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Abstract

In this study we extend the analysis of Baillie, Bollerslev and Mikkelsen
(1996) and Bollerslev and Mikkelsen (1996) on the estimation and identi-
fication problems with a FIGARCH specification for the conditional vari-
ance. We first deal with the stationarity issue, then we show that the well-
known Lee and Hansen (1994) proof for consistency of GARCH(1,1) quasi
maximum likelihood estimators cannot be extended to the FIGARCH
case, therefore we suggest an alternative approach. We show then the
power of different information criteria in distinguishing among short and
long memory specifications for the conditional volatility. In the same sit-
uation traditional tests for residual correlation and ARCH effects fail to
discriminate across models.

Keywords: FIGARCH, long memory, identification.

1 Introduction

With the availability of high frequency data for financial markets analysis there
has been an increase in studies dealing with the persistence of shocks both on
the mean and on the variance of financial instrument returns. There were also
numerous findings of persistence in financial markets, in particular in the volatil-
ity, see among others, Breidt, Crato and De Lima (1998). Starting from these
points Baillie, Bollerslev and Mikkelsen (1996) introduced a new process, the
FIGARCH, generalizing the well known GARCH to allow for persistence in the
conditional variance. They presented a detailed Montecarlo analysis showing,
empirically, the consistence and asymptotic normality of the quasi maximum
likelihood estimators for the parameters of interest, giving also some insight in
the theory, suggesting that the Lee and Hansen (1994) proof for consistency of
GARCH(1,1) could be easily extended to the FIGARCH case. Moreover in a
second paper by Bollerslev and Mikkelsen (1996), another Montecarlo study is
presented, dealing in that case with the identification of FIGARCH orders.



In our study we will extend these analysis in different directions: at a first
stage, section 2, we introduce the FIGARCH model, as an extension of the
IGARCH, mentioning another formulation, due to Chung (2001), slightly dif-
ferent from the one of Baillie et al. (1996), in that section we will also deal
with the stationarity and ergodicity of FIGARCH. We consider then the esti-
mation problem in section 3, showing that the Lee and Hansen proof cannot
be used in the FIGARCH context, and we suggest an alternative approach due
to Jeantheau (1998). In the last part of this study we will present a detailed
Montecarlo analysis, showing the power of different identification criteria and
tests in discerning between long and short memory in conditional volatility. We
will show that, on a long memory data generating process, the information cri-
teria of Akaike, Hannan-Quinn, Shibata and Schwarz can clearly identify long
memory but cannot help in specifying the orders of the process. With the same
approach we show that the traditional tests of normality and for the presence of
autocorrelation and ARCH effects, when applied to the standardized residuals,
fail to discriminate among short and long memory processes, and are therefore
useless in the identification analysis.

2 The FIGARCH processes

In this study we assume, unless differently specified, that the following repre-
sentation hold for the mean process:

Yo = My T €t (1)

where for simplicity u, = 0, I'~! represent the information set up to time ¢ — 1
and g|I'"™1 ~ iid (O,U%): the mean is assumed to be zero and the residuals,
conditional to the information set up to time ¢t — 1, are identically distributed
with mean zero and time-dependent variances.

Following Engle (1982) and Bollerslev (1986) we specify a GARCH(p,q)
model for the variance, that is:

Et = Zt0¢ (2)
where E [%|I'"™'] =0, Var [%|I'"'] =1 and oy is defined by
o} =w+a(L)ef +B(L) o} (3)

where L is the lag operator, a (L) = Y7, a;L', (L) = >0_, 8;L7. The
stationarity of this process is achieved when the following restriction is satisfied:
a(l)+8(1) < 1.

Defining v, = €7 — o7 this process may be conveniently rewritten as an
ARMA (m,p) process

[1—a(L)=B(L)]e =w+[1-B(L)]v (4)



with m = max {p, ¢}. From this formulation, allowing for the presence of a unit
root in 1 —a (L) — B (L), Bollerslev and Engle (1986) defined the IGARCH(p,q)
process:

1-L)o(L)ef =w+[1-B(L)] v (5)

where ¢ (L) = ZZ’;I ¢; L' and is of order m — 1. For a comprehensive sur-
vey on GARCH processes, refer to Bollerslev, Engle and Nelson (1994). Even
if flexible, and with numerous extensions to include particular characteristics
found in the markets, such as asymmetric behavior, switching regime and news
impact, GARCH processes are not able to adequately explain the various find-
ing on persistence (or long memory) in the volatility of financial instruments
returns. With persistence we refer to the slow decaying of the autocorrelation
function of a time series: in case of persistence, or long memory, the usual ex-
ponential decaying, typical of an ARMA representation, turn to a much slower
hyperbolically decaying. The first works in this field were the one of Granger
and Joyeux (1980) and Hosking (1981) who introduced the ARFIMA processes.
This long-memory model is represented as:

(1-L)*® (L) (2 — p) = O (L) & (6)

where the usual AR and MA polynomial are used ® (L) = 37, ¢,L%, © (L) =
23:1 0,L", with the standard restrictions on parameters to ensure stationarity
and invertibility of the process. The main difference is in the integration pa-
rameter, d, which here is allowed to assume values in R. In this situation the
integration operator (1 — L)d may be factorized as follow:

(1-L)*= imLZ’ (7)
1=0
k—1—-d
m= 1] ——

0<k<i

Stationarity and invertibility of the process are obtained constraining d to the
range (—%,%), while long memory is attained only in the positive region of the
previous range. Moreover as the d parameter tends to the upper stationary limit
the memory (the correlation with past observations) of the process increase.
For a general stationary ARFIMA(p,d,q) process the following relation hold as

k— oo
py, ~ CE**1 (8)

that is, the autocorrelation function is approximate by a constant C' > 0 that
may depend on the parameters of the model but not on k, and by an hyperbolic
term. The convergence to zero of this autocorrelation is slower than in the
ARIMA processes. Using a parallel with ARMA and ARFIMA processes Baillie
et al. (1996) extended the IGARCH case allowing the integration coefficient



(here previously restricted to the usual dichotomy {0,1} to vary in the range
[0,1]. The FIGARCH(p,d,m)! process is defined as follow:

1-L)¢(L)e} =w+[1— B (L) v 9)

where ¢ (L) = 7" ¢, L7 is of order m — 1. Baillie et al. (1996) claimed that,
extending the arguments of Nelson (1990), the FIGARCH(p,d,m) process, even
if not weakly stationary is ergodic and strictly stationary. Unfortunately this is
not so easy to verify, we will deal with this problem in a following subsection.
Its major feature is connected with the impulse response analysis, which have
in this case an hyperbolic decay, typical of long memory models. This mean
that the impact of the innovation lie between the exponential decaying, typical
of any GARCH, and the infinite persistence, typical of any IGARCH. Davidson
(2001) gave some insight on the memory properties of the FIGARCH, point-
ing out that the degree of persistence of the FIGARCH model operate in the
opposite direction of the ARFIMA one: as the d parameter get closer to zero,
the memory of the process increase. This is due to the inverse relation between
the integration coefficient and the conditional variance: the memory parame-
ter act directly on the squared errors, not on the o2, this particular behavior
may also influence the stationarity properties of the process, again Davidson
(2001). These observations are strictly related to the impulse response analysis
on the effect of a shock on a system driven by a FIGARCH process. In such a
system a shock in time ¢, should be interpreted as the difference between the
squared mean-residuals in time ¢ and the one-step-ahead forecast of the variance
of time ¢, made in time ¢ — 1. This shock is exactly the innovation in the ARMA
representation of the FIGARCH process, that is
-1

S=w+1-8L)[a-L"eD)] v (10)

The shock may be also interpreted as an unexpected volatility variation, or,
as the forecast error of the variance (remember that the squared residuals are
a proxy for the variance and that the time ¢ variance depend on time t — 1
information set and may be viewed as a one-step-ahead forecast). Rearranging
the FIGARCH equation as in Baillie et al. (1996), expanding the polynomial in
the lag operator, it is easy to see that the coefficient of this polynomial converge
to zero at a rate O (j’dfl) this mean that the memory of the process increase
ad d gets closer to 1 (Baillie et al. (1996) obtained the wrong sign claiming the
same memory property valid for the ARFIMA).

Analyzing in detail ARFIMA and FIGARCH processes Chung (2001) noted
that the claimed parallel between the two was not complete: in the ARFIMA
case the long memory operator is applied to the constant but this is not true
in the FIGARCH model; then in ARFIMA processes d € (f%, %), while in
FIGARCH d € [0,1]. In his work Chung suggested an alternative parametriza-
tion: starting from (4) we can rewrite the GARCH(p,q) using the value of the

1Here we prefer using m instead of ¢, as BBM, BM and CH do, to avoid possible confusion
in the orders of the process: m refer to the order of ¢ (L) while ¢ refer to 8 (L)



unconditional variance 02 = w/ (1 — a (1) — 8(1))?as:

[1—a(l)-BWL) (g —0®) =[1-B(L)] v
and from this equation the alternative formulation is straightforward:

(L=1)"¢(L) (s — 0°) = [L = B(L)] v, (11)

However, in this formulation, the interpretation of the parameter o2 is not

clear: does it represent the unconditional variance as claimed by Chung, or
is simply a constant for the squared observations? In this work we will not
pursue this point. In his work Chung presented also some Montecarlo results
exploiting the different convergence rates of estimators of d above and below the
cutoff value of % For a more comprehensive discussion on the parametrization
and on the structure and behavior of the models refer to the cited paper of
Chung (2001). In the remainder we will refer to (9) as FIGARCH T or simply
FIGARCH and to (11) as FIGARCH II. The two processes can be conveniently
rewritten, exploiting the relation v; = €7 — 0%, respectively as:

ot =w/N-pM+{1-0-8@I" 0 -D'em}d  (12)

ot =o+{1-[1-BL) " (1 - D)6 (D)} (- ?) (13)

sometimes these equations are referred as the ARCH(co) representation. In
both FIGARCH I and II, parameters have to fulfill some restrictions to ensure
positivity of conditional variances. Here we present the two different sets of
sufficient conditions, valid for the FIGARCH(1,d,1), suggested, respectively, by
Baillie et al. (1996) and Chung. As noted by Chung (2001), both sets are
admissible for FIGARCH I and II, however they are not equivalent and there
may exist a set of parameters value that satisfy one set of conditions and not
the other. Baillie et al. derived a group of two sets of inequalities

G- < <220 (14)

d(o-157) < BU-B+0)

while Chung express the restriction with a unique set
0<¢<f<d<l (15)

Restrictions for lower order models can be derived directly from the one pre-
sented, while for higher order models restrictions on parameters cannot be so
easily computed and are not presented.

2From the ARMA representation of GARCH model E? = 17‘1(1“)’75(1) + 17&&’[;(7[’;(”1),5

and taking axpectations on both sides we get the value of the unconditional variance




3 Stationarity of FIGARCH I and II

Baillie et al. (1996) were quoting Nelson (1996) for proving the stationarity of
the FIGARCH model they proposed, but only limited to the case p = 1 and
m = 0. They claimed that stationarity could be verified with a dominance type
argument between the sequence of coeflicients of the ARCH(c0) representations
of the FIGARCH(1,d,0) and of an appropriately chosen IGARCH(1,1). However
as noted by Mikosch and Starica (2001) this ”proof” is questionable: how can we
bound an hyperbolically decaying sequence of coefficients with an exponential
one? This way seem therefore inapplicable. Some insight on the stationarity of
this model is due to Davidson (2001) who pointed out that some of the particular
relations that hold for FIGARCH may be due to the inverse memory relation.
Again referring to Mikosch and Starica (2001) we want to stress an ambiguous
point in the Baillie et al. (1996) work: they were defining the FIGARCH model
using the ARMA formulation of a general GARCH and then imposing a long
memory integration operator (1 — L)d, however this methodology in not com-
pletely correct since in this derivation the innovation process v; depend on the
process we are trying to define, therefore we are building a noise sequence that
depend on a process defined using that noise sequence! Moreover the ARMA
formulation of a FIGARCH process can be derived once a stationary solution
is given. The best way to define a FIGARCH model seems therefore the use of
a much general approach or formulation, in detail the ARCH(c0) processes, as
defined by Robinson (1991):

op =T+ Z Preii (16)
k=1

The FIGARCH structure can be imposed with an adequate formulation of the
coefficients in the infinite ARCH expansion. Given this representation the sta-
tionarity of the FIGARCH processes can be proved recalling the stationarity
conditions for a generic ARCH(o00) process and trying to figure out if the coeffi-
cient structure of the FIGARCH can meet this requirements via its ARCH(o0)
formulation. The main works in this area are the one of Giraitis, Kokoszka and
Leipus (2000), Kazakevicius and Leipus (1999 and 2001), and Zaffaroni (2001).

The first paper, Giraitis et al. (2000) present a condition for the existence
of a stationary solution of an ARCH(oc0) process, giving the following theorem:

Theorem 1 (rearranged from Giraitis et al. (2000), page 6, theorem 2.1):
given €, = zoy and (16), a stationary solution with finite first moment E (&)
evist if E(2}) < oo and E (2}) Y 52 vy, < 1. If the constant T = 0 unique
stationary solution is e, = 0. If B (zf) < o0 and [E (zf)]l/Z Sore W <1 the
stationary solution is unique. (See the cited paper for the proof).



The stationary solution follow a Volterra series expansion of the form

oo oo
2 2 2.2 2
€t = th Z Z wl—hlwhl—hg ..... ,(/)hlfl_hlzl Zhl ..... Zhl (17)

=0 hi1<ha<..... <h;<l

This formulation impose a moment condition on the square of the observations
and rule out long memory a priori, in fact for any value of d, we have: (1 — L)d =
Z;io i (d) =1+ Z;‘;l 7; (d) = 0. Therefore this result is inapplicable in our
case. An extension of this methodology is due to Kazakevicius and Leipus
(1999 and 2000), who reformulate the existence and stationarity conditions for
an ARCH(oo) in a form similar to the one given by Bougerol and Picard (1992)
for the GARCH(p,q) model, that is using a top Lyapunov exponent ~, defined
as follows:

v = nlggo nlog || A Ag..... A, || (18)

where the matrices A; depend on the parameters and on the structure of the
process (see the cited papers for an example). The main result of Kazakevicius
and Leipus (1999) is summarized in the following theorem:

Theorem 2 (adapted and rearranged from Kazakevicius and Leipus (1999)):
given gr = zioy and (106), if E(log zf) 1s well defined v < 0 is a mecessary
and v < 0 is a sufficient for the existence of an ARCH(o0) process. If for any
strictly stationary sequence (h;,i > 1) of non-negative random variables such
that Y2, ¢;h; < 0o we have

nh_)rrgo Z Yihi =0 as.
i=1

and the top Lyapunov exponent 7y is negative then (17) is the unique strictly
stationary solution. If v = 0 there is no solution at all. (See the cited paper for
the proof).

In this theorem there are no moment conditions on the standardized errors
but there is an integrability conditions and a limit condition on the coefficients
of the ARCH(c0) expansion. This result was then used by Kazakevicius and
Leipus (2000) to assess the existence and stationarity of the FIGARCH model.
The main result is in the following theorem:

Theorem 3 (adapted and rearranged from Kazakevicius and Leipus (2000)) If
a) E|log z}| < oo and b) for some k > 1 we have Y 2, 1;k" < 0o then the top
Lyapunov exponent vy is strictly negative, therefore the ARCH(o0) exist as well
as a stationary solution. If assumption b) is not satisfied the Lyapunov exponent
18 identically equal to zero.

Assumption b) simply require that the coefficients of the ARCH(co) decay
at an exponential rate, when this is not the case, as in FIGARCH, the existence



of the ARCH(o0) as well as of a stationary solution become questionable. At
the end of this excursus among this first group of papers we want to stress a
point: the condition for the existence of a stationary solution, imposed through
a Lyapunov exponent is a necessary one, therefore a possible less restrictive
condition, a sufficient one, may exist. The results of the previous papers did
not considered a general approach but came to the FIGARCH analysis only
indirectly, imposing conditions that are not fulfilled by FIGARCH processes.

We will now analyze the results of Zaffaroni (2000) to prove the strict sta-
tionarity and ergodicity of FIGARCH(p,d,m). The proof is really a corollary to
the following theorem of Zaffaroni. Given this setup:

consider the ARCH(c0) model of (16), then if we assume that v = E (In 27)
is well defined (even unbounded) and we set

1 0
_J) 2 7 <
A—{sw;&) 4 <0

for any constant 6 > 0 we have the following

=M
Theorem 4 Zaffaroni 2000, Theorem 2, page 6) Let 3 n = 224:1 Vg, Y. =

Srenip1 Uk & = E(2}). Assume that a) 0<t<oco and b) for at least one
0<M<o

A <M
max[eZM—&—mZ ,ez +KZM]<1

then for the ARCH(c) model, for any t, 7 < 0? < 00 a.s. and o3 is strictly
stationary and ergodic, with a well-defined nondegenerate probability measure
on [1,00). Sufficient conditions to satisfy assumption b) are

o9} o9}
AY <l wY P <1
k=1 k=1

and ¥yb; > 0 for at least two k # j.

Proof. See Zaffaroni (2000). m

The power of this theorem is that it does not require any moment condition,
apart the integrability condition on the squared residuals as in Kazakevicius
an Leipus (1999, 2000), moreover it does not require any strict condition on
coefficients allowing mild explosive behaviors as well as hyperbolic decaying.
Given this result we can restate the following

Corollary 5 (adapted from Zaffaroni (2000) Remark 2.2) For 0<d<l1, ¢>0,
p>0 and with adequate restrictions on coefficients that ensure positivity of con-
ditional variances, the FIGARCH(p,d,q) I and II are strictly stationary and
ergodic if y=FE (ln zf) < 0.



Proof. for both (12) and (13) we have the following polynomial for the
ARCH(00) representation of the models

MD) =1-[1=8L) " 1-L)"¢(L) = Z/\kLk

if the coefficient satisfies restrictions that ensure positivity of conditional vari-
ances A\, > 0 Vk, and positive for at least one k > 1, 0 < w/[1 — G (1)] < o0 or
0 < 02 < co. Then noting that

d 7
(1-1L) ‘Lzl .
=0

=0

L=1
since mg =1, m; < 0 Vi > 0 and limy Zle m; = —1. So we can write
A= N=1-[1-30) o) m =1
i=1 =0

Using then the fact that v < 0 and plugging in the condition of Zaffaroni /2 < 0
we have

67/22)%:67/2 <1

i=1

this complete the proof. m

We can note that the FIGARCH(p,d,m) is strictly stationary and ergodic
under the assumption of normality of the standardized residuals, this can be
easily proved by the strict concavity of the log function using Jensen inequality.
We want to stress now another point: in GARCH processes is of common use
the assumption that the standardized residuals follow a Student distribution,
this to capture the fact that the tails of the empirical distributions of financial
market returns are thicker than in the normal case. Under the assumption
of a T-distribution for z; we have to check the condition F (ln 2,2) < 0, to
prove the strict stationarity and ergodicity of the FIGARCH. The square of a
T distribution with n degrees of freedom follow an F(1,n) distribution. The
evaluation of the expected value was carried out numerically, and the results
show that increasing the degrees of freedom, the expected value converge to
zero but from above. From this we can state that the FIGARCH(p,d,m) is not
strictly stationary under the assumption of a T-distribution for the standardized
residuals.

Turning now to the analysis of the FIGARCH specification suggested by
Chung (2001): in this case, given the structure of the model we can rewrite it
as

of = =g -0+ {1-1-8W] " 1= o(1)} e} =
= {1-n-sawyta-plewm}e



given the relation (19). This violate one of the assumptions of the Zaffaroni’s
theorem, the presence of a positive constant and the result cannot be applied. In
this situation the previous work of Nelson (1990) shows that the only stationary
solution when the constant is null is that the conditional variance itself is null.
This result was also derived by Giraitis, Kokoszka and Leipus (1998). This was
not noted by Chung (2001), but probably could be observed in a well defined
Montecarlo experiment, simulating a long time series reducing in such a way the
effect of truncation in the ARCH(o00). In fact we suppose that the approximation
induced by the truncation create a stationary solution as in an ARCH(p) model
with very high p.

Again referring to Zaffaroni (2000), a direct application of Theorem 3, page 9,
show, using previous results, that FIGARCH(p,d,m) is not covariance stationary
as IGARCH processes.

4 Estimation of FIGARCH models

In this work we mainly refer to previous analysis and different papers for sim-
ulating and estimating techniques, concentrating on their asymptotic behavior,
showing the inapplicability of the well known Lee and Hansen proof.

The main problem in obtaining a simulated realization of a FIGARCH pro-
cess is related with the long memory component. In fact its infinite representa-
tion require a necessary truncation in the recursive formulae derived from (12)
and (13). Following Baillie et al. (1996), Chung (2001) and Teyssiére (1996)
we will mirror to some extent their simulation and estimation procedure, in-
troducing for the simulation of a FIGARCH model (case I), some initial values
and setting them to the constant, as it appear in equation (12). For the simu-
lation of a series of length T', we will generate 2000 + T' observations, to avoid
dependance from initial values. In the estimation procedure we have to intro-
duce a truncation given that we will use the ARCH(o0o) representation for our
purposes. In this framework there are two different approaches: the first ap-
ply a fixed truncation value say m, for the whole series, while an alternative is
to use all data point available, so with an increasing truncation point. Baillie
et al. were suggesting the use of a truncation value set to 1000, while Chung
was considering the whole information availbale. In this study we will follow
the approach of Chung, because by this method all the available information is
used.

For the estimation of these kind of processes the mainly used technique is
the Quasi Maximum Likelihood, maximizing with respect to the parameters of
interest the following log-likelihood function:

1 e
Qe s 1) = —log(2m) — 23" [logad +2/of] ()

t=1

where T is the sample size, o7 follow in this study either (12) or (13), and 6
represent the set of parameters. We will also refer, as normal practice in this

10



field, to e;/0+ = 2 as to the standardized residuals. In estimating the different
models we will use a truncation value equal to the information set, as in simu-
lation, and we will introduce with our FIGARCH DGP a pre-sample equal to
the sample variance of ;. The QMLE follow asymptotically a normal distri-
bution with variance-covariance matrix dependant on the Hessian of parameter
estimates and on the cross product of gradient at the optimum. In this work
we refer to the QML formulation given by Bollerslev and Woolridge (1992), the
same used by Baillie et al. in their paper, for comparability of results.

Baillie et al. (1996) claimed that the result of Lee and Hansen (1996), which
shows the consistence and asymptotic normality of the QMLE for IGARCH(1,1)
processes, ”...extends directly to the FIGARCH(1,d,0) model through a dominance-
type argument...”, unfortunately this is not correct. Taking the lemma num-
bers as in Lee and Hansen, the cornerstone of their proof is in the possibility of
bounding the ratio between the conditional volatility computed with the true
parameters and the one computed with the estimated parameters. This is es-
tablished in Lemma 4.(4) and 4.(5). This result is then used repeatedly to assess
boundness of other ratios between conditional variances and then of their ex-
pected value used to prove the boundness of the likelihood function. The point
is that lemma 4.(4) is no more valid with a FIGARCH(p,d,q) DGP, resulting
in an unbounded ratio. We will go through the Lee and Hansen proof to verify
this claim, to avoid confusion we will maintain their notation

Lemma 6 (Lee and Hansen Lemma 4. page 34)
2
(4) If B< By, 26 < Ky = 25 + & < 00 as.

00%

2
(5) If B> By, <26 < H, = %8 + 28 < 00 a.s.

00% w

where .07 represent the conditional variance with the estimated parameters
and o7 the true conditional variance, whose parameters are denoted by wg and
«g , while for estimated parameters Lee and Hansen derived a bound depending
on the upper (lower) limits of the compact parameter space w,, and a,, (w; and
ay). Moreover they also splitted the parameter space for the 8 deriving two
bounds depending on the relation between the estimated and the true value.
This result is then used in deriving the bounds used in verifying the boundness
of likelihood function and then for consistency and asymptotic normality. This
result is therefore necessary for all the proof, and we are going to plug in the
demonstration the FIGARCH(1,d,0) instead of the GARCH(1,1).

Proof. we can go through the proof both using the standard FIGARCH
representation or with the ARCH(oco) formulation. Both formulation are equiv-
alent, and we present counterproof of non-consistency using the two represen-
tations. Start with the standard one, plugging it in Lemma 4.(4)

o7 w+Bof_y +(d=B)efy + 32, (-mi)ef,

007 wo+ Poi_y + (do—Bo) ety + Doy [—mi (do)] €2,

where we dropped for convenience the subscripts of the conditional variance.
Substituting now repeatedly the conditional variance with its expression, back

11



to the past infinity, we get the following representation

eo'?: ﬁ"’(d_ﬂ)zZ oﬁgt 1l+zjo»ooﬂjz4'

007 729+ (do — Bo) 2272 20 B0t 1 + 250 ® 0 804

where Aj =327, (—m;)e;_;_; and Aj =3, [~ (do)] e7_;_;- Using the fact
that all quantities are positive we can rewrite as

07 w 1=,  d-§ w(_) ( >_J
oUgél—ﬁ wo +d0—5oz Bo +Z Bo) A

focus now on the last term in the formula

ﬁ _ ZSOZ(_TH)E? i—j <Z
Aj Ziﬂ i (do)] Et imj i 27& do

using again the fact that all terms are positive. Noting that for large M we can
use the Stirling approximation on the coefficients we have

T (k- d)
T(—d)T(k+1)

then from the last summation

T = ~ kT for k> M

o~ T o o
E . ! do—d
— mi(do) = Z.;\; ;i (do) Ni;; —do—1 E :Z T =00

Last equality follow from the fact that for dy > d we have a succession of
term greater than 1, diverging to infinity, for dy < d we have a generalized
harmonic succession again diverging. The approximation may be taken as closed
as required, but the important point is that this imply that

A 2

Rl AN AN

2
j 00%

and we cannot so easily bound the ratio as in Lee and Hansen. This result
may be interpreted reasoning on the asymptotic decaying of the coefficients. In
the GARCH(1,1) case coefficients decay exponentially to zero, while in the FI-
GARCH(1,d,0) the convergence is hyperbolic, so a dominance type argument,
such as in the claim of Baillie, Bollerslev and Mikkelsen cannot be used, we
cannot dominate an hyperbolic decaying succession by an exponentially decay-
ing one, since we can always find a point in which the exponential cross the
hyperbolic one and stay below in the infinity. This show the first possibility,
but Lee and Hansen carried out the proof using the ARCH(c0) formulation, the
same Baillie et al. (1996) were referring to in their paper. Since both represen-
tation can be obtained one from the other, the result does not change. Using
ARCH(00) formulation we have

cof 15t Doy A€l
007 1%)5_0 + Y2 Ai(do) €7,

12



where A (L) =1 — {(1 - L)' (1 - L)d} and using positivity of all coefficients
and quantities we have
2

0t w 1-5 - i
7 < +;)\i(d0)

00f — 1=08 wo
and we focus on the terms of the last summation

)\i)(\zlo) - Z (ﬁ%) ﬁ

Jj=0

the evaluation of the ratio between the coefficient of the long memory integration
part can be carried out only defining the relation between the true value of
d and its estimate. Observing Figure 1, that plot the coefficients ; (d) for
d € (0.01,0.99) and 7 = 2,3...1000, we can deduce that

a) Tr]_’zau)>1 $<d<dy<1
b) w:-féo)<1 1<dy<d<1
c)ﬂj’zau)>1 0<d<dy<i j—i>M
d) 775 <1 0<dg<d<yj j—i>M

then for case a)
@) e B @04
32:(:) </Bo mj—i (do) - =0 Bo [ Bo L Bo
and plugging back
o] /\z - ﬁ —1 oo B <ﬁ>z B
Z X (do) {1 /30] : [1 6) |~

=1

and the ratio cannot be bounded.

For case b)
> () =S (@) =@ b4l
Srtwslal S-(5)]-

again an unbounded relation. Cases ¢) and d) are a bit complex, in fact the
relation showed are true only after M coefficients, the previous M-1 have the
inverse relation. But we can find such M, for which the following relations hold

S (2) e 5 () 2 (D) ()]

7=0 J=M+1
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using the same substitutions as before, and where the last relation depend on
cases ¢) and d). Then using

=N = i
Z Ai (do) = . Z Ai (do)

i=1 """ i=M+1

and plugging back we are in the same situation as in case a) or b) obtaining an
unbounded relation for case ¢), while for case d) we have

> s
i=M+1 Ai (do)

) )\i
Z Ai (do)

i=1 7"

%

a bound may exist but cannot be found by this way. m

Given that Lemma 4.(4) of Lee and Hansen is not consistent with FI-
GARCH(1,d,0), then following their proof alsoLemma 4.(5) and Lemma 6.(1)
give non-bounded relations. Therefore we cannot split the parameter space as in
page 35 and Lemma 5, 7 and 8 are no more valid, breaking down all the proof for
the consistence. Moreover also the proof of asymptotic normality break down
because is built on the bound used to prove the consistence. A similar result
can be obtained also for the FIGARCH(1,d,1) with a non-bounded solution for
likelihood function ratios.

Given that this approach cannot be pursued for the proof of the consistence
of the QMLE for FIGARCH, we follow the works of Jeantheau (1998) that
suggest a different set of conditions that imply consistency of QMLE. Here is
the set of assumptions required by Jeantheau and the theorem:

1. Compactness: © is compact

2. Ergodicity: V8y € © the model considered admits a unique strictly sta-
tionary and ergodic solution

3. Lower bound: there exist a deterministic constant ¢ > 0 such that Vt, V6, €
0,02 >c

4. Logarithmic moments: V8, € ©, Ey, Hlog (af) H < 00

5. Identifiability: the conditional variance is such that V6 € ©,V6, € ©, 07 ()
U% (90) a.s. = 0= 90

6. Continuity: the conditional variance is a continuous functions of the pa-
rameters

Theorem 7 (Jeantheau 1998, page 72, theorem 2.2)
Under assumptions 1-6, the QMLE of the parameters is strongly consistent,
that is to say

~  T—oo
Or  — 0y a.s
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Under the FIGARCH DGP: assumption 1 is common in GARCH framework
and is embodied in the restrictions that ensure positivity, we have only to add an
upper bound for the constant; assumption 2 and 3 are derived by the corollary
to the theorem of Zaffaroni; assumption 6 depend on the structure of the model
and is also satisfied. There remain to prove only assumptions 4 and 5, for the
first we state the following result, while for the identification we assume it a
priori:

Lemma 8 If 0? follow a FIGARCH structure, w + 3 > 1 and the model is
correctly identified, Ep, Hlog (0’%) |] < o0

Proof. Considering that

o? = ﬁ + i hig2
under the assumption that w4 8 > 1 we can write
o7 > 1 —log (07) = 0 — Ey, [|log (07)|] = Es, [log (07)]
then we have
Ey, [log (07)] < log Eg, [07]

and given that

oo o0 o0

w - w w
7= Tt AN = T g 2N LA D Ao et =

=1 i=1 j=1
2 ~ iidN (0,1) — 22 ~didx* (1) — E [22] = 1

=1

we can therefore prove

oo

Ey, [af] :Zﬁzoo

Ey, [log (07)] <log Ey, [07] = o0

|
So we have verified the 4th condition, we cannot find the upper bound but
only say that the logarithmic moment under a restriction on the parameter space
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and the assumption of normality of standardized errors is finite. Assuming that
the model is correctly identified we have also the condition 5, and the theorem
of Jeantheau hold.

We showed consistency in a constrained region for the QMLE estimator, a
complete proof, removing the hypothesis on admissible parameter space in not
available at the moment. Another important point must be specified: Jeantheau
theorem deal with pointwise consistency, not with uniform consistency, given
that he used in the proof a pointwise uniform law of large number to show
convergence of the estimator. A more general proof of consistency necessary
need a generic uniform law of large numbers that will ensure convergence to the
correct parameter set in the whole parameter space.

5 The identification problem

In this section we deal with the identification problem. Given a real time series,
whose conditional variances appear to be time dependent, possibly showing also
long memory, how can we choose the best parametrization? In this introductory
part we define criteria and tests that will be used in the following experimental
analysis.

Information criteria are a well known method for model identification and
specification. Even if they are constructed with different approaches their struc-
ture is at the end very similar. All are based on the maximum likelihood eval-
uated at the optimum, and on a penalization term that depend on the number

of parameters and on sample length. Defining Q (5, {st}tzlmT) as the QML

evaluated at the optimal point 5, T as the sample length and k as the number of
parameters in the specification used, the four information criteria we use have
the following representation®:

. Qf9§{5t}t:1... ) k
Akaike IC —2 T + 24

Hannan-Quinn IC 72Q(0;{Et;}:1--1) + leog[?g(T)]

Schwarz 1C _2Q(95{8f%t=1...T) + 210g7£k)
Shibata IC _QM +log (T;Zk)

As we can see the only difference is in the penalization term. One point arise:
all these information criteria are built in general models, and with general as-
sumptions, but can we apply them in presence of conditional heteroskedasticity?
The answer comes from the work of Sin and White (1996) who provided gen-
eral sufficient conditions on the penalization term, that guarantee the correct
selection of the model choosing the with the lower information criteria.

3 Akaike (1973), Hannan-Quinn (1979), Schwarz (1978) and Shibata (1980)
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In this study we will also make use of different tests: for normality, corre-
lation and ARCH effects. All of these tests are performed on the standardized
(SR) and/or squared-standardized residuals (SSR):

SR = 2=

(21)

SSR = 32

For normality we will compute, on SR, the Jarque-Bera normality test, whose
distribution, under the null hypothesis of normality is a x? with 2 degree of
freedom. This test is based on sample skewness and kurtosis of SR, with the
following equation:

JB = =

T 3

(@)+9%§ﬁwax%m (22)

where T is the sample length, fi; and fi, are respectively sample skewness and
sample kurtosis.

The tests for the presence of correlation are ran both on SR and SSR, using
the Box-Pierce Q-statistic. This imply the computation of empirical autocor-
relations up to an order [, on which the test will be based. Under the null
hypothesis of no correlation the test based on [ autocorrelation is distributed as
a x2 (I — k) where k is the number of parameters of the specification. The test
has the following equation:

l

_ T pSR(Z) o2 —
U = T T -k (23)
I . .
Ql2 — T PSSR (7’) N X2 (l . k')

T—&—Qi:lT—l—i

and pgp (1) [pggr ()] are the sample autocorrelations of [squared]standardizes
residuals.

Finally for testing on the presence of residual ARCH effects we use the Engle
lagrange multiplier test (LM). This test is based on a regression of squared
residuals on its lags up to a value [. Under the null hypothesis of no ARCH
effect the LM statistic is again distributed as a x? now with [ degrees of freedom.
Given a regression on squared standardized residuals:

!
z = o + Z iz (24)
i=1

the test statistic is computed using the R? of this regression, as

LM, = TR* — \*(I) (25)
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Lets now turn to the basic aim of this study: that is to verify the power of
information criteria and of a group of tests in distinguishing between short and
long memory in conditional variances. We will also try to verify the ability of
these procedures in discriminating the orders of FIGARCH specifications. This
analysis will be executed with a Montecarlo approach. We will deal with eight
different data generating processes, according to the following table

Table 4.1 - Simulating DGP

DGP wl w d J6] 10}
FIGARCH(1,d,1) [ 0 [ 0.01 | 0.8 | 0.5 0.3
FIGARCH(1,d,1) | 0 | 0.01 | 0.8 | 0.5 0.05
FIGARCH(1,d,0) [ 0 [ 0.01 | 0.8 | 0.5 0
FIGARCH(0,d,0) [ 0 [ 0.01 | 0.8 0 0
FIGARCH(1,d,1) [ 0 [ 0.01 | 0.4 | 0.3 0.2
FIGARCH(1,d,0) [ 0 [ 0.01 | 0.4 | 0.3 0
FIGARCH(0,d,0) | 0 | 0.01 | 0.4 0 0

GARCH(1,1) 0({001| 0 |0.65]|0.3(«)

Where the models follow these specifications:

Yo = pte
FIGARCH — o?=w+ [1 —(1-8n) 1 -Da—eL)| e
GARCH — o?=w+ for | +as?

As you can see we have chosen two different values of the long-memory coeffi-
cient, combining these with adequate values of the other parameters that satisfy
the positivity restriction. The choice of these two levels was done to verify if
there are differences between DGP with long memory below 0.5 or above. In
fact Chung (2001) reported a different rate of converge of the QMLE for the pa-
rameter d, depending on this cutoff value. For each model three sample length
are analyzed: T=500, T=1000 and T=2000. This in order to verify the consis-
tence of the identification analysis. Moreover for each model 1000 replications
are run. We will now describe the different steps of the algorithm we used. At
a first stage a return series is simulated, according to a GARCH, IGARCH or
FIGARCH data generating process for its conditional variances, as in table 3.1,
in all cases the mean of the returns is assumed to be identically equal to zero.
The simulating algorithm generate for each series t4+2000 observation, saving
only the last T, this to avoid dependence from initial values and to reduce at
a minimum effect the approximation induced by truncation in the ARCH(o0)
representation (this only for FIGARCH DGPs). Then, on each simulation trial,
five different models are estimated: FIGARCH(1,d,1), FIGARCH(1,d,0) FI-
GARCH(0,d,0), GARCH(1,1) and IGARCH(1,1). We used the optimization
routine included in the FANPAC package for GAUSS, Non-linear-programming
(NLP), and the BFGS algorithm. We did not used the BHHH algorithm, even
if it is more precise, because BFGS results to be faster with our procedures and
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we focused on identification and parameter estimation, not on Hessian computa-
tion, which turns to be better with BHHH, see Lombardi (2001) for a discussion
on this topic. The estimation procedure required is based on the approach of
Teyssiere (1996) who suggest, in presence of long memory in the conditional
variances, to add a pre-sample set equal to the unconditional variance of the
series. This should help in obtaining consistence in the estimate of the long
memory parameter. Following this approach we used a pre-sample of 2000 ob-
servation, and also a truncation in the ARCH(oo) representation set to 1000,
for the series with T=1000, 2000 for T=2000, and to 500 for T=500. With the
fitted parameters log-likelihoods are computed and used for information criteria
computation, while standardized residual are the source for all other tests. We
introduced also a GARCH(1,1) DGP because we want to verify if, in cases of
no-long memory, but with a GARCH(1,1) process close to an IGARCH, there is
possibility of misspecification of the model choosing a long memory specification
on a short memory DGP. In this case another point arise: observing (4) and (9)
we can note that, if d = 0, the FIGARCH structure does not always collapse on a
GARCH model (in the case d = 1 FIGARCH trivially collapse on an IGARCH).
We must distinguish between the three different FIGARCH parametrization we
used: for the FIGARCH(1,d,1) when d = 0, the model collapse on a GARCH
structure such as 07 = w + Bo?_; + (¢ — 3)eZ_, and given restrictions on pa-
rameters imposed this can be a GARCH(1,1) but not an IGARCH(1,1), since
¢ << 1; the result is different for a FIGARCH(1,d,0), in this case the resulting
GARCH should be 0? = w + Bo?_; — (e?_; definitely not a GARCH model;
finally the FIGARCH(0,d,0) cannot collapse on any GARCH structure. This
shows that FIGARCH and GARCH are not always nested models as claimed by
Baillie, Bollerslev and Mikkelsen (1996). In the simulation analysis we will also
observe the effect of such a problem. From these observations derive also the
presence of a FIGARCH(1,d,1) DGP, to verify if there is possibility of misspec-
ification to a GARCH(1,1) assuming d = 0. In the following tables this legend
hold for model correspondence in the remaining of the chapter:

Table 4.2: model symbols
Symbol Model type
I FIGARCH(1,d,1)
IT FIGARCH(1,d,0)
111 FIGARCH(0,d,0)
v GARCH(1,1)
\Y% IGARCH(1,1)

Identification criteria The results on the power and consistency of identi-
fication criteria are contained in Tables from 3.3 to 3.10. All of these panels
are divided into six blocks: the first to the fourth are selection frequencies with
each of the four information criteria (IC): Akaike (AIC), Hannan-Quinn (HQ),
Schwarz (BIC) and Shibata (SH); the fifth is the selection based only on the
Log-likelihood, to test the effect of the penalizing terms in the IC; the last block
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was introduced to replicate the choice of the researcher, who choose the model
observing in the meantime different IC. In this last situation the selection is
made with the 4 IC together considered, the best model is the one that mini-
mize most of the IC. Given that we have four IC, we may have double counts,
so the sum of the frequencies of the sixth row may be above one.

Analyzing in details all the tables a group of considerations arise:

First of all we stress on the main result: all information criteria, even if with
different power, can clearly discriminate between long memory structures
and short memory ones. In all of the tables the sum of selection frequencies
of long memory models against GARCH specification increase with the
sample length up to values ranging from 75% to more than 99%. This show
consistency of IC identification and confirm the results of the preliminary
analysis of Bollerslev and Mikkelsen (1996), extending that to allow for
different IC and comparing directly long and short memory;

As expected the selection frequency depend on the parametrization and on pa-
rameters value. Compare for example table (3.4) a FIGARCH(1,d,1) with
table (3.6), FIGARCH(0,d,0) or table (3.5), another FIGARCH(1,d,1):
selection frequencies vary, at T=2000, for the IGARCH(1,1) from 0.001%
to 22%, depending on the model specification (1,d,1) or (0,d,0) and long
memory parameter value 0.8 or 0.4. This also depend on the IC we are us-
ing, the Hannan-Quinn perform poorly (compared with the others, but not
in absolute sense) with high values of d, while all IC seem to be influenced
by the structure of the model when d=0.4 (the case of high persistence),
they show good discriminating power but in the (1,d,0) case.

Consider now the selection of the orders, answering to the question of model
specification choice: here parameter values have a stronger impact. We
can observe different behavior with d=0.8 or d=0.4. In the first case the
correct specification is chosen but in the FIGARCH(1,d,1) case where we
are shifted to the (1,d,0) choice, as if the parsimonious model give very
similar results to the correct one. This may be caused by parameter values
for example when ¢ = 0.05 but observing tables (3.4) and (3.5) we see that
this effect is not vanishing. When d=0.4 we are not able to select correctly
the orders p and ¢ but in the (1,d,0) case. Here we can also observe an
high variability among the IC, however none of them can give us a very
clear identification of the correct model (none result in ¢ frequency higher
than 75%).

Move now to the log-likelihood value at the optimum: here the best choice is
most of the time the (1,d,1) specification, and this show what is the effect
of the penalizing term, moving choice, in some cases, to the correct model

Consider the selection based on 4 IC together considered, here no improvement
can be made. We can observe that these choices are always consistent with
the AIC results, seem that all IC agree at least on the model selected via
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Akaike criterion, possibly suggesting that this could be the best criterion
in identifying the long memory presence

A final observation on consistence: if we observe all tables, including the
cases where IC cannot correctly identify the FIGARCH orders,we note
that all IC have a growing mass, increasing consequently sample length,
both on long memory specifications and specially on the correct gener-
ator, while the selection frequencies of GARCH and IGARCH generally
decrease. This let us conjecture that the identification problem could be
solved or at least reduced with sample of more than 2000 observations.

Correlation, normality and ARCH effect tests On these test the results
turn to be really useless, they show no power in discriminating both among
long and short memory specifications and within different values of p and gq.
All the results are reported in tables from (3.11) to (3.58). However we can
observe that in all cases, even if the model is misspecified in all tests the null
hypothesis is accepted most of the times. One observation on correlation test:
when computing the test on squared standardized residuals with the (0,d,0)
specification the null hypothesis is rejected with an higher frequency, this is due
to a bias in the estimate on the d parameter, that is underestimated, probably
depending on the misspecification.

Additional analysis Given the previous results we also tried to combine the
two methods of model selection, information criteria and test, in order to mimic
the choice of a researcher that choose the best model observing both IC and
test computed on different specifications. Given this approach we built another
group of tables with selection frequencies, that are based on the results of tests
and IC. We gave a point to the model with the higher IC, and a point for each
tests that were accepting the null hypothesis, then the best model is the one
with higher point. This analysis, however does not improve the results obtained
with IC selection, therefore we did not report here the table,that are available
from the author on request.

6 Conclusions

In this paper we gave some intuition on finding the asymptotic properties of the
quasi maximum likelihood estimators for the FIGARCH(m,d,q) models, given
that we cannot use the Lee and Hansen (1994) approach as previously suggested
by Baillie, Bollerslev and Mikkelsen (1996). In the second part of the paper we
focused on the identification problem extending the analysis of Bollerslev and
Mikkelsen (1996) to a wider class of generators and considering a greater number
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of tests and information criteria. We simulated different models and with differ-
ent sample length, and after estimating with QMLE (the Montecarlo analysis
of Baillie et al. (1996) is still valid and show consistency and asymptotic nor-
mality of the estimators) we computed different information criteria and tests.
Our study show that all information criteria can clearly distinguish between
long and short memory data generating processes, and the performances im-
prove with the sample length. However we are not able to discriminate between
different specifications of the FIGARCH, none of the information criteria can
identify the true generator in all cases, results depend on sample length, and
on parameters value. We can observe that a great impact is given by the long
memory parameter. As in Bollerslev and Mikkelsen (1996) we can observe that
tests have no power in distinguishing among long and short memory generators.
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Table 4.3

[ Frequency of model selection: DGP FIGARCH(1,d,0) ||

[ 1 =0w=0013=056=0d=038

[ MODEL |

N

I

II

[ 10 | IV ]

\%

500

0.004

0.253

0.017

0.137

0.589

AIC

1000

0.027

0.557

0.002

0.124

0.290

2000

0.073

0.799

0.000

0.059

0.069

500

0.000

0.111

0.036

0.049

0.804

HQ

1000

0.000

0.360

0.010

0.046

0.584

2000

0.009

0.732

0.000

0.036

0.223

500

0.091

0.403

0.003

0.241

0.262

BIC

1000

0.169

0.602

0.000

0.158

0.071

2000

0.281

0.640

0.000

0.065

0.014

500

0.005

0.255

0.017

0.138

0.850

SH

1000

0.027

0.559

0.002

0.125

0.287

2000

0.073

0.799

0.000

0.059

0.069

500

0.475

0.208

0.000

0.306

0.011

LL

1000

0.612

0.215

0.000

0.172

0.001

2000

0.740

0.197

0.000

0.061

0.002

500

0.004

0.253

0.017

0.137

0.011

41C

1000

0.027

0.557

0.002

0.124

0.290

2000

0.073

0.799

0.000

0.059

0.069
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Table 4.4

[ Frequency of model selection: DGP FIGARCH(1,d,1) ||

L=0w=00l3=05¢=005d=053

[ MODEL | N

| 1

[ 1

[0 [ IV

\4

500

0.007

0.249

0.275

0.089

0.380

AIC

1000

0.056

0.555

0.005

0.090

0.294

2000

0.174

0.696

0.000

0.053

0.077

500

0.000

0.097

0.351

0.027

0.525

HQ

1000

0.004

0.412

0.025

0.048

0.511

2000

0.028

0.732

0.000

0.028

0.212

500

0.185

0.341

0.150

0.177

0.147

BIC

1000

0.311

0.494

0.001

0.130

0.064

2000

0.497

0.441

0.000

0.056

0.006

500

0.007

0.251

0.274

0.091

0.377

SH

1000

0.057

0.554

0.005

0.090

0.294

2000

0.177

0.693

0.000

0.053

0.077

500

0.661

0.135

0.001

0.203

0.000

LL

1000

0.716

0.138

0.000

0.145

0.001

2000

0.849

0.100

0.000

0.051

0.000

500

0.007

0.249

0.275

0.089

0.380

41C

1000

0.057

0.555

0.005

0.090

0.294

2000

0.174

0.696

0.000

0.053

0.077
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Table 4.5

[ Frequency of model selection: DGP FIGARCH(1,d,1) ||

L =0w=00l3=056=03d=08

[ MODEL | N

| 1

[ 1

[ 10 | IV ]

\%

500

0.005

0.228

0.468

0.054

0.245

AIC

1000

0.068

0.501

0.329

0.046

0.056

2000

0.251

0.553

0.180

0.011

0.005

500

0.000

0.073

0.573

0.011

0.343

HQ

1000

0.001

0.312

0.529

0.022

0.136

2000

0.036

0.572

0.368

0.008

0.016

500

0.230

0.339

0.222

0.124

0.085

BIC

1000

0.452

0.351

0.144

0.048

0.005

2000

0.660

0.272

0.058

0.009

0.001

500

0.005

0.232

0.467

0.055

0.241

SH

1000

0.069

0.500

0.329

0.046

0.056

2000

0.254

0.552

0.178

0.011

0.005

500

0.705

0.149

0.000

0.144

0.002

LL

1000

0.813

0.135

0.004

0.048

0.000

2000

0.878

0.112

0.001

0.009

0.000

500

0.005

0.228

0.468

0.054

0.245

41C

1000

0.068

0.506

0.325

0.042

0.059

2000

0.251

0.553

0.180

0.011

0.005
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Table 4.6

[ Frequency of model selection: DGP FIGARCH(0,d,0) ||

1 =0w=00l3=0¢6=0d=08

[ MODEL |

N

I

II

[ 10 | IV ]

\%

500

0.006

0.288

0.075

0.106

0.525

AIC

1000

0.031

0.061

0.871

0.017

0.020

2000

0.033

0.085

0.879

0.002

0.001

500

0.000

0.117

0.113

0.037

0.733

HQ

1000

0.005

0.013

0.948

0.006

0.028

2000

0.003

0.021

0.973

0.001

0.002

500

0.175

0.398

0.024

0.201

0.202

BIC

1000

0.141

0.212

0.618

0.025

0.004

2000

0.139

0.231

0.626

0.004

0.000

500

0.006

0.294

0.073

0.106

0.521

SH

1000

0.031

0.062

0.870

0.017

0.020

2000

0.033

0.086

0.878

0.002

0.001

500

0.588

0.154

0.003

0.249

0.006

LL

1000

0.490

0.393

0.089

0.027

0.001

2000

0.458

0.426

0.111

0.005

0.000

500

0.006

0.288

0.075

0.106

0.525

41C

1000

0.031

0.061

0.871

0.017

0.020

2000

0.033

0.085

0.879

0.002

0.001
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Table 4.7

[ Frequency of model selection: DGP FIGARCH(1,d,0) ||

[ =0w=0013=03¢=0d=04

[ MODEL |

N

I

II

[ 10 | IV |

Vv

500

0.006

0.295

0.056

0.156

0.487

AIC

1000

0.019

0.633

0.021

0.290

0.037

2000

0.052

0.788

0.000

0.159

0.001

500

0.000

0.135

0.109

0.071

0.685

HQ

1000

0.001

0.594

0.048

0.253

0.104

2000

0.005

0.822

0.000

0.162

0.011

500

0.134

0.397

0.015

0.263

0.191

BIC

1000

0.147

0.551

0.010

0.290

0.002

2000

0.236

0.624

0.000

0.139

0.001

500

0.006

0.299

0.053

0.158

0.484

SH

1000

0.021

0.631

0.021

0.290

0.037

2000

0.052

0.788

0.000

0.159

0.001

500

0.518

0.170

0.000

0.303

0.009

LL

1000

0.548

0.186

0.000

0.266

0.000

2000

0.669

0.199

0.000

0.131

0.001

500

0.006

0.295

0.056

0.156

0.487

41C

1000

0.019

0.633

0.021

0.290

0.037

2000

0.052

0.788

0.000

0.159

0.001
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Table 4.8

[ Frequency of model selection: DGP FIGARCH(1,d,1) ||

p=0w=001=03¢=02d=04

[ MODEL | N

| 1

[ 11

[0 [ 1V

Vv

500

0.007

0.258

0.134

0.136

0.465

AIC

1000
2000

0.061
0.125

0.304
0.490

0.497
0.348

0.134
0.037

0.021
0.000

500

0.000

0.104

0.187

0.055

0.654

HQ

1000

0.008

0.182

0.686

0.103

0.021

2000

0.021

0.338

0.608

0.033

0.000

500

0.174

0.339

0.055

0.248

0.184

BIC

1000

0.309

0.336

0.218

0.137

0.000

2000

0.458

0.399

0.107

0.036

0.000

500

0.008

0.260

0.133

0.140

0.459

SH

1000

0.062

0.306

0.494

0.134

0.004

2000

0.127

0.488

0.348

0.037

0.000

500

0.557

0.146

0.000

0.293

0.004

LL

1000

0.747

0.121

0.000

0.132

0.000

2000

0.874

0.093

0.000

0.033

0.000

500

0.007

0.258

0.134

0.136

0.465

41C

1000

0.061

0.304

0.497

0.134

0.004

2000

0.125

0.490

0.348

0.037

0.000
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Table 4.9

[ Frequency of model selection: DGP FIGARCH(0,d,0) ||

[ =0w=0013=006=0d=04

[ MODEL |

N

I

II

[ 10 | IV |

Vv

500

0.004

0.272

0.051

0.115

0.558

AIC

1000

0.046

0.297

0.518

0.134

0.005

2000

0.143

0.479

0.356

0.022

0.000

500

0.000

0.116

0.079

0.044

0.761

HQ

1000

0.003

0.166

0.720

0.087

0.024

2000

0.032

0.347

0.602

0.018

0.001

500

0.148

0.389

0.013

0.242

0.208

BIC

1000

0.306

0.319

0.234

0.139

0.002

2000

0.424

0.439

0.117

0.002

0.000

500

0.004

0.277

0.051

0.116

0.552

SH

1000

0.046

0.297

0.518

0.134

0.005

2000

0.146

0.478

0.354

0.022

0.000

500

0.553

0.144

0.000

0.292

0.011

LL

1000

0.782

0.090

0.001

0.127

0.000

2000

0.863

0.120

0.001

0.016

0.000

500

0.004

0.272

0.051

0.115

0.558

41C

1000

0.046

0.297

0.518

0.134

0.005

2000

0.143

0.479

0.356

0.022

0.000
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Table 4.10

[ Frequency of model selection: DGP GARCH(1,1)

pw=0w=001a=03p8=0.65

[ MODEL

N

I

II

[ 10 | IV ]

\%

500

0.000

0.054

0.040

0.421

0.485

AIC

1000

0.004

0.070

0.004

0.700

0.222

2000

0.003

0.032

0.000

0.894

0.071

500

0.000

0.013

0.074

0.198

0.715

HQ

1000

0.000

0.032

0.021

0.466

0.481

2000

0.000

0.023

0.000

0.765

0.212

500

0.028

0.107

0.014

0.665

0.186

BIC

1000

0.032

0.076

0.001

0.836

0.055

2000

0.022

0.023

0.000

0.943

0.012

500

0.000

0.055

0.039

0.427

0.479

SH

1000

0.006

0.070

0.004

0.701

0.219

2000

0.003

0.032

0.000

0.894

0.071

500

0.147

0.076

0.000

0.770

0.007

LL

1000

0.101

0.028

0.000

0.870

0.001

2000

0.040

0.007

0.000

0.953

0.000

500

0.000

0.054

0.040

0.421

0.485

41C

1000

0.004

0.070

0.004

0.700

0.222

2000

0.003

0.032

0.000

0.894

0.071
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Table 4.11

[ Ho 1%: DGP FIGARCH(1,d,0) p=0w=0.01d=083=05¢=0 |

[ TEST | T | (L&) [ (1,d0) [ (040 [ 1y | ILD |
500 | 0.869 0.931 0.961 [ 0.928 | 0.966
Q(5) [ 1000 | 0.880 0.939 0962 | 0.939 | 0.968
2000 | 0.905 0.955 0071 | 0954 | 0977
500 | 0.943 0.962 0.964 | 0959 | 0.973
Q(10) [ 1000 | 0.947 0.962 0.066 | 0.964 | 0.974
2000 | 0.957 0.963 0977 | 0.970 | 0.978
500 | 0.955 0.968 0.967 | 0.969 | 0.977
Q(20) [ 1000 | 0.951 0.965 0.062 | 0964 | 0.972
2000 | 0.966 0.974 0981 | 0.974 | 0.983
500 | 0.962 0.973 0.060 [ 0973 | 0.974
Q(50) | 1000 | 0.970 0.974 0.068 | 0.976 | 0.981
2000 | 0.981 0.936 0.085 | 0.984 | 0.990
500 | 0.953 0.963 0.962 [ 0.962 | 0.966
Q(100) [ 1000 | 0.972 0.975 0.967 | 0.973 | 0.977
2000 | 0.985 0.986 0.036_ | 0.084 | 0.986
500 | 0.942 0.978 0.607 | 0.973 | 0.985
Q%(5) | 1000 | 0.949 0.979 0298 | 0972 | 0.984
2000 | 0.958 0.978 0.028 | 0.968 | 0.983
500 | 0.967 0.983 0.638 | 0.978 | 0.987
QZ(10) [ 1000 | 0.982 0.987 0297 | 0.983 | 0.988
2000 | 0.980 0.990 0.025_| 0981 | 0.985
500 | 0.966 0.984 0.703 | 0.983 [ 0.988
Q7(20) | 1000 | 0.987 0.989 0430 | 0.988 | 0.993
2000 | 0.988 0.989 0.083_ | 0984 | 0.983
500 | 0.969 0.979 0.803 | 0.979 [ 0.985
Q7(50) | 1000 | 0.980 0.982 0.637 | 0.975 | 0.980
2000 | 0.987 0.991 0212 | 0980 | 0.985
500 | 0.972 0.982 0.862 | 0.975 | 0.976
QZ(100) | 1000 | 0.977 0.978 0.730__| 0972 | 0.971
2000 | 0.988 0.988 0.367 | 0.973 | 0.979
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Table 4.12

[ Ho 5%: DGP FIGARCH(1,d,0) u=0w=0.01d=083=05¢=0 |

[ TEST | T | (L&) [ (1,d0) [ (040 [ 1y | ILD |
500 | 0.665 0.805 0.854 [ 0.800 | 0.884
Q(5) [ 1000 | 0.698 0.819 0.873 | 0.818 | 0.900
2000 | 0.705 0.838 0.001 | 0.833 | 0.910
500 | 0.804 0.870 0.8%2 [ 0.867 | 0.911
Q(10) | 1000 | 0.828 0.878 0.895 | 0.877 | 0.923
2000 | 0.854 0.903 0016 | 0908 | 0.945
500 | 0.863 0.807 0.801 | 0.900 | 0.917
Q(20) | 1000 | 0.882 0.903 0.002_ | 0905 | 0.928
2000 | 0.881 0.908 0921 | 0.907 | 0.948
500 | 0.886 0.897 0.893 [ 0.899 | 0.916
Q(50) | 1000 [ 0.902 0.920 0911 | 0.91L | 0.927
2000 | 0.911 0.930 0.025 | 0932 | 0.944
500 | 0.878 0.896 0.893 | 0.804 | 0.903
Q(100) [ 1000 | 0.907 0.914 0.905 | 0.909 | 0.923
2000 | 0.942 0.949 0.049 | 0044 | 0.950
500 | 0.826 0.911 0402 [ 0.890 | 0.946
Q%(5) [ 1000 | 0.830 0.909 0.139 [ 0.890 | 0.944
2000 | 0.831 0.901 0.006 | 0.864 | 0.914
500 | 0.904 0.937 0422 | 0.930 | 0.949
QZ(10) [ 1000 | 0.917 0.949 0162 | 0929 | 0.956
2000 | 0.907 0.018 0.011 | 0.898 | 0.924
500 | 0.923 0.935 0532 | 0929 | 0.953
Q7(20) [ 1000 | 0.933 0.950 0244 | 0.941 | 0.961
2000 | 0.935 0.038 0.051 | 0930 | 0.932
500 | 0.914 0.929 0.657 [ 0.921 | 0.934
Q?(50) | 1000 | 0.944 0.946 0435 | 0924 | 0.938
2000 | 0.950 0.957 0.105 | 0921 | 0.936
500 | 0.923 0.930 0.732 | 0.918 | 0.927
QZ(100) [ 1000 | 0.934 0.936 0557 | 0914 | 0.922
2000 | 0.945 0.949 0216 | 0.897 | 0.912
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Table 4.13
|| Hy 1%: DGP FIGARCH(1,d,1) p=0w =0.01d=0.8 3 =0.5 ¢ = 0.05 ||

[ TEST | T | (1, dD) | (1,40 | (040 | L,y [ I1L,D |

500 0.890 0.959 0.977 0.960 0.991

Q(5) 1000 0.893 0.957 0.969 0.961 0.970

2000 0.906 0.957 0.967 0.960 0.982

500 0.960 0.980 0.981 0.977 0.986

Q(10) | 1000 0.952 0.973 0.977 0.972 0.984

2000 0.954 0.970 0.974 0.973 0.986

500 0.970 0.979 0.985 0.981 0.987

Q(20) | 1000 0.970 0.983 0.981 0.984 0.988

2000 0.968 0.979 0.981 0.982 0.983

500 0.958 0.965 0.969 0.963 0.971

Q(50) | 1000 0.969 0.977 0.977 0.975 0.981

2000 0.973 0.976 0.977 0.974 0.979

500 0.950 0.962 0.963 0.953 0.956

Q(100) | 1000 0.966 0.970 0.976 0.964 0.965
2000 0.972 0.980 0.980 0.980 0.983

500 0.923 0.977 0.849 0.962 0.979

Q?(5) | 1000 0.959 0.979 0.442 0.971 0.986

2000 0.953 0.971 0.088 0.959 0.976

500 0.947 0.983 0.832 0.971 0.978

Q*(10) | 1000 0.977 0.984 0.463 0.982 0.988
2000 0.981 0.982 0.078 0.979 0.985

500 0.950 0.982 0.869 0.959 0.969

Q?(20) | 1000 0.971 0.980 0.581 0.976 0.983
2000 0.979 0.983 0.120 0.977 0.970

500 0.949 0.979 0.914 0.962 0.965

Q?(50) | 1000 0.986 0.989 0.745 0.980 0.988
2000 0.983 0.982 0.376 0.953 0.962

500 0.949 0.974 0.925 0.957 0.961

Q?(100) | 1000 0.980 0.981 0.810 0.965 0.969
2000 0.977 0.981 0.553 0.951 0.957
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Table 4.14

[ Ho 5%: DGP FIGARCH(1,d,1) u=0w=0.01d=0.8 = 0.5 ¢ = 0.05 ||

[ TEST T 1,41  (1,d0) (0,d,0) (1,1) I(1,1) |
500 | 0.682 0.821 0.893 0.825 0.910
Q(5) 1000 | 0.703 0.837 0.888 0.843 0.903
2000 | 0.715 0.864 0.906 0.859 0.914
500 | 0.838 0.888 0.917 0.897 0.935
Q(10) 1000 | 0.830 0.896 0.910 0.898 0.935
2000 | 0.835 0.896 0.905 0.899 0.931
500 | 0.874 0.905 0.922 0.907 0.932
Q(20) 1000 | 0.877 0.906 0.924 0.906 0.937
2000 | 0.866 0.905 0.916 0.915 0.935
500 | 0.888 0.911 0.911 0.913 0.920
Q(50) 1000 | 0.915 0.925 0.923 0.918 0.931
2000 | 0.902 0.920 0.924 0.921 0.936
500 | 0.874 0.884 0.902 0.881 0.892
Q(100) 1000 | 0.913 0.027 0.027 0.018 0.027
2000 | 0.918 0.925 0.926 0.920 0.928
500 | 0.802 0.913 0.692 0.878 0.918
QZ(5) 1000 | 0.851 0.913 0.239 0.801 0.943
2000 | 0.873 0.896 0.028 0.853 0.898
500 | 0.877 0.927 0.720 0.908 0.038
QZ(10) 1000 | 0.915 0.938 0.261 0.930 0.946
2000 | 0.909 0.926 0.027 0.895 0.919
500 | 0.904 0.946 0.756 0.909 0.933
QZ(20) 1000 | 0.935 0.945 0.372 0.929 0.943
2000 | 0.929 0.930 0.096 0.912 0.915
500 | 0.904 0.939 0.841 0.893 0.900
QZ(50) 1000 | 0.943 0.949 0.558 0.913 0.924
2000 | 0.929 0.923 0.213 0.899 0.909
500 | 0.909 0.033 0.859 0.895 0.906
QZ(100) 1000 | 0.924 0.930 0.668 0.908 0.914
2000 | 0.949 0.949 0.339 0.886 0.899

35



Table 4.15

[ Ho 1%: DGP FIGARCH(1,d,1) u=0w=0.01d=08 =05 ¢ =0.3 |

[ TEST T 1,41  (1,d0) (0,d,0) (1,1) I(1,1) |
500 | 0.890 0.963 0.979 0.957 0.981
Q(5) 1000 | 0.863 0.051 0.973 0.950 0.977
2000 | 0.880 0.961 0.974 0.957 0.979
500 | 0.946 0.970 0.980 0.971 0.984
Q(10) 1000 | 0.932 0.963 0.973 0.970 0.980
2000 | 0.936 0.965 0.980 0.968 0.978
500 | 0.961 0.973 0.973 0.975 0.081
Q(20) 1000 | 0.957 0.978 0.979 0.975 0.981
2000 | 0.966 0.980 0.086 0.082 0.086
500 | 0.958 0.968 0.977 0.965 0.974
Q(50) 1000 | 0.960 0.975 0.974 0.967 0.974
2000 | 0.967 0.082 0.082 0.977 0.982
500 | 0.963 0.973 0.976 0.966 0.971
Q(100) 1000 | 0.964 0.975 0.078 0.071 0.972
2000 | 0.970 0.978 0.981 0.974 0.980
500 | 0.892 0.975 0.943 0.952 0.969
QZ(5) 1000 | 0.886 0.969 0.928 0.896 0.934
2000 | 0.860 0.932 0.834 0.658 0.716
500 | 0.905 0.979 0.034 0.058 0.967
QZ(10) 1000 | 0.901 0.976 0.921 0.919 0.041
2000 | 0.888 0.952 0.852 0.782 0.816
500 | 0.906 0.978 0.959 0.956 0.966
QZ(20) 1000 | 0.907 0.980 0.047 0.912 0.027
2000 | 0.900 0.968 0.906 0.777 0.814
500 | 0.915 0.983 0.959 0.951 0.960
QZ(50) 1000 | 0.904 0.979 0.966 0.889 0.902
2000 | 0.899 0.970 0.944 0.756 0.788
500 | 0.907 0.071 0.947 0.953 0.955
QZ(100) 1000 | 0.908 0.980 0.965 0.902 0.908
2000 | 0.902 0.973 0.955 0.766 0.780
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Table 4.16

[ Ho 5%: DGP FIGARCH(1,d,1) t=0w=0.01d=08 3=0.5¢ =03 |

[ TEST T 1,41  (1,d0) (0,d,0) (1,1) I(1,1) |
500 | 0.678 0.843 0.898 0.841 0.910
Q(5) 1000 | 0.658 0.817 0.880 0.828 0.902
2000 | 0.668 0.814 0.895 0.824 0.908
500 | 0.814 0.889 0.918 0.885 0.931
Q(10) 1000 | 0.798 0.881 0.910 0.888 0.936
2000 | 0.806 0.873 0.910 0.874 0.923
500 | 0.850 0.001 0.915 0.900 0.922
Q(20) 1000 | 0.850 0.899 0.923 0.896 0.928
2000 | 0.845 0.894 0.918 0.890 0.920
500 | 0.884 0.913 0.926 0.907 0.922
Q(50) 1000 | 0.886 0.917 0.927 0.896 0.914
2000 | 0.878 0.905 0.921 0.895 0.906
500 | 0.881 0.902 0.911 0.899 0.907
Q(100) 1000 | 0.895 0.014 0.922 0.904 0.913
2000 | 0.908 0.925 0.933 0.904 0.914
500 | 0.781 0.908 0.842 0.843 0.896
QZ(5) 1000 | 0.764 0.808 0.785 0.715 0.782
2000 | 0.721 0.818 0.647 0.371 0.442
500 | 0.835 0.919 0.863 0.878 0.897
QZ(10) 1000 | 0.832 0.911 0.814 0.803 0.832
2000 | 0.807 0.865 0.711 0.553 0.601
500 | 0.859 0.938 0.893 0.875 0.898
QZ(20) 1000 | 0.842 0.021 0.848 0.796 0.824
2000 | 0.841 0.905 0.771 0.553 0.601
500 | 0.859 0.928 0.892 0.882 0.804
QZ(50) 1000 | 0.854 0.928 0.886 0.777 0.801
2000 | 0.852 0.917 0.842 0.553 0.589
500 | 0.865 0.926 0.904 0.883 0.886
QZ(100) 1000 | 0.865 0.935 0.908 0.791 0.805
2000 | 0.847 0.014 0.873 0.605 0.634
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Table 4.17
|| Hy 1%: DGP FIGARCH(0,d,0) t=0w=0.01d=083=0¢=0 ||
|| TEST | T | (1,d,1) | (1,d,0) | (0,d,0) | (1,1) | I(1,1) ||

500 0.899 0.955 0.972 0.956 0.980

Q(5) 1000 0.878 0.957 0.983 0.964 0.982
2000 0.838 0.948 0.975 0.946 0.974

500 0.944 0.968 0.972 0.968 0.981

Q(10) | 1000 0.924 0.972 0.984 0.970 0.984
2000 0.915 0.968 0.986 0.964 0.986

500 0.962 0.973 0.977 0.976 0.982

Q(20) | 1000 0.945 0.977 0.988 0.972 0.981
2000 0.950 0.979 0.985 0.976 0.984

500 0.970 0.974 0.970 0.973 0.978

Q(50) | 1000 0.963 0.980 0.983 0.979 0.982
2000 0.961 0.976 0.978 0.976 0.978

500 0.957 0.966 0.961 0.961 0.964

Q(100) | 1000 0.968 0.975 0.981 0.973 0.977
2000 0.967 0.982 0.983 0.973 0.977

500 0.943 0.981 0.721 0.976 0.990

Q?(5) | 1000 0.571 0.985 0.989 0.893 0.935
2000 0.507 0.978 0.992 0.730 0.792

500 0.976 0.993 0.725 0.988 0.991

Q*(10) | 1000 0.584 0.979 0.991 0.868 0.892
2000 0.515 0.981 0.985 0.659 0.714

500 0.976 0.990 0.784 0.980 0.990

Q?(20) | 1000 0.591 0.982 0.987 0.794 0.832
2000 0.513 0.981 0.985 0.659 0.714

500 0.976 0.987 0.858 0.974 0.984

Q?(50) | 1000 0.626 0.988 0.989 0.783 0.817
2000 0.517 0.982 0.981 0.525 0.558

500 0.967 0.976 0.879 0.970 0.974

Q?(100) | 1000 0.658 0.980 0.980 0.838 0.854
2000 0.524 0.986 0.985 0.604 0.631
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Table 4.18
|| Hy 5%: DGP FIGARCH(0,d,0) t=0w=0.01d=083=0¢=0 ||
|| TEST | T | (1,d,1) | (1,d,0) | (0,d,0) | (1,1) | I(1,1) ||

500 0.679 0.830 0.884 0.830 0.912

Q(5) 1000 0.655 0.850 0.927 0.856 0.932
2000 0.633 0.822 0.901 0.822 0.898

500 0.815 0.872 0.893 0.869 0.917

Q(10) | 1000 0.787 0.881 0.918 0.875 0.914
2000 0.760 0.878 0.924 0.866 0.911

500 0.859 0.898 0.896 0.890 0.930

Q(20) | 1000 0.845 0.898 0.923 0.893 0.914
2000 0.827 0.913 0.938 0.909 0.932

500 0.884 0.904 0.910 0.904 0.915

Q(50) | 1000 0.892 0.918 0.934 0.903 0.916
2000 0.884 0.932 0.943 0.926 0.934

500 0.885 0.895 0.896 0.891 0.901

Q(100) | 1000 0.898 0.922 0.930 0.904 0.916
2000 0.904 0.932 0.941 0.906 0.921

500 0.817 0.901 0.539 0.901 0.955

Q?(5) | 1000 0.483 0.897 0.949 0.723 0.794
2000 0.433 0.899 0.936 0.480 0.563

500 0.896 0.926 0.563 0.931 0.952

Q*(10) | 1000 0.532 0.929 0.945 0.695 0.754
2000 0.483 0.928 0.942 0.428 0.504

500 0.917 0.936 0.630 0.920 0.939

Q?(20) | 1000 0.547 0.918 0.940 0.620 0.678
2000 0.479 0.928 0.935 0.335 0.383

500 0.945 0.954 0.741 0.931 0.944

Q?(50) | 1000 0.572 0.938 0.947 0.650 0.686
2000 0.483 0.923 0.933 0.380 0.416

500 0.920 0.927 0.786 0.902 0.913

Q?(100) | 1000 0.593 0.929 0.934 0.712 0.736
2000 0.490 0.927 0.929 0.457 0.485
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Table 4.19

[ Ho 1%: DGP FIGARCH(1,d,0) p=0w =001d=043=03¢6=0 |

[ TEST | T | (L&) [ (1,d0) [ (040 [ 1y | ILD |
500 | 0.927 0.969 0979 | 0.967 | 0.986
Q(5) [ 1000 | 0.893 0.958 0.982 | 0.960 | 0.984
2000 | 0.893 0.944 0.064 | 0044 | 0.971
500 | 0.959 0.969 0.973 | 0.970 | 0.980
Q(10) | 1000 [ 0.948 0.960 0.966 | 0.963 | 0.977
2000 | 0.945 0.068 0979 | 0.970 | 0.980
500 | 0.972 0.979 0979 | 0.979 | 0.986
Q(20) | 1000 | 0.957 0.964 0072 | 0.966 | 0.981
2000 | 0.969 0.977 0982 | 0.976 | 0.988
500 | 0.971 0.976 0975 | 0972 | 0.978
Q(50) | 1000 | 0.968 0.975 0976 | 0.977 | 0.980
2000 | 0.987 0.991 0.087 | 0.990 | 0.994
500 | 0.966 0.967 0.970 [ 0.968 | 0.971
Q(100) [ 1000 | 0.964 0.968 0.967 | 0.968 | 0.977
2000 | 0.986 0.088 0.082 | 098 | 0.991
500 | 0.958 0.979 0.733_[ 0971 | 0.987
Q*(5) | 1000 | 0.974 0.992 0530 | 0920 | 0.951
2000 | 0.977 0.985 0.095 | 0.861 | 0.932
500 | 0.976 0.986 0.724 | 0.985 | 0.993
QZ(10) [ 1000 | 0.981 0.936 0585 | 0951 | 0.958
2000 | 0.984 0.936 0131 | 0915 | 0.915
500 | 0.987 0.989 0.812 | 0988 | 0.992
Q7(20) [ 1000 | 0.986 0.987 0.652_ | 0.973 | 0.974
2000 | 0.984 0.083 0221 | 0043 | 0.929
500 | 0.978 0.985 0.867 | 0.976 | 0.977
Q7(50) | 1000 | 0.983 0.983 0.765 | 0.961 | 0.966
2000 | 0.987 0.989 0398 | 0.955 | 0.934
500 | 0.968 0.971 0.878 | 0.967 | 0.972
QZ(100) [ 1000 | 0.974 0.979 0.819 | 0945 | 0.957
2000 | 0.987 0.986 0532 | 0.952 | 0.946
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Table 4.20

[ Ho 5%: DGP FIGARCH(1,d,0) p=0w =001d=043=03¢6=0 |

[ TEST | T | (L&) [ (1,d0) [ (040 [ 1y | ILD |
500 | 0.699 0.869 0014 [ 0.869 | 0.939
Q(5) [ 1000 | 0.673 0.819 0.805 | 0.823 | 0.908
2000 | 0.677 0.833 0.895 | 0.825 | 0.899
500 | 0.846 0.900 0.908 | 0.901 | 0.932
Q(10) | 1000 | 0.822 0.874 0.808 | 0.873 | 0.930
2000 | 0.830 0.830 0.895 | 0.881 | 0.923
500 | 0.804 0.915 0922 | 0.921 | 0.934
Q(20) | 1000 | 0.865 0.889 0.004 [ 0892 | 0.927
2000 | 0.887 0.913 0939 | 0911 | 0.953
500 | 0.911 0.915 0.023 [ 0917 | 0.929
Q(50) [ 1000 | 0.897 0.911 0002 | 0910 | 0.928
2000 | 0.928 0.942 0.041 | 0.943 | 0.960
500 | 0.896 0.906 0010 [ 0906 | 0.917
Q(100) [ 1000 | 0.891 0.895 0.900 | 0.893 | 0.914
2000 | 0.926 0.936 0.030 | 0932 | 0.947
500 | 0.844 0.928 0531 | 0.896 | 0.945
Q%(5) [ 1000 | 0.866 0.928 0292 | 0.792 | 0.862
2000 | 0.887 0.928 0.021 | 0.672 | 0807
500 | 0.915 0.946 0525 | 0.934 | 0.959
QZ(10) [ 1000 | 0.925 0.934 0.337 | 0.857 | 0.859
2000 | 0.930 0.933 0.036_| 0.762 | 0.738
500 | 0.937 0.957 0.648 [ 0.947 [ 0.961
Q7(20) [ 1000 | 0.940 0.942 0439 | 0.889 | 0.7
2000 | 0.937 0.944 0126 | 0818 | 0.785
500 | 0.936 0.941 0.747 | 0925 | 0.933
Q?(50) | 1000 | 0.927 0.931 0576 | 0.889 | 0.893
2000 | 0.943 0.945 0217 | 0.849 | 0.803
500 | 0.915 0.925 0.790 | 0.897 | 0.907
QZ(100) [ 1000 | 0.916 0.013 0.644 | 0.868 | 0.882
2000 | 0.948 0.947 0336 | 0.850 | 0.832
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Table 4.21
|| Hy 1%: DGP FIGARCH(1,d,1) p1 =0w =0.01d=04 3=0.3 ¢ =0.2 ||
|| TEST | T | (1,d,1) | (1,d,0) | (0,d,0) | (1,1) | I(1,1) ||

500 0.892 0.949 0.974 0.944 0.983

Q(5) 1000 0.887 0.957 0.980 0.955 0.988

2000 0.909 0.961 0.980 0.962 0.986

500 0.950 0.972 0.970 0.973 0.981

Q(10) | 1000 0.944 0.975 0.982 0.975 0.986

2000 0.965 0.977 0.987 0.982 0.990

500 0.961 0.970 0.972 0.974 0.983

Q(20) | 1000 0.966 0.977 0.983 0.975 0.990

2000 0.975 0.985 0.988 0.983 0.995

500 0.960 0.968 0.970 0.967 0.974

Q(50) | 1000 0.975 0.977 0.979 0.976 0.984

2000 0.976 0.978 0.983 0.975 0.984

500 0.968 0.971 0.972 0.964 0.970

Q(100) | 1000 0.973 0.976 0.977 0.974 0.985
2000 0.979 0.982 0.986 0.979 0.986

500 0.954 0.980 0.758 0.978 0.986

Q?(5) | 1000 0.970 0.981 0.948 0.936 0.904

2000 0.982 0.984 0.941 0.773 0.695

500 0.979 0.984 0.768 0.987 0.989

Q*(10) | 1000 0.980 0.979 0.954 0.948 0.903
2000 0.987 0.988 0.939 0.844 0.619

500 0.982 0.986 0.810 0.987 0.991

Q?(20) | 1000 0.988 0.989 0.970 0.954 0.935
2000 0.990 0.988 0.956 0.872 0.745

500 0.977 0.980 0.865 0.971 0.974

Q?(50) | 1000 0.988 0.989 0.976 0.946 0.952
2000 0.992 0.993 0.967 0.858 0.858

500 0.968 0.972 0.895 0.962 0.962

Q?(100) | 1000 0.987 0.984 0.973 0.937 0.939
2000 0.988 0.988 0.965 0.844 0.877
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Table 4.22
|| Hy 5%: DGP FIGARCH(1,d,0) t =0w =0.01d=04 (3=0.3 ¢ =0.2 ||
|| TEST | T | (1,d,1) | (1,d,0) | (0,d,0) | (1,1) | I(1,1) ||

500 0.684 0.809 0.876 0.817 0.900

Q(5) 1000 0.678 0.817 0.891 0.824 0.904

2000 0.691 0.839 0.909 0.846 0.924

500 0.813 0.878 0.901 0.874 0.925

Q(10) | 1000 0.800 0.864 0.903 0.882 0.930

2000 0.835 0.897 0.937 0.904 0.952

500 0.872 0.905 0.904 0.901 0.928

Q(20) | 1000 0.854 0.886 0.913 0.890 0.939

2000 0.882 0.922 0.932 0.918 0.949

500 0.894 0.905 0.899 0.902 0.920

Q(50) | 1000 0.904 0.915 0.919 0.911 0.941

2000 0.914 0.925 0.933 0.918 0.939

500 0.891 0.897 0.890 0.895 0.905

Q(100) | 1000 0.902 0.913 0.916 0.908 0.923
2000 0.918 0.923 0.930 0.914 0.929

500 0.853 0.924 0.581 0.915 0.946

Q?(5) | 1000 0.870 0.920 0.957 0.775 0.740

2000 0.888 0.919 0.817 0.508 0.409

500 0.918 0.936 0.594 0.932 0.951

Q*(10) | 1000 0.913 0.931 0.868 0.851 0.731
2000 0.924 0.937 0.839 0.631 0.300

500 0.938 0.945 0.669 0.942 0.950

Q?(20) | 1000 0.937 0.947 0.895 0.860 0.804
2000 0.939 0.937 0.851 0.709 0.529

500 0.923 0.932 0.766 0.904 0.924

Q?(50) | 1000 0.952 0.949 0.916 0.841 0.845
2000 0.953 0.950 0.897 0.688 0.654

500 0.916 0.922 0.798 0.900 0.908

Q?(100) | 1000 0.946 0.946 0.915 0.826 0.836
2000 0.948 0.947 0.909 0.685 0.722

43



Table 4.23
|| Hy 1%: DGP FIGARCH(0,d,0) t=0w=0.01d=043=0¢=0 ||
|| TEST | T | (1,d,1) | (1,d,0) | (0,d,0) | (1,1) | I(1,1) ||

500 0.879 0.942 0.964 0.941 0.968

Q(5) 1000 0.904 0.964 0.984 0.964 0.987
2000 0.891 0.943 0.973 0.954 0.980

500 0.937 0.963 0.962 0.961 0.972

Q(10) | 1000 0.947 0.963 0.972 0.965 0.980
2000 0.943 0.963 0.983 0.970 0.988

500 0.954 0.974 0.976 0.970 0.982

Q(20) | 1000 0.966 0.976 0.982 0.974 0.986
2000 0.966 0.977 0.986 0.975 0.989

500 0.962 0.971 0.968 0.968 0.977

Q(50) | 1000 0.976 0.978 0.986 0.979 0.988
2000 0.973 0.975 0.982 0.974 0.982

500 0.961 0.964 0.962 0.965 0.971

Q(100) | 1000 0.972 0.976 0.983 0.972 0.976
2000 0.972 0.973 0.974 0.966 0.977

500 0.965 0.984 0.735 0.978 0.991

Q?(5) | 1000 0.977 0.988 0.956 0.932 0.893
2000 0.982 0.984 0.942 0.752 0.676

500 0.978 0.991 0.741 0.992 0.994

Q*(10) | 1000 0.988 0.988 0.966 0.960 0.913
2000 0.988 0.984 0.934 0.826 0.600

500 0.973 0.982 0.799 0.985 0.988

Q?(20) | 1000 0.986 0.990 0.965 0.950 0.934
2000 0.980 0.982 0.946 0.868 0.750

500 0.975 0.982 0.857 0.977 0.981

Q?(50) | 1000 0.980 0.979 0.964 0.926 0.928
2000 0.979 0.978 0.954 0.844 0.830

500 0.973 0.975 0.904 0.967 0.970

Q?(100) | 1000 0.984 0.984 0.970 0.922 0.935
2000 0.974 0.972 0.949 0.821 0.852
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Table 4.24
|| Hy 5%: DGP FIGARCH(9,d,0) t=0w=0.01d=043=0¢=0 ||
|| TEST | T | (1,d,1) | (1,d,0) | (0,d,0) | (1,1) | I(1,1) ||

500 0.649 0.815 0.872 0.818 0.891

Q(5) 1000 0.693 0.828 0.909 0.834 0.919
2000 0.684 0.832 0.896 0.838 0.910

500 0.809 0.872 0.898 0.875 0.915

Q(10) | 1000 0.823 0.873 0.908 0.879 0.925
2000 0.828 0.881 0.913 0.889 0.925

500 0.860 0.887 0.886 0.889 0.912

Q(20) | 1000 0.869 0.903 0.920 0.902 0.940
2000 0.894 0.916 0.917 0.919 0.925

500 0.892 0.906 0.912 0.907 0.921

Q(50) | 1000 0.901 0.919 0.926 0.911 0.929
2000 0.894 0.908 0.916 0.898 0.924

500 0.886 0.895 0.904 0.886 0.905

Q(100) | 1000 0.913 0.922 0.931 0.914 0.932
2000 0.913 0.921 0.926 0.91 0.933

500 0.873 0.929 0.518 0.922 0.959

Q?(5) | 1000 0.891 0.928 0.861 0.804 0.735
2000 0.878 0.905 0.812 0.503 0.388

500 0.915 0.945 0.558 0.938 0.959

Q*(10) | 1000 0.936 0.945 0.883 0.870 0.742
2000 0.928 0.929 0.826 0.618 0.316

500 0.928 0.947 0.646 0.932 0.948

Q?(20) | 1000 0.934 0.937 0.891 0.852 0.803
2000 0.936 0.930 0.822 0.697 0.523

500 0.928 0.943 0.742 0.920 0.934

Q?(50) | 1000 0.932 0.929 0.902 0.819 0.809
2000 0.930 0.929 0.880 0.670 0.642

500 0.932 0.942 0.798 0.914 0.918

Q?(100) | 1000 0.936 0.940 0.908 0.824 0.836
2000 0.925 0.924 0.881 0.651 0.696

45



Table 4.25
|| Hy 1%: DGP GARCH(1,1) u =0 w =0.01 « =0.3 3 =0.65 ||
|| TEST | T | (1,d,1) | (1,d,0) | (0,d,0) | (1,1) | I(1,1) ||

500 0.897 0.957 0.969 0.952 0.978

Q(5) 1000 0.910 0.963 0.979 0.960 0.990
2000 0.898 0.949 0.970 0.944 0.979

500 0.955 0.973 0.972 0.971 0.985

Q(10) | 1000 0.955 0.975 0.973 0.973 0.986
2000 0.949 0.968 0.966 0.964 0.982

500 0.967 0.981 0.978 0.975 0.989

Q(20) | 1000 0.969 0.978 0.977 0.976 0.987
2000 0.963 0.976 0.975 0.972 0.982

500 0.968 0.974 0.966 0.971 0.977

Q(50) | 1000 0.976 0.983 0.985 0.983 0.987
2000 0.976 0.981 0.985 0.981 0.989

500 0.963 0.963 0.964 0.963 0.968

Q(100) | 1000 0.971 0.975 0.981 0.974 0.977
2000 0.976 0.982 0.984 0.980 0.983

500 0.955 0.977 0.739 0.976 0.988

Q?(5) | 1000 0.958 0.987 0.489 0.990 0.993
2000 0.939 0.972 0.129 0.983 0.982

500 0.975 0.984 0.740 0.981 0.989

Q*(10) | 1000 0.973 0.985 0.523 0.986 0.993
2000 0.965 0.976 0.128 0.982 0.978

500 0.981 0.982 0.799 0.984 0.991

Q?(20) | 1000 0.983 0.990 0.669 0.989 0.995
2000 0.966 0.979 0.250 0.984 0.981

500 0.981 0.982 0.877 0.983 0.986

Q?(50) | 1000 0.984 0.989 0.773 0.986 0.991
2000 0.980 0.985 0.452 0.987 0.983

500 0.978 0.980 0.903 0.986 0.984

Q?(100) | 1000 0.980 0.985 0.837 0.988 0.987
2000 0.978 0.983 0.625 0.991 0.981
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Table 4.26
|| Hy 5%: DGP GARCH(1,1) t =0 w =0.01 « =0.3 3 =0.65 ||
|| TEST | T | (1,d,1) | (1,d,0) | (0,d,0) | (1,1) | I(1,1) ||

500 0.685 0.833 0.897 0.831 0.906

Q(5) 1000 0.717 0.850 0.896 0.834 0.925
2000 0.695 0.842 0.886 0.830 0.909

500 0.815 0.870 0.889 0.861 0.923

Q(10) | 1000 0.848 0.905 0.912 0.900 0.942
2000 0.823 0.885 0.904 0.878 0.931

500 0.882 0.910 0.904 0.905 0.933

Q(20) | 1000 0.895 0.917 0.913 0.905 0.932
2000 0.874 0.908 0.914 0.904 0.931

500 0.907 0.917 0.917 0.913 0.930

Q(50) | 1000 0.916 0.930 0.936 0.926 0.947
2000 0.904 0.922 0.924 0.916 0.938

500 0.900 0.911 0.919 0.904 0.923

Q(100) | 1000 0.910 0.920 0.928 0.919 0.932
2000 0.923 0.934 0.933 0.931 0.942

500 0.842 0.914 0.517 0.908 0.955

Q?(5) | 1000 0.816 0.907 0.281 0.907 0.948
2000 0.730 0.835 0.042 0.902 0.893

500 0.904 0.936 0.542 0.940 0.954

Q*(10) | 1000 0.904 0.933 0.306 0.937 0.940
2000 0.873 0.902 0.047 0.935 0.904

500 0.920 0.942 0.643 0.938 0.948

Q?(20) | 1000 0.936 0.953 0.447 0.953 0.958
2000 0.887 0.905 0.123 0.926 0.901

500 0.932 0.942 0.752 0.944 0.945

Q?(50) | 1000 0.938 0.945 0.609 0.952 0.950
2000 0.934 0.944 0.259 0.949 0.937

500 0.930 0.937 0.806 0.934 0.938

Q?(100) | 1000 0.944 0.950 0.706 0.948 0.943
2000 0.927 0.937 0.411 0.945 0.930
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Table 4.27

[ Ho 1%: DGP FIGARCH(1,d,0) p=0w =0.01d=08 3=05¢=0 |

|| TEST | T | (1,d,1) | (1,d,0) | (0,d,0) | (1,1) | I(1,1) ||
500 0.905 0.909 0.816 0.900 0.902
JB 1000 0.898 0.900 0.760 0.887 0.890
2000 0.887 0.885 0.648 0.863 0.865
Table 4.28
|| Hy 5%: DGP FIGARCH(1,d,0) x1=0w=0.01d=083=05¢=0 ||
[Tt T [ @D [ (040 [ 040 [ @) [ 10D |
500 0.814 0.816 0.705 0.810 0.811
JB 1000 0.809 0.806 0.623 0.792 0.790
2000 0.771 0.772 0.489 0.741 0.739
Table 4.29
|| Hy 1%: DGP FIGARCH(1,d,1) p=0w =0.01d=0.8 3 =0.5 ¢ = 0.05 ||
[TE5T [ T [ 04D [ 0 | 040 [ (0 [ 10D |
500 0.893 0.904 0.861 0.887 0.881
JB 1000 0.892 0.896 0.793 0.878 0.877
2000 0.886 0.890 0.711 0.874 0.875
Table 4.30
|| Hy 5%: DGP FIGARCH(1,d,1) u=0w =0.01 d=0.8 8=0.5 ¢ =0.05 ||
|| TEST T (1,d,1) (1,d,0) (0,d,0) (1,1) I(1,1) ||
500 0.783 0.800 0.744 0.774 0.773
JB 1000 0.788 0.785 0.675 0.769 0.770
2000 0.797 0.793 0.566 0.780 0.779
Table 4.31
|| Hy 1%: DGP FIGARCH(1,d,1) u=0w =0.01d=0.8 3=0.5 ¢ =0.3 ||
[TEST [ T [ () [ (40 [ 040 [ (G0 [ D |
500 0.858 0.886 0.874 0.865 0.862
JB 1000 0.839 0.878 0.854 0.820 0.815
2000 0.814 0.876 0.856 0.764 0.763
Table 4.32
|| Hy 5%: DGP FIGARCH(1,d,1) u=0w =0.01d=0.8 8=0.5 ¢ =10.3 ||
|| TEST T (1,d,1) (1,d,0) (0,d,0) (1,1) 1(1,1) ||
500 0.745 0.779 0.758 0.758 0.750
JB 1000 0.736 0.780 0.754 0.712 0.709
2000 0.702 0.754 0.734 0.628 0.623
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Table 4.33

[ Ho 1%: DGP FIGARCH(0,d,0) p=0w =0.01d=083=06=0 |

[TEST] T [ (14D [ (1,d0 [ (040 [ (1) [ IALD ]
500 | 0.886 0.887 0.828 0.882 0.885
JB [ 1000 [ 0.747 0.877 0.879 0.800 0.799
2000 | 0.614 0.873 0.872 0.670 0.670
Table 4.34
[ Ho 5%: DGP FIGARCH(0,d,0) p=0w=10.01d=083=0¢=0 ]
[TEST] T [ (4D [ (40 [ 040 [ L) [ 1D |
500 | 0.800 0.805 0.704 0.792 0.792
JB [ 1000 ] 0.630 0.783 0.778 0.678 0.676
2000 | 0.485 0.750 0.750 0.544 0.544
Table 4.35
| Ho 1%: DGP FIGARCH(1,d,0) p=0w=0.01d=043=03¢=0 |
[TEST[ T [ (4D [ (40 [ 040 [ D [ 1D |
500 | 0.904 0.905 0.843 0.899 0.893
JB [ 1000 | 0.938 0.936 0.882 0.922 0.915
2000 | 0.929 0.927 0.863 0.918 0.910
Table 4.36
[ Ho 5%: DGP FIGARCH(1,d,0) p=0w =0.01d=043=03¢=0 ]
[TEST] T [ (LdD) [ (Ld0) [ (0d0) [ (LD [ ILD ]
500 | 0.811 0.815 0.719 0.796 0.797
JB [ 1000 [ 0.847 0.849 0.746 0.835 0.822
2000 | 0.839 0.839 0.740 0.825 0.803
Table 4.37
[ Ho 1%: DGP FIGARCH(1,d,1) p=0w=001d=043=03¢=0.2 ]
[TEST] T [ (dD) [ (L,dD) [ 0d0) [ @D [ 11D ]
500 | 0.904 0.906 0.827 0.890 0.897
JB [ 1000 | 0.919 0.919 0.914 0.893 0.888
2000 | 0.913 0.910 0.902 0.897 0.879
Table 4.38
[ Ho 5%: DGP FIGARCH(1,d,0) p=0w=001d=043=03¢=02]
[TEST] T [ (04D [ (1,40 [ (040 [ (@1 [ 101 ]
500 | 0.793 0.795 0.725 0.793 0.791
JB [ 1000 [ 0.834 0.831 0.823 0.799 0.788
2000 | 0.833 0.830 0.817 0.771 0.743
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Table 4.39

[ Hy 1%: DGP FIGARCH(0,d,0) t=0w =001d=043=0¢=0

|| TEST | T | (1,d,1) | (1,d,0) | (0,d,0) | (1,1) | I(1,1) ||
500 0.889 0.895 0.809 0.885 0.887
JB 1000 0.926 0.926 0.924 0.904 0.885
2000 0.931 0.927 0.922 0.880 0.860
Table 4.40
|| Hy 5%: DGP FIGARCH(9,d,0) t1=0w=0.01d=043=0¢=0 ||
[TEST] T [ @y [ (40 [ 040 [ @) [ 10D |
500 0.795 0.798 0.705 0.796 0.790
JB 1000 0.830 0.831 0.820 0.806 0.774
2000 0.847 0.849 0.823 0.773 0.752
Table 4.41
|| Hy 1%: DGP GARCH(1,1) 1 =0 w =0.01 « =0.3 8 = 0.65 ||
[TBST] T [ @ [ 40 [ 040 [ ) [ 10D |
500 0.909 0.911 0.843 0.909 0.906
JB 1000 0.914 0.918 0.824 0.926 0.921
2000 0.897 0.900 0.771 0.905 0.901
Table 4.42
|| Hy 5%: DGP GARCH(1,1) u=0w =0.01 « =0.3 5 =0.65 ||
[TEST[ T [ (d) [ (140 [ (040 [ @D [ 11D |
500 0.819 0.818 0.740 0.835 0.819
JB 1000 0.806 0.811 0.695 0.810 0.805
2000 0.801 0.802 0.620 0.801 0.802
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Table 4.43

[ Hy 1%: DGP FIGARCH(1,d,0) 1 =0w=0.01d=08 3=056=0

[TEST [ T [ (LdD) | (Ld0) | (040 [ (L | Iy |
500 | 0.992 0.992 0989 [ 0.991 | 0.991
LM(2) [ 1000 | 0.989 0.990 0980 | 0.980 | 0.988
2000 | 0.992 0.992 0.992 | 0.989 | 0.989
500 | 0.980 0.981 0.978 [ 0.982 | 0.981
LM(5) | 1000 | 0.984 0.983 0978 | 0.985 | 0.985
2000 | 0.988 0.988 0.985 | 0.987 | 0.987
500 | 0.981 0.984 0977 | 0984 | 0.985
LM(10) | 1000 | 0.983 0.983 0931 | 0982 | 0.982
2000 | 0.988 0.988 0.98 | 0.988 | 0.988
500 | 0.984 0.987 0.982 | 0.987 [ 0.987
LM(20) | 1000 | 0.985 0.985 0979 | 0.983 [ 0.983
2000 | 0.989 0.989 0.98 | 0.990 | 0.990
500 | 0.979 0.980 0.970 | 0.982 | 0.983
LM(50) | 1000 | 0.984 0.985 0985 | 0.985 | 0.985
2000 | 0.993 0.994 0.990 | 0.993 [ 0.993
Table 4.44
[ Ho 5%: DGP FIGARCH(1,d,0) u=0w=0.01d=083=05¢=0 |
[TEST [ T [ (LdD) | (Ld0) | 040 [ (LhH | 1Ly |
500 | 0.941 0.943 0949 [ 0.944 | 0.944
LM(2) [ 1000 | 0.939 0.939 0936 | 0.938 | 0.941
2000 | 0.947 0.948 0.954 | 0.946 | 0.947
500 | 0.922 0.924 0.907 | 0.922 [ 0.925
LM(5) | 1000 | 0.934 0.935 0919 | 0.940 | 0.942
2000 | 0.949 0.948 0.043 | 0.948 | 0.949
500 | 0.938 0.938 0914 | 0940 | 0.942
LM(10) | 1000 | 0.946 0.949 0920 | 0.950 [ 0.953
2000 | 0.956 0.955 0946 | 0.959 | 0.959
500 | 0.940 0.942 0911 | 0945 [ 0.945
LM(20) | 1000 | 0.942 0.943 0.928 | 0.943 | 0.947
2000 | 0.951 0.951 0939 | 0.951 | 0.952
500 | 0.901 0.905 0.894 | 0.906 | 0.908
LM(50) | 1000 | 0.935 0.935 0917 | 0935 | 0.937
2000 | 0.955 0.955 0920 | 0.958 | 0.957
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Table 4.45

[ H, 1%: DGP FIGARCH(1,d,1) y=0w =0.01 d=0.8 5= 0.5 ¢ = 0.05 ||

|| TEST | T (1,d,1) | (1,d,0) (0,d,0) | (1,1) | I(1,1) ||
500 0.992 0.992 0.992 0.991 0.991
LM(2) | 1000 0.989 0.990 0.992 0.989 0.989
2000 0.992 0.991 0.991 0.990 0.991
500 0.993 0.994 0.992 0.995 0.995
LM(5) | 1000 0.983 0.986 0.984 0.985 0.985
2000 0.992 0.992 0.982 0.992 0.992
500 0.991 0.992 0.989 0.993 0.993
LM(10) | 1000 0.988 0.990 0.986 0.991 0.991
2000 0.988 0.988 0.987 0.990 0.991
500 0.988 0.989 0.985 0.987 0.990
LM(20) | 1000 0.988 0.990 0.986 0.990 0.991
2000 0.991 0.990 0.989 0.991 0.991
500 0.980 0.980 0.979 0.979 0.979
LM(50) | 1000 0.986 0.989 0.986 0.987 0.986
2000 0.989 0.991 0.984 0.990 0.990
Table 4.46
|| Hy 5%: DGP FIGARCH(1,d,1) p=0w =0.01d=0.8 5 =0.5 ¢ = 0.05 ||
|| TEST T (1,d,1) (1,d,0) (0,d,0) (1,1) I(1,1) ||
500 0.956 0.957 0.951 0.957 0.958
LM(2) 1000 0.963 0.964 0.960 0.955 0.955
2000 0.956 0.959 0.959 0.954 0.957
500 0.952 0.955 0.941 0.958 0.959
LM(5) 1000 0.950 0.952 0.942 0.952 0.955
2000 0.950 0.953 0.938 0.952 0.955
500 0.954 0.959 0.940 0.960 0.961
LM(10) 1000 0.953 0.955 0.946 0.960 0.960
2000 0.949 0.952 0.932 0.953 0.954
500 0.943 0.948 0.941 0.947 0.949
LM(20) 1000 0.953 0.953 0.941 0.951 0.952
2000 0.947 0.947 0.929 0.947 0.949
500 0.915 0.917 0.909 0.921 0.924
LM(50) 1000 0.944 0.944 0.930 0.938 0.942
2000 0.945 0.946 0.928 0.941 0.941
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Table 4.47

[ Ho 1%: DGP FIGARCH(1,d,1) u=0w=0.01d=08 =0.5¢ = 0.3 |

|| TEST | T (1,d,1) | (1,d,0) (0,d,0) | (1,1) | I(1,1) ||
500 0.987 0.992 0.994 0.992 0.991
LM(2) | 1000 0.988 0.991 0.992 0.993 0.992
2000 0.990 0.990 0.989 0.990 0.990
500 0.988 0.992 0.990 0.992 0.993
LM(5) | 1000 0.983 0.988 0.985 0.990 0.991
2000 0.983 0.988 0.988 0.988 0.988
500 0.982 0.989 0.987 0.988 0.990
LM(10) | 1000 0.981 0.987 0.983 0.987 0.987
2000 0.986 0.988 0.987 0.989 0.990
500 0.988 0.991 0.992 0.989 0.990
LM(20) | 1000 0.985 0.987 0.989 0.987 0.987
2000 0.985 0.989 0.989 0.991 0.991
500 0.982 0.985 0.989 0.984 0.984
LM(50) | 1000 0.979 0.984 0.984 0.976 0.977
2000 0.981 0.987 0.985 0.985 0.985
Table 4.48
|| Hy 5%: DGP FIGARCH(1,d,1) x1=0w =0.01d=08 3=0.5 ¢ =0.3 ||
|| TEST T (1,d,1) (1,d,0) (0,d,0) (1,1) I(1,1) ||
500 0.943 0.948 0.943 0.942 0.949
LM(2) 1000 0.943 0.952 0.951 0.954 0.954
2000 0.944 0.950 0.950 0.947 0.947
500 0.938 0.949 0.946 0.947 0.950
LM(5) 1000 0.932 0.945 0.938 0.949 0.954
2000 0.943 0.950 0.945 0.949 0.953
500 0.943 0.951 0.948 0.952 0.954
LM(10) 1000 0.927 0.937 0.935 0.950 0.947
2000 0.932 0.943 0.943 0.948 0.950
500 0.932 0.940 0.938 0.941 0.940
LM(20) 1000 0.931 0.944 0.944 0.938 0.940
2000 0.931 0.943 0.940 0.941 0.941
500 0.917 0.925 0.917 0.913 0.914
LM(50) 1000 0.917 0.930 0.928 0.925 0.927
2000 0.925 0.932 0.933 0.923 0.924
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Table 4.49
|| Hy 1%: DGP FIGARCH(0,d,0) t=0w=0.01d=083=0¢=0 ||
|| TEST | T | (1,d,1) | (1,d,0) | (0,d,0) | (1,1) | I(1,1) ||

500 0.992 0.993 0.993 0.992 0.992
LM(2) | 1000 0.987 0.993 0.992 0.994 0.995
2000 0.974 0.984 0.984 0.986 0.987
500 0.991 0.990 0.987 0.991 0.991
LM(5) | 1000 0.981 0.991 0.990 0.991 0.991
2000 0.980 0.992 0.991 0.991 0.991
500 0.988 0.989 0.983 0.988 0.990
LM(10) | 1000 0.979 0.992 0.992 0.990 0.990
2000 0.974 0.992 0.991 0.991 0.993
500 0.990 0.990 0.987 0.991 0.990
LM(20) | 1000 0.983 0.990 0.990 0.987 0.987
2000 0.981 0.988 0.988 0.985 0.985
500 0.982 0.983 0.981 0.980 0.981
LM(50) | 1000 0.984 0.986 0.987 0.984 0.984
2000 0.976 0.987 0.987 0.982 0.982

Table 4.50
|| Hy 5%: DGP FIGARCH(0,d,0) p=0w=0.01d=083=0¢=0 ||
|| TEST | T | (1,d,1) | (1,d,0) | (0,d,0) | (1,1) | I(1,1) ||

500 0.960 0.963 0.961 0.958 0.960
LM(2) | 1000 0.941 0.959 0.955 0.962 0.964
2000 0.927 0.946 0.946 0.940 0.942
500 0.951 0.952 0.947 0.953 0.955
LM(5) | 1000 0.927 0.954 0.953 0.959 0.960
2000 0.911 0.945 0.944 0.946 0.946
500 0.947 0.946 0.929 0.948 0.952
LM(10) | 1000 0.919 0.950 0.951 0.939 0.941
2000 0.914 0.951 0.951 0.939 0.943
500 0.944 0.948 0.925 0.946 0.948
LM(20) | 1000 0.927 0.949 0.948 0.938 0.940
2000 0.924 0.950 0.948 0.947 0.948
500 0.913 0.914 0.909 0.911 0.915
LM(50) | 1000 0.927 0.933 0.935 0.925 0.925
2000 0.927 0.951 0.949 0.941 0.941
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Table 4.51

[ Ho 1%: DGP FIGARCH(1,d,0) p=0w—=0.01d=04 3 =03 ¢ =0

|| TEST | T | (1,d,1) | (1,d,0) (0,d,0) | (1,1) | I(1,1) ||
500 0.990 0.990 0.988 0.992 0.993
LM(2) | 1000 0.987 0.987 0.991 0.989 0.987
2000 0.987 0.987 0.988 0.987 0.989
500 0.992 0.992 0.987 0.990 0.992
LM(5) | 1000 0.994 0.994 0.993 0.994 0.995
2000 0.989 0.992 0.980 0.986 0.988
500 0.990 0.990 0.986 0.990 0.991
LM(10) | 1000 0.986 0.987 0.982 0.985 0.987
2000 0.988 0.988 0.984 0.990 0.992
500 0.994 0.994 0.991 0.994 0.996
LM(20) | 1000 0.981 0.982 0.979 0.978 0.979
2000 0.988 0.988 0.986 0.989 0.988
500 0.984 0.986 0.987 0.984 0.985
LM(50) | 1000 0.983 0.984 0.978 0.985 0.986
2000 0.993 0.993 0.992 0.991 0.994
Table 4.52
|| Hy 5%: DGP FIGARCH(1,d,0) t=0w=0.01d=043=03¢=0 ||
|| TEST | T | (1,d,1) | (1,d,0) (0,d,0) | (1,1) | I(1,1) ||
500 0.954 0.954 0.952 0.952 0.953
LM(2) | 1000 0.940 0.940 0.945 0.940 0.943
2000 0.945 0.946 0.950 0.946 0.943
500 0.968 0.970 0.946 0.966 0.966
LM(5) | 1000 0.953 0.953 0.946 0.954 0.952
2000 0.936 0.936 0.932 0.938 0.942
500 0.956 0.955 0.944 0.955 0.959
LM(10) | 1000 0.941 0.943 0.939 0.944 0.949
2000 0.941 0.942 0.935 0.938 0.942
500 0.958 0.958 0.946 0.958 0.957
LM(20) | 1000 0.933 0.932 0.919 0.933 0.940
2000 0.956 0.954 0.944 0.959 0.958
500 0.930 0.932 0.919 0.930 0.930
LM(50) | 1000 0.924 0.922 0.921 0.923 0.931
2000 0.961 0.960 0.954 0.966 0.972
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Table 4.53

[ Ho 1%: DGP FIGARCH(1,d,1) u=0w=0.01d=04 =03 ¢ =02 |

| TEST | T | (1,d,1) | (1,d,0) (0,d,0) | (1,1) | I(1,1) ||
500 0.990 0.991 0.989 0.987 0.988
LM(2) | 1000 0.988 0.989 0.991 0.989 0.989
2000 0.993 0.993 0.994 0.990 0.993
500 0.992 0.992 0.983 0.992 0.992
LM(5) | 1000 0.992 0.992 0.990 0.993 0.993
2000 0.991 0.991 0.990 0.992 0.993
500 0.987 0.987 0.984 0.987 0.987
LM(10) | 1000 0.990 0.990 0.988 0.990 0.990
2000 0.992 0.992 0.992 0.994 0.994
500 0.989 0.990 0.987 0.990 0.990
LM(20) | 1000 0.987 0.988 0.986 0.990 0.992
2000 0.994 0.994 0.994 0.995 0.995
500 0.979 0.980 0.977 0.979 0.980
LM(50) | 1000 0.985 0.986 0.983 0.984 0.990
2000 0.989 0.989 0.988 0.985 0.986
Table 4.54
|| Hy 5%: DGP FIGARCH(1,d,0) t =0w =0.01d=04 3=0.3 ¢ =0.2 ||
|| TEST | T | (1,d,1) | (1,d,0) (0,d,0) | (1,1) | I(1,1) ||
500 0.941 0.942 0.936 0.939 0.938
LM(2) | 1000 0.940 0.946 0.946 0.934 0.937
2000 0.956 0.956 0.959 0.950 0.949
500 0.937 0.938 0.921 0.936 0.940
LM(5) | 1000 0.951 0.948 0.944 0.948 0.954
2000 0.954 0.955 0.950 0.949 0.955
500 0.949 0.949 0.922 0.946 0.951
LM(10) | 1000 0.945 0.941 0.934 0.954 0.959
2000 0.966 0.966 0.961 0.963 0.968
500 0.936 0.937 0.919 0.937 0.940
LM(20) | 1000 0.939 0.940 0.934 0.940 0.950
2000 0.957 0.958 0.955 0.956 0.965
500 0.921 0.921 0.909 0.918 0.921
LM(50) | 1000 0.929 0.928 0.925 0.927 0.940
2000 0.941 0.939 0.933 0.935 0.948
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Table 4.55

|| Hy 1%: DGP FIGARCH(0,d,0) p=0w=0.01d=045=0¢=0 ||
|| TEST | T | (1,d,1) | (1,d,0) (0,d,0) | (1,1) | I(1,1) ||
500 0.983 0.984 0.989 0.983 0.984
LM(2) | 1000 0.991 0.992 0.992 0.993 0.993
2000 0.992 0.992 0.993 0.991 0.991
500 0.982 0.983 0.981 0.983 0.985
LM(5) | 1000 0.994 0.994 0.993 0.993 0.993
2000 0.989 0.990 0.987 0.986 0.988
500 0.983 0.985 0.981 0.990 0.990
LM(10) | 1000 0.989 0.989 0.988 0.987 0.988
2000 0.991 0.990 0.989 0.989 0.993
500 0.989 0.991 0.989 0.992 0.991
LM(20) | 1000 0.991 0.991 0.991 0.990 0.991
2000 0.985 0.985 0.984 0.985 0.987
500 0.978 0.979 0.974 0.978 0.980
LM(50) | 1000 0.988 0.988 0.989 0.984 0.987
2000 0.986 0.985 0.984 0.985 0.987
Table 4.56
|| Hy 5%: DGP FIGARCH(0,d,0) p=0w=0.01d=045=0¢=0 ||
|| TEST | T | (1,d,1) | (1,d,0) (0,d,0) | (1,1) | I(1,1) ||
500 0.944 0.946 0.939 0.945 0.945
LM(2) | 1000 0.960 0.960 0.956 0.958 0.960
2000 0.949 0.950 0.951 0.944 0.951
500 0.939 0.941 0.922 0.933 0.937
LM(5) | 1000 0.950 0.952 0.950 0.951 0.960
2000 0.940 0.939 0.935 0.946 0.952
500 0.937 0.939 0.931 0.940 0.942
LM(10) | 1000 0.941 0.942 0.939 0.946 0.951
2000 0.943 0.941 0.940 0.940 0.948
500 0.935 0.936 0.928 0.940 0.940
LM(20) | 1000 0.941 0.943 0.940 0.947 0.955
2000 0.948 0.947 0.946 0.947 0.954
500 0.920 0.921 0.910 0.910 0.915
LM(50) | 1000 0.928 0.925 0.923 0.924 0.932
2000 0.925 0.926 0.924 0.921 0.930
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Table 4.57

[ Hy 1%: DGP GARCH(1,1) p=0w = 0.0l a = 0.3 3 = 0.65 [

|| TEST | T | (1,d,1) | (1,d,0) (0,d,0) | (1,1) | I(1,1) ||
500 0.988 0.989 0.986 0.988 0.989
LM(2) | 1000 0.994 0.995 0.995 0.995 0.995
2000 0.987 0.987 0.987 0.987 0.987
500 0.990 0.990 0.984 0.989 0.991
LM(5) | 1000 0.992 0.993 0.989 0.993 0.993
2000 0.994 0.994 0.984 0.991 0.995
500 0.994 0.994 0.989 0.995 0.995
LM(10) | 1000 0.992 0.993 0.988 0.990 0.993
2000 0.987 0.988 0.984 0.988 0.990
500 0.993 0.993 0.984 0.990 0.994
LM(20) | 1000 0.993 0.993 0.989 0.989 0.993
2000 0.988 0.990 0.987 0.988 0.990
500 0.989 0.989 0.982 0.988 0.991
LM(50) | 1000 0.990 0.991 0.989 0.991 0.992
2000 0.987 0.989 0.990 0.988 0.989
Table 4.58
|| Hy 5%: DGP GARCH(1,1) p=0w =0.01 «a =0.3 3 =0.65 ||
|| TEST | T | (1,d,1) | (1,d,0) (0,d,0) | (1,1) | I(1,1) ||
500 0.934 0.934 0.944 0.930 0.935
LM(2) | 1000 0.963 0.962 0.959 0.956 0.963
2000 0.946 0.945 0.936 0.937 0.946
500 0.948 0.948 0.935 0.946 0.948
LM(5) | 1000 0.959 0.959 0.945 0.956 0.960
2000 0.949 0.949 0.938 0.944 0.953
500 0.952 0.952 0.922 0.946 0.956
LM(10) | 1000 0.961 0.963 0.942 0.963 0.968
2000 0.947 0.950 0.934 0.946 0.952
500 0.950 0.950 0.929 0.944 0.951
LM(20) | 1000 0.947 0.948 0.938 0.941 0.950
2000 0.946 0.950 0.936 0.943 0.950
500 0.928 0.928 0.924 0.926 0.926
LM(50) | 1000 0.937 0.942 0.931 0.933 0.939
2000 0.945 0.948 0.940 0.941 0.947
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