
Special Repo Rates and the Cross-Section of Bond Prices∗

Stefania D’Amico† and N. Aaron Pancost‡

This version: December 7, 2017

Abstract

We estimate a dynamic no-arbitrage term structure model that jointly prices the cross-

section of Treasury bonds and special repo rates. We show that special repo rates on on-the-run

Treasuries can explain over 60% of the on-the-run premium, but only after incorporating a time-

varying risk premium on the special spreads of both on- and off-the-run bond. We show that

the repo risk premium is priced in the cross-section of off-the-run bonds with very low special

spreads.
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1 Introduction

Most studies in the literature have been modeling and estimating the pricing of U.S. Treasury cash

securities and repo contracts separately, even though seminal work by Duffie (1996) and related

empirical evidence (e.g., Jordan and Jordan 1997; D’Amico, Fan and Kitsul 2017) have suggested

that the pricing in the cash and repo markets are tightly linked. In particular, the approach used

so far in dynamic term-structure models (DTSMs) implicitly ignores the possibility that investors

might be discounting the stream of future cash-flows of certain Treasury securities at a specific rate,

lower than the generic short rate, determined by the value of those securities as collateral in the

repo market.1 In other words, a rational investor, in pricing a Treasury security, would not ignore

the current and future expected profits that could be obtained by lending that specific security in

the repo market.

This omission, in turn, might have generated price anomalies, such as time-varying on-the-run

premiums, which have been investigated for decades (Krishnamurthy 2002) and that perhaps would

be less anomalous if the collateral value of Treasury securities was accounted for in pricing those

assets.2 Most likely, this omission in the term-structure literature is due to both the lack of data on

special collateral repo rates (i.e., the rate investors are willing to pay to borrow a specific security in

the repo market) and the complexity of pricing each Treasury security individually within a DTSM.

Using the technology developed in Pancost (2017) to price individual Treasury securities and our

proprietary dataset on individual Treasury special repo rates, we estimate the joint term-structure

of U.S. Treasury cash and repo rates, derive a risk premium associated to the special collateral value

of Treasuries, and study whether this improves our understanding of some of the price anomalies

observed in the Treasury cash market.

Specifically, we quantitatively link the on-the-run premium to observed special repo rates in

a dynamic, no-arbitrage term structure model. Duffie (1996) shows in a simple static setting

how a security’s special repo rate that is below the generic short rate of interest (i.e., the general

collateral repo rate) implies a higher price for that security in the cash market. However, he does

not examine whether observed on-the-run premiums are consistent with special repo rates within

1This is nicely illustrated by the formulas in Buraschi and Menini (2002).
2Other price anomalies relevant to this study include the Treasury off-the-run note-bond spreads analyzed in

Musto, Nini and Schwarz (2017) and Pancost (2017).
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a dynamic setting and in the data. Our dynamic model nests Proposition 1 of Duffie (1996) in a

setting that allows us to measure the risk premium on special repo rates—one of the contributions

of this paper.

We find that special repo rates and the on-the-run premium in the cash market are largely

consistent with one another only after the value of the Treasury collateral is explicitly priced as

a risk factor in the model, generating time-varying risk premia. A special repo rate below the

short rate of interest is equivalent to a convenience yield, or dividend, that accrues to the asset

owner. We show that this dividend on on-the-run Treasury bonds varies substantially over time;

in other words, it is risky. However, on average, the level of this dividend is not large enough to

completely justify the size and persistence of the on-the-run premium in the data. Moreover, in

our sample, the on-the-run premium is falling over time and eventually becomes negative, but this

last feature might be specific to our measurement of the on-the-run premium.3 Our model matches

these empirical facts by allowing the risk premium on the special repo risk factors to vary with the

state of the economy.

Krishnamurthy (2002) notes that special spreads on the on-the-run 30-year Treasury bond are

high, and that this is consistent with a price premium on the on-the-run bond. He quantifies the

30-year on-the-run premium and estimates the profits from trading on it, and finds that they are

small. We go one step further by showing the substantial joint time variation in both the special

spread and the on-the-run premium, and by quantifying the premium on that risk that makes the

two consistent with each other.

The usual practice in the literature on the term structure of interest rates (see Pancost 2017 for

a survey) is to exclude on-the-run bonds from the analysis. Gürkaynak, Sack and Wright (2007)

exclude not just on-the-run bonds, but also the first off-the-run (i.e., those bonds that were on-the-

run just before the latest bond was issued). Many empirical studies of the term structure of interest

rates, including D’Amico, Kim and Wei (2010), Hamilton and Wu (2012), Kim and Orphanides

(2012), and Bauer and Rudebusch (2014), use the estimated yields from Gürkaynak, Sack and

Wright (2007), which are derived from a smoothed yield curve estimated excluding on-the-run and

first off-the-run securities. Other studies, including Ang and Piazzesi (2003), Diebold, Rudebusch

3We plan to analyze the robustness of our results employing alternative measures of the on-the-run premium that
are less model-specific.
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and Aruoba (2006), Rudebusch and Wu (2008), Christensen, Diebold and Rudebusch (2011), Joslin,

Singleton and Zhu (2011), and Creal and Wu (2016), use the bootstrap method of Fama and Bliss

(1987) applied to only a small number of bonds, which generally do not include on-the-run bonds.

All of these studies explicitly ignore on-the-run bond prices. Unlike these papers, we consider the

prices of on-the-run bonds directly and seek to explain them using CUSIP-level special repo rates.

The goal of our paper is to measure the time-varying risk premium that can make prices in the

repo and cash markets consistent with one another. This is distinct from the question of why an

on-the-run premium exists in the first place. Duffie (1996) conjectures that it may be difficult to

find someone willing to trade an off-the-run bond, making the on-the-run bond more liquid and

increasing its price. Vayanos and Weill (2008) formalize this intuition in a model of search frictions

in which more-liquid securities can trade at a premium even when their promised cash-flows are

identical to less-liquid securities. While their model can explain how an on-the-run premium (and

high repo spreads) might arise in equilibrium, it does not allow either to vary over time, or for

the on-the-run premium to go negative (as it does in the end of our sample). We conjecture that

a dynamic version of their model, perhaps with time-varying issue sizes—for example driven by

Treasury re-openings or Federal Reserve purchases of outstanding issues—might generate these

effects. This is an exciting area for future research.

The rest of the paper is organized as follows. Section 2 sets up the model. Section 3 describes

the data and the estimation. Section 4 presents our empirical results across alternative specifica-

tions, which help assess the contribution of time-varying risk premiums on the special repo factors.

Section 5 offers concluding remarks.

2 Model

We assume that the prices of Treasury bonds depend on a k × 1 vector Xt that consists of both

observable and unobservable (latent) factors, which evolve according to

Xt+1 = µ+ ΦXt + Σεt+1 (1)
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where the vector of shocks εt+1 are independent of Xt and normally distributed:

εt+1 ∼ N
(

⇀

0 , I
)
.

The short rate of interest is assumed to be an affine function of the factors:

log (1 +Rt) = δ0 + δ′1Xt. (2)

The stochastc discount factor is given by

log
Mt+1

Mt
= −δ0 − δ′1Xt −

1

2
λ′tλt − λ′tεt+1, (3)

where

λt ≡ λ+ ΛXt.

These assumptions are standard and lead to simple formulas for zero-coupon bond prices, see for

example Ang and Piazzesi (2003).

2.1 Special Repo Rates

A repo contract can be thought of as a collateralized loan, where the repo seller borrows at the

repo rate in exchange for a Treasury bond, and regains the bond when she repays the loan plus

interest at maturity. Duffie (1996) shows that rates on special collateral can be below the general

collateral rate, without creating an arbitrage opportunity, because the supply of special collateral

is fixed.

A special repo rate that is below the general collateral rate is a dividend that is proportional

to the collateral’s current price. Let 1 + Rt denote the current (gross) general collateral rate, and

1 + rt the special collateral rate on a particular bond with current price Pt. Assume no haircut for

simplicity. At time t, the owner of the special collateral borrows Pt against the collateral, at rt,
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and simultaneously lends an amount ∆ at the general collateral rate Rt. At time t+ 1, she earns

(1 +Rt) ∆− (1 + rt)Pt

so that if ∆ = 1+rt
1+Rt

Pt, she has no gain or loss at t+ 1, and earns

Pt −∆Pt =

(
1− 1 + rt

1 +Rt

)
Pt

at time t.

In what follows, it will be convenient to parameterize the log gross special spread as

yt ≡ log
1 +Rt
1 + rt

≥ 0, (4)

which implies that the price of a zero-coupon bond with n periods left to maturity on special and

with special spread equal to yt must have a price given by

Pt =
(

1− e−yt
)
Pt + E∗t Pt+1

= eytE∗t Pt+1

where E∗t is the risk-neutral expectation. Because special rates are always weakly less than general-

collateral rates, the “special dividend” eyt ≥ 1 or, equivalently, yt ≥ 0.

In order to ensure that yt is nonnegative for all values of the state, we parameterize it as a

quadratic form in the factors:

yt = X ′tΓXt, (5)

where Γ is a positive symmetric semi-definite matrix. This modeling device is commonly used

in DTSMs accounting for the zero lower bound on the short rate (e.g., Ahn, Dittmar and Gallant

2002; Kim and Singleton 2012). Equation (5) by construction forces the special spread to be weakly

greater than zero for all values of the state vector Xt. This leads to the following proposition for

pricing zero-coupon bonds that are on special for their entire life. We show later how we relax this
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assumption.

Proposition 1. Consider a zero-coupon bond on special with n periods to maturity, where the repo

spread is given by equation (5). Then the zero-coupon bond price satisfies

logP
(n)
t = An +B′nXt +X ′tCnXt (6)

where the An, B′n, and Cn loadings are given by

Cn = Γ + Φ∗′Cn−1Dn−1Φ
∗

B′n = −δ′1 +
(
2µ∗′Cn−1 +B′n−1

)
Dn−1Φ

∗ (7)

An = −δ0 +An−1 +
1

2
B′n−1ΣGn−1Σ

′Bn−1

+
1

2
log |Gn−1|+

(
µ∗′Cn−1 +B′n−1

)
Dn−1µ

∗

where

Gn−1 =
[
I − 2Σ′Cn−1Σ

]−1
Dn−1 = ΣGn−1Σ

−1,

C0 =
⇀

0k×k, B0 =
⇀

0k×1, and A0 = 0, and the risk-neutral parameters µ∗ and Φ∗ are given by

µ∗ ≡ µ− Σλ

Φ∗ ≡ Φ− ΣΛ. (8)

Proof. See Appendix A.

The loadings in equation (7) include the loadings in, for example, Ang and Piazzesi (2003) as

a special case when Γ =
⇀

0, since in this case Cn =
⇀

0 for all n and therefore Gn = Dn = I for all

n. Further, these loadings are usually obtained in quadratic-Gaussian term-structure models (e.g.,

Kim 2004; Breach, D’Amico and Orphanides 2016).

In the data, special spreads typically accrue to coupon-bearing bonds, which are linear com-

binations of the zero-coupon bonds priced in Proposition 1. We price coupon bonds by summing
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across their coupon payments: the price of bond i at time t is given by

P it =
∑
j

cj exp
{
Amj +B′mj

Xt +X ′tCmjXt

}
≡
∑
j

cjP
Z
(
mj , Xt

)
(9)

≡
⇀

P
Z {

⇀
c (i) ,

⇀
m (i) , Xt

}

where cj denotes the size of the jth coupon payment, mj its time to maturity, and the last two lines

define notation. The notation of equation (9) includes the repo special spread at time t through

the Cmj loadings (which all contain a Γ term). Treasury bonds in our sample pay the same coupon

amount every six months; accounting for these coupons, and pricing accrued interest, implies that

the price of bond i is given by

P it = PZ (τ , Z) +
c

2× 100

(τ−b)/6∑
j=0

PZ (6j + b,Xt)−
(
1− b/6

)
PZ (b,Xt) (10)

where τ is the time to maturity, c is the coupon rate, and b is the time (in months) to the next

coupon payment. The limit of summation (τ − b) /6 is always an integer, because Treasury bonds

make their final coupon payment the same month they mature. Equation (10) describes how the

coupon rate c and time to maturity τ of a given bond i in the data translate into the cash-flows

⇀
c (i) and their maturities

⇀
m (i) in equation (9).

Stacking all nt bonds at time t yields the measurement equation

⇀

P t =



⇀

P
Z {

⇀
c {1} , ⇀

m {1} , Xt

}
⇀

P
Z {

⇀
c {2} , ⇀

m {2} , Xt

}
...

⇀

P
Z {

⇀
c {nt} ,

⇀
m {nt} , Xt

}


+

⇀
η t (11)

which, along with equation (1), constitute the state-space system to be estimated. In practice, the

number of bonds nt in each cross-section is so large relative to the number of factors Xt that the

latter can be estimated on each cross-section individually without regard to the state equation (1);
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see Andreasen and Christensen (2011) for a proof.

3 Data and Estimation

We use daily data on prices of Treasury bonds from CRSP covering the period from January 2nd,

2009 to February 17, 2012. We are limited to this sample period by the availability of our special

collateral repo rate data. However, considering that we are interested in understanding how the

collateral value of Treasury securities affect their prices in the cash market, this is a very interesting

period, which also makes the estimation of the term-structure of Treasury yields quite difficult. In

particular, in those years, reduced issuance by the Treasury, the sharp increase in Treasury holdings

by the Federal Reserve (Fed), and new financial regulation have reportedly shrunk the availability

of Treasury securities, making this high-quality collateral quite scarce in the repo market. This, in

turn, might have caused special spreads to be positive also for off-the-run securities and increased

off-the-runs fails to delivery to unusual levels (see for example D’Amico, Fan and Kitsul 2017).

Our data covers 784 trading days and 312 unique CUSIPs; we drop all bonds with time to

remaining to maturity of less than one year. We supplement this data with CUSIP-level data on

repo rates; see D’Amico, Fan and Kitsul (2017) for a description of this data. Table 1 provides

some descriptive statistics of our data.

[Table 1 about here.]

We highlight three features of our data from Table 1. First, on average there are over 175

bonds per cross-section, so that there is plenty of variation for identifying 3, 4, or 5 factors; second,

although off-the-run bonds on average have much lower special spreads (i.e., the difference between

the general collateral and the special collateral repo rates) than on-the-run bonds, they are still

“on special” relatively often (i.e., they have yt > 0 in equation 5); and third, that the 10-year

on-the-run bond has the highest special spread, and is the only on-the-run maturity that features

a premium in the cash market. The fact that we observe many more bonds in the cross-section

than the number of latent factors allows us to identify the latter without implementing a nonlinear

Kalman filter, as described in the previous section. The other two features of Table 1 warrant more

discussion.
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Although off-the-run bonds have much lower special spreads on average, they are still very

likely to go “on special,” . The third column of Table 1 shows that on average across all maturities,

roughly three-quarters of all off-the-run bonds are trading special in our sample. Moreover, the

percentage trading special is uniform across maturities at issuance; the maturity at issuance least

likely to trade special, the 30-year, is still on special over 70% of the time. Including these low but

non-zero special spreads is important for pricing on-the-run bonds, as we document in section 4.

Table 1 also highlights that the 10-year on-the-run bond behaves differently from other on-the-

run securities: it has higher special spreads, and it is the only bond with an average price premium

in our sample. The fifth column of Table 1 reports the average special spread for on-the-run bonds

in our sample; this spread is almost 23 bps for the 10-year on-the-run bond, which is large given

that the average general-collateral repo rate in our sample is 16 bps. The difference implies that

on average holders of the 10-year on-the-run bond are paid 7 bps to borrow cash using their special

collateral.

A higher average special spread is not the only difference between the 10-year on-the-run bond

and other on-the-run maturities: in our sample it is only the 10-year bond that features an on-

the-run premium. The sixth column of Table 1 reports the average price residual (actual minus

fitted) for on-the-run bonds of the indicated maturity from a 3-factor model estimated using only

off-the-run bonds and ignoring all special spreads. Gürkaynak, Sack and Wright (2007) omit on-

the-run and first-off-the-run bonds from their estimation because these bonds usually trade at a

premium; in our sample, however, on average these bonds tend to trade at a discount. Pancost

(2017) examines the on-the-run premium in greater detail over a longer sample period, including

before the recent financial crisis, and also finds that the on-the-run premium (averaged across all

issuance maturities) has largely disappeared since about 2006.

[Figure 1 about here.]

Figure 1 offers a direct comparison between the 10- and 30-year on-the-run cash premia and

special spreads; results for maturities other than 30 years are similar. The top panel of Figure 1

shows that the 10-year on-the-run bond features a positive, large, and time-varying on-the-run

premium in our sample, while the 30-year bond if anything has a slight on-the-run discount.4 In

4Before 2009 the 30-year on-the-run bond features a large and time-varying on-the-run premium. Unfortunately
we do not have special spreads before 2009, so we omit this time period from our analysis in this paper.

10



addition, the 10-year on-the-run premium is falling over our sample period, and even becomes

negative by the beginning of 2012.

In the bottom panel of Figure 1 we plot the special repo rates on the 10- and 30-year on-the-run

bond over time, as well as the overnight general-collateral rate. Consistent with its low or negative

cash premium, the 30-year on-the-run bond has a special rate that sticks very closely to the general-

collateral repo rate (its special spread is close to zero). On the other hand, the 10-year special rate

is often substantially lower than the general collateral rate, getting as low as -3% (annualized) on

some dates. The goal of our model is to quantitatively link both the level and the riskiness of these

special dividends to the cash premium plotted in the top panel of Figure 1.

Because it is only the 10-year on-the-run bond that displays a premium in the cash market,

and because that bond also has the largest special spreads on average, for the remainder of the

paper we consider only the 10-year on-the-run bond as “on-the-run” when separating bonds based

on exposure to on-the-run and off-the-run repo factors. As we document below, even the 10-year

on-the-run price premium disappears over the course of our (short) sample, and becomes an on-

the-run discount; even with time-varying risk premia, our model has trouble fitting the “discount”

period of the 10-year bond. Including five other maturities with positive (though lower) special

spreads and a discount throughout the sample would be a hopeless exercise, which however can be

attempted in the future using alternative measures of on-the-run premiums.

We leave a theoretical explanation of a time-varying on-the-run premium, that can become an

on-the-run discount, to future research. It seems unlikely that repo specials, which typically raise

a special bond’s price, will be able to match such a discount.

3.1 Identification

Our baseline model has four factors: the first three are latent factors that govern the short-rate

process and the model’s fit to bonds without special spreads. Because these factors are unobserv-

able, they must be invariant to translation and rotation; this means that not all elements of Φ∗,

µ∗, δ0, and δ1 are identifiable. We follow Pancost (2017) in setting the first three elements of µ∗ to
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0, the first three elements of δ1 to 1, and forcing the top-left corner of Φ∗ to have the form

Φ∗TL =


φ∗1 φ∗2 0

1 1 0

0 0 φ∗3

 (12)

which allows us to estimate the eigenvalues of this corner of Φ∗ without imposing that two of them

are real.

We model prices of bonds with special spreads by incorporating two observable factors into the

model, one for 10-year on-the-run bonds and another for all other (“off-the-run”) bonds. Each

factor is the average of the square root of the special spread for bonds of that type. In addition, for

each individual CUSIP we add a bond-specific, sixth factor with zero prices of risk that incorporates

idiosyncratic variation in that bond’s special spread relative to the average. This means that the

matrix Γ is pinned down as

Γ =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 1

0 0 0 0 0 0

0 0 0 1 0 1


(13)

for off-the-run bonds and

Γ =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 1

0 0 0 0 1 1


(14)
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for on-the-run bonds. Equations (13) and (14) imply that the special spreads of off- and on-the-run

bonds are given by

yit =
(
X

(4)
t + xit

)2
(off-the-run)

yit =
(
X

(5)
t + xit

)2
(on-the-run) (15)

where X
(j)
t is the jth element of Xt. Because X

(4)
t and X

(5)
t are averages of the square root of

the observed special spreads yit, equation (15) implies that the bond-specific repo factors xit can be

identified as residuals.5

Because the xit factors are idiosyncratic, we assume they carry no risk prices, so that their

dynamics under the risk-neutral and physical measures are the same. We assume these idiosyncratic

factors evolve according to

xit+1 = ρxit + σxε
i
t+1

where i indexes individual CUSIPs and εit+1 is a standard normal random variable that is iid

over time and independent of the aggregate VAR shocks εt+1. We assume xit is unconditionally

mean-zero in order to allow the average repo spreads to be governed by the aggregate repo factors.

Off-the-run bonds have price loadings given by equation (7) with Γ defined in equation (13).

On-the-run bonds have their price loadings (denoted with stars) given by equation (7) with Γ

defined in equation (14), with one modification: instead of the initial condition C∗0 = B∗0 = A∗0 = 0,

they have the initial condition C∗m = Cm, B∗m = Bm, and A∗m = Am, where m is the maturity

at which the bond goes off-the-run. The Treasury issues new bonds of each maturity at regular

intervals, so that when a particular on-the-run bond will go off-the-run is known with certainty;

therefore, so is its maturity at that date, which is constant for the life of the bond.

[Figure 2 about here.]

Figure 2 illustrates how the model prices on- and off-the-run bonds, i.e. bonds that are and

are not exposed to the special spread factors. The three solid lines are the loadings on the first

three latent factors of the model, expressed in yields (i.e. −B′n/n).6 The dotted lines plot the

5Because we are allowing the 10-year on-the-run sprecial-spread to have its “own” factor, xi
t for this bond will be

identically zero.
6Because the identification assumption in equation (12) does not lead to a nice picture, for Figure 2 the risk-neutral
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estimated yield loadings for 10-year on-the-run bonds. For times to maturity of 9-3/4 years and

less, the two sets of loadings are identical, and hence solid and dotted lines are indistinguishable.

But because on-the-run bonds follow equation (7) with Γ from equation (14) for n ∈
{

9 3/4, 10
}

,

while off-the-run bonds use Γ from equation (13), for this range of maturities the loadings differ.

Figure 2 shows that on-the-run bonds are more exposed to the slope factor, and less exposed to the

curvature factor, for the three months that they are on-the-run, than would be a similar security

that did not have special spreads driven by the on-the-run special-spread factor.

Because the first three factors are latent, any non-zero values in the top-right corner of Φ∗ (the

dependence of future latent factors on the repo factors, under the risk-neutral measure) can be

rotated away by re-defining the latent factors appropriately. However, the same cannot be said for

the lower-left values of Φ∗, thanks to the structure of equations (13) and (14).

Given these assumptions, the total set of risk-neutral parameters to be estimated is given by

parameter size number of free parameters

δ0 1× 1 1

δ1 = [1, 1, 1, 0, 0, 0]′ 6× 1 0

µ∗ =
[
0, 0, 0, µ∗4, µ

∗
5, 0
]′

6× 1 2

Φ∗ =


Φ∗TL

⇀

03×2
⇀

01×3

Φ∗BL Φ∗BR

⇀

01×3
⇀

01×3
⇀

01×2 ρ

 6× 6 3 + 2× 3 + 2× 2 + 1 = 14

for a total of 17 free risk-neutral parameters in the full model with 2 repo factors. Of course

simpler models, for example a model without special spreads at all, have fewer parameters, as

described in the next section.

Given these risk-neutral parameters, identification proceeds as follows. We recover the fourth

and fifth factors as the average of the square roots of the off- and on-the-run special spreads,

respectively. For each cross-section t, we then estimate the first 3 (latent) factors in Xt to minimize

the sum of squared residuals in equation (11).

parameters have been rotated so that these loadings have the usual level-slope-curvature shapes. In addition, the
factors have been sclaed to be mean-zero, so that these loadings represent the loadings at the average Xt, i.e. ignoring
the effects of the Cn loadings.
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To estimate risk-neutral parameters we proceed in steps. First we choose the parameters δ0 and

Φ∗TL to minimize the sum of squared pricing residuals on off-the-run bonds. We then search over the

off-the-run repo risk-neutral parameters in Φ∗BL and Φ∗BR to further reduce the errors. This gives

us factors Xt at each date; holding those factors fixed, we search over the remaining parameters in

Φ∗BL and Φ∗BR to minimize the sum of squared pricing residuals on on-the-run bonds. We iterate

this process to convergence, ensuring that Σ is consistent with its estimate from equation (1) using

ordinary least squares on the filtered Xt.
7

4 Results

In this section we estimate models of increasing complexity to illustrate how incorporating time-

varying prices of risk and special spreads on both on- and off-the-run bonds are both necessary to

fit the cross-section of bond prices. We estimate 4 models. First, we estimate a standard 3-factor

model ignoring special spreads completely; this model has only 4 risk-neutral parameters (δ0 and

the 3 parameters in Φ∗TL). Next, we use these parameters and the estimated dynamics of the

10-year on-the-run special spread to price the special spreads on the 10-year on-the-run bond in a

risk-neutral fashion. To do so, we set µ∗ and Φ∗ such that the fourth element of λ is zero, and the

fourth row and column of Λ are all zeroes. λ and Λ are defined in equation (8); we obtain µ and

Φ (and Σ) via OLS on the estimated factors Xt.

[Table 2 about here.]

Third, we incorporate time-varying risk premia into the 10-year on-the-run special spread by

estimating four parameters in Φ∗BL (3) and Φ∗BR (1) when we add a fourth factor to the model

equal to the square root of the 10-year on-the-run special spread. Panel A of Table 2 reports these

parameters. Finally, we add a fifth factor equal to the average square root of the special spreads

on all other bonds and estimate all parameters of Φ∗BL and Φ∗BR; we report these parameters in

Panel B of Table 2.

[Table 3 about here.]

7Strictly speaking, because the Xt are estimates, and not observed, we should estimate equation (1) taking the
measurement error into account, as done for example by Pancost (2017). However, as shown by Pancost (2017), in
practice the Xt are measured with sufficient precision that this step has no appreciable effect on the results.
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Before describing results from estimating time-varying risk premia on special spreads, we briefly

analyze some features of the 3-factor model ignoring special spreads completely. Figure 3 plots the

implied fitting error in level prices at each date across all the off-the-run bonds. The fit is generally

good, although it varies over time: in particular the model fits relatively less well at the beginning

of the sample, during the height of the financial crisis after the failure of Lehman Brothers. Pancost

(2017) examines the pricing residuals of a similar model in detail during this period and in late 2008;

he finds that these errors are related to large price differences between bonds older and younger

than fifteen years that cannot be explained by their different coupon levels and maturities.

[Figure 3 about here.]

Next, we explore in a reduced-form fashion how much the price fit can be improved by incor-

porating special spreads. In Table 3 we regress price residuals from the first estimated model (no

special spreads at all) on special spreads and past pricing residuals:

ηi,t = αi + β1y
i
t + β2ηi,t−1 + ξi,t,

where the ηi,t are estimated from equation (11) and the 3-factor model. Duffie (1996) shows in a

static setting that a security on special should have a higher price than an equivalent security that

is not on special, and the price difference should be increasing in specialness. All four columns of

Table 3 confirm that the model without special spreads underprices bonds on special, and more so

the higher the special spread. This remains the case even when including the lagged price residual,

which is a strong predictor of future price residuals.

Figure 4 plots the price residuals on the 10-year on-the-run bond for our three estimates incor-

porating special spreads. The black line is the price residual assuming that the risky special spreads

are priced as risk-neutral dividends. It is very similar to the price residual plotted in the top panel

of Figure 1. The red line plots the price residual after allowing for time-varying risk premia on the

special spread dividend. The fit is better, but only marginally; the on-the-run premium remains

high in the early part of the sample, and in fact the on-the-run discount at the end of the sample

is even larger.

[Figure 4 about here.]

16



The blue line in Figure 4 plots the price residuals after incorporating special spreads, including

time-varying risk premia, on off-the-run bonds. Although these spreads are usually small (see

Table 1), they are important for pricing on-the-run special-spread risk because the 10-year on-the-

run bond becomes an off-the-run bond after 3 months. Thus in the 5-factor model the on-the-run

bond is exposed to special spread risk for an additional 9 3/4 years, which as can be seen from the

figure is very important in matching the on-the-run price, though there remains variation in the

price residual that our model does not capture.

To quantify the amount of variation explained by our estimated models, denote the three time-

series vector of residuals plotted in Figure 4 as η0, η1, and η2. We define R2 of the estimates in the

usual way as

R2
i ≡ 1− η′iηi

η′0η0
,

for i ∈ {1, 2}. With this definition we have R2
1 = 0.14, and R2

2 = 0.62. This implies that the time-

varying risk-premia on the special spread risk factors, on both on- and off-the-run bonds, account

for about 60 percent of the variation in the on-the-run premium.

[Figure 5 about here.]

We estimate the risk-neutral parameters pertaining to off-the-run bonds, i.e. the fourth rows

of µ∗ and Φ∗ in the five-factor model, only to fit the prices of off-the-run bonds. Given those

parameters and factors Xt, we then estimate the fifth row of µ∗ and Φ∗ to fit the 10-year on-the-

run prices. Figure 5 plots the change in the standard deviation of off-the-run price residuals η

in equation (11) as we move from moving from the 3-factor model with no special spreads, to the

5-factor model. In fact the fit is worse on some days, though overall the fit is marginally better, and

usually on the order of between 2 and 4 bps in terms of par value. Although economically-speaking

this is a small change, coming from a standard deviation on the order of about 1 ppt (see Figure 3),

these off-the-run special spreads are crucial in fitting the on-the-run bond price. Morevoer they are

statistically significant at conventional levels.
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5 Conclusion

We estimate a dynamic no-arbitrage term structure model directly on individual Treasury securities,

explicitly including securities that feature a large and time-varying on-the-run premium. We link

this on-the-run premium directly to time-varying special repo rates on these securities, and show

that the two prices can be made largely consistent with each other only after incorporating time-

varying risk premia on the special spread risk factors and including the special spreads of off-the-run

bonds.

This paper has only begun to scratch the surface of what is possible with the special repo

rate data. Price residuals in both Figures 3 and 4 display predictable components, in particular

jumps on auctions dates. Figures 2 and 3 of D’Amico, Fan and Kitsul (2017) show that special-

spread dynamics are tightly linked to the auction cycle, so it is entirely possible that a model

incorporating a richer, auction-centered dynamic process for special spreads could match these

cash-price residuals. Moreover, data on the bid/cover ratio is publicly available from the Treasury’s

website; we speculate that CUSIPs from auctions with higher bid/cover ratios are “hotter” in the

specials market, and that this may be an exogenous driver of both their special spread and cash

price. We hope in the future to specify a tractable model incorporating such data.

Finally, we have shown but not fully explored the fact that on-the-run price premia are low

or even negative for all but the 10-year maturity in our sample, and that the 10-year becomes

negative by 2012. It would be interesting to see if this “on-the-run discount” survives other, more

model-free ways of defining the on-the-run premium. Search models of the on-the-run premium,

such as Vayanos and Weill (2008), are difficult to reconcile with a time-varying premium because

they are typically solved only in steady-state. We leave the specification of a quantitative model

with a dynamic on-the-run premium that can become negative to future researchers.
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A Proofs

A.1 Proof of Proposition 1

The result follows by induction. First note that a zero-coupon bond pays $1 at maturity, so that

A0 = 0, B′0 =
⇀

0, and C0 =
⇀

0 as in equation (7) prices bonds at maturity. Next, fix n and assume

that at any time t, the price of an n− 1 period bond satisfies

logP
(n−1)
t = An−1 +B′n−1Xt +X ′tCn−1Xt. (16)

It then suffices to show that equation (16) implies equation (7) for bonds with maturity n.

The log price of an n-period zero-coupon bond at time t with special spread yt is given by

logP
(n)
t = yt + logEt

{
Mt+1

Mt
P

(n−1)
t+1

}
= X ′tΓXt + logEt

{
Mt+1

Mt
exp

{
An−1 +B′n−1Zt+1 + Z ′t+1Cn−1Zt+1

}}
(17)

= X ′tΓXt + logEt exp

{
−δ0 − δ′1Xt −

1

2
λ′tλt − λ′tεt+1

+An−1 +B′n−1 (µ+ ΦZt + Σεt+1)

+ (µ+ ΦZt + Σεt+1)
′Cn−1 (µ+ ΦZt + Σεt+1)

}
= X ′tΓXt +−δ0 − δ′1Xt −

1

2
λ′tλt +An−1 +B′n−1 (µ+ ΦXt) + (µ+ ΦXt)

′Cn−1 (µ+ ΦXt)

+ logEt exp
{
m′εt+1 + ε′t+1Σ

′Cn−1Σεt+1

}
where the second line uses equations (5) and (16), the next line plugs in equations (1) and (3), and

m in the last line is given by

m ≡ −λt + Σ′Bn−1 + 2Σ′Cn−1 (µ+ ΦXt)

= −λ+ Σ′Bn−1 + 2Σ′Cn−1µ+
(
2Σ′Cn−1Φ− Λ

)
Xt

= dn−1 + D̃n−1Xt

where the last line defines notation. Because εt+1 is a standard multivariate normal random vari-
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able, we have that

logEt exp
{
m′εt+1 + ε′t+1Σ

′Cn−1Σεt+1

}
=

1

2
m′Gn−1m+

1

2
log |Gn−1| , (18)

=
1

2
d′n−1Gn−1dn−1 + d′n−1Gn−1D̃n−1Xt

+
1

2
X ′tD̃

′
n−1Gn−1D̃n−1Xt +

1

2
log |Gn−1|

where Gn−1 =
[
I − 2Σ′Cn−1Σ

]−1
and |Gn−1| denotes the determinant of Gn−1. Equation (18)

holds provided Gn−1 is positive semi-definite, and can be derived by completing the square.

Plugging equation (18) into equation (17) and combining quadratic, linear, and scalar terms

yields the following loadings:

Cn = Γ− 1

2
Λ′Λ + Φ′Cn−1Φ +

1

2
D̃′n−1Gn−1D̃n−1

B′n = −δ′1 − λ′Λ +B′n−1Φ + 2µ′Cn−1Φ + d′n−1Gn−1D̃n−1 (19)

An = −δ0 −
1

2
λ′λ+An−1 +B′n−1µ+ µ′Cn−1µ+

1

2
log |Gn−1|+

1

2
d′n−1Gn−1dn−1

where

D̃n−1 = −Λ + 2Σ′Cn−1Φ

Gn−1 =
[
I − 2Σ′Cn−1Σ

]−1
dn−1 = −λ+ Σ′Bn−1 + 2Σ′Cn−1µ

and C0 =
⇀

0, B0 =
⇀

0, and A0 = 0. The remainder of the proof consists of showing that equation (19)

is equivalent to equation (7). To do so, I use the fact (proven below in Lemma 1) that the matrix

Cn−1Dn−1 = Cn−1ΣGn−1Σ
−1 is symmetric.

For notational simplicity I drop all the n− 1 subscripts.
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First, write the Cn loadings in equation (19) as

Cn = Γ− 1

2
Λ′Λ + Φ′CΦ +

1

2
Λ′GΛ

+ 2Φ′CΣGΣ′CΦ− Λ′GΣ′CΦ− Φ′CΣGΛ

= Γ− 1

2
ΛGG−1Λ +

1

2
Λ′GΛ− Λ′GΣ′CΦ

+ Φ′CΦ + 2Φ′CΣGΣ′CΦ− Φ′CΣGΛ

= Γ +
1

2
Λ′G

(
−G−1 + I

)
Λ− Λ′GΣ′CΦ

+ Φ′CΣGΣ′
(
J−1 + 2C

)
Φ− Φ′CΣGΛ,

where J ≡ ΣGΣ′ so that

J−1 = Σ′−1G−1Σ−1

= Σ′ − 1
(
I − 2Σ′CΣ

)
Σ−1 (20)

= Σ′−1Σ−1 − 2C.

Plugging in equation (20) and the fact that G−1 = I − 2Σ′CΣ and rearranging yields

Cn = Γ + Λ′GΣ′CΣΛ− Λ′GΣ′CΦ

+ Φ′CΣGΣ′′−1Σ−1Φ− Φ′CΣGΛ

= Γ + Λ′GΣ′C (ΣΛ− Φ)

+ Φ′CΣG
(

Σ−1Φ− Λ
)

= Γ− Λ′GΣ′∗ + Φ′−1Φ∗

= Γ +
(

Φ′−1 − Λ′Σ′′−1GΣ′C
)

Φ∗

= Γ +
(

Φ′CD − Λ′Σ′ (CD)′
)

Φ∗,

where H ≡ CΣGΣ−1. Then applying Lemma 1 gives the Cn loadings in equation (7).
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The Bn loadings in equation (19) are given by

B′n = −δ′1 − λ′Λ +B′Φ + 2µ′CΦ

+ λ′GΛ− 2λ′GΣ′CΦ−B′ΣGΛ

+ 2B′ΣGΣ′CΦ− 2µ′CΣGΛ + 4µ′CΣGΣ′CΦ

= −δ′1 +−λ′−1Λ + λ′GΛ− 2λ′GΣ′CΦ

+B′Φ−B′ΣGΛ + 2B′ΣGΣ′CΦ

+ 2µ′CΦ− 2µ′CΣGΛ + 4µ′CΣGΣ′CΦ

= −δ′1 + λ′G
(
−G−1 + I

)
Λ− 2λ′GΣ′CΦ

+B′ΣG
(
G−1Σ−1Φ− Λ

)
+ 2B′ΣGΣ′CΦ

+ 2µ′CΣG
(
G−1Σ−1Φ− Λ + 2Σ′CΦ

)
= −δ′1 + 2λ′GΣ′C (ΣΛ− Φ)

+B′ΣG

((
Σ−1 − 2Σ′C

)
Φ− Σ−1ΣΛ

)
+ 2B′ΣGΣ′CΦ

+ 2µ′CΣG

((
Σ−1 − 2Σ′C

)
Φ− Λ + 2Σ′CΦ

)
= −δ′1 − 2λ′GΣ′∗

+B′−1Φ∗

+ 2µ′−1Φ∗,

using G−1 = I − 2Σ′CΣ. Further combining terms and applying Lemma 1 yields

B′n = −δ′1 +
(
−2λ′GΣ′C + 2µ′−1 +B′−1

)
Φ∗

= −δ′1 +
(

2
(
µ′ + λ′Σ′

)
CΣGΣ−1 +B′−1

)
Φ∗

= −δ′1 +
(
2µ′∗CD +B′D

)
Φ∗

where the second line uses the implication from Lemma 1 that GΣ′C = Σ′−1.
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The An loadings in equation (19) are given by

An = −δ0 +A− 1

2
λ′λ+B′µ+ µ′Cµ+

1

2
log |G|

+
1

2
λ′Gλ+

1

2
B′ΣGΣ′B + 2µ′CΣGΣ′Cµ

− λ′GΣ′B − 2λ′GΣ′Cµ+ 2µ′CΣGΣ′B

= −δ0 +A+
1

2
log |G|+ 1

2
B′ΣGΣ′B

− 1

2
λ′−1λ+

1

2
λ′Gλ− 2λ′GΣ′Cµ

+B′µ− λ′GΣ′B + 2µ′CΣGΣ′B

+ µ′Cµ+ 2µ′CΣGΣ′Cµ

= −δ0 +A+
1

2
log |G|+ 1

2
B′ΣGΣ′B

+
1

2
λ′G

(
−G−1 + I

)
λ− 2λ′GΣ′Cµ

+B′µ−B′ΣGλ+ 2B′ΣGΣ′Cµ

+ µ′CJ
(
J−1 + 2C

)
µ

= −δ0 +A+
1

2
log |G|+ 1

2
B′ΣGΣ′B

+ λ′GΣ′C (Σλ− 2µ)

+B′ΣG
(
G−1Σ−1µ− λ

)
+ 2B′ΣGΣ′Cµ

+ µ′−1µ

where again J ≡ ΣGΣ′, so that the last line applies equation (20). Using the fact that G−1Σ−1 =
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Σ−1 − 2Σ′C, we have that

An = −δ0 +A+
1

2
log |G|+ 1

2
B′ΣGΣ′B

+ λ′GΣ′C (Σλ− 2µ) + µ′−1µ

+B′ΣG

((
Σ−1 − 2Σ′C

)
µ− 2λ

)
+ 2B′ΣGΣ′Cµ

= −δ0 +A+
1

2
log |G|+ 1

2
B′ΣGΣ′B

+ λ′GΣ′C (Σλ− 2µ) + µ′−1µ

+B′−1 (µ− Σλ)− 2B′ΣGΣ′Cµ+ 2B′ΣGΣ′Cµ

= −δ0 +A+
1

2
log |G|+ 1

2
B′ΣGΣ′B +B′−1µ∗

+ λ′Σ′−1 (Σλ− 2µ) + µ′−1µ

where the last line applies Lemma 1. Rearranging terms and again applying Lemma 1 yields

An = −δ0 +A+
1

2
log |G|+ 1

2
B′ΣGΣ′B +B′−1µ∗

+ λ′Σ′−1 (Σλ− µ)− λ′Σ′−1µ+ µ′−1µ

= −δ0 +A+
1

2
log |G|+ 1

2
B′ΣGΣ′B +B′−1µ∗

− λ′Σ′−1 (µ− Σλ) +
(
µ′ − λ′Σ′

)
CΣGΣ−1µ

= −δ0 +A+
1

2
log |G|+ 1

2
B′ΣGΣ′B +B′−1µ∗

+
(
µ′ − λ′Σ′

)
CΣGΣ−1 (µ− Σλ)

which is equation (7).

Lemma 1. The matrix Cn−1Dn−1 = Cn−1ΣGn−1Σ
−1 is symmetric for all n.

Proof. Using equation (19), so long as Γ is symmetric, then Cn−1 and Gn−1 are both symmetric

for all n. In what follows I drop the n − 1 subscripts. Let H ≡ CΣGΣ−1, so that I need to show

that H = H ′ = Σ′−1GΣ′C.
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By definition, G−1 = 1− 2Σ′CΣ, so that

ΣG−1Σ−1 = Σ
(
1− 2Σ′CΣ

)
Σ−1

= I − 2ΣΣ′C (21)

Σ′−1G−1Σ′ = Σ′−1
(
I − 2Σ′CΣ

)
Σ′

= I − 2CΣΣ′. (22)

Then we have that

H = CΣGΣ−1

=
(

Σ′−1GΣ′
)(

Σ′−1G−1Σ′
)

︸ ︷︷ ︸
=I

CΣGΣ−1

=
(

Σ′−1GΣ′
) (
I − 2CΣΣ′

)︸ ︷︷ ︸
by equation (22)

CΣGΣ−1

=
(

Σ′−1GΣ′
) (
C − 2CΣΣ′C

)
ΣGΣ−1

=
(

Σ′−1GΣ′C
) (
I − 2ΣΣ′C

)
ΣGΣ−1

= H ′
(

ΣG−1Σ−1
)

︸ ︷︷ ︸
by equation (21)

ΣGΣ−1

= H ′.
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Figure 1. On-the-Run Premia and Special Rates
The top panel plots price residuals for the 30- and 10-year on-the-run bonds over time,
where the residual is defined in equation (11) as the actual price minus the model-
implied price in % of par value, and the parameters are given in Table 2, Panel A. The
factors for these price residuals are estimated only on off-the-run bonds. The bottom
panel plots the GC repo rate along with the special rates for the 30- and 10-year on-
the-run bonds over time, in annualzed percent.
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Figure 2. The figure plots the yield loadings −B′n as a function of time to maturity
n in years for the 5-factor model whose parameters are reported in Panel B of Table 2.
Only the latent-factor loadings are plotted (the first 3). The loadings are translated so
that the factors are mean-zero and rotated so that these loadings have the traditional
level-slope-curvature shape. The solid lines are loadings for off-the-run bonds; the
dotted lines plot the loadings for 10-year on-the-run bonds.
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Figure 3. The figure plots the 100 times the standard deviation of the residuals from
equation (11) for each date in the sample, estimated only on off-the-run bonds and
setting all special spreads to zero. The parameters of this 3-factor model are reported
in Panel A of Table 2.
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Figure 4. The figure plots the price residuals from equation (11) on the 10-year on-the-
run bond for three different estimates of the model: risk-neutral special spreads (black),
i.e. a 4-factor model the fourth row and column of Λ and the fourth element of λ equal
to zero, and µ∗ and Φ∗ defined in equation (8); a 4-factor model with time-varying
risk-premia (red), i.e. µ∗ and Φ∗ freely estimated but special spreads on off-the-run
bonds set to zero; and a 5-factor model with time-varying risk premia on both on- and
off-the-run bonds (blue).
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Figure 5. The figure plots the 100 times the difference in the standard deviation of
the residuals from equation (11) between the model with only 3 factors, and the model
with 5 factors incorporating time-varying risk-premia on off-the-run special spreads, for
each date in the sample, estimated only on off-the-run bonds.
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Table 1. Sample Summary Statistics
The table reports summary statistics for our sample from January 2, 2009 to February
17, 2012, by maturity at issuance in years (first column). The second column reports the
average number of bonds in each cross-section with the indicated maturity at issuance.
The third column reports the number of off-the-run bonds that are on special, i.e. have
a positive y according to equation (4). The fourth and fifth columns report the average
specialness spread, in bps, for off- and on-the-run bonds, respectively. The last column
reports the average price residual (actual minus expected), in percent of par, of on-the-
run bonds from the 3-factor model without repo specials. Numbers in parenthese are
standard deviations.

Maturity Avg # % On Special Avg Spread Avg Spread Avg Price Residual
(years) Bonds (off-the-run) (off-the-run) (on-the-run) (on-the-run)

All 178 76.5
2.53 12.1 -0.494

(3.54) (30.8) (0.796)

2 11.8 75.5
2.14 11 -0.802

(2.85) (22.4) (0.322)

3 17.7 79.1
2.47 16.2 -0.656

(2.95) (33.2) (0.414)

5 47.6 79.6
2.48 12.5 -0.724
(4.8) (20) (0.286)

7 18.3 78.9
2.63 3.17 -0.788

(2.68) (4.11) (0.345)

10 33.8 77.5
2.28 22.8 0.557

(2.25) (54) (1.23)

30 49.3 71.2
2.86 4.69 -0.563

(3.34) (17.6) (0.657)
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Table 2. The table reports the estimated parameters of the models discussed in the
text. Panel A reports the parameters of the 3- and 4-factor models, in which the first 3
factors are latent and the fourth factor applies to special spreads of the 10-year on-the-
run bonds. Panel B reports the parameters for the 5-factor model in which the first 3
factors are latent, the 4th factor applies to special spreads of off-the-run bonds, and the
5th factor applies to special spreads of on-the-run bonds. Within each panel, the top
row reports the risk-neutral parameters for the 3 latent factors of the model, with the
top-left submatrix of Φ∗ given by equation (12). The second row of each panel reports
the risk-neutral parameters that pertain to the repo side of the model. The third row
of each panel reports the Cholesky decomposition of the variance covariance matrix, Σ
for each each model after estimating a VAR on the factors.

Panel A: 3- and 4-Factor Models

δ0 φ∗1 φ∗2 φ∗3 ρ σx

7.92e-05 0.999 -3.12e-07 1 0.858 0.00534

µ∗ Φ∗BL Φ∗BR

-0.0189 -1.56e+05 64.1 661 -0.947
Σ

4.3e-09
-2.64e-06 1.73e-06
-1.28e-07 2.58e-07 5.78e-07
-0.000111 4.16e-05 1.89e-05 0.00109

Panel B: 5-Factor Model

δ0 φ∗1 φ∗2 φ∗3 ρ σx

4.31e-05 0.999 -2.63e-07 1 0.741 0.000334

µ∗ Φ∗BL Φ∗BR

2.3e-05 0.011 -6.68 0.0378 0.489 0
0.158 6.46e+05 659 -1.04e+03 -2.95 -0.942

Σ

4.08e-09
-2.42e-06 1.6e-06
-2.98e-07 2.12e-07 8.48e-07
-1.93e-05 9.67e-06 -1.15e-05 0.000296
-0.000147 3.69e-05 2.37e-05 0.000268 0.00103
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Table 3. The table reports regression results from estimating ηi,t = αi + β1y
i
t +

β2ηi,t−1 + ξi,t, where ηi,t are estimated from equation (11) with the 3-factor model
ignoring all special spreads, and the special spread yit is defined in equation (4). Special
spreads in the regression are annualized, and the price residuals are in percent of par
value. The table reports t-statistics, clustered at the CUSIP level, in parentheses. The
first two columns do not include CUSIP-level fixed effects, while the third and fourth
columns do.

yit 0.644** 0.0344*** 0.532*** 0.0599***
(2.478) (3.067) (3.461) (4.220)

ηi,t−1 0.951*** 0.893***

(136.4) (104.1)

Observations 139,219 138,907 139,219 138,907
R-squared 0.003 0.908 0.004 0.802
CUSIP FE NO NO YES YES
# of CUSIP 312 312

t-statistics in parentheses, clustered at CUSIP level
*** p<0.01, ** p<0.05, * p<0.1
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