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Abstract 
 
 
One of the most important aspects in asset allocation problems is the assumed probability distribution of  
asset returns. Financial managers generally suppose normal distribution, even if extreme realizations 
usually have an higher frequency than results in the case of normally distributed returns. Using Monte 
Carlo simulation, we propose and solve an asset allocation problem with shortfall constraint, evaluating 
the exact risk-level for managers in the case of misspecification of tails behaviour. In particular, in the 
optimisation problem, we assume that returns are generated by a multivariate Student-t, when in reality 
returns come from a multivariate distribution where each marginal is a Student-t with different degrees of 
freedom; this method permits us to value the effective risk for managers. In the case analysed, it is also 
interesting to observe that a multivariate density with different marginal distributions produces a shortfall 
probability and a shortfall return level that can be approximated adequately by assuming a multivariate 
Student-t in the optimisation problem. The present approach could be an important instrument for 
investors who require a qualitative assessment of the reliability and sensitivity of their investment 
strategies when their models are potentially misspecified. 
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IntroductionIntroductionIntroductionIntroduction    

 

The most important aspects in asset allocation problems is the assumed 

probability distribution of future returns. In most theoretical and empirical works, a 

normal or lognormal distribution is usually assumed. 

It is well known that the normal distribution has several attractive properties:   

it is easy to use, and it produces several tractable results in many analytical exercises; all 

moments of positive order exist, and it is completely characterized by its first two 

moments, thus establishing the link with the mean-variance optimization theory. 

Normal distribution arises at the limiting distribution of a whole class of statistical 

testing and estimation procedures, and therefore plays a central role in empirical 

modelling exercises. 

One of the main characteristics of the normal distribution is that its tail decays 

exponentially toward zero; thus extreme realizations are very unlikely. However, this 

seems to contradict empirical findings on asset return, which state that these returns 

generally exhibit leptokurtic behaviour, i.e., have fatter tails than normal distribution. 

This means that extreme returns of either sign occur far more often in practice 

than predicted by the normal model.  

For the financial manager, who is interested in risk management, these are basic 

aspects.  

It is typically suggested that the use of leptokurtic instead of normal distributions 

in asset allocation problems leads to more prudent asset portfolios. In other terms, it is 

commonly believed that optimal asset allocations under the assumption of normally 

distributed returns have a higher Value at Risk than the model suggests if returns in 

reality follow a leptokurtic distribution. 

By means of Monte Carlo simulation we study an asset allocation problem under 

a given shortfall constraint, and we show that this suggestion is not generally valid. The 

use of simulation methods allows testing of the effects of assuming different kinds of 

returns distribution in modelling asset class. 
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To illustrate this point, we consider a simple one-period asset allocation problem 

with one shortfall constraint1 [see Roy A. D.  (1952), Telser L. G.  (1955), Kataoka S. 

(1963)]. 

As is known from the safety first principle, the shortfall constraint reflects the 

investor’s typical desire to limit downside risk by putting a (probabilistic) upper bound 

on the maximum loss. In other words, the investor wants to determine an optimal asset 

allocation for a given Value at Risk. Results obtained reveal that the degree of shortfall 

probability plays a crucial role in determining the effects of the choice between a fat-

tailed and a normal distribution. These effects concern the composition  of optimal asset 

allocations as well as consequences of misspecification of the degree of fat-tailedness 

for the downside risk measure.2  

If the shortfall is moderately large, say 5%, then the assumption of fat tails 

results in more aggressive asset allocations. As a consequence, if reality is fat-tailed, 

optimal asset allocations that are based on the normal distribution may be far too 

prudent for a given 95% confidence level value at risk. 

 If the shortfall is small, say, 1%, then the use of leptokurtic distribution leads to 

more prudent asset allocations. Consequently, an optimal asset mix that is based on a 

normality assumption, will violate a 99% confidence level value at risk if reality is 

leptokurtic. We show that the true VaR may in that case exceed the value at risk 

obtained in simulation by over 30%. 

After these first results, we analyse the effects, on the portfolio management, 

when the distribution of each asset returns considered, shows a different  behaviour. 

In fact, it is quite unrealistic to suppose that the probability distribution of each 

financial index shows the same degrees of leptokurtosis. Through the Monte Carlo 

                                                           
1 An extensive literature existing since the fifties, known as Downside Risk Approach, tries to explain risk 
associated to an investment, exclusively accepting downside risk oscillations as relevant measure of it. 
Downside Risk denotes an alternative of the more common standard deviation, generally used by 
financial managers in asset allocation problems. Although these approaches were already developed at the 
beginning of the fifties, they were followed in the mid seventies with the introduction of lower partial 
moment framework [Harlow W. V. (1991)]. A special case of lower partial moments is the safety first 
principle [see Roy A. D. (1952)]. This allows investors to identify portfolios revealing a minimum 
probability for falling short of  specified return level. 
2 A first analysis of these important aspects was provided by A. Lucas and P. Klassen (1998) which 
studied an analogous problem in an analytical way. The aim of this work is to examine closely these 
aspects valuing the effects on financial portfolio when each asset studied shows a different probability 
distribution, and to make this possible the Monte Carlo method seems the most suitable instrument. 
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method it is possible to study the effects on the true risk when the data come from a 

“mixed” distribution while the manager uses a multivariate distribution with identically 

distributed marginal distributions. 

The main result is that a correct estimate of the degrees of freedom for each of 

them is a necessary condition in order to have no excessive loss of information, an 

adequate formulation of the optimal strategy and, consequently, a correct perception  of 

the true risk. We have also noted that for the particular combination we used, it is 

possible to find a multivariate distribution with identically distributed marginal 

distributions able to approximate the empirical one, with a loss of  information that 

could be minimal. This means that we can simplify the problem with no excessive loss 

of generalities, which may be very useful when we solve complex mathematical models.  

The analysis we carry out in this article may be very important to understand 

which approach a manager could follow to identify the most suitable distribution of 

probability to use in the model. 

We concentrate on the interaction between different distributional assumptions 

made by the manager on the one hand and, on the other, the resulting optimal financial 

management decision and downside risk measures. In particular, we pay close attention 

to the effect of financial policies and VaR if the probability of the occurrence of the 

extreme returns is underestimated. 

We first present the asset allocation problem under study and the class of 

probability distributions that is used. Next we examine how the problem can be solved 

through the Monte Carlo approach, and in particular we concentrate on the stochastic 

optimization. After this analysis, we give some general characterizations of the effect of 

fat tails on the problem at hand and a numerical illustration of our model, initially using 

the returns of three financial assets (cash, stocks and bonds) identically distributed and 

then differently distributed. 

Parameters of the probability distribution (mean, variance, correlation matrix), 

are estimated on three U. S. asset categories. Following the empirical example, we study 

the effect of misspecification of the probability of extreme returns on downside risk.  
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1111  The Portfolio Model  The Portfolio Model  The Portfolio Model  The Portfolio Model    

 

We consider a one-period model with n asset categories. At the beginning of 

the period, the manager can invest the money available in any of the n asset categories 

and short positions are not allowed. 

The objective of the investment manager is to maximize the expected return on 

the portfolio, subject to a shortfall constraint. This shortfall constraint states that with a 

sufficiently high probability α−1  (with α  being a small number), the return on the 

portfolio will not fall below the threshold return (rlow) . 

Formally, the asset allocation problem can be written as follows: 
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where xi and ri , (with i = 1, 2,…n), denote the fraction of capital invested in the asset 

category i, and the (stochastic) return on asset category i, respectively.  

The operator E( • ) is the expectations operator with respect to the probability 

distribution P of the asset returns.  

The probabilistic constraint in (2) fixes the permitted VaR for feasible asset 

allocation strategies. We know that Value at Risk is the maximum amount that can be 

lost with a certain confidence level in a given period. In the setting of (2) with rlow < 0, 

the VaR per Euro invested  is - rlow with a confidence level of  α−1 . 

The distribution P of the asset returns is frequently assumed to be normal or 

lognormal. Yet the normal distribution is inadequate to describe the probability of 

extreme returns as usually encountered in practice. 
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Our aim is to study the effect of extreme returns on the solution of the asset 

allocation problem in (1). We need therefore to introduce a stochastic optimisation 

technique by simulation and then a class of probability distribution that allows for fat 

tails.  The class of Student-t distributions meets these requirements. 

The probability density function of n-dimensional multivariate Student-t 

distribution is given by 
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where ( )•Γ  denotes the gamma function; ),...,,( 21 ′= nrrrr  denotes the vector of 

stochastic asset returns; andµ , 1−Ω  and ν  denote the mean, the precision matrix, and 

the degrees of freedom parameter of the Student-t distribution, respectively [see. e.g. 

Abramowitz and Stegun (1970)]. 

It’s important to note that Ω  satisfies the following relation 

 

V)/21( ν−=Ω                                                     (4) 

 

where V denotes the variance-covarianze matrix. 

The Student-t distribution nests the normal distribution for asset returns in the 

sense that (3) reduces to the normal density with mean µ  and covariance matrix Ω  if 

∞→ν . The degrees of freedom parameter ν  determines the degrees of leptokurtosis. 

ν  has to be strictly positive. The smaller ν , the fatter the tails of the Student-t 

distribution. 

The first two moments of the Student-t distribution play an important role in the 

subsequent analysis. These moments are given by µ=)(rE  and 

)2/(]))([( −Ω=′−− ννµµ rrE , and they require 1>ν and 2>ν , respectively. 

Exhibit 1 displays several univariate Student-t distributions. The distributions 

are scaled in such a way that they all have zero mean and unit variance. It is clearly seen 
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that for lower values of ν , the tails of the distribution become fatter and the distribution 

becomes more “peaked” near the centre 0=µ . 

 

We have to note that µ  and V are usually unknown and they are therefore 

estimated )ˆ,( Vm  from historical time series. So we have 

 

m≅µ                                                              (5) 

  

V̂)/21( ν−≅Ω                                                      (6) 

 

In our analysis, m and  V̂  are considered fixed. In the following sections we use 

the Monte Carlo approach to analyse an asset allocation problem with shortfall  

constraint, from the manager’s point of view.  

Our aim is to consider the effects on the portfolio, when the probability 

distribution of asset returns shows a leptokurtic behaviour, and the concrete risk borne 

by the financial manager. 
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Exhibit 1: Student-t Distribution for various 
values of degrees of freedom. 
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2  Monte Carlo Simulation Approach to Stochastic Optimisation2  Monte Carlo Simulation Approach to Stochastic Optimisation2  Monte Carlo Simulation Approach to Stochastic Optimisation2  Monte Carlo Simulation Approach to Stochastic Optimisation    

 

The problem we present in this work is solved through a Monte Carlo simulation 

approach. We use such sampling methods in order to solve the optimization problem, 

and compute numerically nontrivial integrals. There are many features that distinguish 

this method from most of the others generally used. First it can handle problems of far 

greater complexity and size than most other methods. The robustness and simplicity of 

the Monte Carlo approach are its strengths. Second, the Monte Carlo method is 

intuitively based on the law of large numbers and central limit theorem. The 

probabilistic nature of the Monte Carlo method has important implications. The  result 

of any Monte Carlo procedure is a random variable. Any numerical method has errors, 

but the probabilistic nature of the Monte Carlo errors puts structure on the errors that we 

can exploit. In particular, the accuracy of the Monte Carlo method  can be controlled by 

adjusting the sample size. The Monte Carlo method uses pseudo random numbers to 

solve a given problem; that is, deterministic sequences generated using pseudo random 

generators, such as linear congruential generators [Ripley B. D. (1987)], that seem to 

be random3. We also know that these generators give an identical sequence of 

pseudorandom numbers if the same seed is set. The random numbers generated are 

“good” ones if they are uniformly distributed, statistically independent, and 

reproducible [Rubinstein R. (1981)]. In order to solve our financial problem, we need to 

simulate assets returns from different probability distributions. Initially we generate 

random numbers from a normal distribution with mean µ  and variance-covariance 

matrix V and then from a multivariate Student-t distribution with ν  degrees of 

freedom4.  

                                                           
3 In this work we have used the Mixed Congruential Generator in the following form: 

)(mod1 mciaXiX +=+ Ni ,...,2,1=  with 1312,0 −== mc  and 397204094=a . 

4 There exist many algorithms that allow the transformation of random numbers extracted from a uniform 

distribution into normally distributed random numbers. Many of these techniques are very well explained 

in R. Rubinstein (1981) and B. D. Ripley  (1987) (see, for example, Box Muller algorithm, Moro 

algorithm, etc.). 
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Let Z have a standard multivariate normal distribution, let Y have a multivariate 

chi-square distributions with ν  degrees of freedom, and let Z and Y  be independent; 

then 

 

ν/Y
ZX =                                                         (7) 

 

has a multivariate Student-t distribution with ν  degrees of freedom. 

It is known that the Monte Carlo method allows numerical solutions of complex 

mathematical problems to be obtained, where mathematical procedures seem 

inadequate. Stochastic optimization problems are an example. We consider a stochastic 

optimisation  problem in the following form 

 

)},({maxarg* ZxgEx
Ux∈

=                                               (8) 

 

where Z is a random variable with p.d.f. ( )zh . The solution of the problem (8) needs the 

computation of ( )•E . A numerical solution can be performed by simulation of the 

objective function and then by applying standard optimisation techniques.  

The most simple idea [Judd, K. L. (1998), Robert C.P. (1996), Robert C.P., Casella G. 

(1999)]  is to take a sample of size D of the random variable Z, and to 

approximate )},({ ZxgE  by its sample mean  

 

∑
=

D
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),(1                                                        (9) 

 

Then all standard optimisation techniques can be applied.  

We use this approach to solve our portfolio problem. In fact the use of Monte Carlo 

integration is quite natural for such problems since we are essentially simulating the 

problem. The solution is denoted by ∗x̂  and approximates the true solution ∗x ; it gives 

us the fraction of capital has to be invested in each asset  to maximise expected return. 
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The quality of this procedure depends on the size D and how well the integral is 

approximated by the random sample mean. We are therefore interested in knowing the 

sample size (D) and the number of samples (N)  of D draws, necessary to obtain a 

“good” estimate. To do that, we control the error from the analytical solution5 and the 

standard deviation of each estimate. In our context we have seen that for D = 10.000 

and N = 100, we can approximate the underlying distribution adequately and obtain an 

accurate estimate with a very small standard error. 

Although there exist analytical techniques to choose the optimal number of 

simulation N  [see Rubinstein R. (1981)],  graphical techniques are often preferred [see 

Robert C.P. (1996), Robert C.P., Casella G. (1999)]. They permit the choice of the 

adequate simulations number, necessary to obtain the stabilisation of the solution. The 

higher N, the better the solution approximation, because the variance of sample mean 

reduces to zero. In Appendix A, we can find the convergence in the estimated solution 

for portfolio fractions invested in cash, bonds and stocks, when data come from the 

normal distribution. For cash and bonds, the stabilisation is quite evident. For bonds, the 

interval in which the fraction moves is very small, therefore the volatility is 

imperceptible.  

 

 

3  Theoretical Effects3  Theoretical Effects3  Theoretical Effects3  Theoretical Effects    

 

We have seen that the parameter ν  plays a prominent role in asset allocation problems, 

through its presence in the shortfall constraint. Decreasing ν  has two effects. First of 

all, the tails of the distribution become fatter, resulting in a higher probability of 

extreme events for fixed precision matrix 1−Ω . As can be seen in (4), the precision 

matrix is not independent of ν  if the variance of the returns is held fixed. As ν  

decreases, the eigenvalues of the precision matrix increase. As a result, the distribution 

becomes more concentrated around the mean m≅µ . The composite effect on the 

shortfall constraint of altering ν  depends critically on the shortfall probability α . 

                                                           
5 The analytical solution is obtained by calculating integrals “analytically” instead of “numerically”. For 
multivariate distributions (such as normal or Student-t), it can be obtained by using a common calculator.  
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It can be shown  that for a sufficiently small value of α , the shortfall constraint 

becomes less binding if the distribution used tends to normal. The reverse holds if we 

consider sufficiently large values of α . 

It is interesting to present the break-even shortfall probability for the normal 

distribution obtained by simulation, i.e., the value of α , as a function of  ν  such that 

the shortfall constraint for that value of  ν  is as binding as the shortfall constraint for 

the corresponding normal distribution [results are similar to those obtained by Lucas A., 

Klaassen P. (1998)]. 

Such a value produces the same solution under either normality assumption or 

the assumption of a Student-t distribution with ν  degrees of freedom for the asset 

returns. The values of  α (ν ), are given in Exhibit 2. This graph indicates the critical 

shortfall probability ranges from %8.1=α  for 3=ν  to %6.3=α  for 10=ν . For 

values of α  below these critical levels, the effect of fat tails on the shortfall constraint 

dominates the effect caused by increased precision. In these cases, the probability 

restriction in (2) for the Student-t distribution is more binding for a given asset 

allocation than in the case of normally distributed asset returns. 
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Exhibit 2: Critical Shortfall Probability )(να  for Student-t distribution with
ν degrees of freedom (benchmark is the normal distribution ). 
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Again, the reverse holds for values of α  above the critical level.  

In our empirical study, we use  %5.0=α , %1=α , %5=α  and %10=α in 

order to illustrate both settings.    

 

 

4  Results4  Results4  Results4  Results    

 

To illustrate our results, we present an asset allocation problem (similar to which 

studied by Lucas A., Klaassen P.) solved through the Monte Carlo approach, involving 

three U.S. asset categories: cash, stocks, and bonds. For cash, we use the return on one-

month Eurodollar deposits. Stock returns are based on the S&P 500 and include 

dividends. Bond returns are computed using holding period returns on ten-year Treasury 

bonds. We consider annual returns over the period 1983-1994. All data are obtained 

from Datastream. Initially, we need to compute the mean and variance of  the returns 

series. Let 21 , xx  and 3x  denote the amount invested in cash, stocks, and bonds, 

respectively, and let the corresponding returns be denoted by 21 , rr  and 3r . Then 

),,( 321 ′= rrrr  has means 

 

                                              Cash  Stocks  Bonds 

=′µ (6.8%   17%   12.3%)                                            (10) 

 

standard deviations 

 

                                              Cash  Stocks  Bonds 

=′σ (2.3%   14.7%   10.5%)                                         (11) 

 

and the correlation matrix 
















=

173.018.0
73.0101.0
18.001.01

ρ                                              (12) 
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In  Exhibit 3 we consider results obtained for two values of shortfall 

probability ( %5%,1 == αα )  and for several values of the shortfall return lowr  at the 

levels of  0%, -5%, -10% 6. 

 Thus, for example, the combination ),( lowrα  = (1%, 0%), means that the 

manager requires an asset mix that results in no loss with a 99% probability. Similarly, 

the combination  ),( lowrα  = (5%, -5%), means that the manager is satisfied with a 5% 

Value at Risk per Euro  invested with a confidence level of  95% probability. 

Using GAUSS 3.1.4 optimisation language, we compute in simulation the 

optimal values of ix  satisfying the shortfall constraint in (2) for several values of  ν . 

The main results are presented in Exhibit 3. 

 

v rlow = 0% rlow = -5% rlow = -10% 
 Cash Stock Bonds E* Cash Stock Bonds E* Cash Stock Bonds E* 
             
 Shortfall probability 5% Shortfall probability 5% Shortfall probability 5% 
             
3 28.1% 66.7% 5.1% 13.9% 0.0% 100.0% 0.0% 17% 0.0% 100.0% 0.0% 17.0% 
5 46.3% 50.1% 3.5% 12.1% 3.8% 88.3% 7.9% 16.3% 0.0% 100.0% 0.0% 17.0% 
7 49.0% 48.5% 2.5% 11.9% 8.0% 84.5% 7.6% 15.9% 0.0% 100.0% 0.0% 17.0% 
10 50.3% 47.2% 2.5% 11.7% 10.2% 82.8% 7.0% 15.6% 0.0% 100.0% 0.0% 17.0% 
∞  51.6% 45.9% 2.5% 11.6% 12.3% 80.6% 7.0% 15.4% 0.0% 100.0% 0.0% 17.0% 

             
             
 Shortfall probability 1% Shortfall probability 1% Shortfall probability 1% 
             
3 80.8% 19.2% 0.0% 8.7% 58.5% 40.0% 1.5% 11.0% 38.8% 57.2% 4.0% 12.9% 
5 80.0% 20.0% 0.0% 8.8% 58.2% 40.2% 1.6% 11.0% 38.7% 57.3% 4.0% 12.9% 
7 78.5% 21.5% 0.0% 9.0% 56.3% 42.0% 1.8% 11.1% 36.2% 59.8% 4.0% 13.1% 
10 77.7% 22.3% 0.0% 9.1% 54.6% 43.5% 1.9% 11.3% 33.4% 62.4% 4.3% 13.4% 
∞  75.6% 24.4% 0.0% 9.3% 50.7% 46.7% 2.6% 11.7% 27.9% 67.0% 5.1% 13.9% 

             
 
Exhibit 3: Optimal asset allocation (Results obtained through Monte Carlo simulation). E* indicates the  
expected portfolio returns. 
 
 

                                                           
6 The studies we made use in particular four values of shortfall probability (0.5%, 1%, 5%, 10%), and five  
values  of  shortfall  return  ( 0%, -3%, -5%, -7%, -10%). Exhibit 3 only indicates the main results 
obtained in our work. 
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Some obvious effects in Exhibit 3 are that the optimal asset mixes become more 

aggressive if the shortfall constraint is loosened. This can be done  by increasing the 

allowed shortfall probability α  or by lowering the required  shortfall return lowr , i.e. 

increasing the Value at Risk per Euro invested. If we concentrate on the effects of  ν , 

we note the difference between the %5=α  and the %1=α  case. 

In the 5% case, increasing the fatness of the tails of the distribution P of the asset 

returns then leads to more aggressive asset allocation. The optimal asset mixes involve 

less of the relatively safe cash and more of the risky assets, stocks and bonds. The effect 

is more pronounced if the required shortfall return lowr  is lower. 

Although the results that fat tails lead to more aggressive asset mixes may seem 

counterintuitive at first sight, it is easily understood, given the results we have seen 

analysing Exhibit 2. In fact, decreasing ν  while keeping the variance fixed has two 

opposite effects. First, the probability of extreme (negative) returns increases, leading to 

more prudent asset allocation strategies. Second, the precision of the distribution 

increases, leading to more certainty about the spread of the outcome and, thus, to a more 
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Exhibit 4: Shortfall Probability Efficient Frontiers obtained in simulation. 
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aggressive strategy. 

For a shortfall probability of 5%, the latter of these two effects dominates. In the 

case of 1% shortfall probability, the opposite occurs. Decreasing ν  now leads to more 

prudent asset mixes. Again the effect is more pronounced if the required shortfall return 
lowr  is lower. 

Exhibit 4 shows the effects on expected portfolio returns, for different 

distributions, when the shortfall probability vary7. Curves obtained by simulations, are 

labelled “Shortfall Probability Efficient Frontiers (SPEF)”8 [see Rudolf M. (1994)], and 

represent all the efficient portfolios, given a certain level of risk (expressed by the 

shortfall probability). On the left side of the graph, we obtain lower expected returns 

decreasing the degrees of freedom. The reverse holds on the right side. In particular,  the 

SPEF obtained from the normal distribution intercepts all the others in different points 

for a  level of α  that is the same decrypted in Exhibit 2.  

Through the Monte Carlo study, it is also possible to determine the effects of a 

variation of the shortfall probability on the fractions invested in each asset. 

If we observe Exhibit IV (Appendix B), we can note that the higher the level of 

α ,  the lower the  fraction invested in cash, since to obtain more aggressive portfolios 

the manager directs capitals in riskier assets. 

However, while for a sufficiently small value of α  (i.e. 0.5%, 1% ),  a normal 

distribution shows lower value invested in cash than the other distributions, for higher 

levels of shortfall probability (i.e. 5%, 10% ), the lowest percentages in liquid assets are 

obtained augmenting the degrees of  leptokurtosis. 

The reverse holds for stocks. In fact for this asset category, the behaviour is 

exactly reverse to which showed by cash, since there exists a trade-off  between liquid 

and risky asset in order to obtain efficient portfolios. 

Fractions invested in bonds shows instead a more complex behaviour. In 

general, we can say that initially the percentage is increasing for smaller value of 

shortfall probability, and it is decreasing for higher value of shortfall probability.  

                                                           
7 lowr  has been set equal to 0%. 
8 They are an alternative representations of the Efficient Frontier, known from the Portfolio theory. 
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The intersection between the curve of the normal distribution and the others in 

this case  too, occurs for the values of α  showed in Exhibit 2. However, in this 

particular case each curve intercepts the others in more than one point, so they are more 

difficult to analyse. 

It is also interesting to observe the expected returns behaviour when the shortfall 

return varies (given the shortfall probability level). We have choice to graph the 

expected returns behaviour for %1=α  and for %5=α . In Appendix C we can note 

that the higher the shortfall return value, the lower the expected return, but while for 

%1=α   the fat tail effect dominates, for  an %5=α  the highest values are obtained 

when asset returns are leptokurtic.  

For very high losses levels (ex. 10%), it makes no difference if we use the 

normal distribution or a Student-t with different degrees of freedom, since the portfolio 

always contains only risky assets (100% stocks). 

We can make the same analysis, observing the effects on the fractions invested 

in each asset, varying lowr  for different levels of shortfall probability. The results are 

indicated in Appendix D. 

As we can note, the lower the losses, the higher the fraction invested in cash, 

since the manager is more “conservative”; for the same reason, the fraction invested in 

stocks is decreasing. For bonds, the behaviour is not regular, and the fraction shows it is 

be decreasing for %1=α , while it appears initially increasing and then decreasing for 

%5=α . 

As we know, for %1=α  the fat tail effect dominates and therefore the fraction 

invested in risky assets is much higher if data come from the normal distribution; the 

reverse holds  for %5=α . 

    

    

5555  Effects of Misspeci  Effects of Misspeci  Effects of Misspeci  Effects of Misspecified Tail Behaviourfied Tail Behaviourfied Tail Behaviourfied Tail Behaviour    

 

The probability distribution P is taken by the investment manager as a 

description of the true distribution of the asset returns. We label the distribution used by 
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the manager mP  and the true distribution tP . These distributions are characterized by the 

parameter specifications ),,( mmm νµ Ω  and ),,( ttt νµ Ω , respectively. 

Obviously, the manager would do best by matching mµ , mΩ  and mν  to tµ , tΩ  

and tν , respectively. However, the manager can fail to match all the parameters of the 

distribution used to solve (1) and (2) to those of the true distribution tP . 

The effects of misspecification of means mµ  and/or covariance mΩ  has been 

investigated in the literature [see, e.g. Chopra, V. K., Ziemba, W. T. (1993)]. We 

concentrate here on the possible mismatch between the true degree of leptokurtosis and 

the degree of leptokurtosis used by the investment manager, while assuming that means 

and covariance of the returns are precisely estimated. 

The most obvious example of such a situation is the use of the normal 

distribution for solving (1), while the asset returns are actually fat-tailed. The mismatch 

between mν  and tν  can have important effects for the feasibility and efficiency of the 

optimal asset mixes. We assume that for a given value of mν , the manager chooses mµ  

and mΩ , in such a way that the mean and variance of mP  match the corresponding 

moments of the true distribution tP . This amounts to setting tm µµ =  and 

 

2
)21( 1

−
Ω

−=Ω −

t

tt
mm ν
ν

ν                                               (13) 

 

We assume, that the true mean tµ  and variance )2/( −Ω ttt νν  are observed 

without error. Of course (10) and (13) are only estimates of the underlying true 

parameters. We abstract from the associated estimation error for exposition purposes 

and in order to fully concentrate on the effects of fat tails (the results would be very 

similar if slightly different values for the means and variances were used, thus allowing 

for estimation error). Let mx  denote the optimal strategy of the investment manager 

using the distribution mP  with mν  degrees of freedom. The appropriate values of mx  

can be found in Exhibit 3.   
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We want to compute the effect of using mx  when the data follow the distribution 

tP  instead of mP . In particular, we are interested in the effect of a discrepancy between 

mν  and tν  on the shortfall constraint. 

We can quantify this effect in at least two different ways. First, we can use the 

strategy mx  while keeping the required shortfall return lowr constant and compute the 

actual shortfall probability ∗α  under the true  probability measure tP . Alternatively, we 

can use the strategy mx  while keeping the required shortfall probability α  constant and 

compute the corresponding shortfall return lowr ,∗ , i.e., the (negative) Value at Risk per 

Euro invested. 

First consider the case of fixed  lowr .  

We then compute 

 






 +≤+= ∑
=

∗
3

1
, 1)1(

i

low
iimt rrxPα                                       (14) 

 

where imx ,  is the optimal asset allocation to category i for mν ; see Exhibit 3.  

So )1( ∗−α  is the true confidence level of the investment manager's value at risk, given 

the asset allocation mx . 

In particular, we generate in simulation the asset returns from a distribution with 

tν  degrees of freedom, and evaluate the shortfall constraint under the strategy mx . This 

allows us to estimate the true risk for the financial manager. 

We have seen that different values for lowr  produce similar results, so we present 

only the case with %0=lowr . The results are given in Exhibit 5.  

The right panel in the figure gives the results if the optimal strategy is computed 

with %5=α . 

The first thing to note is that, as expected, the true shortfall probability ∗α  is 

equal to α , if and only if the investment manager uses the correct distribution, i.e., 

tm νν = .  
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Second, if the investment manager uses a distribution that has thinner tails than 

those of the true distribution, then the manager is conservative in the sense that the 

shortfall constraint in (2) is not binding. 

 

 

 

This holds even though the manager may believe the constraint  to be binding 

based on the (misspecified) distribution  mP  of the asset returns.  

As a result, efficiency could be gained by using the correct degree of 

leptokurtosis. By contrast, if the manager uses a distribution with a fatter tail than 

reality, the shortfall constraint is violated. 

If we consider the case %1=α , the results are reversed. If a thin-tailed 

distribution is assumed for the asset returns, e.g., the one based on normality, and if 

reality is leptokurtic, then the shortfall constraint is violated. Moreover, if tm νν < , the 

shortfall probability constraint is not binding. These results are directly relevant for risk 

management, because one minus the true shortfall probability equals the manager's 

required confidence level for the value at risk 0>− lowr . 
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Exhibit 5: True Shortfall Probability for several combinations of  mν  and tν , obtained by
simulation. 
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For example, for a 99% confidence level VaR, our results imply that the true 

confidence level of the manager's computed VaR is smaller than 99% if the manager 

uses the normal distribution while reality is fat-tailed. 

Note that, although the absolute difference between ∗α  and α  in Exhibit 5 is 

smaller for %1=α  than for %5=α , the relative differences are approximately equal 

for different combinations of ),( tm νν . 

To illustrate the effect on the shortfall return lowr , for fixed α , we compute the 

required shortfall return lowr ,∗  such that  

 






 +≤+= ∑
=

∗
3

1

,
, 1)1(

i

low
iimt rrxPα                                       (15) 

 

The differences lowlow rr −∗ ,  in basis points, obtained in simulation, are presented in 

Exhibit 6. Remember that  lowr  is the value at risk per Euro invested if 0<lowr .  

Therefore, lowr ,∗−  in (15), is the manager’s true VaR if the investment policy mx  

based on mP  is used. 

The qualitative results are similar to those in Exhibit 5. For high values of  α , 

using a distribution mP , which has thin tails compared to reality tP , produces a 

conservative strategy. Again, the opposite holds for small values of the shortfall 

probability α .  

The impact of using the normal distribution for mP  if reality is fat-tailed is quite 

substantial. Assume the postulated required minimum return lowr  is %5− , i.e., a Value 

at Risk of  5 cents per Euro invested.  

That is, with a maximum probability of α , the manager is willing to take losses 

exceeding 5% of the invested notional principal. 
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Exhibit 6: Differences )( , lowlow rr −∗ in  basis points. 

mν  rlow = 0% rlow = -5% rlow = -10% 

  tν    tν    tν   

 3 7 ∞  3 7 ∞  3 7 ∞  

              Shortfall Probability = 5% 

3 0 -249 -296 202 -153 -218 - - - 
7 178 0 -33 313 0 -57 - - - 

∞  201 32 0 352 54 0 - - - 

                Shortfall Probability = 1% 

3 0 43 88 0 53 164 0 71 243 
7 -45 0 51 -56 0 117 -74 0 181 

∞  -105 -60 0 -210 -135 0 -301 -205 0 

 

 

If  %5=α , the true shortfall return can be as much as 352 basis points above 

the postulated level, implying a shortfall return of about %45.1−  instead of %5− , with 

a probability of 95%. Exploiting the fat tail property in this case can lead to more 

aggressive asset allocations and, therefore, efficiency gains for a given level of shortfall. 

Alternatively, consider the case %1=α . Using a normal scenario generator 

)( ∞=mν ,  for a reality with 3=tν  now leads to a violation of the shortfall constraint. 

While the manager believes the maximum loss with a 99% probability is 5% of the 

invested notional, the actual loss, given that probability, may be about 210 basis points 

higher, or 7.12%, an increase of over 40%. In this case a correct assessment of the 

degree of leptokurtosis will lead to a more correct assessment of risk and to the 

exclusion of infeasible strategies. All these effects are even more pronounced if the 

manager is, a priori, willing to take higher losses, i.e., if lowr  is lower. 

These results have obvious important consequences for Value at Risk analyses. 

Using a distribution with an incorrect tail behaviour may lead to portfolios with a 

minimum required return lowr ,∗  that can be as much as 301 basis points below the 

minimum return lowr  imposed by the model. In value at risk calculations, this implies 

that the true VaR may deviate by more than 30% from what an incorrectly specified 
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model suggests. This illustrates the importance of trying to get the tail behaviour of the 

distribution used to solve (1) and (2) right. 

 

 

6 Assets’ Returns with Different Tails Behaviour6 Assets’ Returns with Different Tails Behaviour6 Assets’ Returns with Different Tails Behaviour6 Assets’ Returns with Different Tails Behaviour 

 
The analysis carried out, allowed us to value the true risk for the financial 

manager, when the degrees of freedom of the empirical distribution are not correctly 

estimated. Nevertheless, the results we have showed up to now are based on the idea 

that  returns of the three asset classes considered are identically distributed. As we 

know, this hypothesis is quite unrealistic, given the heterogeneity of the financial 

indexes studied. We therefore decide to develop our analysis, using a different 

probability distribution for each index, remaining in the  Student-t class. The use of 

stochastic optimisation techniques allow us to extend the study of the asset allocation 

problems for particular multivariate distribution for which in general it is not possible to 

obtain the result in a closed form. This approach makes it necessary to determine which 

Student-t combination seems able to fit the empirical distribution adequately. To do 

this, we have analysed, through several tests9, the behaviour of some distributions of 

financial indexes10, for each asset category (cash, stocks, bonds), valuing for each of  

them the existence of  fat-tails, and the parametric distribution that allows us to obtain 

the best fit for the empirical distribution on the tails. The test results show that the 

normal distribution is often unable to capture the behaviour of the tails, since financial 

time series are usually leptokurtic, while the Student-t distribution seems more adequate 

to capture the fat-tails effect.  

                                                           
9 We have used two categories of tests: graphical tests and statistical tests. The first category includes qq-
plots, and the study of  the empirical density function and empirical distribution function with respect to 
theoretical ones.  The second category includes Jaque Bera normality tests, Chi-square tests, Anderson 
Darling tests, Kolmogorov-Smirnov tests and Cramer von Mises tests [D’Agostino R. D. - Stephens, M. 
A. (1986)]. 
10  We consider annual returns. For stocks,  indexes analysed are: S&P 500 over the period (1/1/1970-
1/4/2001),  MSCI Europe and MSCI North America over the period (1/1/1986-1/12/1999); for bonds: JP 
Morgan Great Britain, JP Morgan Japan, JP Morgan France, JP Morgan Belgium over the period 
(1/1/1986-1/1/2000); for cash: Euro-Mark 3 mth, Euro-Franc 3 mth, Euro-Lire 3 mth, Euro-Yen 3 mth, 
Euro-£ 3 mth, and Euro-$ 3 mth over the period (1/1/1985-1/4/2001).  All data are obtained from 
Datastream. 
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In particular, tests indicate that for stocks, the Student-t with 7 degrees of 

freedom seems a good approximation of the empirical distribution in the extreme 

returns area.  

Otherwise, bonds seem to prefer Student-t with 8 degrees of freedom. Finally, 

cash behaviour does not appear unimodal, and for this reason no Student-t appears 

suitable to fit the empirical distribution adequately. 

Yet, some statistical tests seem to accept the null hypothesis that some of the 

cash indexes studied follow a Student-t distribution with 30 degrees of freedom (well 

approximated by a normal). For this reason we use this marginal distribution to simulate 

returns even if we know that it is not the most suitable. In fact our objective is to study 

the effects on the portfolio model when the empirical distribution is fat-tails, and in 

particular when each asset class presents a different degree of leptokurtosis. To do this, 

we generate asset returns simulating from the Student-t class, which present leptokurtic 

but not plurimodal or asymmetric characteristics.  

Making use of tests results, we now calculate the optimal investment strategy 

and expected portfolio returns, generating asset returns from a multivariate 

distribution11, where marginal distributions  are t(30), t(7) and t(8). We label this new 

distribution as “Mixed” with mean µ  and variance-covariance matrix V. To impose 

correlative structure to the simulated series, we use the calibration method. 

In particular, given two variables x and w, where )(~ xtx ν and )(~ wtw ν , we 

say that the correlation between x and w is ∗ρ  if  there exists a  value ( ∗τ ) for the 

parameter τ  such that ρνντ =∗ ),,( wxf , where f is the relation in (7). It is very 

difficult to obtain a solution in a closed form, and therefore we use the Monte Carlo 

method to regulate τ  step by step, until we obtain the desired value for ρ  ( ∗ρ 12). 

In our case we impose a correlation τ  in the multivariate normal in (7), and vary 

it until we find ∗τ . 

 

 

                                                           
11 Note that it is not a multivariate Student-t distribution, because each t has  different degrees of freedom. 
12 ∗ρ used is indicated in (12). 
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We now examine the effects on asset allocation strategies. 

In particular, we can note that results obtained combining Student-t with 

different degrees of freedom (see Appendix E) are intermediate between those obtained 

using a multivariate Student-t with 7 degrees of freedom and with 10 degrees of 

freedom.  

This aspect is very important in a risk management framework because the use 

of different marginal distributions gives more information than  previous analysis. 

This means that financial manager can invest with higher precision in the 

estimates of  optimal strategies and of expected returns. Furthermore, it is important to 

note that for different combinations (for example t(15), t(3) and t(9)), where the 

leptokurtosis degree is very different, the loss of information could be very high if we 

choose a distribution with identically distributed marginal distributions.  

Following the same techniques used in previous sections, we now concentrate 

our analysis on the study of effective risk associated with the investment if the financial 

manager uses a distribution tm PP ≠ . 

We have seen that we can quantify these effects in at least two different ways: 

first, we can use the strategy mx  while keeping the required shortfall return lowr constant 

and compute the actual shortfall probability ∗α  under the true probability measure tP . 

Alternatively, we can use the strategy mx  while keeping the required shortfall 

probability α  constant and compute the corresponding shortfall return lowr ,∗ . 

Exhibits 7 and 8 indicate the level of ∗α  if  the manager uses the distribution 

)( mt ν  and the data follow the “Mixed” distribution. This analysis has been made, using 

%5=α  and %1=α 13. 

For %5=α , if the investment manager uses a distribution that has thinner tails 

than reality, then the manager is conservative, in the sense that the shortfall constraint in 

(2) is not binding, while if the investment manager uses a distribution that has fatter 

tails than reality, the shortfall constraint is violated.  

                                                           
13 We have set  %.0=lowr  
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As we know, if we consider the case %1=α , the results are reversed. If a thin-

tailed distribution is assumed for the asset returns, e.g., the one based on normality, and 

if reality is leptokurtic, then the shortfall constraint is violated. Moreover, if tm νν < , 

the shortfall constraint is not binding.  

It is interesting to note the relationship that exists between Mixed distribution, 

t(7) and t(10).  
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Exhibit 7: True Shortfall probability for Mixed distribution, t(7) and t(10); α  = 1%
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Exhibit 8: True shortfall probability for Mixed distribution, t(7) and t(10); α  = 5%. 
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If we use a shortfall probability %5=α  in the model, then the values of true 

shortfall probability )( mνα
∗  are not only intermediate to those obtained using the other 

two distributions, but we can demonstrate that they are very close to what we could 

have by generating data from a t(7), for every level of  mν . If we use a shortfall 

probability %1=α  in the model, when the data come from  “Mixed” distribution, the 

behaviour of )( mνα
∗  seems initially intermediate for 3=mν , and very close to t(7) 

curve, for higher degrees of freedom. For example, if the manager uses a distribution 

t(3), when the data follow a Mixed distribution, we obtain %75.0=∗α , while if the 

manager uses a distribution with thinner tails, the true shortfall probability for Mixed 

distribution tends to the true shortfall probability for t(7) one. It is important to consider 

that the interval in which the curve oscillates is very small, and for this reason every 

variation seems imperceptible. The second analysis we can do is to study the differences 
lowlow rr ,∗−  in basis points, when data come from Mixed distribution. Results obtained 

are indicated  in Exhibit 9. 
 

Exhibit 9 : Differences )( , lowlow rr −∗ in basis points. Data generated from Mixed distribution. 

    
 Shortfall probability = 5% 
        

mν  %0=lowr  %5−=lowr  %10−=lowr  
    
3 -253 -157 - 
5 -37 -59 - 
7 -4 -3 - 
10 12 21 - 
∞  27 45 - 
    
    
 Shortfall probability = 1% 
        

3 43 47 71 
5 33 39 70 
7 3 10 13 
10 -16 -39 -67 
∞  -62 -137 -198 
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For %5=α , if the investment manager uses a distribution with tails heavier 

than reality, the loss could exceed lowr . 

For %1=α , the loss could exceed lowr  only if the investment manager uses a 

distribution with tails thinner than reality.  

Furthermore, for %1=α  and %5−=lowr , the impact of using the normal 

distribution to explain the empirical distribution behaviour if reality is “Mixed”, is quite 

substantial. In fact the manager is willing to take losses exceeding 5% of 137 basis 

points, i.e. an increase of over 30%. 

It is interesting to note that for 7=mν , the difference lowlow rr ,∗−  is  very small 

and for %5=α  it tends to zero, decreasing  the lowr  level.  

For %1=α , the difference becomes smaller with the reduction of losses. 

From this study we can conclude that for the case analysed, a multivariate 

Student-t distribution with 7 degrees of freedom seems a good approximation of the 

Mixed distribution. 

For the financial manager it could be simpler to use a multivariate t(7) with 

identically distributed marginal distributions, without excessive loss of information on 

the true risk. However, if this result held for the specified combination used [t(30), t(7), 

t(8)], in general we can not extend our conclusions for the enormous number of 

combinations of marginal distributions.  

This means that before any application, it is wise for the financial manager to 

analyse whether an approximation of the mixed distribution can cause losses of 

information and thus undesired effects for risk management. 
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7 Conclusion7 Conclusion7 Conclusion7 Conclusion    
 
In our work, we have investigated the effects of extreme returns on the optimal 

asset allocation problem with a shortfall constraint, using a Monte Carlo simulation 

approach. 

We have seen that financial markets usually show a  “non-normal”  behaviour, 

since the tails of  returns distributions often appear very heavy. 

Extreme returns can be modelled by using a statistical distribution with fatter 

tails than those of a normal distribution. We have used the Student-t distribution to 

show the salient effects of fat tails in financial decision context. 

Initially, we have analysed the effects on asset allocation choices when all  asset 

returns are identically distributed. This analysis is not very realistic, but has allowed us  

to discover the true risk for the financial manager when the behaviour of empirical 

distribution is incorrectly estimated. 

We have then tried to simulate data from a multivariate distribution where each 

marginal distribution has a different degree of leptokurtosis. 

For each of these two analyses, we may conclude that a correct assessment of the 

fat–tailedness of asset returns is important for the determination of optimal asset 

allocation. If asset allocations are based on the normal distribution, the resulting 

allocation may be either inefficient or unfeasible if reality is non-normal. Both effects 

can be quite substantial. Then, it appears that the shortfall probability set by the 

investment manager plays a crucial role for the nature of the effect of leptokurtic asset 

returns. If the shortfall probability is set sufficiently high, using normal scenarios for the 

leptokurtic asset return leads to overly prudent and therefore inefficient asset 

allocations. If the shortfall probability is sufficiently small, however, the use of normal 

scenarios leads to unfeasible strategies if reality is fat-tailed. 

This second result implies that the Value at Risk of a given portfolio may be 

underestimated if the tail behaviour of asset returns is not captured adequately. 

Our results show that the actual VaR can be substantially higher than the model 

suggests in such cases. 
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In studying the “Mixed” distribution we have also shown by simulation that 

another important aspect in financial analysis is the correct specification of the marginal 

distribution for each asset analysed. This aspect becomes crucial when there is a 

shortfall constraint in the asset allocation problem and at the same time the asset class 

return has a different tails behaviour. 

For our particular case, we have seen that the resulting optimal allocation 

obtained with the use of Mixed distribution could be adequately approximated by a 

multivariate Student-t at certain level of shortfall probability and shortfall return.  

Furthermore we obtain the following result of interest. When asset classes returns have 

a “Mixed distribution”, the assumption of Student-t distribution with misspecified 

degrees of freedom produces effective shortfall probability and effective shortfall return 

which differ from the desired ones. However these errors have known upper and lower 

bounds. Even if this result can be very useful for the financial manager, since he can  

enormously simplify the mixed problem, in general, given any “mixed distribution”, we 

do not know what its adequate approximation is and so we can not conclude that an 

adequate approximation always exists for all combinations of marginal distributions. 

For this reason, the use of stochastic simulation in the study  we have performed in this 

article, is a very effective instrument to choose the optimal strategy to apply in asset 

allocation problems, and in particular when we use a shortfall constraint. 

In a more general sense, our findings imply that a good characterisation of the 

distribution of asset returns is needed in a financial decision context involving downside 

risk. Such a characterisation may require not only the specification of usual measures 

like mean and variance, but also a correct specification  of additional features of the 

distribution of asset returns, such as the tail behaviour or degree of leptokurtosis. 

Specification and estimation of such additional features can proceed along 

familiar lines, for example using parametric or non-parametric methods. 

Regardless of the method chosen, our results provide insights into the general 

effects of different type of leptokurtic distributions on optimal asset allocations and 

associated risk measures. The results are therefore valuable to investors who require a 

qualitative assessment of the reliability and sensitivity of their adopted investment 

strategies in case their models are potentially misspecified. 
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Exhibit I: Fraction invested in Cash 
increasing the simulations’ number 
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increasing the simulations’ number 
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B. Fractions Invested, Varying theB. Fractions Invested, Varying theB. Fractions Invested, Varying theB. Fractions Invested, Varying the Shortfall Probability  Shortfall Probability  Shortfall Probability  Shortfall Probability     
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Exhibit VI: Fraction invested in Bonds 
varying the shortfall probability level. 

0.00

0.20

0.40

0.60

0.80

1.00

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Shortfall probability

Normal
t (10)
t (7)
t (5)
t (3)

0.00

0.20

0.40

0.60

0.80

1.00

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Shortfall probability

Normal

t (10)

t (7)

t (5)

t (3)

Exhibit V: Fraction invested in Stocks 
varying the shortfall probability level. 

Exhibit IV: Fraction invested in Cash 
varying the shortfall probability level. 
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C. Expected Portfolio Return Varying the Shortfall Return LevelC. Expected Portfolio Return Varying the Shortfall Return LevelC. Expected Portfolio Return Varying the Shortfall Return LevelC. Expected Portfolio Return Varying the Shortfall Return Level 
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Exhibit VII: Expected return, varying the shortfall return. %1=α  

Exhibit VIII: Expected return, varying the shortfall return. %5=α  
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D. Fraction Invested in Each Asset, Varying the Shortfall Return LevelD. Fraction Invested in Each Asset, Varying the Shortfall Return LevelD. Fraction Invested in Each Asset, Varying the Shortfall Return LevelD. Fraction Invested in Each Asset, Varying the Shortfall Return Level    
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Exhibit IX: Fraction invested in Cash for different distributions for %1=α . 

APPENDIX 
Exhibit X: Fraction invested in Cash for different distributions  for %5=α . 
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Exhibit XII: Fraction invested in Stocks for different distribution. ( %5=α ). 

Exhibit XI: Fraction invested in Stocks for different distribution. ( %1=α ). 
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Exhibit XIII: Fraction invested in Bonds for different distributions ( %1=α ). 
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Exhibit XIV:  Fraction invested in Bonds for different distributions ( %5=α ).
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E. Results Obtained for Mixed DistributionE. Results Obtained for Mixed DistributionE. Results Obtained for Mixed DistributionE. Results Obtained for Mixed Distribution    
 

Exhibit XV: Expected portfolio return (Mixed distribution). 

                        α 
rlow 0.5% 1% 5% 10% 

0% 8.442 
S.E.= 0.012 

8.980 
S.E.= 0.013 

11.825 
S.E.= 0.026 

16.182 
S.E.= 0.043 

-3% 9.612 
S.E.= 0.016 

10.313 
S.E.= 0.016 

14.190 
S.E.= 0.034 

17.000 
S.E.= 0.000 

-5% 10.306 
S.E.= 0.019 

11.127 
S.E.= 0.020 

15.760 
S.E.= 0.043 

17.000 
S.E.= 0.000 

-7% 10.955 
S.E.= 0.021 

11.971 
S.E.= 0.025 

16.982 
S.E.= 0.017 

17.000 
S.E.= 0.000 

-10% 11.938 
S.E.= 0.026 

13.151 
S.E.= 0.024 

17.000 
S.E.= 0.000 

17.000 
S.E.= 0.000 

 

Exhibit XVI: Fraction invested in each asset (Mixed distribution). 

                     α 
rlow 0.5% 1% 5% 10% Assets 

83.878 
0.111 

78.665 
0.112 

49.254 
0.203 

7.813 
0.343 

CASH 
S.E. 

16.092 
0.110 

21.261 
0.111 

47.643 
0.216 

91.695 
0.361 

STOCK 
S.E. 0% 

0.0285 
0.010 

0.0731 
0.024 

3.101 
0.015 

0.491 
0.026 

BONDS 
S.E. 

72.302 
0.139 

64.982 
0.139 

25.277 
0.232 

0.000 
0.000 

CASH 
S.E. 

27.179 
0.136 

33.776 
0.143 

67.382 
0.327 

1.000 
0.000 

STOCK 
S.E. -3% 

0.518 
0.021 

1.238 
0.006 

7.340 
0.094 

0.000 
0.000 

BONDS 
S.E. 

65.245 
0.164 

56.596 
0.167 

8.516 
0.239 

0.000 
0.000 

CASH 
S.E. 

33.485 
0.165 

41.261 
0.172 

83.476 
0.463 

1.000 
0.000 

STOCK 
S.E. -5% 

1.269 
0.021 

2.142 
0.013 

8.011 
0.224 

0.000 
0.000 

BONDS 
S.E. 

57.928 
0.185 

48.348 
0.202 

0.144 
0.055 

0.000 
0.000 

CASH 
S.E. 

39.164 
0.195 

48.593 
0.214 

99.778 
0.081 

1.000 
0.000 

STOCK 
S.E. -7% 

2.907 
0.011 

3.058 
0.017 

0.077 
0.027 

0.000 
0.000 

BONDS 
S.E. 

47.797 
0.216 

35.883 
0.200 

0.000 
0.000 

0.000 
0.000 

CASH 
S.E. 

48.208 
0.237 

60.088 
0.219 

1.000 
0.000 

1.000 
0.000 

STOCK 
S.E. -10% 

3.994 
0.030 

4.028 
0.023 

0.000 
0.000 

0.000 
0.000 

BONDS 
S.E. 
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