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Abstract  This paper explores a possible explanation of the forecast combination puzzle, that 
simple combinations of point forecasts are repeatedly found to outperform sophisticated 
weighted combinations in empirical applications.  The explanation lies in the effect of finite-
sample error in estimating the combining weights.  A small Monte Carlo study and a 
reappraisal of an empirical study by Stock and Watson (2003a) support this explanation.  The 
Monte Carlo evidence, together with a large-sample approximation to the variance of the 
combining weight, also supports the popular recommendation to ignore forecast error 
covariances in estimating the weight. 
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1. INTRODUCTION 

 

The idea that combining different forecasts of the same event might be worthwhile has gained 

wide acceptance since the seminal article of Bates and Granger (1969).  Twenty years later, 

Clemen (1989) provided a review and annotated bibliography containing over 200 items, 

which he described as “an explosion in the number of articles on the combination of 

forecasts”.  These mostly concerned point forecasts of the future realisation of a random 

variable, which has been a continuing focus of attention of the forecast combination literature; 

a companion paper by Wallis (2004) considers extensions to the combination of interval and 

density forecasts.  Despite the explosion of activity, Clemen found a variety of issues that 

remained to be addressed, the first of which was “What is the explanation for the robustness 

of the simple average of forecasts?” (1989, p.566).  That is, why is it that, in comparisons of 

combinations of point forecasts, a simple average, with equal weights, often outperforms 

more complicated weighting schemes.  This empirical finding continually reappears, for 

example in several recent papers by Stock and Watson (1999, 2003a, 2004), and remains a 

puzzle.  A possible explanation is explored in this paper. 

 

 The explanation rests on the observation that, in comparing weighted and unweighted 

forecast combinations in real or pseudo out-of-sample testing, the underlying statistical 

problem shares two key features with a model comparison problem recently addressed by 

Clark and West (2004), and is amenable to similar analysis.  The first common feature is that 

the models being compared are nested, and in this situation many forecast evaluation 

procedures available in the literature, which apply to non-nested comparisons, are inadequate.  

The second feature is that the optimal combining weights are not known a priori, but must be 

estimated, and in finite samples the resulting estimation error may cause a reversal of the 

underlying theoretical optimality result. 

 

 The paper proceeds as follows.  Section 2 presents the general framework for analysis, 

beginning with the case of two competing forecasts and then considering generalisations to 

combinations of many forecasts.  Section 3 contains two empirical applications, the first a 

small Monte Carlo study of combinations of two forecasts with equal error variances, the 

second a reappraisal of a study of combination forecasts of US output growth by Stock and 

Watson (2003a).  Section 4 concludes. 
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2. WEIGHTED AND UNWEIGHTED COMBINATIONS OF FORECASTS 

 

2.1 Optimal weights 

We first follow Bates and Granger (1969) and consider the case of two competing point 

forecasts, f1t and f2t, made h periods earlier, of the quantity yt.  The forecast errors are 

,   1, 2it t ite y f i= − = . 

It is usually assumed that the forecasts are unconditionally unbiased, or “unbiased on 

average” in Granger and Newbold’s (1986, p.144) term, so that 

  ( ) 0,   1, 2itE e i= = . 

We denote the forecast error variances as 2,  1,2i iσ = , and their covariance as 12σ .  The 

combined forecast is the weighted average 

1 2(1 )Ct t tf kf k f= + − ,       (1) 

which is also unbiased in the same sense.  Its error variance is minimised by setting the 

weight k equal to 
2
2 12

2 2
1 2 122optk σ σ

σ σ σ
−=

+ −
,      (2) 

noting a sign error in Bates and Granger’s equation (1).  This expression can also be 

recognised as the coefficient in a regression of e2t on 2 1( )t te e− , which suggests a way of 

estimating kopt from data on forecasts and outcomes.  A further interpretation is that this is 

equivalent to the extended realisation-forecast regression 

  1 1 2 2t t t ty f f uα β β= + + +       (3) 

subject to the restrictions 1 20,  1α β β= + = .  Although weights outside the (0,1) interval 

might be thought to be hard to justify, all these interpretations admit this possibility.  An 

estimate based on (2) is negative whenever sample moments satisfy 2
12 2s s> , and exceeds one 

if 2
12 1s s> . 

 

The minimised error variance of the combined forecast is no greater than the smaller 

of the two individual forecast error variances, hence in general there is a gain from combining 

using the optimal weight.  Equality occurs if the smaller variance is that of a forecast which is 

already the minimum mean square error (mmse) forecast; there is then no gain in combining it 

with an inferior forecast.  If the mmse forecast is f2t, say, with error variance 2
2σ , then it also 
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holds that 2
12 2σ σ=  for any other forecast f1t based on the same information set, whereupon 

0optk = .  In this case, and if h=1, the error term in (3) is non-autocorrelated.  In all other cases 

the error term is expected to exhibit autocorrelation, hence ôptk  or its regression equivalent is 

not in general fully efficient. 

 

The simple average, with equal weights, is the case 1
2k = .  This is optimal if 2 2

1 2σ σ= , 

that is, the two competing forecasts are equally good (or bad), irrespective of any covariance 

between their errors. A further possibility suggested by Bates and Granger is to neglect any 

covariance term, or assume it to be zero, and use the expression 

  
2
2

2 2
1 2

k σ
σ σ

′ =
+

 . 

This also gives equal weights if the error variances are equal, and restricts the weights to the 

(0,1) interval.  However, if f2t is the mmse forecast and f1t is any other forecast this does not 

deliver weights of 0 and 1 as in the previous paragraph.  That k ′  is the weight attached to the 

first forecast, f1t, can be emphasised by expressing it in the alternative form 

  
2
1

2 2
1 2

1

1 1k σ

σ σ

′ =
+

 .       (4) 

This makes it clear that the weights are inversely proportional to the corresponding forecast 

error variances, and gives an expression which is more amenable to generalisation below. 

 

2.2 Pseudo out-of-sample comparisons of combined forecasts 

The general approach to forecast evaluation that is followed in the literature is called pseudo 

out-of-sample forecasting by Stock and Watson in their textbook (2003b, §12.7) and 

empirical studies cited above, because it mimics real-time out-of-sample forecasting yet the 

“future” outcomes are known, and so forecast performance can be assessed.  To this end, a 

sample of available data, real or artificial, is divided into two subsamples: the first is used for 

estimating the forecasting relationships; the second for evaluating their forecast performance.  

Forecasting with a constant lead time, say one step ahead, implies that the information set on 

which the forecast is based is updated as the forecast moves through the evaluation 

subsample, and it is an open question whether and, if so, how the estimated relationships 

should also be updated.  The three possibilities that figure prominently in the literature are 
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referred to as fixed, recursive and rolling schemes (see McCracken and West, 2002, for a 

recent review). 

 

 In the fixed scheme, the forecast relationships are estimated only once, using the 

original estimation subsample, and are not re-estimated as forecasting moves forward in time.  

In the recursive scheme re-estimation takes place as the forecast origin advances and more 

“past” data become available, with the estimation dataset gradually increasing in size.  The 

rolling scheme also updates the estimates but keeps the size of the estimation dataset constant, 

by removing an observation from the beginning as each new observation is added to the end 

of the dataset.  In the present context of comparisons of different combinations of forecasts 

the estimation subsample is sometimes divided further, into a first portion used for the 

estimation of the individual forecasting relationships and a second portion used for a 

preliminary evaluation of their performance from which combination weights can be 

estimated.  The performance of the combined forecasts is then assessed in the evaluation 

subsample as above.  Which of the three estimation schemes is used has a bearing on the 

asymptotics of the various available tests (Clark and McCracken, 2001).  However many 

studies of combined forecasts are based on informal comparisons of mean squared forecast 

errors (MSFEs) over the evaluation subsample rather than formal inference procedures, 

whereupon the choice of updating scheme is immaterial.  The comparisons developed below 

remain in this informal mode. 

 

 We adopt the Clark-McCracken-West notational conventions and denote, in one-step-

ahead forecasting, the size of the available sample as T+1.  This is divided into the initial 

estimation (“regression”) subsample of R observations and the second evaluation 

(“prediction”) subsample of P observations, with R+P=T+1.  The first forecast is made at time 

R of observation yR+1, and the last (the thP ) is made at time T of observation yT+1.  The sample 

MSFE of the combined forecast (1) is then 

  ( )
1

22

1

1ˆ
T

C t Ct
t R

y f
P

σ
+

= +
= −∑ . 

We consider two such statistics: one, denoted 2ˆsσ , is the MSFE of the simple average of 

forecasts, fst say, with 1
2k =  in (1); the other, denoted 2ˆwσ , is the MSFE of a weighted average 

fwt using some estimate k̂  in (1). 
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 In comparing the simple average with the weighted average of forecasts we note that 

the models being compared are nested.  The null model has 1
2k = ; under the alternative, 

1
2k ≠ .  We follow Clark and West (2004) and consider the difference in MSFEs, 2 2ˆ ˆs wσ σ− , 

under the null.  Expanding the tht  term in this difference gives 

( ) ( ) ( ) ( )( )22 2 2
t st t wt t st t st wt sty f y f y f y f f f− − − = − − − − −  

( )( ) ( )22 t st wt st wt sty f f f f f= − − − −  

( ) ( ) ( )( ) ( )21 1
1 22 2

ˆ ˆ2 1t st t t wt sty f k f k f f f= − − + − − − −  . (5) 

Assuming that an unbiased estimator of k is used, and neglecting any correlation between its 

sampling error, which is a function of the estimation subsample, and the evaluation 

subsample, the first term has expected value zero.  However the second term is strictly 

positive so in sum, under the null, we expect to find 

( )
1

22 2

1

1ˆ ˆ 0
T

s w wt st
t R

f f
P

σ σ
+

= +
− ≈ − − <∑  . 

Thus the simple average is expected to outperform the weighted average systematically, in a 

situation in which they are theoretically equivalent.  Estimating k gives the weighted average 

a better fit in the estimation period, but this amounts to overfitting in the present 

circumstances, and does not carry through to the forecast period. 

 

 We note that the approximate discrepancy in the above inequality can be calculated 

directly, and consider Clark and West’s (2004) suggestion that comparisons be based on an 

adjusted MSFE 

( )
1

22 2

1

1ˆ ˆadj
T

w w wt st
t R

f f
P

σ σ
+

= +
− ≡ − −∑  .     (6) 

Before discussing estimation of k, we consider generalisations to more than two competing 

forecasts, since the number of forecasts being combined may be relevant to the choice of 

estimator. 

 

2.3 Combining many forecasts 

The general framework presented above readily extends to more than two competing 

forecasts, although some practical issues arise.  With n competing point forecasts 

,  1,..., ,itf i n=  the combined forecast is 



 6

  
1

n

Ct i it
i

f k f
=

=∑  , 

with 1ikΣ =  if the individual forecasts are unbiased and this is also desired for the combined 

forecast.  Granger and Ramanathan (1984) consider estimation of the corresponding 

generalisation of regression equation (3), namely 

  1 1 ...t t n nt ty f f uα β β= + + + +  ,     (7) 

and the question of whether or not the coefficient restrictions 0α =  and/or 1iβΣ =  should be 

imposed.  The unconstrained regression clearly achieves the smallest error variance ex post, 

and gives an unbiased combined forecast even if individual forecasts are biased.  If the 

practical objective is to improve ex ante forecast performance, however, then the imposition 

of the restrictions improves forecast efficiency, as shown by Clemen (1986), for example. 

 

 Estimation of the regression equation (7) runs into difficulty if the number of 

individual forecasts being combined, n, is close to the number of observations in the 

regression subsample, R.  This is a feature of the applications by Stock and Watson in the 

three articles referred to in the Introduction.  The first article (Stock and Watson, 1999) 

analyses the performance of 49 linear and nonlinear univariate forecasting methods, in 

combinations with weights estimated over 60 or 120 months; this is done for 215 different 

series.  The second article (2003a) considers combinations of up to 37 forecasts of U.S. output 

growth based on individual leading indicators, with weights estimated recursively, with an 

initial sample of 68 quarterly observations.  The third article (2004) extends the growth 

forecasts to the G-7 countries, and the number of individual leading indicators considered for 

each country ranges between 56 and 75.  (A further article (Stock and Watson, 2003c) 

similarly studies the role of asset prices as indicators of future inflation and output growth in 

the G-7 countries, but is not relevant for our present purposes, because no weighted 

combinations of forecasts are considered.) 

 

 In these circumstances Stock and Watson abandon estimation of the optimal 

combining weights by regression or, as they put it, abandon estimation of the large number of 

covariances among the different forecast errors.  They follow the suggestion of Bates and 

Granger (1969) noted in the final paragraph of Section 2.1 and base estimated weights on the 

generalisation of expression (4), thus 



 7

  
2

2
1

1

ˆ ,  1,..., ,
1

i
i n

j j

sk i n

s=

′ = =

∑

      (8) 

where 2 ,  1,..., ,is i n=  is the MSFE of fit over an estimation dataset.  Earlier empirical studies 

summarised by Clemen (1989, p.562) also support the suggestion “to ignore the effects of 

correlations in calculating combining weights.”  Stock and Watson use several variants of this 

estimator, of which two are of particular interest.  The first is to raise each MSFE term in the 

above expression to the power ω .  With 0 1ω< <  this shrinks the weights towards equality, 

the case 0ω =  corresponding to the simple average with 1ik n= .  Or with 1ω >  more 

weight is placed on the better performing forecasts than is indicated by the inverse MSFE 

weights.  The second variant is to calculate MSFEs as discounted sums of past squared 

forecast errors, so that forecasts that have been performing best most recently receive the 

greatest weight. 

 

 The common finding of the three cited studies in respect of comparisons of different 

combined forecasts is described as the “forecast combination puzzle – the repeated finding 

that simple combination forecasts outperform sophisticated adaptive combination methods in 

empirical applications” (Stock and Watson, 2004, p.428).  The differences are not necessarily 

large, for example in the second article the MSFE improvement of the simple average does 

not exceed four percent (2003a, Table 4), but there are no reversals. 

 

 The explanation advanced in Section 2.2 carries over to the case of 2n >  competing 

forecasts.  Under the null the simple average is expected to outperform the weighted average 

in terms of their MSFEs, in the absence of the adjustment defined in equation (6).  Given 1n×  

vectors of forecasts and estimated weights, the weighted combination forecast is ˆ
tf k′ .  Taking 

expectations in the R-sample, and conditioning on the P-sample, the expected difference in 

MSFE is equal to ( )ˆff ktrace VΣ , where ffΣ  is the P-sample moment matrix of the forecasts 

and k̂V  is the mean square error matrix of k̂  around the true value of equal weights.  Thus the 

expected discrepancy is smaller the more accurate, in this sense, are the estimates of the 

weights.  This effect diminishes as R increases, whereas the discrepancy remains of the same 

order of magnitude as P increases. 
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3. EMPIRICAL APPLICATIONS 

 

3.1 A Monte Carlo study 

Our first experiment describes the behaviour of the MSFE discrepancy 2 2ˆ ˆs wσ σ−  analysed in 

Section 2.2 in the same circumstances, namely under the null that 1
2k = .  Thus the two 

competing forecasts have equal error variances, and their simple average is compared to a 

weighted average with an estimated weight.  The data generating process is the Gaussian 

AR(2) process 

  ( )2
1 1 2 2 ,   ~ 0,t t t t ty y y N εφ φ ε ε σ− −= + + , 

subject to the stationarity conditions 2 1 2 1 21 ,  1 ,  1 1φ φ φ φ φ< + < − − < < .  The first two 

autocorrelation coefficients are then 

  1
1 2 1 1 2

2
,    

1
φρ ρ φ ρ φ

φ
= = +

−
 . 

We set up two cases of competing one-step-ahead forecasts with equal error variances. 

Case 1.  In the first case both forecasts are based only on the most recent observation.  The 

first forecast is the naïve “no-change” forecast, and the second forecast is a first-order 

autoregression with the same forecast error variance.  Thus 

  ( ) ( )2 2
1 1 2 1 1 1,   2 1 ,   2 1 ,   1,2t t t t i yf y f y iρ σ ρ σ− −= = − = − = . 

The contemporaneous correlation between the two forecast errors is equal to 1ρ .  We consider 

values of 1φ  of 0.4 and 0.8, with 2φ  taking values in the range 2 11 1φ φ− < < − , hence the 

forecast errors are positively correlated, with 1ρ  lying in the range 10.2 1ρ< <  or 

10.4 1ρ< <  respectively.  In our experiments the 2φ -values are varied by steps of 0.1, except 

that the non-stationary boundaries are avoided by taking a minimum value of –0.98 and a 

maximum value of 0.58 or 0.18 respectively. 

 

Case 2.  In the second case the two forecasts are again based on only a single observation, but 

now with either a one-period or a two-period lag; each forecast is unbiased, conditional on its 

limited information set.  Thus 

  ( )2 2 2,   1 ,   1,2it i t i i i yf y iρ σ ρ σ−= = − = . 
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To equate the error variances we choose parameter values such that 2 2
1 2ρ ρ= , specifically 

1 2φ φ=  to deliver 1 2ρ ρ= , or 1 2φ φ= −  to deliver 1 2ρ ρ= − .  With these restrictions 

stationarity requires that 21 0.5φ− < < , with 1 2φ φ= ±  as appropriate.  If 1 2 0φ φ= =  there is 

an obvious singularity: the series is white noise, the forecasts are equal to the mean of zero 

and have the same error, and kopt is indeterminate. 

 

 In each case 1000 artificial time series samples are generated for each parameter 

combination.  After discarding a “start-up” portion, each sample is divided into an estimation 

subsample of R observations and an evaluation subsample of P observations.  The forecast 

parameter values are assumed known, and the estimation subsample is used simply to 

estimate the combining weight, via the above expressions for kopt and k ′ .  Estimates based on 

equation (2) need not satisfy ˆ0 1optk≤ ≤ , as noted in Section 2.1, especially if the correlation 

between the competing forecast errors is large and positive, and we consider two possibilities.  

One is to use the actual point estimate, whatever value materialises; the second, following 

widespread practice endorsed by Granger and Newbold (1986, §9.2), is to replace an estimate 

outside this range by the nearest boundary value, 0 or 1 as appropriate.  There are then four 

combined forecasts whose MSFEs are calculated over the last P observations: three weighted 

averages, in turn using k̂ ′  and the initial and truncated ôptk , and the simple average using 

1
2k = .  The estimation cost of each weighted average is expressed as the percentage increase 

in MSFE above that of the simple average, namely ( )2 2 2ˆ ˆ ˆ100 w s sσ σ σ− . 

 

Results for Case 1.  Figure 1 shows the mean (over 1000 replications) percentage increase in 

MSFE over the simple average for the three combined forecasts based on estimated weights, 

with subsample sizes 30R =  and 6P = .  The cost of estimating k is in general positive, as 

anticipated.  However the different estimates give substantially different performance, for 

both values of 1φ  used in these examples.  First, estimating the optimal weight, including the 

covariance term, increases the MSFE of the weighted average by a rather greater amount than 

using the estimate that neglects the forecast error correlation.  Second, restricting the point 

estimate of the optimal weight to the (0,1) interval makes little difference when the correlation 

between the forecast errors is low, but improves the performance of the combined forecast as 

this correlation increases.  The forecast error correlation increases with 2φ , and is equal to 0.4 
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at the point at which the two upper plots begin to diverge in panel (a) of Figure 1; its value is 

0.57 at the equivalent point in panel (b).  In each panel the last points plotted refer to an 

almost degenerate case in which the first-order autocorrelation coefficient of the data is close 

to 1 and the two competing forecasts, and hence their errors, are close to equality. 

 

 The key to the differences shown in Figure 1 is the sampling distribution of the 

different estimates of the weight.  These are shown in Figure 2 for a parameter combination at 

which the two upper plots in panel (b) of Figure 1 are clearly separated, but not extremely so: 

the values are 1 20.8,  0.1φ φ= = − , at which the forecast error correlation, neglected in the k ′  

formula, is equal to 0.73.  The distribution of the initial estimate of the optimal weight is 

shown in panel (a) of Figure 2.  In our sample of 1000 there are 44 negative estimates, and 

these are set equal to zero in panel (b), which results in an improvement in relative MSFE of 

some 0.5%, as shown in Figure 1(b).  Note the changes in scale between the panels of Figure 

2: in particular, panels (b) and (c) have the same horizontal scale, to emphasise the much 

smaller dispersion of the estimate k̂ ′ , which in turn calls for a change in vertical scale.  The 

better performance of k̂ ′  in this experiment is striking, and supports the recommendation to 

ignore the error covariances noted above, based on practical applications. 

 

 Further support for a preference for k̂ ′  over ôptk  is provided by the asymptotic 

approximations to the variances of these estimators calculated in the Appendix.  These obey 

the relation 

  ( ) ( ) ( )2ˆ ˆasy var 1 asy var optk kρ′ = −  

where ρ  is the forecast error correlation coefficient.  This correlation is positive in our 

experiments, and can be expected to be positive more generally, since the innovation tε  is 

common to the competing forecast errors.  The formulae developed in the Appendix are seen 

to provide a good approximation to the simulation variance of the estimates obtained from 

samples of R=30 observations.  More generally these results offer an explanation of the 

relatively poor performance of combinations based on the optimal weight. 

 

Results for Case 2.  The results shown in Figure 3 are qualitatively similar to those reported 

for Case 1.  The cost of estimating k is in general positive.  Again the different estimates of 

the weights yield substantially different performance, the ranking of the different estimates 
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remaining as seen in Case 1, with the performance of k̂ ′  again markedly superior to that of 

ôptk , thanks to the much smaller dispersion of its sampling distribution.  Comparing the 

performance of the two estimates of optk , Figure 3(a) shows that at 1 2 0.5φ φ= = − , at which 

the forecast error correlation, neglected in the k ′  expression, is 0.833, truncating the original 

estimate gives an improvement in relative MSFE of 0.4%: this is the result of setting 39 

negative estimates equal to zero and 34 estimates equal to one, in our sample of 1000.  For 

1 2 0.5φ φ= − = (see Figure 3(b)) there is an improvement in relative MSFE of 0.35%; here the 

error correlation is slightly smaller, at 0.805, and slightly fewer ôptk  values are set to the 

boundary values, 35 and 23 respectively.  An example of the sampling distributions of the 

weights presented in Figure 4 shows the truncation effects diagrammatically, also that k̂ ′  

again has much smaller dispersion.  In both panels of Figure 3 the truncation effect increases 

as 1φ  approaches zero from above or below, when the correlation between the forecast errors 

increases towards 1 and we approach the singularity at 1 2 0φ φ= =  noted above. 

 

 The behaviour of the estimates of the optimal weight differs between the examples of 

Case 1 and Case 2 discussed above.  In the first case truncation of the initial estimate is 

necessary on only one side, thus in Figure 2(b) there is a pile-up at zero but not at one.  In the 

second case the (0,1) interval is breached on both sides, as shown in Figure 4.  Recalling that 

ˆ 0optk <  if 2
2 12s s<  and ˆ 1optk >  if 2

1 12s s< , and that the experiment is designed with 2 2
1 2σ σ= , 

the explanation of the asymmetry lies in the sampling distribution of the variance estimates.  

In the example of Case 1 shown in Figure 2 the sample variance of 2
2s  is some 35% greater 

than that of 2
1s , resulting in a tail of the distribution such that 2

2 12s s<  on 44 out of 1000 

occasions, whereas the equivalent condition for ˆ 1optk >  never occurs in this sample.  In 

neither Case 1 nor Case 2 does estimating an intercept term in the extended realisation-

forecast regression equation (3) improve the MSFE of the associated combined forecast.  In 

those experiments in which estimating α  has a noticeable effect the result is an increase in 

the combined forecast MSFE, associated with greater imprecision in the estimate of optk . 

 

 The effects under discussion are finite-sample estimation effects, as noted initially in 

general terms and more precisely in the closing paragraph of Section 2.  These effects relate to 
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the size of the “regression” sample, R, not the “prediction” sample, P.  Increasing P in our 

experiments has little effect on the mean of the MSFE costs, such as those plotted in Figures 1 

and 3, although their sampling variance falls, as expected.  Increasing R, however, reduces the 

MSFE cost of the weighted average, due to increased accuracy of the estimated weight, and at 

R=1200 there is essentially no gain in using the simple average, and hence no puzzle. 

 

Departures from equal weights.  These examples show that if the optimal combining weights 

are equal, then the simple average beats estimated combinations.  A practical next question 

might be, but what if the optimal weights are not equal?  How different must the optimal 

weights be for the bias effect from assuming them equal to dominate the estimation variance 

effect, so that the combination with estimated weights beats the simple average?  A little 

evidence on this question is contained in Figures 5 and 6.  For particular parameter 

combinations of Case 1 and Case 2 respectively, we change the coefficient on the second 

forecast in each case, in order to change its forecast error variance and hence the required 

combining weight.  This is indicated by the associated value of k ′ , using the expression 

without the covariance term that the preceding experiments clearly indicate is to be preferred.  

Otherwise the experimental design remains unaltered, 1000 replications being undertaken to 

estimate the percentage MSFE cost at each of a range of values of k ′ .  When this is equal to 

0.5 the results correspond to those given above; departures from 0.5 are indicated by referring 

to the experiments as Case 1* and Case 2* respectively. 

 

 The results show that, in these examples, large departures from equal weights are not 

required in order to turn the comparison around.  The MSFE cost of the weighted estimate 

using ôptk  is greater than that using k̂ ′ , hence positive costs persist for greater departures 

from equality.  But in all the cases presented, the cost has turned negative, that is, the simple 

average has lost its advantage, before the weights are as different as (0.4, 0.6).  This 

combination is appropriate if one forecast has MSFE 50% greater than its competitor, and 

how relevant this is in practice is for the user to judge. 

 

3.2 Forecasts of US output growth during the 2001 recession 

For a practical application we revisit the study of Stock and Watson (2003a), which evaluates 

the performance of leading indicator forecasts during the 2001 recession in the United States.  

This recession differed in many ways from its predecessors, and Stock and Watson find that 
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individual leading indicators also performed differently before and during this recession.  

Some previously reliable leading indicators provided little or no indication of the slowdown. 

 

 Of particular interest for our present purpose is their Table 4, which reports relative 

MSFEs of various combination forecasts of annual growth rates of real GDP and the Index of 

Industrial Production over the period 1999Q1-2002Q3, at lead times of h=2 and h=4 quarters.  

As noted in Section 2.3, the simple average of individual leading indicator-based forecasts 

dominates a weighted average using inverse MSFE weights as in equation (8).  The weights 

are based on MSFEs calculated as discounted sums of past squared forecast errors, with a 

quarterly discount factor of 0.95.  From their programs and database we recreate the 

combined forecast MSFEs on which the relative MSFEs reported in their table are based.  

(Throughout their article Stock and Watson report the MSFEs of individual and combined 

forecasts relative to the MSFE of a benchmark autoregressive forecast, whereas we need the 

numerators of these ratios.)  We then undertake further calculations following the algebra 

developed above, with results as shown in Table 1.  These examples use n=35 component 

forecasts, while P=13 when h=2 and P=11 when h=4. 

 

Table 1.  MSFEs of combined quarterly forecasts of output growth (annual percentage rates) 
 

               RGDP                    IP 

    h=2    h=4     h=2    h=4 

2ˆsσ    1.0078   3.8730    4.4663 23.0034 

2ˆwσ    1.0319   4.0194    4.4926 23.2114 

2ˆ adjwσ −    1.0314   4.0165    4.4894 23.2032 

2 2ˆ ˆs wσ σ−  –0.0241 –0.1464  –0.0263 –0.2080 

adj   0.0005   0.0029    0.0032   0.0082 

remainder –0.0236 –0.1435  –0.0231 –0.1998 

 

 The first two rows of the table give the MSFEs of the simple and weighted average 

forecasts and show that the simple average does better in all four cases.  In the third row we 

make the adjustment defined in equation (6) and given in the fifth row, but in no case does 

this change the ranking.  Decomposing the MSFE difference, given in the fourth row, into the 
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two components developed in equation (5), shows that the (sample mean of) the first 

component, which has expected value zero under the equal-weight null, heavily dominates the 

second, “adjustment”, component.  This second component is the average squared difference 

between the two combination forecasts, or equivalently, between their forecast errors, and its 

small size relative to the separate MSFEs indicates that these forecasts are very close to one 

another.  From equation (5), second line, the remainder term is equal to ( )2ˆ ˆ2 s swσ σ− , and if 

this is negative in a situation in which the two forecast MSFEs are close to one another then 

the forecast error correlation must be close to 1.  Calculation of the forecast error correlation 

coefficient from the data in the first column of Table 1 gives 0.99981. 

 

 We plot the forecast errors for all four cases under consideration in Figure 7, which 

confirms these interpretations of the data in Table 1.  The two combination forecast errors are 

virtually indistinguishable, and the difference between the two combination forecasts is 

unlikely to be of any importance in the context of a practical decision problem.  The dates 

shown correspond to the date of the forecast, the final outcome available being that for 

2002Q3.  Stock and Watson note that at the time of writing the NBER had not yet dated the 

trough: on 17 July 2003 this was announced as November 2001 which, with the previous peak 

at March 2001, gave a contraction duration of 8 months.  Figure 7 shows that the combination 

forecasts substantially overestimated growth throughout this period, starting from the quarter 

before the peak and, in the year-ahead forecasts, extending well into the recovery phase.  We 

beg to differ from Stock and Watson’s conclusion that the combination forecast performance 

is “encouraging”. 

 

 In this example the forecast combination puzzle is of no importance from a practical 

point of view.  From a statistical point of view it is an example of the gain in efficiency that 

can be obtained by imposing, rather than estimating, a restriction that is approximately true.  

The distribution of estimated weights at the start of the prediction period for the example in 

column 1 of Table 1 is presented in Figure 8, and this shows rather little variation around the 

value of 1/n=0.029 used by the simple average.  The performance of the individual indicators 

varies over time, hence so do their optimal combining weights, but when the relative weights 

are small this variation is also likely to have little practical significance. 

 

 



 15

4. CONCLUSIONS 

 

Three main conclusions emerge from the foregoing analysis. 

(1)  If the optimal combining weights are equal or close to equality, a simple average of 

competing forecasts is expected to be more accurate, in terms of MSFE, than a combination 

based on estimated weights. 

(2)  However if estimated weights are to be used, then it is better to neglect any covariances 

between forecast errors and base the estimates on inverse MSFEs alone, than to use the 

optimal formula originally given by Bates and Granger for two forecasts, or its regression 

generalisation for many forecasts. 

(3)  When the number of competing forecasts is large, so that under equal weighting each has 

a very small weight, the simple average can gain in efficiency by trading off a small bias 

against a larger estimation variance.  Nevertheless, in an example from Stock and Watson 

(2003a), we find that the “forecast combination puzzle” rests on a gain in MSFE that has no 

practical significance. 
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APPENDIX: THE VARIANCES OF THE COMBINING WEIGHTS 

 

We calculate large-sample approximations to the variances of the two estimators of the 

combining weight, in the case of two forecasts with equal error variances 2 2 2
1 2 eσ σ σ= = , say.  

We first consider the “inverse MSFE” coefficient, which neglects the covariance between the 

forecast errors, namely 

  
2 21
2 2

2 2 2 2 2 21 1
1 2 1 2 1 2

1ˆ
1

tR

t tR R

e sk
e e s s s s

Σ′ = = =
Σ + Σ + +

, 

retaining R to denote the estimation sample size.  Standard results on the variance of functions 

of random variables (Stuart and Ord, 1994, §10.6) give, for the nonlinear transformation, 

  ( ) ( )
21

1 1
var 1 var( )

x
x x

x

−
−  ∂ +

+ ≈  
 ∂ 

, 

and evaluating the derivative at the mean of 1 gives 

  ( )
2
1
2
2

1ˆvar var
16

sk
s

 
′ ≈  

 
. 

Also using the expression for the variance of a ratio of positive random variables, we have 

  ( ) ( )
( )

( )
( )

( )
( )

( )
( ) ( )

22 2 2 2 2
1 1 2 1 2

2 2 2 2 2 2 2
2 1 2 1 2

var var 2cov ,1ˆvar
16 .

E s s s s s
k

E s E s E s E s E s

   
   ′ ≈ + −
   
   

 

   ( ) ( ) ( )2 2 2 2
1 2 1 24

1 var var 2cov ,
16 e

s s s s
σ

 = + −
 

.   (A.1) 

 

 Turning to the optimal weight given in equation (2), the estimate is 

  
2 21 1
2 1 2 2 12

2 2 2 2 21 1 2
1 2 1 2 1 2 12 1 12

2
2 12

1ˆ
2 1

t t tR R
opt

t t t tR R R

e e e s sk
e e e e s s s s s

s s

Σ − Σ −= = =
Σ + Σ − Σ + − −+

−

. 

This last expression is of the same form as k̂ ′ , with 2
12is s−  replacing 2,  1, 2is i = .  To follow 

the same development as above we first note that 

  ( ) ( )2 2
12 1i eE s s ρ σ− = − , 

where ρ  is the forecast error correlation coefficient.  On expanding expressions for the 

variances and covariance of 2
12 ,  1,2,is s i− =  and collecting terms, we then obtain 
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  ( ) ( )
( ) ( ) ( )2 2 2 2

1 2 1 22 4

1ˆvar var var 2cov ,
16 1

opt
e

k s s s s
ρ σ

 ≈ + −
 −

 

      
( ) ( )2

1 ˆvar
1

k
ρ

′=
−

.      (A.2) 

Or, more directly, we observe that the expression in square brackets in (A.1) is the variance of 
2 2
1 2s s− , and that this is equal to the variance of ( ) ( )2 2

1 12 2 12s s s s− − − .  Since the errors of 

competing forecasts are in general positively correlated, the estimation variance of the optimal 

weight can be expected to exceed that of the inverse MSFE weight. 

 

 To implement expressions (A.1) and (A.2) further development of the terms in square 

brackets is needed.  The asymptotic variance of the sample variance of a normally distributed 

autocorrelated series with autocorrelation coefficients jρ  is 

  ( )
4

2 22var js
R
σ ρ

∞

−∞
≈ ∑ . 

This result is given in many time-series texts, whose authors usually cite Bartlett (1946).  In 

this article Bartlett stated a more general result, for the covariance of two sample 

autocovariances, and he subsequently gave an outline derivation in his book (1955, §9.1).  

Following the same approach gives the covariance term we require as 

  ( )2 2 2
1 2 12

2cov , ( )s s j
R

γ
∞

−∞
≈ ∑  , 

where 12( )jγ  is the cross-lagged covariance function of 1e  and 2e .  So altogether we have 

  ( ) ( )1 2
1ˆvar 2

8
k ACS ACS CCS

R
′ ≈ + −  

where ACSi is the (doubly infinite) sum of squared autocorrelation coefficients of series eit, 

i=1,2, and CCS is the corresponding sum of their squared cross-lagged correlation 

coefficients.  In the set-up of our Monte Carlo experiments these coefficients are obtained 

from the autocovariance generating function of the AR(2) process for ty  and the related 

generating functions for the filtered series ( )it i te h L y= .  The infinite sums are truncated once 

the individual terms are sufficiently small, and possible sensitivity of the final result to the 

truncation point is checked. 
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 The resulting “theoretical” standard deviations of the distributions of the two 

estimators are shown in Table A.1 for a selection of the parameter values used in our 

experiments, alongside their “empirical” counterparts calculated from the simulation sample 

distributions.  With 1000 independent replications at each parameter combination, the 

standard error of the estimated standard deviation (sd) is equal to sd 2000 0.022sd= .  With 

this in mind, the large-sample approximation is seen to provide reliable guidance to the 

simulation results for sample sizes as small as 30, for most of the parameter combinations 

considered.  The approximation becomes less good as the autocorrelation of the forecast error 

series increases, and in these circumstances somewhat larger sample sizes are required before 

the equivalence is restored.  Nevertheless the theoretical analysis of this Appendix provides 

more general support for a preference for k̂ ′  over ôptk : neglecting the covariances of the 

competing forecast errors can be expected to lead to improved performance of combined 

forecasts based on estimated weights. 
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Table A.1.  Empirical and theoretical standard deviations of k̂ ′  and ôptk  
 

  k̂′   
ôptk  

2φ  ρ  Empirical Theoretical  Empirical Theoretical 
Case 1:  1 0.4φ =  

0.4 0.67 0.086 0.104  0.323 0.243 
0.2 0.50 0.087 0.097  0.193 0.174 
0.0 0.40 0.079 0.084  0.139 0.131 
-0.2 0.33 0.069 0.070  0.107 0.102 
-0.4 0.29 0.059 0.057  0.083 0.078 
-0.6 0.25 0.048 0.044  0.065 0.058 
-0.8 0.22 0.036 0.030  0.047 0.038 

Case 1:  1 0.8φ =  
0.1 0.89 0.040 0.046  0.549 0.416 
-0.1 0.73 0.053 0.057  0.228 0.208 
-0.3 0.62 0.051 0.053  0.146 0.137 
-0.5 0.53 0.046 0.045  0.103 0.096 
-0.7 0.47 0.037 0.034  0.072 0.064 
-0.9 0.42 0.027 0.019  0.046 0.032 

Case 2:  1 2φ φ=  
-0.9 0.57 0.043 0.037  0.106 0.086 
-0.7 0.71 0.051 0.049  0.184 0.172 
-0.5 0.83 0.046 0.046  0.285 0.274 
-0.3 0.93 0.033 0.032  0.480 0.468 
-0.1 0.99 0.012 0.012  1.374 1.347 
0.1 0.99 0.014 0.014  1.242 1.219 
0.3 0.87 0.044 0.044  0.351 0.343 

Case 2:  1 2φ φ= −  
0.3 0.87 0.042 0.044  0.347 0.343 
0.1 0.99 0.013 0.014  1.205 1.219 
-0.1 0.99 0.011 0.012  1.315 1.347 
-0.3 0.93 0.030 0.032  0.456 0.468 
-0.5 0.83 0.043 0.046  0.270 0.274 
-0.7 0.71 0.048 0.049  0.175 0.172 
-0.9 0.57 0.041 0.037  0.103 0.086 
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Figure 1.  Percentage MSFE cost of weighted combination forecasts; Case 1. 
 

(a)  1φ =0.4, R=30, P=6 
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(b)  1φ =0.8, R=30, P=6 
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Figure 2.  Histograms of estimated weights; Case 1, 1 20.8,  0.1φ φ= = − , R=30. 
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Figure 3.  Percentage MSFE cost of weighted combination forecasts; Case 2. 
 

(a)  1 2φ φ= , R=30, P=6 
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(b)  1 2φ φ= − , R=30, P=6 

0

0.5

1

1.5

2

2.5

3

3.5

4

-0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9
φφφφ1

R
el

at
iv

e 
M

SE

k_opt(trun)
k_opt(untrun)
k'

 
 



 25

Figure 4.  Histograms of estimated weights; Case 2, 1 2 0.5φ φ= − = , R=30. 
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Figure 5.  Percentage MSFE cost of weighted combination forecasts; Case 1*. 
  

(a)  1 20.8, 0.4φ φ= = − , R=30, P=6 
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(b)  1 20.4, 0.2φ φ= = − , R=30, P=6                                                                        
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Figure 6.  Percentage MSFE cost of weighted combination forecasts; Case 2*.  
 

(a)  1 2 0.45φ φ= = , R=30, P=6 
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(b)  1 2 0.7φ φ= − = , R=30, P=6                                                                          
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Figure 7.  Errors of combined quarterly forecasts of output growth 
                         (annual percentage rates) 
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Figure 8.  Distribution of weights in weighted average RGDP forecast 
                                    (n=35, h=2, first period) 
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