unequal weights such that a combination of the individual intervals yields the correct

combined interval we find ( )0.64, 0.36  for the 50% intervals and ( )0.41, 0.59  for the 90%

intervals: the equally-weighted combination of the 50% intervals is too wide, so more weight

is needed on the narrower interval of forecaster 1, and vice versa for the 90% interval.  These

weights vary with the required coverage, as anticipated above, and deriving intervals from the

combined density, rather than seeking to combine individual intervals, is recommended.
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