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1 Introduction

In a recent paper, Andersen, Bollerslev, Diebold and Labys (ABDL: 2003) have suggested a novel,

model free, approach for forecasting daily volatility. More precisely, they advocate the use of simple,

reduced form time series models for realized volatility, where the latter is constructed summing

up intradaily squared returns. The predictive ability of a given model is measured via the R2

from the autoregressive or ARMA models constructed using (the log of) realized volatility. Their

findings suggest that these simple ARMA based forecasts for realized volatility outperform most

of the volatility models commonly used by practitioners, such as different type GARCH models,

for example. The rationale behind their approach is that, as the time interval shrinks, realized

volatility converges to the ”true” daily volatility, whenever the underlying asset price is a continuous

semimartingale. Though tick by tick and ultra high frequency data are now available, they are often

contamined by microstrustructure noise and so realized volatility is typically constructed using 5-

minute interval returns or even lower frequency. Therefore, these reduced form time series forecasts

for realized volatility imply a loss in efficiency relative to the infeasible optimal forecast for the

daily volatility process, based on the entire volatility path. For the class of eigenfunction stochastic

volatility models of Meddahi (2001), an analytical expression for such loss in efficiency is provided

by Andersen, Bollerslev and Meddahi (2004). In particular, they show that the error associated

with realized volatility induces a downward bias in the estimated degree of predictability obtained

via the R2 approach mentioned above. To overcome this issue, Andersen, Bollerslev and Meddahi

(2005) develop a general model free, feasible procedure to compute adjusted R2.

All the papers mentioned above are concerned with pointwise prediction of volatility via some

ARMA models based on realized measures. On the other hand, there are situations in which we

may be interested in predicting conditional confidence interval of daily volatility.

The main objective of this paper is to propose a feasible, model free estimator of the conditional

confidence intervals of integrated volatility. From Meddahi (2003), we know that, within the context

of eigenfunction stochastic volatility models, integrated volatility follows an ARMA(p, p) structure,

where p denotes the number of eigenfunctions. Though, we have a complete characterization of

the autoregressive part only, and furthermore, we do not know the marginal distribution of the

innovation. For these reasons, we cannot exploit the ARMA representation in order to construct

consistent estimator of the conditional confidence intervals of integrated volatility. Thus, we need

to follow a different route. We construct a kernel estimator of the conditional density of a given
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realized volatility measure, conditional on recent observed values of the realized measure itself. By

integrating over the evaluation point, we obtain estimators of the conditional distribution function.

We provide general conditions on the measurement error between realized measure and integrated

volatility, in terms of its moment and covariance structure, under which we can define a sequence

of bandwidth parameters under which the kernel estimator of the conditional density is uniformly

consistent. We also provide a uniform rate of convergence, which depends on the bias and variance

of the kernel estimator as well as on the measurement error. Also, we derive the relative rate, in

terms of the number of days T, at which the first absolute moment of the measurement error and

the bandwidth parameter have to approach zero, in order to ensure that all three components (bias,

variance and contribution of measurement error) approach zero at the same speed.

Suppose that we knew the data generating process for the instantaneous volatility. Unfortu-

nately, this information does not allow to recover the data generating process for the integrated

volatility process. Nevertheless, in that case we can construct the kernel density estimator using

the integrated volatility process simulated under the null model (and ”evaluated” at the estimated

parameters) instead of using a realized measure. Under mild regularity conditions, as the sample

size and the number of simulations grow at an appropriate rate, the conditional confidence inter-

vals based on kernel estimators of simulated volatility converge to the ”true” conditional confidence

interval of integrated volatility. A natural question is whether there is some advantage, in term of

a faster rate of convergence, in using simulated volatility reather than realized measures. Basically,

if the absolute moments of the measurement error approaches zero, as the number of intradaily

observations grows, at a rate faster than T−1/2, then there is no gain in using simulated integrated

volatility, rather than realized measures. Needless to say, the rate at which the absolute moment

of the measurement error approaches zero depends on the specific realized measure we use.

Thus, we show that three well known realized measures, that is realized volatility, bipower

variation (Barndorff-Nielsen and Shephard 2004a,b) and the robust subsampled realized volatility

of Zhang, Mykland and Aı̈t-Sahalia (2004) satisfy the conditions on the measurement error required

for the uniform consistency of the estimator based on realized measures. This means that we can

provide a feasible model free estimator of the conditional confidence intervals of integrated volatility

even in presence of jumps or microstructure noise. We also note that, in the case we knew the data

generating process for the instantaneous volatility, there is no gain (in terms of faster rate of

convergence) in using simulated integrated volatility instead of realized measures, whenever the

number of intraday observations, M, grows at a rate faster than T, T 2 and T 3 for the case of
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realized volatility, bipower and robust subsampled realized volatility respectively. Though, it may

seem quite unplausible to require M to grow faster than T 3, it should pointed out that in the

case of robust subsampled realized volatility we do not have to be concerned about the presence of

microstructure noise, and therefore we can use very high frequency data, such as at a few seconds

interval.

In order to evaluate the goodness of the approximations of the conditional confidence interval

estimators based on the three different realized measures, and on simulated integrated volatility,

we compare them against an unfeasible, optimal estimator of the confidence interval of integrated

volatility, conditional on all the path of past volatility. Finally, we report the findings of an empirical

illustration, based on three very liquid stock in the Dow Jones Industrial Average.

The rest of the paper is organized as follows. Section 2 describes the model. Section 3 provides

a uniform rate of convergence for the conditional confidence interval estimator based on a given

realized measure. Section 4 provides a uniform rate of convergence for the conditional confidence

interval estimator on simulated integrated volatility, for the case in which we knew the data gen-

erating process of the instantaneous volatility process. Section 5 provides conditions under which

realized volatility, bipower variation and robust subsampled realized volatility satisfy the conditions

on the mesurement error, required for the uniform consistency of the kernel estimator based on

realized measures. Section 6 reports a small Monte Carlo study which evaluates the goodness of

the approximations of the conditional confidence interval estimators based on the three different

realized measures, and on simulated integrated volatility, for different relative rates of growth of T

and M. An empirical illustration is given in Section 7. Finally, Section 8 contains some concluding

remarks. All proofs are gathered in the Appendix.

2 The Model

The observable state variable, Yt = log St, where St denotes the price of a financial asset or the

exchange rate between two currencies, is modelled as a jump diffusion process with constant drift

term and variance term modelled as a measurable function of a latent factor, ft, which is also

generated by a diffusion process. Thus,

dYt = mdt + dzt +
√

σ2
t

(√
1− ρ2dW1,t + ρdW2,t

)
, (1)
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W1,t and W2,t refer to two independent Brownian motions and volatility is modelled according to

the eigenfunction stochastic volatility model of Meddahi (2001), so that

σ2
t = ψ(ft) =

p∑

i=1

aiPi(ft)

dft = µ(ft,θ)dt + σ(ft,θ)dW2,t, (2)

for some θ ∈ Θ, where Pi (ft) denotes the i -th eigenfunction of the infinitesimal generator A
associated with the unobservable state variable ft.1 The pure jump process dzt specified in (1) is

such that

Yt = mt +
∫ t

0

√
σ2

s

(√
1− ρ2dW1,s + ρdW2,s

)
+

Nt∑

i=1

ci,

where Nt is a finite activity counting process, and ci is a nonzero i.i.d. random variable, independent

of Nt. As Nt is a finite activity counting process, we confine our attention to models characterized

by only a finite number jumps over any fixed time span.

As customary in the literature on stochastic volatility models, the volatility process ia assumed

to be driven by (a function of) the unobservable state variable ft. Rather than assuming an ad hoc

function for ψ (·), the eigenfunction stochastic volatility model adopts a more flexible approach. In

fact ψ (·) is modeled as a linear combination of the eigenfunctions of A associated to ft. Notice that

the ai’s are real numbers and that p may be infinite. Also, for normalization purposes, it is further

assumed that P0 (ft) = 1 and that var (Pi (ft)) = 1, for any i 6= 0. Also, when p is infinite, we also

require
∑∞

i=1 ai < ∞. The generality and embedding nature of the approach just outlined stems

from the fact that any square integrable function ψ (ft) can be written as a linear combination

of the eigenfunctions associated with the state variable ft. As a result, most of the widely used

stochastic volatility models can be derived as special cases of the general eigenfunction stochastic

volatility model. For more details on the properties of these models, see Meddahi (2001,2003).

Finally, notice that we have assumed a constant drift term.2

1The infinitesimal generator A associated with ft is defined by

Aφ (ft) ≡ µ (ft) φ′ (ft) +
σ2 (ft)

2
φ′′ (ft)

for any square integrable and twice differentiable function φ (·). The corresponding eigenfunctions Pi (ft) and eigen-

values −λi are given by APi (ft) = −λiPi (ft).
2This is in line with Bollerslev abd Zhou (2002), who assume a zero drift term and justify this with the fact that

there is very little predictive variation in the mean of high frequency returns, as supported the empirical findings of

Andersen and Bollerslev (1997). Indeed, the test statistics suggested below do not require the knowledge of the drift

term. However, some of the proofs make use of the fact that the drift is constant.
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Following the widespread consensus that transaction data occurring in financial markets are of-

ten contaminated by measurement errors, we assume to have a total of MT observations, consisting

of M intradaily observations for T days, for

Xt+j/M = Yt+j/M + εt+j/M , t = 1, . . . , T and j = 1, . . . , M,

where

εt+j/M ∼ iid(0, ν) and E(εt+j/MYs+i/M ) = 0 for all t, s, j, i. (3)

Thus, we allow for the possibility that the observed transaction price can be decomposed into the

efficient one plus a “noise” due to measurement error, which captures generic microstructure effects.

The microstructure noise is assumed to be identically and independently distributed and in-

dependent of the underlying prices. This is consistent with the model considered by Ait-Sahalia,

Mykland and Zhang (2003), Zhang, Mykland and Ait-Sahalia (ZMA:2004), Bandi and Russell

(2003, 2004).3 Needless to say, when ν = 0, then εt+j/M = 0 (almost surely), and therefore

Xt+j/M = Yt+j/M .

The daily integrated volatility process at day t is defined as

IVt =
∫ t

t−1
σ2

sds. (4)

Since IVt is not observable, different realized measures, based on the sample Xt+j/M , t = 1, . . . , T

and j = 1, . . . , M, are used as proxies for IVt. The realized measure, say RMt,M , is a noisy measure

of the true integrated volatility process; in fact

RMt,M = IVt + Nt,M ,

where Nt,M denotes the measurement error associated with to the realized measure RMt,M . Note

that, in the case where ν > 0, any realized measure of integrated volatility is contaminated by two

measurement errors, given that the realized measure is constructed using contaminated data.

In the sequel, we shall first construct functionals of kernel estimator of conditional densities

based on realized measure.

Then, we will first provide primitive conditions on the measurement error Nt,M , in terms of its

moments and memory structure, ensuring that the kernel conditional density estimators based on

realized measures are consistent for the integrated volatility conditional density and we provide a
3Recently, Hansen and Lunde (2004) address the issue of time dependence in the microstructure noise, while

Awartani, Corradi and Distaso (2004) allow for correlation between the underlying price.
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uniform rate. Finally, we shall adapt the given primitive conditions on Nt,M to the three considered

realized measures of integrated volatility: namely,

(a) realized volatility, defined as

RVt,M =
M−1∑

j=1

(
Xt+(j+1)/M −Xt+j/M

)2
, (5)

(b) normalized bipower variation, given by

(µ1)−1BVt,M = (µ1)−1 M

M − 1

M−1∑

j=2

∣∣Xt+(j+1)/M −Xt+j/M

∣∣ ∣∣Xt+j/M −Xt+(j−1)/M

∣∣ (6)

where µ1 = E |Z| = 21/2Γ(1)/Γ(1/2) and Z is a standard normal distribution,

(c) a microstructure robust subsampled based realized volatility measure, R̂V
u

t,l,M , suggested by

Zhang, Mykland and Ait-Sahalia (2004), defined as

R̂V
u

t,l,M = RV avg
t,l,M − 2lν̂t,M , (7)

where

ν̂t,M =
RVt,M

2M
=

1
2M

M−1∑

j=1

(
Xt+ j

M
−Xt+ j−1

M

)2

and

RV avg
t,l =

1
B

B∑

b=0

RV b
t,l =

1
B

B−1∑

b=0

M−(B−b−1)∑

j=b+1

(
X

t+ jB
M
−X

t+
(j−1)B

M

)2
, (8)

with Bl ∼= M, where l denotes the subsample size and B the number of subsamples. The idea

of ZMA is the following: first construct B realized volatility measures using l non overlapping

subsamples, then take an average of this B realized volatility measures and correct this average

by an estimator of the bias term due to market microstructure, where the bias estimator is

constructed using a finer grid.4 Hereafter, R̂V
u

t,l,M will be termed modified subsampled

realized volatility.

In particular, for each considered realized measure we will provide regularity conditions for

the relative speed at which T, M, l go to infinity for the asymptotic validity of the associated

specification test for integrated volatility.
4ZMA consider a more general set-up in which the sampling interval can be irregular. Also note that, as subsamples

cannot overlap, Bl is not exactly equal to M, however such an error is negligible as B and l grow.
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3 Predicting Volatility Conditional Confidence Intervals via Re-

alized Volatility Measures

Our objective is to predict confidence intervals for daily volatility, via realized volatility measures.

We first construct a nonparametric estimator of the conditional density of integrated volatility,

constructed using realized measures (and conditional on a given realized volatility measure actually

observed at time T ), and we integrate over the dependent variable, in order to obtain cumulative

conditional distribution. For example, for the confidence interval [0, u], as one-step ahead predictor,

we use

F̂RMT+1|RMT,M
(u|RMT,M ) =

∫ u

0




1
Tξ2

2,T

∑T−1
t=1 K

(
RMt+1,M−x

ξ2,T
,

RMt,M−RMT,M

ξ2,T

)

1
Tξ1,T

∑T−1
t=1 K

(
RMt,M−RMT,M

ξ1,T

)


dx. (9)

Thus, if we want to predict Pr (u1 ≤ IVT+1 ≤ u2|IVT ) we use

F̂RMT+1,M |RMT,M
(u2|RMT,M )− F̂RMT+1,M |RMT,M

(u1|RMT,M ).

Hereafter, let’s define fIVT+1|IVT
(·|·) and fIVT

(·) the conditional density of IVT+1 given IVT and

the marginal density of IVT respectively. Recall that, IVt =
∫ t
t−1 σ2

sds =
∫ t
t−1 ψ(gs)ds, and note

that, because of assumption A2 below, IVt is a strictly stationary process, and so fIVT+1|IVT
(·|·) =

fIVt+1|IVt
(·|·) and fIVT

(·) = fIVt(·), for t = 1, 2, . . . , T .

In the sequel, we will need the following assumptions.

Assumption A1: There is a sequence bM , with bM →∞ as M →∞, such that, uniformly in t,

(i) E (Nt,M ) = O(b−1
M ),

(ii) E
(
N2

t,M

)
= O(b−1

M ),

(iii) E
(
N4

t,M

)
= O(b−3/2

M ),

(iv) either

(a) Nt,M is strong mixing with size −r, where r > 2; or

(b) E (Nt,MNs,M ) = O(b−2
M ) + αt−sO(b−1

M ), where αt−s = O(|t− s|−2),

(v) 1
T

∑T
t=1 |Nt,M | = OP (b−1/2

M ).
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Assumption A2: ft is a time reversible process.

Assumption A3: the spectrum of the infinitesimal generator operator A of ft is discrete, and

denoted by 0 < λ1 < ... < λi < ... < λN , where λi is the eigenvalue associated with the i − th

eigenfunction Ei(ft).

Assumption A4:

(i) The kernel K : Rd → R+, d = 1, 2 is a symmetric, nonnegative, twice continuously differen-

tiable function, with bounded derivatives, and
∫

K(x)ds = 1, lim
‖x‖→∞

‖x‖d K(x) = 0 and
∫

Rd

‖x‖d K(x)dx < ∞

and for µ = 0, 1 DµK(x) has Fourier transform Ψµ(r) = (2π)d
∫

exp(ir′x)DµK(x)dx that

satisfies
∫

(1 + ‖r‖) |Ψµ(r)| dr < ∞.

(ii) fIVT
(·) and fIVT+1,IVT

(·, ·) are absolutely continuous with respect to the Lebesgue measure in

R2, are twice continuously differentiable on R and R2, are bounded and have bounded first

derivatives.

Then, we can state the following.

Theorem 1. Let assumptions A1(ii),(v) and A2-A(4) hold. Then, if ξ3
2,T /ξ2

1,T → 0, as T, M →∞,

for any u ∈ U, with U possibly unbounded, and for any, arbitrarily small η > 0,

∣∣∣F̂RMT+1,M |RMT,M
(u|RMT,M )− FIVT+1|IVT

(u|RMT,M )
∣∣∣

= OP

(
b
−1/2+η
M ξ−3

2,T

)
+ OP

(
T−1/2ξ−2

2,T

)
+ O

(
ξ2
2,T

)
. (10)

Given the condition ξ3
2,T /ξ2

1,T → 0, we can ignore the error associated with the estimated

marginal density, because it converges to zero at a faster rate.

The estimated cumulative distribution function has three sources of error. The first error is

due to the fact that we use a realized measure, instead of the true integrated volatility, in the

construction of the estimator. Thus, the error depends on bM , which is linked to the number of

intradaily observations.

The last two terms are the classical variance and bias term present in the literature on kernel

based estimators. As usual, there is a trade-off between minimizing the bias and minimizing the

variance of the estimator. In fact, the faster the bandwidth approaches zero, the faster (the slower)

the bias (the variance) approaches zero.
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Recalling the definition of F̂RMT+1|RMT
(u|RMT,M ), given in (9), and recalling that U is possibly

unbounded, the rates on the right hand side of (10) are driven by the rates at which

sup
x∈R+

∣∣∣∣∣
1

Tξ2
2,T

T−1∑

t=1

K
(

RMt+1,M − x

ξ2,T
,
RMt,M −RMT,M

ξ2,T

)
− 1

Tξ2
2,T

T−1∑

t=1

K
(

IVt+1 − x

ξ2,T
,
IVt −RMT,M

ξ2,T

)∣∣∣∣∣

sup
x∈R+

(
1

Tξ2
2,T

T−1∑

t=1

K
(

IVt+1 − x

ξ2,T
,
IVt −RMT,M

ξ2,T

)
−E

(
1

Tξ2
2,T

T−1∑

t=1

K
(

IVt+1 − x

ξ2,T
,
IVt −RMT,M

ξ2,T

)))2

sup
x∈R+

(
E

(
1

Tξ2
2,T

T−1∑

t=1

K
(

IVt+1 − x

ξ2,T
,
IVt −RMT,M

ξ2,T

))
− fIVT+1,IVT

(x, RMT,M )

)
,

approach zero, respectively, uniformly in x ∈ R+. In other words, the three terms on the RHS of

(10) reflect the uniform rate at which the contribution to measurement error in the estimation of

the joint density, the variance and the bias terms of the joint density approach zero uniformly in

x ∈ R+.

In particular, note that the error due to the variance component, i.e. the second term on the RHS

of (10), is of a larger order of probability than the typical one occurring in the pointwise case(see,

e.g., Bosq, Ch. 2, 1998). In fact, in the pointwise case we would have OP

(
T−1/2ξ−1

2,T

)
instead

of OP

(
T−1/2ξ−2

2,T

)
. The slower rate is due to the need of deriving a result which holds uniformly

on R+; it comes from a proof based on the Fourier transform of the kernel, first introduced by

Bierens (1982) for regression functions with strong mixing processes and then extended to the

case of generic derivatives of density and/of regression functions for general near epoch dependent,

possibly heterogeneous, processes by Andrews (1990,1995).

It is immediate to see that the necessary conditions to ensure uniform consistency are that

(i) The bandwidth ξ2,T has to approach zero at a slower rate than T−1/4;

(ii) bM has to approach infinity at a faster rate than ξ
−6/(1−2η)
2,T .

Needless to say, the uniform rate of convergence is driven by the slower component. Thus, we

want to determine the relative rate of growth, in terms of the number of days T, of bM and ξ2,T

which ensure that all the terms on the RHS of (10) are of the same order of probability. After a

few simple manipulations, we see that for

ξ2,T = O
(
T−1/8

)
, bM = O

(
T 5/(4(1−2η))

)

all the terms on the RHS of (10) are of order T−1/4.
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4 Predicting Volatility Conditional Confidence Intervals via Sim-

ulated Daily Volatility

In this section we consider the case in which we know the model generating the instantaneous

volatility process, though we do not know the closed form of the conditional density of the integrated

volatility process. We proceed in the following way: for any value in the parameter space, we

generate S (instantaneous) volatility paths of length k (k ≥ 2), using as initial value a draw from

the invariant distribution, and construct the associated daily volatility process. Parameter can be

estimated by SGMM, as in Corradi and Distaso (2004, Theorem 2). Then, we simulate S paths

of length 2 using the estimated parameters, and again drawing the initial value from the invariant

distribution. More formally: for any simulation i = 1, . . . , S, for j = 1, . . . , N and for any θ ∈ Θ,

we simulate the volatility paths of length k + 1 using a Milstein scheme, i.e.

fi,jh (θ) = fi,(j−1)h (θ) + µ(fi,(j−1)h (θ) ,θ)h− 1
2
σ′(fi,(j−1)h (θ) , θ)σ(fi,(j−1)h (θ) , θ)h

+σ(fi,(j−1)h (θ) , θ)
(
Wi,jh −Wi,(j−1)h

)

+
1
2
σ′(fi,(j−1)h (θ) ,θ)σ(fi,(j−1)h (θ) , θ)

(
Wi,jh −Wi,(j−1)h

)2
, (11)

where σ′ (·) denotes the derivative of σ (·) with respect to its first argument,
{
Wi,jh −Wi,(j−1)h

}

is i.i.d. N(0, h) and fi,0 (θ) is drawn from the invariant distribution of the volatility process under

the null hypothesis. Also, note that Nh = k + 1. For each i it is possible to compute the simulated

integrated volatility as

IVi,τ,N (θ) =
1

N/(k + 1)

N/(k+1)∑

j=1

σ2
i,τ−1+jh(θ), τ = 1, . . . , k + 1, (12)

where N/(k + 1) = h−1, which is assumed to be an integer for the sake of simplicity, and

σ2
i,τ−1+jh(θ) = ψ(fi,τ−1+jh (θ)).

Also, averaging the quantity calculated in (12) over the number of simulations S and over the

length of the path k + 1 yields respectively

IV S,τ,N (θ) =
1
S

S∑

i=1

IVi,τ,N (θ) ,

and

IV S,N (θ) =
1

k + 1

k+1∑

τ=1

IV S,τ,N (θ) .
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We are now in a position to define the set of moment conditions as

g∗T,M − gS,N (θ) =
1
T

T∑

t=1

g∗t,M − 1
S

S∑

i=1

gi,N (θ) , (13)

where g∗t,M is defined as

g∗t,M =




RMt,M
(
RMt,M −RMT,M

)2

(
RMt,M −RMT,M

) (
RMt−1,M −RMT,M

)
...

(
RMt,M −RMT,M

) (
RMt−k,M −RMT,M

)




, (14)

RMt,M denotes the particular realized measure used, and RMT,M =
∑T

t=1 RMt,M . Also

1
S

S∑

i=1

gi,N (θ) =




1
S

∑S
i=1 IVi,1,N (θ)

1
S

∑S
i=1

(
IVi,1,N (θ)− IV S,N (θ)

)2

1
S

∑S
i=1

(
IVi,1,N (θ)− IV S,N (θ)

) (
IVi,2,N (θ)− IV S,N (θ)

)
...

1
S

∑S
i=1

(
IVi,1,N (θ)− IV S,N (θ)

) (
IVi,k+1,N (θ)− IV S,N (θ)

)




. (15)

We can define the Simulated GMM estimator as the minimizer of the quadratic form

θ̂T,S,M,N = arg min
θ∈Θ

(g∗T,M − gS,N (θ))′W−1
T,M (g∗T,M − gS,N (θ)), (16)

where WT,M is defined as

WT,M =
1
T

T∑

t=1

(
g∗t,M − g∗T,M

) (
g∗t,M − g∗T,M

)′ (17)

+
2
T

pT∑

v=1

wv

T∑

t=v+1

(
g∗t,M − g∗T,M

) (
g∗t−v,M − g∗T,M

)′
.

Also, define

θ∗ = arg min
θ∈Θ

(g∗∞ − g∞ (θ))′W−1
∞ (g∗∞ − g∞ (θ)), (18)

where g∗∞, g∞ (θ) and W−1∞ are the probability limits, as T , S, M and N go to infinity, of g∗T,M ,

gS,N (θ) and W−1
T,M , respectively.

We can now construct kernel conditional density estimators based on the integrated volatility

simulated under the estimated parameter. For i = 1, . . . , S, define:

F̂
IVi,2,N(bθT,S,M,N)|IVi,1,N(bθT,S,M,N) (u|RMT,M )

11



=
∫ u

0




1
Tζ2

2,T

∑S
i=1 K

(
IVi,2,N(bθT,S,M,N)−x

ζ2,T
,

IVi,1,N(bθT,S,M,N)−RMT,M

ζ2,T

)

1
Tζ1,T

∑S
i=1 K

(
IVi,1,N(bθT,S,M,N)−RMT,M

ζ1,T

)


dx, (19)

where the bandwidths ζ1,T , ζ2,T need not be equal to ξ1,T , ξ2,T used in the previous section. Thus,

if we want to predict Pr (u1 ≤ IVT+1 ≤ u2|IVT ) we use,

F̂
IVi,2,N(bθT,S,M,N)|IVi,1,N(bθT,S,M,N) (u2|RMT,M )− F̂

IVi,2,N(bθT,S,M,N)|IVi,1,N(bθT,S,M,N) (u1|RMT,M ).

We also need the following further assumptions.

Assumption A5: The drift and variance functions µ (·) and σ (·) , as defined in (2), satisfy the

following conditions:

(1a) |µ(fr (θ1) ,θ1)− µ(fr (θ2) , θ2)| ≤ K1,r ‖θ1 − θ2‖,

|σ(fr (θ1) , θ1)− σ(fr (θ2) ,θ2)| ≤ K2,r ‖θ1 − θ2‖,

for 0 ≤ r ≤ k + 1, where ‖·‖ denotes the Euclidean norm, any θ1, θ2 ∈ Θ, with K1,r, K2,r

independent of θ, and supr≤k+1 K1,r = Op(1), supr≤k+1 K2,r = Op(1).

(1b) |µ(fr,N (θ1) ,θ1)− µ(fr,N (θ2) , θ2)| ≤ K1,r,N ‖θ1 − θ2‖ ,

|σ(fr,N (θ1) ,θ1)− σ(fr,N (θ2) ,θ2)| ≤ K2,r,N ‖θ1 − θ2‖, where fr,N (θ) = f[Nrh
k+1 ] (θ) and for

any θ1, θ2 ∈ Θ, with K1,r,N , K2,r,N independent of θ, and supr≤k+1 K1,r,N = Op(1),

supr≤k+1 K2,r,N = Op(1), uniformly in N .

(2) |µ(x,θ)− µ(y, θ)| ≤ C1 ‖x− y‖ , |σ(x, θ)− σ(y, θ)| ≤ C2 ‖x− y‖ ,

where C1, C2 are independent of θ.

(3) σ (·) is three times continuously differentiable and ψ (·) is a Lipschitz-continuous function.

Assumption A6: (g∗∞ − g∞ (θ∗))′W−1∞ (g∗∞ − g∞ (θ∗)) < (g∗∞ − g∞ (θ))′W−1∞ (g∗∞ − g∞ (θ)), for

any θ 6= θ∗.

Assumption A7:

(1) θ̂T,S,M,N and θ∗ are in the interior of Θ.

(2) gS (θ) is twice continuously differentiable in the interior of Θ, where

gS (θ) =
1
S

S∑

i=1

gi (θ) , (20)

12



where

gS (θ) =
1
S

S∑

i=1

gi (θ) =




1
S

∑S
i=1 IVi,1 (θ)

1
S

∑S
i=1

(
IVi,1 (θ)− IV S (θ)

)2

1
S

∑S
i=1

(
IVi,1 (θ)− IV S (θ)

) (
IVi,2 (θ)− IV S (θ)

)
...

1
S

∑S
i=1

(
IVi,1 (θ)− IV S (θ)

) (
IVi,k+1 (θ)− IV S (θ)

)




, (21)

and, for τ = 1, . . . , k + 1,

IVi,τ (θ) =
∫ τ

τ−1
σ2

i,s (θ) ds, IV S (θ) =
1

k + 1

k+1∑

τ=1

1
S

S∑

i=1

∫ τ

τ−1
σ2

i,s (θ) ds.

(3) E(∂g1 (θ) /∂θ|θ=θ∗) exists and is of full rank.

Theorem 2. Let A1-A7, if as M, T, S, N → ∞, ζ3
2,T /ζ2

1,T → 0, T/b2
M → 0, T/N (1−δ) → 0,

T/S → 0, pT →∞ and pT /T 1/4 → 0, then for any u ∈ U, with U possibly unbounded,

∣∣∣F̂IVi,2,N(bθT,S,M,N)|IVi,1,N(bθT,S,M,N) (u|RMT,M )− FIVT+1|IVT
(u|RMT,M )

∣∣∣
= OP

(
T−1/2ζ−3

2,T

)
+ O

(
ζ2
2,T

)
(22)

Theorem 2 reports the uniform rate of convergence for the case where we construct kernel

density estimators based on integrated volatility, simulated using a
√

T -consistent estimator for the

parameters.

The variance term in this case is different from the one in which we observe the true volatility

process, i.e. the second term of the right hand side of (10); in fact in this case the exponent of the

bandwidth is lower, and the difference is due to the fact that estimated parameters are used.

Broadly speaking, the simulation error is negligible, as N, the reciprocal of the discrete interval

in the path simulation, and S, the number of simulations, grow at a rate faster than T ; in fact N

and S can be set arbitrarily large. On the other hand, the fact that we simulate the volatility paths

using
√

T estimated parameters increases the probability order of the variance component, which is

T−1/2ζ−3
2,T instead of T−1/2ζ−2

2,T . This result may seem a little bit surprising; in fact, generally kernel

estimators constructed using estimated residuals are asymptotically equivalent to those constructed

using true errors. The key condition for this result is that the derivative of the kernel with respect

to the parameter has mean zero. In this case, this is in general not true, hence the extra ζ−1
2,T in

the right hand side of (22).

13



It is immediate to see that the necessary condition for uniform consistency is that the bandwidth

parameter ζ2,T converges to zero at a slower rate than T−1/6. It is also immediate to see that the

rate of growth for the bandwidth, which ensures that the two sources of error are of the same order

of probability, is ζ2,T = T−1/10, which implies a uniform convergence rate of T−1/5. First, from

Theorem 1, we note that for ξ2,T = O(T−1/8) and bM = O
(
T 5/(4(1−2η))

)
, the estimator constructed

using realized measure conveges at T−1/4 and so at a faster rate than T−1/5. This is not overly

surprising, as estimated parameters converge at
√

T while the contribution of measurement error

approaches zero at rate
√

bM with bM growing at a rate faster than T 5/4. As the estimator based

on realized measures is model free and easy to compute, it is natural to ask under which conditions

on the relative rate of growth of bM and ξ2,T , in terms of T, there is no gain in using an estimator

based on simulated integrated volatility. Basically, we need to see under which conditions the RHS

of (10) approaches zero at a rate equal to or faster than T−1/5.

Thus we set ξ2,T = T−φ, φ > 0, and find bM such that b
−1/2+η
M T 3φ goes to zero at a equal or

faster rate than T−1/5. This occurs when

1
10
≤ φ ≤ 3

20
, and bM grows at a rate equal or faster than T

2+30φ
5

1
1−2η .

Therefore it is enough that bM grows at a faster rate than T , to ensure that there is no advantage

in using simulated integrated volatility instead of a given realized measure. As we shall see below,

the rate at which bM grow to infinity with the number of intradaily observations, depends on the

specific realized measure we use.

5 Applications to Specific Volatility Realized Measures

Assumption A1 states some primitive conditions on the measurement error between integrated

volatility and realized measure. Basically, A1(ii) and A1(v), stating conditions on the order of

magnitude of the absolute first moment and second moment of the measurement error, are required

for Theorem 1, which establishes a uniform rate of convergence for kernel estimators based on

realized measures. On the other hand, A1(i) and A1(iii)(iv), stating conditions on the mean, fourth

moment and covariance structure of the measurement error, are required for the
√

T−consistency

of the SGMM, which is used in the proof of Theorem 2.

Realized volatility has been suggested as an estimator of integrated volatility by Barndorff-Nielsen

and Shephard (2002) and Andersen, Bollerslev, Diebold and Labys (2001, 2003). When the (log)

price process is a continuous semimartingale, then realized volatility is a consistent estimator of

14



the increments of the quadratic variation (see e.g. Karatzas and Shreve, 1991, Ch.1). The relevant

limit theory, under general conditions, also allowing for generic leverage effects, has been provided

by Barndorff-Nielsen and Shephard (2004c), who have shown that

√
M

(
RVT ,M −

∫ T

0

σ2
sds

)
d−→ MN

(
0, 2

∫ T

0

σ4
sds

)
,

for given T .

Proposition 1. Let dzt = 0, a.s. and ν = 0, where dzt and ν are defined in (1) and in (3),

respectively. Then Assumption A1 holds with RMt,M = RVt,M for bM = O(M).

Thus, under the same assumptions, the statement in Theorem 1 can be restated as:

∣∣∣F̂RVT+1,M |RVT,M
(u|RVT,M )− FIVT+1|IVT

(u|RVT,M )
∣∣∣

= OP

(
M−1/2+ηξ−3

2,T

)
+ OP

(
T−1/2ξ−2

2,T

)
+ O

(
ξ2
2,T

)
. (23)

So, a necessary condition for uniform convergence is that M has to approach infinity at a faster

rate than ξ
−6/(1−2η)
2,T . Also if,

ξ2,T = O
(
T−1/8

)
, M = O

(
T 5/(4(1−2η))

)
,

then all the terms on the RHS of (23) are of order T−1/4.

Finally, note that in the case of realized volatility, there is no gain in using an estimator based

on integrated simulated volatility whenever ξ2,T = T−φ, 1
10 ≤ φ ≤ 3

20 and

M grows at a rate equal or faster than T
2+30φ

5
1

1−2η .

Bipower variation has been introduced by Barndorff-Nielsen and Shephard (2004b), who have

shown that, when the (log) price process contains a finite number of jumps, and when there is no

leverage effect, then

√
M

(
µ−2

1 BVT ,M −
∫ T

0
σ2

sds

)
d→ MN

(
0, 2.6090

∫ T

0
σ4

sds

)
.

Proposition 2. Let ρ = 0 and ν = 0, where ρ and ν are defined in (1) and in (3), respectively.

Then Assumption A1 holds with RMt,M = BVt,M for bM = O(M1/2).

Thus, under the same assumptions, the statement in Theorem 1 can be restated as:

∣∣∣F̂BVT+1,M |BVT,M
(u|BVT,M )− FIVT+1|IVT

(u|BVT,M )
∣∣∣

= OP

(
M−1/4+ηξ−3

2,T

)
+ OP

(
T−1/2ξ−2

2,T

)
+ O

(
ξ2
2,T

)
. (24)
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So, a necessary condition for uniform convergence is that M has to approach infinity at a faster

rate than ξ
−12/(1−2η)
2,T . Also if,

ξ2,T = O
(
T−1/8

)
, M = O

(
T 10/(4(1−2η))

)
,

then all the terms on the RHS of (24) are of order T−1/4.

Finally, note that in the case of bipower variation, there is no gain in using an estimator based

on integrated simulated volatility whenever ξ2,T = T−φ, 1
10 ≤ φ ≤ 3

20 and

M grows at a rate equal or faster than T
4+60φ

5
1

1−2η .

In order to provide an estimator of integrated volatility robust to microstructure errors, ZMA

have proposed a subsampling procedure. Under the specification for the microstructure error term

detailed in (3), they show that, in the absence of jumps in the price process,

M1/6

(
R̂V

u

T ,M −
∫ T

0
σ2

sds

)
d→ (

s2
)1/2 N (0, 1) ,

for given T , where the asymptotic spread s2 depends on the variance of the microstructure noise, the

length of the fixed time span and on integrated quarticity. Inspection of the limiting result given in

(3) reveals that the cost of achieving robustness to microstructure noise is paid in terms of a slower

convergence rate. The logic underlying the subsampled robust realized volatility of ZMA is the

following. By constructing realized volatility over non overlapping subsamples, using susbamples of

size l, we reduce the bias due to the microstructure error; in fact the effect of doing so is equivalent

to using a lower intraday frequency. By averaging over different non overlapping subsamples, we

reduce the variance of the estimator. Finally, the bias estimator is constructed using all the M

intradaily observations, and so the error due to the fact that we correct the realized volatility

measure using an estimator of the bias instead of the true bias, is asymptotically negligible. Thus,

if there are no jumps, and if the subsample length l is of order O(M1/3), and so the number of non

overlapping subsamples is of order M2/3, Assumption 1 is satisfied with RMt,M = R̂V
u

t,M . The

regularity conditions are stated precisely in the following Proposition.

Proposition 3. Let dzt = 0 a.s., where dzt is defined in (1). If l = O(M1/3), then Assumption

A1 holds with RMt,M = R̂V
u

t,l,M , for bM = M1/3.

Thus, under the same assumptions, the statement in Theorem 1 can be restated as:

∣∣∣F̂BVT+1,M |BVT,M
(u|BVT,M )− FIVT+1|IVT

(u|BVT,M )
∣∣∣
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= OP

(
M−1/4+ηξ−3

2,T

)
+ OP

(
T−1/2ξ−2

2,T

)
+ O

(
ξ2
2,T

)
. (25)

So, a necessary condition for uniform convergence is that M has to approach infinity at a faster

rate than ξ
−18/(1−2η)
2,T . Also, if

ξ2,T = O
(
T−1/8

)
, M = O

(
T 15/(4(1−2η))

)
,

then, all the terms on the RHS of (25) are of order T−1/4.

Finally, note that in the case of realized volatility, there is no gain in using an estimator based

on integrated simulated volatility whenever ξ2,T = T−φ, 1
10 ≤ φ ≤ 3

20 and

M grows at a rate equal or faster than T
6+90φ

5
1

1−2η .

As noted below Theorem 2, we have no gain in using (model based) simulated integrated volatily

wheneve bM grows at a faster rate of T. This implies that the number of intradaily observations

should growth at a rate faster than T, T 2 and T 3, for the cases of realized volatility, bipower variation

and modified subsampled realized volatility, respectively. Also, unless we let the bandwidth go

to zero very slowly, even the necessary condition ensuring that contribution of measurement error

approaches zero is quite stringent, and gets more and more stringent passing from realized volatility,

bipower variation and modified subsampled realized volatility. Clearly, we also want to choose a

rather large value for T, as the estimator for the conditional confidence interval is consistent (at a

nonparametric rate) only for T going to infinity. Thus, we need a very large number of intradaily

observations, specially for the case of modified subsampled realized volatility. However, the latter

measure is robust to microstructure noise, at least for the type outlined in Section 2, and therefore

we can use all the available information and sample at very high frequency, such as 1-5 seconds.

6 A Simulation Exercise

We now want to evaluate the accuracy of the volatility confidence interval prediction based on

realized measures or on simulated integrated volatility with the best, “unfeasible” predictor based

on the “true” confidence interval conditional on the past history of the volatility path. We simulate

S paths of ft as in (11), with

µ(fi,(j−1)h (θ) , θ) = κ
(
α + 1− fi,(j−1)h

)

σ(fi,(j−1)h (θ) , θ) =
√

2κfi,(j−1)h
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σ′(fi,(j−1)h (θ) , θ) =
1
2

√
2κf

−1/2
i,(j−1)h,

so that we are assuming that volatility follows a square root process (see Meddahi (2001) for the

one to one representation of square root stochastic volatility and eigenfunction stochastic volatility

models). Also, we set k = 1 and θ = θ†, and keep
(
Wi,jh −Wi,(j−1)h

)
fixed across simulations for

j = 1, . . . , N/2, while we let it independent across i, for j = N/2 + 1, . . . , N. Thus, fi,jh is fixed

across simulations and consequently does not depend on i, for j = 1, . . . , N/2. Define,

IV1,N

(
θ†

)
=

1
N/2

N/2∑

j=1

σ2
jh(θ†) (26)

IVi,2,N

(
θ†

)
=

1
N/2

N∑

j=N/2+1

σ2
i,jh(θ†)

and construct estimators of integrated confidence intervals, conditional on σ2
jh(θ†), j = 1, . . . , N/2

as

F̂N,S(u2)− F̂N,S(u1) =
1
S

S∑

i=1

1{u1≤IVi,2,N(θ†)≤u2}
and note that, as show in the Appendix,

(
F̂N,S(u2)− F̂N,S(u1)

)
− (

F
(
u1|σ2

τ , τ ∈ [0, 1]
)− F

(
u2|σ2

τ , τ ∈ [0, 1]
))

= OP

(
1

S1/2

)
+ OP

(
1

N1/2−δ/2

)
, for any δ > 0, (27)

where the error on the RHS can be made arbitrarily small by choosing S and N sufficiently large.

We then simulate a path of lenght T for Xt, using constant drift and the same specification for

instantaneous volatility, i.e. we specify

dXt = mh +

√
η2

2κ
ftdW1,t

where ft follows the same square root process define above, and generate paths for Xt via a Milstein

scheme. Sample the simulated process for the Xt at frequency 1/M and form the volatility realized

measures based on M intradaily observations. Finally, along the same lines as in Section 3, construct

F̂RMT+1|RMT,M

(
u|IV1,N

(
θ†

))
=

∫ u

0




1
Tξ2

2,T

∑T−1
t=1 K

(
RMt+1,M−x

ξ2,T
,

RMt,M−IV1,N(θ†)
ξ2,T

)

1
Tξ1,T

∑T−1
t=1 K

(
RMt,M−IV1,N(θ†)

ξ1,T

)


dx, (28)

where IV1,N

(
θ†

)
is the quantity computed in (26). Then generate simulated paths for the integrated

volatility as in Section 4, i.e. simulating paths using estimated parameters, etc. and construct

F̂
IVi,2,N(bθT,S,M,N)|IVi,2,N(bθT,S,M,N)

(
u|IV1,N

(
θ†

))
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=
∫ u

0




1
Tζ2

2,T

∑S
i=1 K

(
IVi,2,N(bθT,S,M,N)−x

ζ2,T
,

IVi,1,N(bθT,S,M,N)−IV1,N(θ†)
ζ2,T

)

1
Tζ1,T

∑S
i=1 K

(
IVi,1,N(bθT,S,M,N)−IV1,N(θ†)

ζ1,T

)


dx,

We can then measure the degree of accuracy (for various range of M and T, and various combination

of u1 and u2) of the conditional confidence interval estimators based on realized measures by com-

paring F̂RMT+1|RMT,M

(
u2|IV1,N

(
θ†

))− F̂RMT+1|RMT,M

(
(u1|IV1,N

(
θ†

))
with F̂N,S(u2)− F̂N,S(u1).

Analogously, we can then measure the degree of accuracy (for various range of M and T, and

various combination of u1 and u2) of the conditional confidence interval estimators based on

simulated integrated volatility, by comparing F̂
IVi,2,N(bθT,S,M,N)|IVi,2,N(bθT,S,M,N)

(
u2|IV1,N

(
θ†

)) −
F̂

IVi,2,N(bθT,S,M,N)|IVi,2,N(bθT,S,M,N)
(
u1|IV1,N

(
θ†

))
with F̂N,S(u2)− F̂N,S(u1).

to be complete.

7 Empirical Illustration

To be Done

19



8 Appendix

The proof of Theorem 1 requires the following two Lemmas.

Lemma 1. Let assumptions A1 and A4 hold. Then, as T, M →∞, for any η > 0 arbitrarily small,

(i)
∣∣∣∣∣
1
T

T−1∑

t=1

(
K

(
RMt,M −RMT,M

ξ1,T

)
/ξ1,T −K

(
IVt −RMT,M

ξ1,T

)
/ξ1,T

)∣∣∣∣∣
= OP (b−1/2+η

M ξ−2
1,T ) (29)

(ii)

sup
x∈R+

∣∣∣∣∣
1
T

T−1∑

t=1

(
K

(
RMt+1,M − x

ξ2,T
,
RMt,M −RMT,M

ξ2,T

) /
ξ2
2,T

−K
(

IVt+1 − x

ξ2,T
,
IVt −RMT,M

ξ2,T

) /
ξ2
2,T

)∣∣∣∣ = OP (b−1/2+η
M ξ−3

2,T ) (30)

8.1 Proof of Lemma 1

We prove (ii), as (i) follows by the same argument. By mean value expansion around IVt,

1
T

T−1∑

t=1

(
K

(
RMt+1,M − x

ξ2,T
,
RMt,M −RMT,M

ξ2,T

) /
ξ2
2,T −K

(
IVt+1 − x

ξ2,T
,
IVt −RVT,M

ξ2,T

) /
ξ2
2,T

)

=
1
T

T−1∑

t=1

(
K′

1

(
R̃M t+1,M − x

ξ2,T
,
R̃M t,M −RMT,M

ξ2,T

)
/
ξ3
2,T

)
Nt+1,M

+
1
T

T−1∑

t=1

(
K′

2

(
R̃M t+1,M − x

ξ2,T
,
R̃M t,M −RMT,M

ξ2,T

)
/
ξ2
2,T

)
Nt,M (31)

where R̃M t+1,M ∈ (RMt+1,M , IVt+1) , K′
j denotes the first derivative with respect to the j−th

argument of K. We begin by showing that the first term on the RHS of (31) is oP (1) uniformly in

x. Now,

sup
x∈R+

∣∣∣∣∣
1
T

T−1∑

t=1

(
K′

1

(
R̃M t+1,M − x

ξ2,T
,
R̃M t,M −RMT,M

ξ2,T

)
/
ξ3
2,T

)
Nt+1,M

∣∣∣∣∣

≤ sup
x∈R+

1
T

T−1∑

t=1

∣∣∣∣∣K
′
1

(
R̃M t+1,M − x

ξ2,T
,
R̃M t,M −RMT,M

ξ2,T

)∣∣∣∣∣
1

ξ3
2,T

|Nt+1,M |

≤ sup
x∈R+

∣∣∣∣∣K
′
1

(
R̃M t+1,M − x

ξ2,T
,
R̃M t,M −RMT,M

ξ2,T

)∣∣∣∣∣
1

Tξ3
2,T

T−1∑

t=1

|Nt+1,M |
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= OP (1)OP

(
b
−1/2
M ξ−3

2,T

)
.

In fact supx∈R+

∣∣∣∣K′
1

(
gRMt+1,M−x

ξ2,T
,
gRMt,M−RMT,M

ξ2,T

)∣∣∣∣ = OP (1), given A4(i),

1
Tξ3

2,T

T−1∑

t=1

|Nt+1,M | =
1

Tξ3
2,T

T−1∑

t=1

E |Nt+1,M |+ 1
Tξ3

2,T

T−1∑

t=1

(|Nt+1,M | − E |Nt+1,M |)

= Op

(
b
−1/2
M

)
+

1
Tξ3

2,T

T−1∑

t=1

(|Nt+1,M | − E |Nt+1,M |) .

Now,

var

(
b
1/2−η
M

T

T−1∑

t=1

(|Nt+1,M | − E |Nt+1,M |)
)

=
b1−2η
M

T 2

T−1∑

t=1

T−1∑

s=1

E ((|Nt+1,M | − E |Nt+1,M |) (|Ns+1,M | − E |Nt−s+1,M |))

≤ b1−2η
M

(
E ((|Nt+1,M | − E |Nt+1,M |))2

)1/2 (
E ((|Nt+1,M | − E |Nt+1,M |))2

)1/2
= O(b−2η

M ),

given A1(ii) and A1(v).

(i) can be shown in an analogous way, simply replacing ξ−2
2,T with ξ−1

1,T . ¥

Lemma 2. Let assumption A(2)-A(4). Then, if ξ3
2,T /ξ2

1,T → 0, as T →∞,

(i)

sup
x∈R+

∣∣∣∣∣
1
T

T−1∑

t=1

(
K

(
IVt+1 − x

ξ1,T

)
/ξ1,T − fIVt+1(x)

)∣∣∣∣∣ = OP

(
T−1/2ξ−1

1,T

)
+ OP

(
ξ2
1,T

)

(ii)

sup
x∈R+

∣∣∣∣∣
1
T

T−1∑

t=1

(
K

(
IVt+1 − x

ξ1,T
,
IVt+1 −RMT,M

ξ1,T

)
/ξ1,T − fIVt+1,IVt(x,RMT,M )

)∣∣∣∣∣

= OP

(
T−1/2ξ−2

2,T

)
+ OP (ξ2,T ) .

8.2 Proof of Lemma 2

It follows from Theorem 1 in Andrews (1995), setting, in his notation, ω = 2, λ = 0, η = ∞,

σ1T = σ2T . In fact, given A2-A3, IVt has an ARMA structure, and so is geometrically strong

mixing, thus NP1 in Andrews holds with η = ∞, and a(s) decaying at a geometric rate. Also, A4

implies that NP2 and NP4 in Andrews are satisfied. ¥
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8.3 Proof of Theorem 1

Define:

f̂1,T,M (RMT,M ) =
1

Tξ1,T

T−1∑

t=1

K

(
RMt,M −RMT,M

ξ1,T

)

f̂2,T,M (x,RMT,M ) =
1

Tξ2
2,T

T−1∑

t=1

K
(

RMt+1,M − x

ξ2,T
,
IVt −RMT,M

ξ2,T

)

f̃1,T (RMT,M ) =
1

Tξ1,T

T−1∑

t=1

K

(
IVt −RMT,M

ξ1,T

)

f̃2,T (x,RMT,M ) =
1

Tξ2
2,T

T−1∑

t=1

K
(

IVt+1 − x

ξ2,T
,
RMt,M −RMT,M

ξ2,T

)

fIVt+1|IVt
(x|RMT,M ) =

fIVt+1,IVt (x,RMT,M )
fIVt (RMT,M )

Now,

f̂2,T,M (x,RMT,M )

f̂1,T,M (RMT,M )
− fIVt+1,IVt (x,RMT,M )

fIVt (RMT,M )

=

(
f̂2,T,M (x,RMT,M )− fIVt+1,IVt (x, RMT,M )

fIVt (RMT,M )

)

+fIVt+1,IVt (x,RMT,M )

(
f̂1,T,M (RMT,M )− fIVt (RMT,M )

f̂1,T,M (RMT,M )fIVt (RMT,M )

)

+

(
f̂2,T,M (x,RMT,M )− fIVt+1,IVt (x,RMT,M )

)(
f̂1,T,M (RMT,M )− fIVt (RMT,M )

)

f̂1,T,M (RMT,M )fIVt (RMT,M )

Thus,

sup
x∈R+

∣∣∣∣∣
f̂2,T,M (x,RMT,M )

f̂1,T,M (RMT,M )
− fIVt+1,IVt (x,RMT,M )

fIVt (RMT,M )

∣∣∣∣∣

≤ sup
x∈R+

∣∣∣∣∣
f̂2,T,M (x,RMT,M )− fIVt+1,IVt (x,RMT,M )

fIVt (RMT,M )

∣∣∣∣∣

+ sup
x∈R+

∣∣∣∣∣fIVt+1,IVt (x,RMT,M )

(
f̂1,T,M (RMT,M )− fIVt (RMT,M )

f̂1,T,M (RMT,M )fIVt (RMT,M )

)∣∣∣∣∣

+

∣∣∣f̂1,T,M (RMT,M )− fIVt (RMT,M )
∣∣∣

f̂1,T,M (RMT,M )fIVt (RMT,M )
sup

x∈R+

∣∣∣f̂2,T,M (x,RMT,M )− fIVt+1,IVt (x,RMT,M )
∣∣∣(32)

Given that fIVt (RMT,M ) is bounded away from zero, as for the first term on the RHS of (32), note

that

sup
x∈R+

∣∣∣f̂2,T,M (x,RMT,M )− fIVt+1,IVt (x,RMT,M )
∣∣∣
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≤ sup
x∈R+

∣∣∣f̂2,T,M (x,RMT,M )− f̃2,T (x,RMT,M )
∣∣∣ + sup

x∈R+

∣∣∣f̃2,T (x, RMT,M )− fIVt+1,IVt (x,RMT,M )
∣∣∣

= OP (b−1/2+η
M ξ−3

2,T ) + OP

(
T−1/2ξ−2

2,T

)
+ OP (ξ2,T ) ,

by Lemma 1(ii) and 2(ii). As for the second on the RHS of (32), given A4(ii)

sup
x∈R+

∣∣∣∣∣fIVt+1,IVt (x,RMT,M )

(
f̂1,T,M (RMT,M )− fIVt (RMT,M )

f̂1,T,M (RMT,M )fIVt (RMT,M )

)∣∣∣∣∣
≤ C

(∣∣∣f̂1,T,M (RMT,M )− f̃1,T (RMT,M )
∣∣∣ +

∣∣∣f̃1,T (RMT,M )− fIVt (RMT,M )
∣∣∣
)

= OP (b−1/2
M ξ−2

1,T ) + OP

(
T−1/2ξ−1

1,T

)
+ OP

(
ξ2
1,T

)
,

given Lemma 1(i) and Lemma 2(i). Finally, it is immediate to see that the last term on the RHS

of (32) is of a smaller order than the previous two. Thus, for ξ3
2,T /ξ2

1,T → 0,

sup
x∈R+

∣∣∣∣∣
f̂2,T,M (x,RMT,M )

f̂1,T,M (RMT,M )
− fIVt+1,IVt (x,RMT,M )

fIVt (RMT,M )

∣∣∣∣∣ = OP (b−1/2+η
M ξ−3

2,T )+OP

(
T−1/2ξ−2

2,T

)
+OP (ξ2,T )

Thus,
∣∣∣F̂RMT+1|RMT

(u|RMT,M )− FIVT+1|IVT
(u|RMT,M )

∣∣∣ = OP

(
b
−1/2+η
M ξ−3

2,T

)
+OP

(
T−1/2ξ−2

2,T

)
+OP (ξ2T )

Finally,
∣∣∣F̂RMT+1|RMT

(u|RMT,M )− FIVT+1|IVT
(u|IVT )

∣∣∣
≤

∣∣∣F̂RMT+1|RMT
(u|RMT,M )− FIVT+1|IVT

(u|RMT,M )
∣∣∣ +

∣∣FIVT+1|IVT
(u|IVT )− FIVT+1|IVT

(u|RMT,M )
∣∣

= OP

(
b
−1/2+η
M ξ−3

2,T

)
+ OP

(
T−1/2ξ−2

2,T

)
+ OP (ξ2T ) + OP (b−1/2

M )

= OP

(
b
−1/2+η
M ξ−3

2,T

)
+ OP

(
T−1/2ξ−2

2,T

)
+ OP (ξ2T ) ,

noting

∣∣FIVT+1|IVT
(u|IVT )− FIVT+1|IVT

(u|RMT,M )
∣∣ =

∣∣∣fIVt+1|IVt
(u|R̃M t,M ) (IVT −RMT,M )

∣∣∣ = OP (b−1/2+η
M ).

The statement in the theorem then follows. ¥

The proof of Theorem 2 requires the following Lemma.

Lemma 3. Let A1-A7, if as M,T, S, N →∞, T/b2
M → 0, T/N (1−δ) → 0, T/S → 0, pT →∞ and

pT /T 1/4 → 0, then for any u ∈ U,

(i)
∣∣∣∣∣∣
1
S

S∑

i=1


K


IVi,1,N

(
θ̂T,S,M,N

)
−RMT,M

ζ1,T


 /ζ1,T −K

(
IVi,1(θ†)−RMT,M

ζ1,T

)
/ζ1,T




∣∣∣∣∣∣
= OP (T−1/2ζ−2

1,T ),
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(ii)

sup
x∈R+

1
S

S−1∑

i=1

∣∣∣∣∣∣


K


IVi,2,N

(
θ̂T,S,M,N

)
− x

ζ2,T
,
IVi,1,N

(
θ̂T,S,M,N

)
−RMT,M

ζ2,T


/

ζ2
2,T

−K
(

IVi,2(θ†)− x

ζ2,T
,
IVi,1(θ†)−RVT,M

ζ2,T

) /
ζ2
2,T

)∣∣∣∣ = OP (T−1/2ζ−3
2,T )

8.4 Proof of Lemma 3

We prove (ii), as (i) would follow by the same argument.

1
S

S∑

i=1


K


IVi,2,N

(
θ̂T,S,M,N

)
− x

ζ2,T
,
IVi,1,N

(
θ̂T,S,M,N

)
−RMT,M

ζ2,T


/

ζ2
2,T

− K
(

IVi,2(θ†)− x

ζ2,T
,
IVi,1(θ†)−RMT,M

ζ2,T

)/
ζ2
2,T

)

=
1
S

S∑

i=1


K


IVi,2,N

(
θ̂T,S,M,N

)
− x

ζ2,T
,
IVi,1,N

(
θ̂T,S,M,N

)
−RMT,M

ζ2,T


/

ζ2
2,T

−K

(
IVi,2,N

(
θ†

)− x

ζ2,T
,
IVi,1,N

(
θ†

)−RMT,M

ζ2,T

)
/
ζ2
2,T

)

+
1
S

S∑

i=1

(
K

(
IVi,2,N

(
θ†

)− x

ζ2,T
,
IVi,1,N

(
θ†

)−RMT,M

ζ2,T

)
/
ζ2
2,T

−K
(

IVi,2 − x

ζ2,T
,
IVi,1 −RMT,M

ζ2,T

) /
ζ2
2,T

)
(33)

Via a mean value expansion, and taking the supremum over x, the first term on the RHS of (33)

writes as:

sup
x∈R+

∣∣∣∣∣
1

Sζ3
2,T

S∑

i=1

K′
(

IVi,2,N

(
θT,S,M,N

)− x

ζ2,T
,
IVi,1,N

(
θT,S,M,N

)−RMT,M

ζ2,T

)
∂IVi,2,N (θ)

∂θ

∣∣∣θT,S,M,N

×
(
θ̂T,S,M,N − θ†

)∣∣∣

≤ sup
x∈R+

1
S

S∑

i=1

∣∣∣∣∣K
′
(

IVi,2,N

(
θT,S,M,N

)− x

ζ2,T
,
IVi,1,N

(
θT,S,M,N

)−RMT,M

ζ2,T

)
∂IVi,2,N (θ)

∂θ

∣∣∣θT,S,M,N

∣∣∣∣∣

× 1
ζ3
2,T

∣∣∣θ̂T,S,M,N − θ†
∣∣∣

= OP (1)OP

(
ζ3
2,T T−1/2

)
,

given that, from Corradi and Distaso (piece of proof of Thm 2),
(
θ̂T,S,M,N − θ†

)
= OP

(
T−1/2

)
.

Finally, the last term on the RHS of (33) is of a smaller order, as N grows faster than T. (DETAILS

MISSING) ¥
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8.5 Proof of Theorem 2

Given Lemma 3, by the same argument used in the proof of Theorem 1. ¥

8.6 Proof of Propositions 1,2 and 3

A1(i)-A1(iv) follow straightforwardly from the proofs of Propositions 1,2 and 3 in Corradi and

Distaso (2004). It remains to show A1(v), which follows by noting that |Nt,M | = OP (b−1/2
M ), (to be

completed) ¥

8.7 Proof of equation (27)

To be done
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