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Abstract 
 
This chapter presents an introduction to the current literature on stochastic volatility models.  
For these models the volatility depends on some unobserved components or a latent structure. 
 
Given the time-varying volatility exhibited by most financial data, in the last two decades 
there has been a growing interest in time series models of changing variance and the literature 
on stochastic volatility models has expanded greatly. Clearly, this chapter cannot be 
exhaustive, however we discuss some of the most important ideas, focusing on the simplest 
forms of the techniques and models used in the literature. 
 
The chapter is organised as follows. Section 1 considers some motivations for stochastic 
volatility models: empirical stylised facts, pricing of contingent assets and risk evaluation. 
While section 2 presents models of changing volatility, section 3 focuses on stochastic 
volatility models and distinguishes between models with continuous and discrete volatility, 
the latter depending on a hidden Markov chain. Section 4 is devoted to the estimation problem 
which is still an open question, then a wide range of possibility is given. Sections 5 and 6 
introduce some extensions and multivariate models. Finally, in section 7 an estimation 
program is presented and some possible applications to option pricing and risk evaluation are 
discussed.  
 
Readers interested in the practical utilisation of stochastic volatility models and in the 
applications can skip section 4.3 without hindering comprehension.  
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1. INTRODUCTION 

In the last two decades there has been a growing interest in time series models of 
changing variance, given the time-varying volatility exhibited by most financial data. 
In fact, the empirical distributions of financial time series differ substantially from 
distributions obtained from sampling independent homoskedastic Gaussian variables. 
Unconditional density functions exhibit leptokurtosis and skewness; time series of 
financial returns show evidence of volatility clustering; and squared returns exhibit 
pronounced serial correlation whereas little or no serial dependence can be detected in 
the return process itself.  
 
These empirical regularities suggest that the behaviour of financial time series may be 
captured by a model which recognizes the time-varying nature of return volatility, as 
follows:  
 

Ttt 1,2,...,           IID(0,1),~              ,   y tttt =+= εεσµ  
 
where ty  denotes the return on an asset. A common way of modelling tσ  is to 
express it as a deterministic function of the squares of lagged residuals. Econometric 
specifications of this form are known as ARCH models and have achieved widespread 
popularity in applied empirical research (see Bollerslev, Chow and Kroner (1992), 
Bollerslev, Engle and Nelson (1993), Bera and Higgins (1993)).  
 
Alternatively, volatility may be modelled as an unobserved component following 
some latent stochastic process, such as an autoregression. The resulting models are 
called stochastic volatility (SV) models and have been the focus of considerable 
attention in the recent years (Taylor (1994), Ghysels, Harvey and Renault (1996) and 
Shephard (1996)). These models present two main advantages over ARCH models. 
The first one is their solid theoretical background, as they can be interpreted as 
discretised versions of stochastic volatility continuous-time models put forward by 
modern finance theory (see Hull and White (1987)). The second is their ability to 
generalise from univariate to multivariate series in a more natural way, as far as their 
estimation and interpretation are concerned. On the other hand, SV models are more 
difficult to estimate than ARCH models, due to the fact that it is not easy to derive 
their exact likelihood function. For this reason, a number of econometric methods 
have been proposed to solve the problem of estimation of SV models.  
 
The literature on SV models has expanded greatly in the last ten years, reaching 
considerable proportions; this chapter cannot therefore be exhaustive. We prefer to 
discuss some of the most important ideas, focusing on the simplest forms of the 
techniques and models used in the literature, referring the reader elsewhere for 
generalisations and technicalities. In the organisation of the structure of the present 
chapter, we have been inspired by the paper of Shephard (1996), who gave a very 
interesting survey on SV models updated to 1995. 
 
To start, we will consider some motivations for stochastic volatility models: empirical 
stylised facts, pricing of contingent assets and risk evaluation.  
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1.1. Empirical stylised facts  
 
To illustrate the models and to develop the examples we will work with three 
European stock indexes: the FTSE100, the CAC40 and the MIB30), which are market 
indexes for the London, Paris and Milan equity markets. These series run from 4th 
January 1999 to 12th August 2002, yielding 899 daily observations. 
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Figure 1: Summaries of the daily returns on three European stock indexes: the 
FTSE100, the CAC40 and the MIB30. Summaries are: time series of returns, 
nonparametric density estimate and normal approximation, correlogram of squared 
returns. 
 
Throughout we will work with the compounded return1 on the series  

 
( )1log −= ttt xxy  

 
where tx  is the value of stock index. Figure 1 displays some summaries of these three 
series. The raw time series of ty  suggests that there are periods of volatility 
clustering: days of large movements are followed by days with the same 
characteristics. This is confirmed by the use of a correlogram on 2

ty , also reported in 
Figure 1, which shows significant correlations existing at quite extended lag lengths. 
This suggests that 2

ty  may follow a process close to an ARMA(1,1), for a simple AR 

                                                 
1 An advantage of using a return series is that it helps in making the time series stationary, a useful 
statistical property (see footnote 4). 
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process cannot easily combine the persistence in shocks with the low correlation. A 
correlogram of ty  shows little activity and so is not given in this figure. 
Figure 1 also gives a density estimate of the unconditional distribution of ty  together 
with the corresponding normal approximation2. This suggests that ty  is leptokurtic. 
This is confirmed by Table 1, which reports an estimate of the excess of kurtosis with 
respect to the normal distribution, which are significantly positive. 
 

 FTSE100 CAC40 MIB30 
Mean -0.03634 -0.000219 -0.04313 
Standard deviation 0.001463 0.015630 0.001689 
Asymmetry -0.2574 -0.223998 -0.23383 
Excess of  kurtosis 1.547015 4.624507 2.268374 
Jarque-Bera test 97 (0.00) 106 (0.00) 197 (0.00) 

 
Table 1: Summary statistics for the daily returns in Figure 1. In parentheses the p-
value of the Jarque-Bera test. 
 
Table 1 also reports the Jarque-Bera test for normality and  the asymmetry 
coefficients evidencing that the distributions are negatively skewed, partially due to 
the period of analysis, and for all three the null hypothesis of normality is clearly 
rejected. 
 
These stylized facts can be summarised as follows: non significant serial correlation 
in the levels of returns; volatility clustering, which implies a significant and positive 
serial correlation in the squares 2

ty ; heavy tails and persistence of volatility.   
 
Finally, there is some evidence that stock markets share periods of high volatility. 
This suggests that multivariate models will be important.  

1.2. Pricing contingent assets 
 
Consider an asset C, with expiring date t+τ , which is a function of a generic 
underlying security S. Assume now that S can be described by the following 
geometric diffusion process: 

 
dzSdtSSd σµ += , 

 

so that dzdtS log d σµ σ +




 −= 2

2
.  

 
Economists term such an asset C as “contingent” or “derivative”. A primary example 
of a derivative is an option, which entitles the owner the ability but not the obligation 
to trade the underlying security at a given price K, called strike price, in the future. 

                                                 
2 The graphs are produced with the Ox software using some of its basic commands and default options. 
See also section 7.1. 
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European call options are the most known: the owner can buy the underlying asset at 
the strike price K only when the call expires, i.e. at date t+τ. Its value at the expiration 
date will be:  
  

( )0,maxt KSC t −= ++ ττ . 
 
Its purchase value at time t is as yet unknown, but can be determined in different 
ways. One of these consists in calculating the discounted expected value of the option 
at time t+τ: 
 

( ) ( )[ ]0,max-exp | KSEr tSS tt
−++ ττ

τ , 
 
where r is the free-risk interest rate. However, this completely ignores the fact this is a 
risky assets and traders expect higher returns than on riskless assets. This is the reason 
why the discounted expected value is not considered by the market as a correct 
method to evaluate an asset. To avoid this inconvenience it is opportune to introduce a 
utility function into the pricing of options, letting the dealers choose the risk-expected 
gain combination they prefer. 
 
It turns out that the added complexity of a utility function can be avoided by assuming 
continuous and costless trading. This statement can be shown by creating a particular 
portfolio, which by construction is made up of owning θ  of the underlying shares and 
by borrowing a single contingent asset C. If the investor properly selects θ at each 
time, the stochastic component of the process disappears and ensures the portfolio a 
riskless dynamic making its return a deterministic function of time (see Black and 
Scholes (1973)). As time passes, the portfolio will have to be continually adjusted to 
maintain risklessness, hence the need for continuous costless trading.  
 
The return of this portfolio must be equal to the riskless interest rate r because the 
portfolio itself is risk-free, otherwise traders will have an arbitrage opportunity. This 
condition is necessary to obtain the stochastic differential equation followed by the 
contingent asset: 
 

,22
2

2
1 rCS

S
CrS

SS
C

t
C

=
∂
∂

+
∂∂

∂
+

∂
∂ σ   with end condition ( )0,max KSC −=  

 
This equation is quite easy to solve and does not depend on the mean parameter µ nor 
on the risk preferences of the traders. Whatever the risk preferences may be, the 
evaluation of the option does not change. When solving the equation, risk neutral 
preferences are used to simplify calculations. With instantaneous variance 2σ , the 
following Black-Scholes valuation formula is obtained: 

 

( ) ( ) ( ),2 τσσ τ −Φ−Φ= − dKedSC r
t

BS
t  where 

( ) ( )
τσ

τσ 2log 2++
=

rKSd t   

 



 6

Note that 2σ  is the only unknown parameter: tS  and r are observed, while τ and K 

are usually given by institutional norms. The price depends strictly on 2σ  which is 
more important than the drift, as is often the case in finance, so that the price of the 
option can be considered an indicator of the volatility of the underlying asset.  
 
Empirically, the Black-Scholes formula can be used in two ways: either by estimating 

2σ  (the historical volatility) and then calculating the option price or by using real 
prices to determine a value for 2σ  (called implied volatility).  
 
This type of analysis has a considerable shortcoming: the basic assumption that stock 
returns follow a geometric diffusion process is a poor one, as indicated in Figure 1, 
and can affect the valuation formula reducing the precision of the option pricing. This 
realization has prompted theoretical work into option pricing theory under various 
changing volatility regimes. The leading paper in this field is Hull and White (1987), 
to which we will return later. 

1.3. Risk evaluation 
 
VaR (Value at Risk) is the maximum amount that is expected to be lost over some 
target period, i.e. the maximum likely loss. It is a statistical risk measure and 
represents a percentile of the probability distribution of the variable of interest.  
 
Generally speaking, VaR can be analytically defined as follows. Let tx  be a random 
variable of interest measure and ( )tx xF  its cumulative distribution function,  
 

( ) ( ) ( )∫
∞−

==≤=
tx

tttxtt dxxfxFxxa Prob     

 
VaR is the percentile defined by the relation: 
 

( ) ( )aFxaVaR
txtx
1*1 −==−      

 
where (1-a) is the VaR confidence level, for instance 95% or 99%, and ( )aF

tx
1−  is the 

inverse of the cumulative distribution function. 
 
Given its generality, the VaR method can be applied for different types of risk 
measurement, such as market risk, credit risk, operational risk and commodity risk 
(see Alexander (1996)). Moreover, for its versatility, VaR allows us to obtain an 
intuitive risk measure, to define homogeneous risk measures that permit a comparison 
among different financial instruments, to determine limiting positions and to construct 
risk-adjusted profitability measures. 
 
Let us concentrate on its application to market risk. Market risk means the possibility 
that an unexpected variation of market factors (interest rates, exchange rates, stock 
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prices, etc.) causes an increase or a reduction in the value of a position or in the value 
of a financial portfolio. VaR, in this context, is the maximum expected loss of a 
marketable financial instruments portfolio which could be experienced, for a specified 
time horizon period and a specified confidence level. 
 
We now consider a general portfolio model which allows us to set all the hypothesis 
discriminating a risk measurement model like VaR in a systematic manner, by paying 
particular attention to the role of the volatility.  
 
Let τx  be a random variable which represents the value of a portfolio in a future 
period τ . It is defined by the following relation: 
 

ττ ,
1

, i

N

i
ti Pwx ∑

=
=  

 
where the random variables τ,iP  represent the future value of the N assets in the 
portfolio. If we suppose that the N assets will be subjected to K risk market factors 

τχ ,j , the future value of the portfolio can be expressed as a function of the K 
stochastic risk factors by the following pricing formula: 
 

( )∑
=

=
N

i
Kiti Pwx

1
,,1,, ,, ττττ χχ K .  

 
The hypothesis characterizing the model therefore concerns: the endogenous variable 
choice; the pricing formula; the risk factors definition and their distributions; the risk 
factors volatility; the risk factors mapping; the confidence level and the choice of the 
time horizon. 
 
In the literature, the following approaches are suggested to estimate the VaR (Best 
(1998)): parametric methods; historical simulation; Monte Carlo simulation; stress 
testing. Concerning the parametric methods and the Monte Carlo simulation, it is 
crucial to properly describe the volatility dynamics of the risk factors to obtain correct 
estimates of the VaR (see for example Lehar, Scheicher and Schittenkopf (2002)). 
 

2. MODELS OF CHANGING VOLATILITY  
 
Following Cox (1981) and Shephard (1996) models of changing volatility can be 
usefully partitioned into observation-driven and the parameter-driven models. They 
both can be generally expressed using the following parametric framework: 
 

( )2
tttt ,σµN ~zy  

 
where tµ  is often set equal to zero (as we do not intend to focus on that feature of the 
model). 
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In the first class, i.e. in observation-driven models, tz  is a function of lagged values 
of ty . The autoregressive conditional heteroskedasticity (ARCH) models introduced 
by Engle (1982) are the most representative example of observation-driven models. 
They describe the variance as a linear function of the squares of past observations 
 

22
110

2 ... ptptt yy −− +++= ααασ  
 
and so the model is defined by the conditional density (one-step-ahead forecast 
density) 
 

( )2
1 0 ttt ,σ ~NYy −  

 
where 1−tY  is the set of observations up to time t-1. This allows today’s variance to 
depend on the variability of recent observations and then one type of shock alone 
drives both the series itself and its volatility. 
 
The use of models described by their one-step-ahead forecast offers remarkable 
advantages that are worth being highlighted. First, the likelihood expression can be 
simply obtained by combining these densities, making the estimation and testing easy 
to handle, at least in principle. Second, conditional densities imply the use of 
conditional moments which are used widely to specify finance theory, although this 
one is conditional to economic agents’, if not the econometricians’, information. 
Finally, the observation-driven models parallel the autoregressive and moving average 
ones which are commonly used for models of changing means. 
 
In the second class, i.e. in parameter-driven (or parameter dynamic latent variable or 
state space) models, tz  is a function of an unobserved or latent component. The log-
normal stochastic volatility model created by Taylor (1986) is the simplest and best-
known example: 
 

( )( ) ( )2
1 ,0,,exp0 ησηηβα NID~hhh, ~Nhy ttttttt ++= −  (1) 

 
where th  represents the log-volatility, which is unobserved but can be estimated using 
the observations. With respect to the previous class, these models are driven by two 
types of shock, one of which influences the volatility (i.e. conditional variance 
equations). These models parallel the Gaussian state space models of means dealt with 
by Kalman (1960).  
 
In spite of this, a shortcoming of parameter-driven volatility models is that they 
generally lack analytic one-step-ahead forecast densities 1−tt Yy , unlike the models of 
the mean which fit into the Gaussian state space form. Hence either an approximation 
or a numerically intensive method is required to deal with these models.  
 
Although SV models are harder to handle statistically than the corresponding 
observation-driven models, there are still some good reasons for investigating them. 
We will see that their properties are easier to find, understand, manipulate and 
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generalize to the multivariate case. They also have simpler analogous continuous time 
representations, which is important given that much modern finance employs 
diffusions. An example of this is the work by Hull and White (1987) which uses a log-
normal SV model, replacing the discrete time AR(1) for th  with an Ornstein-
Uhlenbeck process. 
 

3. STOCHASTIC VOLATILITY MODELS 
 
For these models the volatility depends on some unobserved components or a latent 
structure. One interpretation for the latent th  is to represent the random and uneven 
flow of new information, which is very difficult to model directly, into financial 
markets (Clark (1973)). The most popular of these parameter-driven stochastic 
volatility models, from Taylor (1986), puts  
 

( )




++=
=

− ttt

ttt
hh

h y
ηβα

ε

1

,2exp
 (2) 

 
where tε  and tη  are two independent Gaussian white noises, with variances 1 and 

2
ησ , respectively. Due to the Gaussianity of tη , this model is called a log-normal SV 

model. 
 
Another possible interpretation for th  is to characterise the regime in which financial 
markets are operating and then it could be described by a discrete valued variable. The 
most popular approach to modelling changes in regime is the class of Markov 
switching models introduced by Hamilton (1989) in the econometrics literature. In 
that case the simplest model is3: 
 

( )




+=
=

tt

ttt
sh
h y

βα
ε ,2exp

     (3) 

 
where ts  is a two-state first-order Markov chain which can take values 0,1 and is 
independent of tε . The value of the time series ts , for all t, depends only on the last 
value 1−ts , i.e. for i,j=0,1 
 

ijt-tt-t-t pi)j | sP(s)i, i, sj | sP(s ====…=== 121  
 
The probabilities ( )

1,0, =jiijp  are called transition probabilities of moving from one 

state to the other. Obviously, we get that: 
 

                                                 
3 The representation tst t

y εσ= , with ( )2exp0 ασ =  and ( )2)(exp1 βασ += , is clearly 

equivalent. To identify the regime 1 as the high volatility regime, we set 0>β . 
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111100100 =+=+  pp pp  
 
and these transition probabilities are collected in the transition matrix Ρ  
 













−

−
=Ρ

1100

1100

1

1

pp

pp
 

 
which fully describes the Markov chain.  
 
A two state Markov chain can easily be represented by a simple AR(1) process as 
follows:  
 

( ) ( ) ttt vsppps +++−+−= −1110000 11    (4) 
 

where ( ),..., 21 −−−= ttttt sssEsv . Although tv  can take only a finite set of values, 
on average tv  is zero. The innovation tv  is thus a martingale difference sequence. 
Given the autoregressive representation of the Markov chain, it is possible to rewrite 
the volatility equation of model (3) in the following way: 
 

( ) ( )[ ]
( ) ( ) ( ) tt

tt

tt

vhppppp
vsppp

sh

ββα
βα
βα

+++−+−+−−=
+++−+−+=

+=

−

−

11100001100

1110000

112
11   

 
The SV model with discrete volatility has therefore the same structure of the model 
(2) but with a noise that can take only a finite set of values: 
 

( )




++=
=

− ttt

ttt
hbah

h y
ω

ε

1

,2exp
    (5) 

 
Let us describe the basic properties of both type of models in the following sections.  

3.1. SV models with continuous volatility  
 
We consider tε  and tη  independent, Gaussian white noises. The properties of model 
(2) are discussed in Taylor (1986) and Taylor (1994) (see also Shephard (1996)). 
Broadly speaking, given the product process nature of the model, these properties are 
easy to derive, but estimation is substantially harder than for the corresponding ARCH 
models.  
 
As  tη  is Gaussian, th  is a standard Gaussian autoregression. It will be stationary 
(covariance4 and strictly5) if 1<β  with: 

                                                 
4 A stochastic process  
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( ) ,
1 β

αµ
−

== th hE  

( ) .
1 2

2
2

β

σ
σ η

−
== thVar

h
 

 
As tε  is always stationary, ty  will be stationary if and only if th  is stationary, ty  
being the product of two stationary processes. Using the properties of the log-normal 
distribution, all the moments exist if th  is stationary and in particular the kurtosis is: 
 

( )
( )( )

( ) 3exp3 2
22

4
≥= h

t

t

yE

yE
σ     

 
which shows that the SV model has fatter tails than the corresponding normal 
distribution and all the odd moments are zero.  
 
The dynamic properties of ty  are easy to find. First, as tε  is iid, ty  is a martingale  
difference6 and is a white noise7 if 1<β . As th  is a Gaussian AR(1),  
 

( ) ( ) ( )( )
( )( ) ( )( )( )

( ) ( )( )1exp2exp

expexp

,

22

2

222222

−+=

−+=

−=

−

−−

r
hhh

trtt

trttrtt

hEhhE

yEyyEyyCov

βσσµ

 

 
and so 
 

( )
( )

( )
( )

( )
( )

r

h

h

h

r
h

t

rtt
y yVar

yyCovr
t

β
σ

σ
σ
βσ

ρ
1exp3

1exp
1exp3
1exp,)( 2

2

2

2

2

22
2

−

−
≅

−

−
== −  

                                                                                                                                            
ty  is covariance stationary if the degree of covariance amongst its observations depends only on the 

time gap between them, i.e. ( ) ( )ryyCov rtt γ=+,  for all t. 
5 For some processes there will exist no moments, even in cases where the corresponding unconditional 
distributions are perfectly well-behaved. The strict stationarity of ty  is then defined as follows: 

( ) ( )ptttprtrtrt yyyFyyyF +++++++ = ,...,,,...,, 11  for all p  and r . 

6 ty  being a martingale difference stipulates that ∞<tyE  and that ( ) 0,..., 21 =−− ttt yyyE . 
All martingale differences have zero means and are uncorrelated over time. If the unconditional 
variance of the martingale difference is constant over time, then the series is also a white noise.  
7 This means ( ) ( ) 2, σµ == tt yVaryE  and ( ) 0, =+rtt yyCov  for all 0≠r . Often µ  will 

be taken to be zero. These unconditional moment conditions are sometimes strengthened to include ty  
being independent, rather than uncorrelated, over time. This will be called strong white noise, a special 
case of which is independent and identically distributed (iid). 
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Hence, the memory of the ty  is defined by the memory of the latent th , in this case 
an AR(1). Moreover, note that if 0<β , )(2 r

tyρ  can be negative, unlike the ARCH 

models. This is the autocorrelation function of an ARMA(1,1) process, thus the SV 
model behaves in a manner similar to the GARCH(1,1) model. Finally, note that there 
is no need for non-negativity constraints nor for bounded kurtosis constraints on the 
coefficients. This is a great advantage with respect to GARCH models. 
 
Insights on the dynamic properties of the SV model can also be obtained by squaring 
and taking logs, getting 
 

( ) ( )






++=
+=

− ttt

ttt
hh

h y
ηβα
ε

1

22 ,loglog
 (6) 

 
a linear process, which adds the iid ( )2log tε  to the AR(1) th . As a  result 

( )2log ty ~ARMA(1,1). If tε  is Gaussian, then ( )2log tε  has a mean of -1.27 and 
variance 4.93, but its distribution is far from being normal, as it is heavily skewed 
with a long left-hand tail, caused by taking the logs of very small numbers, an 
operation which generates outliers. The autocorrelation function for ( )2log ty  is 
 

( )
2

2 93.4log 1
)(

h

t

r

y r
σ

βρ
+

=  

3.2. SV models with discrete volatility  
 
We consider a two-state Markov chain ts  independent of tε , which is Gaussian white 
noise.  
 
Assuming stationarity8, the unconditional probabilities to be in the regime 0 
( 0)0( π==tsP ) or 1 ( 1)1( π==tsP ) are defined as follows: 
 

( )
( )




+−=

−+=

1110001

1110000

1
1

πππ
πππ

pp
pp

 

 
with 110 =+ ππ , or in a vector form: 
 







=

=

1

P

π

ππ
'1

 

 
                                                 
8 An ergodic Markov chain is a covariance stationary process. For some basic properties of Markov 
chains, see Hamilton (1994, chapter 22). 
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where ( )'1,1=1 . Thus, they are: 
 

1100

00
1

1100

11
0

2
1

,
2

1

pp
p

pp
p

−−
−

=

−−
−

=

π

π
 

 
From the definition of b  in equation (5), we can note that when 11100 >+ pp  the th  
process is likely to persist in its current state and it  would be positively serially 
correlated. Its unconditional moments are: 
 

( ) ( )
1βπα

βα
+=
+= tt sEhE

 

( ) ( ).1 11
2 ππβ −=thVar  
 

 
Under stationarity9, as for the SV model with continuous volatility, all the moments 
exist, all the odd moments are zero and the kurtosis is: 
 

( )
( )( )

( )( )
( )( )

3
exp

2exp
3 2

10

10
22

4
≥

+

+
=

πβπ
πβπ

t

t

yE

yE
    

 
Moreover, as tε  is iid, ty  is a martingale difference and its dynamic properties are 
described by the covariances of squares:  
 

( ) ( ) ( )( )
( )( ) ( ) ( )( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )( )2

10

2
10

222222

expexp

1,122exp0,12exp
1,02exp0,02exp

expexpexp

,

πβαπα

βαβα
βαα

πβαπα

++−

==++==++

==++===
++−+=

−=

−−

−−

−

−−

rttrtt

rttrtt

rtt

trttrtt

ssPssP
ssPssP

hhE

yEyyEyyCov

 

 
where, the vector of unconditional joint probabilities ( )rtt ssP −,  can be computed as 
follows: 
 

( ) ( ) ( )
πr

rtrttrtt sPssPssP

P

,

=

= −−−  

 
with  
 
                                                 
9 For this see Francq and Zakoïan (2001) and  Francq, Roussignol and Zakoïan (2001). 
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and 11001 pp ++−=λ . 
 
Finally, it is useful to note that th  is itself a Markov chain which can take the values 
α  and βα +  with the same transition matrix Ρ . 
 

4. ESTIMATION 
 
The difficulties in estimating SV models lie in the latent nature of the volatility. 
Inference may be difficult, because the distribution of 1−tt Yy  is specified implicitly 
rather than explicitly and the likelihood function appears as a multivariate integral the 
size of which is equal to the number of observations multiplied by the size of the 
latent variables, which is 1 for the described models.  
 
Like most non-Gaussian parameter-driven models, there are many different ways of 
performing estimation: some involve estimating or approximating the likelihood, 
others use the method of moments procedures (see Ghysels, Harvey and Renault 
(1996) and Shephard (1996)). 
 
Let us first of all clearly state the problem of computing the likelihood function for the 
general class of  parametric dynamic latent variable or non-linear and/or non-Gaussian 
state-space models.  

4.1. A general filter for non-Gaussian parameter-driven models  
 
Both SV models (with continuous and discrete volatility) fit in the following 
framework: 
 

( )
( )




=
=

− equationtransitionhh
t equationmeasuremenh y

tttt

tttt
θηϕ

θεφ
;,

;,

1
 (7) 

 
where tε  and tη  are independent white noises, with marginal distributions which 

may depend on θ , the vector of parameters. Let tH  and tY  denote ( )'
21 ,...,, thhh  

and ( )'
21 ,...,, tyyy , respectively. 

 
There are serious difficulties in computing the likelihood function; in fact, with T the 
number of observations, we have: 
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( ) ( ) ( )∏
=

−−−=
T

t

tt
t

tt
t

TT HYhfHYyfHYf
1

111 ;,;,;, θθθ  

 
and the likelihood function is: 
 
 

( ) ( ) ( ) ( )∫ ∏∏
==

−−−=≡
T

t
t

T

t

tt
t

tt
t

T
T dhHYhfHYyfYf

11

111 ;,;,; θθθθl  (8) 

 
 
which is an integral whose size is equal to the number of observations multiplied by 
the dimension of the unobserved variable th , and thus it is practically unfeasible. 
 
It is however possible to derive a general algorithm which allows the formal 
computation of the likelihood function by decomposing the calculation of integral (8) 
into a sequence of integrals of lower dimension.  
 

Let ( )1
1

−
−

t
t Yhf  be the input of the iteration10 t=1,2,…,T. First of all, we can 

decompose the joint conditional density of 1, −tt hh  into the product of the transition 
density by the input density: 
 

1. ( ) ( ) ( )1
11

1
1, −

−−
−

− = t
ttt

t
tt YhfhhfYhhf  

 
By marginalisation we obtain the prediction density of th  
 

2. ( ) ( ) ( ) ( )∫∫ −
−

−−−
−

−
− == 1

1
111

1
1

1 , t
t

tttt
t

tt
t

t dhYhfhhfdhYhhfYhf  

 
Let us now consider the joint density of tt hy , . It can be decomposed into the product 
of the measurement density and the prediction density, 
 

3. ( ) ( ) ( )11, −− = t
ttt

t
tt YhfhyfYhyf  

 
and, again, by marginalisation we obtain the one-step-ahead forecast density of ty  
 

4. ( ) ( ) ( ) ( )∫∫ −−− == t
t

tttt
t

tt
t

t dhYhfhyfdhYhyfYyf 111 ,  
 
which is particularly useful, since by the combination of these densities it is possible 
to obtain the likelihood function. Finally, by conditioning we obtain the filtering 
density (output) 
                                                 
10  For the first iteration (t=1) it is possible to consider the unconditional distribution of  th , ( )1hf . 
For the sake of simplicity we omit the dependence on the parameter θ . 
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5. ( ) ( )
( )

( ) ( )
( ) ( ) t

t
ttt

t
ttt

t
t

t
ttt

t
dhYhfhyf

Yhfhyf

Yyf

Yhyf
Yhf

∫ −

−

−

−

==
1

1

1

1,
 

 
which ends the iteration.  
 
The previous algorithm allows us to obtain several important elements. Step 2 gives 
the estimation of th  given all the information available until t-1 (prediction density). 
Step 5 provides the estimation of th  given all the information currently available 
(filtering density). Finally, step 4 by providing the one-step-ahead forecast density, 
allows us to compute the likelihood function. 
 
Unfortunately, only in very special cases is it possible to obtain analytic recursive 
algorithms11 from this general filtering algorithm: the Kalman filter in the Gaussian 
and linear case and the Hamilton filter in the Markovian and discrete case.  
 

In the Gaussian and linear cases, the initial input ( )0
1 Yhf  and the measurement and 

transition densities are assumed to be Gaussian and at each step of the algorithm 
Gaussianity is preserved, then also all the outputs are Gaussian. The Normal 
distribution is completely described by its first two moments and then the algorithm 
can be rewritten by relating means and variances of the different densities involved. 
This is the Kalman filter. 
 
For the switching regime models introduced by Hamilton (1989), which represent the 
Markovian and discrete case, the integrals which appear at steps 2 and 4 become a 
simple sum over the possible regimes, and then the whole algorithm is analytically 
tractable.  
 
In all the other cases, it is necessary to consider approximated solutions or simulation-
based methods. Examples of approximations are the extended Kalman filter 
(Anderson and Moore (1979), Harvey (1989),  Fridman and Harris (1998)), the 
Gaussian sum filter (Sorenson and Alspach (1971)), the numerical integration 
(Kitagawa (1987)), the Monte Carlo integration (Tanizaki and Mariano (1994, 1998)), 
or the particle filter (Gordon, Salmond and Smith (1993), Kitagawa (1996), Pitt and 
Shephard (1999a)). The simulation-based solutions are certainly more time 
consuming and demanding in terms of computing, but they are definitely more 
general. We will see these methods in greater detail later. 
 
However, for the two presented models (2) and (3), the general filter introduced here 
is useful for estimation. In fact, for the linearised version (6), the Kalman filter allows 
a quasi maximum likelihood estimation of the parameters and the discrete version (3) 
is a particular case of switching regime models for which the Hamilton filter gives the 

                                                 
11 See also Shephard (1994a) for another particular case in which th  is set to be a random walk and 

( )tηexp  a highly contrived scaled beta distribution. This delivers a one-step-ahead prediction 
distribution which has some similarities to the ARCH models. 



 17

likelihood function. 

4.1.1. The Kalman filter for quasi maximum likelihood (QML) estimation 
of continuous SV models 
We can consider the log-transformation (6) of the continuous SV model. As 

( )2log tε ~iid, we obtain a linear state space model.  
 

Let ( ) ( ) ( )( )'22
2

2
1 log,...,log,log τ

τ yyyLY = , ( ) ( )ττ
τ YhELYhEh ttt ==/

ˆ  and 

( ) ( )ττ
τ YhMSELYhMSEQ ttt ==/ . The Kalman filter (see for example12 Harvey 

(1989)) computes these quantities recursively for t=1,…,T, 
 

2
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+=

ttttt

ttttttt

QKQ

eKhh
 

 
where 1

1/1/
−

−−= ttttt FQK  is the Kalman gain. 
 
However, as ( )2log tε  is not Gaussian, the Kalman filter can be used to provide the 

best linear unbiased estimator of th  given tY .  
 
Moreover, if (6) were a Gaussian state space model, the Kalman filter would provide 
the exact likelihood function. In fact, a bi-product of the filter are the innovations 

1/ −tte , which are the one-step-ahead forecast errors and their corresponding mean 
square errors, 1/ −ttF . Together they deliver the likelihood (ignoring constants): 
  

( ) ∑∑
= −

−

=
− −−=

T

t tt

tt
T

t
ttT F

eF
1 1/

2
1/

2
1

1
1/2

1 logθl  

 
As the state space is linear but not Gaussian, the filter gives a quasi likelihood 
function which can be used to obtain a consistent estimator θ̂  and asymptotically 
normal inference (see Ruiz (1994)). 

                                                 
12 See also Carraro and Sartore (1987). 
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This way of estimating th  is used by Melino and Turnbull (1990), after estimating θ  
by the generalised method of moments (see section 4.3.1). Harvey, Ruiz and Shephard 
(1994) examine the QML estimator. 

4.1.2. The Hamilton filter for maximum likelihood estimation of discrete 
SV models 
The discrete SV model (3) is a non-linear and non-Gaussian state-space model. In the 
two-regimes case, the transition equation can be written in a linear form (see (5)) and 
the measurement equation can be linearised by the log transformation, but both the 
equations are non-Gaussian. However, the joint process ( )tt hy ,  is Markovian and 
thus the general filter presented in section 4.1 gives an analytic recursion, since the 
integrals become simple sums over the possible values of th . The input is the filtered 

probability13 ( )1
1

−
−

t
t YhP  and the algorithm gives the prediction probability, the one-

step-ahead forecast density and the subsequent filtered probability: 
 

( ) ( ) ( )∑
−

−
−−

− =
1

1
11

1

th

t
ttt

t
t YhPhhPYhP  

( ) ( ) ( )∑ −− =
th

t
ttt

t
t YhPhyfYyf 11  

( ) ( ) ( )
( ) ( )∑ −

−

=

th

t
ttt

t
tttt

t
YhPhyf

YhPhyf
YhP

1

1

 

 
The combination of the one-step-ahead forecast densities: 
 

( ) ( )∏
=

−=
T

t

t
tT Yyf

1

1θl  

 
provides the likelihood function, the maximization of which gives the maximum 
likelihood estimators of the parameters.  

4.2. A general smoother for non-Gaussian parameter-driven models  
 
We also might want to obtain the estimation of th  given all the information available, 

that is conditional on TY . Such a procedure is called smoothing and as before it is 
possible to derive a formal backward algorithm which delivers the smoothed densities 

( )T
t Yhf . 

                                                 
13 The initial probability ( )0

0 YhP  can be taken equal to the unconditional (ergodic) probability 

( ) π=0hP . 
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Let ( )T
t Yhf 1+  be the input of the iteration14 t=T-1,T-2,…,2,1. We can decompose 

the joint density of tt hh ,1+ , conditional on the information set tY , in the product of 
the transition density by the filtered density (available from the filter): 
 

1. ( ) ( ) ( )t
ttt

t
tt YhfhhfYhhf 11, ++ =  

 
By conditioning with the prediction density obtained from the filter, we obtain the 
following conditional density: 
 

2. ( ) ( )
( )t

t

t
ttt

tt
Yhf

Yhhf
Yhhf

1

1
1

,
,

+

+
+ =    

 
The joint density of tt hh ,1+ , conditional on the information set TY , is given by the 

product of the conditional density ( )T
tt Yhhf ,1+  by the input of the algorithm 

( )T
t Yhf 1+ . The information set T

t Yh ,1+  is included in the information set 

T
t

T
t

t
t Yh 211 ,,, +++ ηε , where ( )'

11 ,..., Tt
T
t εεε ++ =  and ( )'

22 ,..., Tt
T
t ηηη ++ = . Given 

that T
t

T
t 21, ++ ηε  is independent of t

tt Yhh ,, 1+ , we can conclude that 

( ) ( )t
tt

T
tt YhhfYhhf ,, 11 ++ =  (computed at step 2) and then 

 
3. ( ) ( ) ( ) ( ) ( )T

t
t

tt
T

t
T

tt
T

tt YhfYhhfYhfYhhfYhhf 11111 ,,, +++++ ==  

 
Finally, by marginalisation we obtain the smoothed density of th  (output): 
 

4. ( ) ( ) ( ) ( )∫∫ +++++ == 11111 ,, t
T

t
t

ttt
T

tt
T

t dhYhfYhhfdhYhhfYhf  

 
Again, only in the linear and Gaussian case, and in the Markovian and discrete case is 
it possible to obtain an analytic backward recursion: the Kalman smoother and the 
Kim smoother (Kim (1994)). 

4.2.1. The Kalman smoother for continuous SV models 

Let ( ) ( )T
t

T
tTt YhELYhEh 11/1

ˆ
+++ ==  and ( )== ++

T
tTt LYhMSEQ 1/1  

( )T
t YhMSE 1+ . The Kalman smoother15 computes these quantities recursively for 

t=T-1,T-2,…,2,1, 
                                                 
14  For the first iteration (t=T-1), the input is simply the final output of the filter ( )T

T Yhf . 
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where tttttttt QhQh /1/1// ,ˆ,,ˆ

++  are stored from the Kalman filter. 
 
For the log-transformation of the continuous SV model (6), the Kalman smoother is 
useful in estimating the unobserved log-volatility, in fact it provides the best linear 
unbiased estimator of th  given ( )'

21 ,...,, Tyyy .  

4.2.2. The Kim smoother for discrete SV models 

The input is the smoothed probability ( )T
t YhP 1+  and the recursion is simply: 

 

( ) ( ) ( ) ( )
( )∑

+ +

++
=

1 1

11

ts
t

t

T
t

t
tttT

t
YhP

YhPYhPhhP
YhP  

 

where ( )t
t YhP  and ( )t

t YhP 1+  are stored from the Hamilton filter. 

4.3. Other estimation methods for continuous SV models 
 
For the discrete SV model the Hamilton filter allows us to obtain the maximum 
likelihood estimator of the parameters. On the contrary, for the continuous SV 
models, the Kalman filter provides only an approximation of the likelihood function. 
Let us review some other possible estimation methods useful for the continuous SV 
model.  
 
Like most non-Gaussian parameter-driven models, there are many different ways to 
perform estimation. Some involve estimating the likelihood; others use method of 
moments procedures. 

4.3.1. Method of moments 
The simplest approach is the method of moments, based on matching empirical and 
theoretical moments. In the SV case there are many possible moments to use in 
estimating the parameters of the model. This is because 2

ty  behaves like an 
ARMA(1,1) model and moving average models do not allow sufficient statistics 
which are of a smaller dimension than T. This suggests that the use of a finite number 
of moment restrictions is likely to lead to loss of information. Examples include those 
based on 2

ty , 4
ty , 22

rtt yy − , although there are many other possibilities. As a result, 
we may well want to use more moments than there are parameters to estimate, 

                                                                                                                                            
15 See also de Jong (1989). 
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implying that they will have to be pooled. A reasonably sensible way of doing this is 
via the Generalised Method of Moments (GMM). 
 
We can consider, for example, the vector Tg  of the first r autocovariances of 2

ty  or 

of ( )2log ty  as the moment constraints. There are more moments than parameters and 
the issue is how to weight all the available information. The GMM approach of 
Hansen (1992) suggests minimising the quadratic form TTT gWg '  by varying the 
parameters θ  and the weighting matrix TW  should reflect the relative importance 
given to matching each of the chosen moments. Applications of this method to SV 
models are the seminal Melino and Turnbull (1990) and the extensive study of 
Andersen and Sørensen (1996). 
 
The main advantage of the GMM approach comes from the fact that it does not 
require distributional assumptions. However, this is not useful for the SV model since 
it is a fully specified parametric model. On the contrary, as argued by Shephard 
(1996), there are a number of drawbacks to the GMM estimation of the SV model. 
First of all, GMM can only be used if th  is stationary; if β  is close to one (as we will 
find for many high frequency financial data sets), we can expect GMM to work 
poorly. Second, parameter estimates are not invariant to the parameterization and the 
model (2) is not fundamentally more interesting than  
 

( )




+=
=

− ttt

ttt
hh

h y
ηβ

γε

1

,2exp
  

 
Third, as already observed, the squares 2

ty  behave like an ARMA(1,1) model; if 2
ησ  

is small (as we will find in practice), )(2 r
tyρ  will be small but positive for many r. 

This implies that for many series the number of moments to be considered will have 
to be very high to capture the low correlation in the volatility process. Finally, GMM 
does not deliver an estimate (filtered or smoothed) of th , consequently a second form 
of estimation will be required.  
 
The GMM and QML approaches are the simplest way of estimating the SV models 
and they are about equally efficient, with the relative performance being dependent on 
the specific parameter values (see on this Andersen and Sørensen (1997)). 

4.3.2. Simulation-based methods 
All the others estimation approaches are based on simulation techniques. In the last 
ten years there has been a growing interest in simulation16-based methods which 
propose several ways of resolving the inference problem for this class of models (see 
Billio (1999) and Billio (2002b)). In fact, it is clear that one can easily recursively 
simulate (path simulations) from the system (2) for any given value of parameters, θ . 
 

                                                 
16 Simulation techniques make use of sequences of pseudo-random numbers which are generated by a 
computer procedure. 
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A first approach relies on simulation-based methods which are relatively simple to 
implement, but which are less efficient than the maximum likelihood approach: see, 
for example, the Simulated Method of Moments (Duffie and Singleton (1993)), the 
Indirect Inference Method (Gouriéroux, Monfort and Renault (1993)) or the Efficient 
Method of Moments (Gallant and Tauchen (1996), Gallant, Hsieh and Tauchen 
(1997)). A second approach considers the problem of the computation (or of the 
approximation) of the likelihood and then of the maximum likelihood estimator 
through importance sampling methods (Danielsson and Richard (1993), Danielsson 
(1994), Durbin and Koopman (1997)). In a Bayesian framework, a third approach 
considers Markov Chain Monte Carlo (MCMC) techniques based on the data 
augmentation principle, which yields samples out of the joint posterior distribution of 
the latent volatility and all model parameters, and allows the parameter estimates and 
the latent volatility dynamics to be obtained (Jacquier, Polson and Rossi (1994), Kim, 
Shephard and Chib (1998), Chib, Nardari and Shephard (2002)). Finally, a fourth 
approach utilizes MCMC methods to compute (or approximate) the maximum 
likelihood estimator (see the Simulated Expectation Maximisation (Shephard (1993) 
and Geyer (1994), Geyer (1996), Billio, Monfort and Robert (1998)). 
 
In practice, the choice between these different simulation-based approaches depends 
on several criteria, such as efficiency and computing time. Unfortunately, in general 
there is a trade off between these criteria. Methods like the Simulated Maximum 
Likelihood and the Simulated Likelihood Ratio have several advantages in the 
estimation of SV models. Since they are likelihood methods, the classical theory of 
maximum likelihood carries over to the simulated case and standard likelihood ratio 
tests can be constructed. MCMC-based approaches are certainly more time 
consuming, but also allow estimation of the latent volatility dynamics by simulating 
from the smoothing/posterior distribution of th . 
 
Let us briefly introduce part of these methods and their application to SV models. 

4.3.2.1. Indirect Inference approach 
The so-called Indirect Inference methodology was recently introduced in the literature 
by Smith (1993), Gouriéroux, Monfort and Renault (1993), Gallant and Tauchen 
(1996), for a simulation-based inference on generally intractable structural models 
through an auxiliary model, conceived as easier to handle. This methodology allows 
the use of somewhat misspecified auxiliary models, since the simulation process in 
the well-specified structural model and the calibration of the simulated paths against 
the observed one through the same auxiliary model will provide an automatic 
misspecification bias correction. There are several ways of implementing this idea17. 
 
The original approach is the Indirect Inference Method of Gouriéroux, Monfort and 

Renault (1993). Consider an auxiliary model ( )π;1−t
ta Yyf  for the observed data 

(for example18 the general linear state-space model obtained by the log-transformation 

                                                 
17 For all these methods, it is necessary to recycle the random numbers used in the calculation when θ  
changes, in order to have good numerical and statistical properties of the estimators based on these 
simulations. 
18 Another possible auxiliary model is an ARMA(p,q) on the logarithms of the squared data (see 
Monfardini (1998)).  
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(6)). Let ( )T
TT YΠ=π̂  denote the QML estimator of π  based on af  as a function 

( )⋅ΠT  of the observed data set TY . The Indirect Inference estimator of structural 
parameters θ  is given by: 
 

( )[ ] ( )[ ]θππθππθ
θ

NTTTNTTII W ~ˆ~ˆminargˆ ' −−=  

 
where TW  is a weighting matrix and ( )θπ NT

~  is the π  estimator obtained on a 

simulated path of NTY~  for a given value of θ  (i.e. that is given by the binding 
function ( ) ( )NT

NT
N

NT Y~lim~ Π=
∞→

θπ , which is approximated by ( )NT
NT Y~Π  for 

large N). This approach may be very computationally demanding as one needs to 
evaluate the binding function ( )θπ NT

~  for each value of θ  appearing in the numerical 
optimisation algorithm. 
 
The estimator of Gallant and Tauchen (1996) circumvents the need to evaluate the 

binding function by using the score vector ( )π
π

;1−

∂
∂ t

ta Yyf  (score generator) to 

define the matching conditions. If the auxiliary model ( )π;1−t
ta Yyf  is chosen 

flexibly with a suitable nonparametric interpretation, then the estimator achieves the 
asymptotic efficiency of maximum likelihood and has good power properties for 
detecting misspecification (Gallant and Long (1997), Tauchen (1997)), hence the term 
Efficient Method of Moments (EMM). EMM delivers consistent estimates of the 
structural parameter vector under weak conditions on the choice of the auxiliary 
model. However, extrapolating from the Generalised Method of Moments evidence, it 
is natural to conjecture that the quality of inference may hinge on how well the 
auxiliary model approximates the salient features of the observed data. This intuition 
is formalized by Gallant and Long (1997), who show that a judicious selection of the 
auxiliary model, ensuring that the quasi-scores asymptotically span the true score 
vector, will result in full asymptotic efficiency19.  
 
Andersen, Chung and Sorensen (1999) perform an extensive Monte Carlo study of 
EMM estimation of a stochastic volatility model. They examine the sensitivity to the 
choice of auxiliary model using ARCH, GARCH, and EGARCH models for the score 
as well as nonparametric extensions. EMM efficiency approaches that of maximum 
likelihood for larger sample sizes, while inference is sensitive to the choice of 
auxiliary model in small samples, but robust in larger samples20. 
 
The Indirect Inference theory, however, crucially depends on the correct specification 

                                                 
19 In fact, as the score generator approaches the true conditional density, the estimated covariance 
matrix for the structural parameter approaches that of maximum likelihood. This result embodies one of 
the main advantages of EMM, since it prescribes a systematic approach to the derivation of efficient 
moment conditions for estimation in a general parametric setting. 
20 Care must be taken, however, to avoid over-parameterization of the auxiliary model, as convergence 
problems may arise if the quasi-score is extended to the point where it begins to fit the purely 
idiosyncratic noise in the data.  
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assumption concerning the structural model. There is now an emerging literature (see, 
for example, Dridi and Renault (2000) and Dridi (2000)) which focuses on procedures 
more robust to the structural model specification. In particular, Dridi and Renault 
(2000) propose an extension to the Indirect Inference methodology to semiparametric 
settings and show how the Semiparametric Indirect Inference works on basic 
examples using SV models.  

4.3.2.2. Importance sampling 
A more direct way of performing inference is to compute the likelihood by integrating 
out the latent th  process. As previously seen, the integral (8) has no closed form and 
it has to be computed numerically. However, the likelihood function naturally appears 

as the expectation of the function ( )∏
=

−
T

t

tt
t HYyf

1

1 ;, θ  with respect to the p.d.f. P 

defined by21 ( )∏
=

−−
T

t

tt
t HYhf

1

11 ;, θ , from which it is easy to recursively draw. 

Therefore, an unbiased simulator of the whole likelihood function ( )θTl  is 

( )∏
=

−
T

t

tnt
t HYyf

1

1 ;~, θ   where tnH~  are recursively drawn from the auxiliary p.d.f. P. 

The likelihood is then approximated by the empirical mean:  
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and this simulated likelihood can be numerically maximised. However, this basic 
simulator may be very slow, in the sense that the simulator may have a very large 
variance and then some accelerating technique is needed. One solution is to consider 
the general method of importance sampling based on a sequence of conditional p.d.f.'s 

( )1, 1−tT
t HYhq . Let us denote this probability distribution by Q and the 

corresponding expectation by QE . We have: 
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Therefore, an unbiased simulator of ( )θTl  is: 

                                                 
21 It is important to note that this p.d.f. is neither ( )θ;THf , except when ty  does not cause th , nor 

( )θ;TT YHf . 
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where TnH _~  is drawn in Q. The problem is then how to choose the importance 
function: the natural answer is by reducing the Monte Carlo variance. It is easy to 

calculate the theoretical optimal choice ( ) ( )∏
=

−=
T

t

tT
t

TT HYhfYHf
1

1,;θ  (i.e. the 

smoothing density of th ), for which one simulation is sufficient, but it is clearly not 
computable. Then it is possible to consider the smoothing density of an approximating 
model, and fix a parametric family of importance functions, choosing the member that 
minimizes the Monte Carlo variance (which is eventually computed in an 
approximated way). For the SV model (2), the first solution is proposed by Sandmann 
and Koopman (1998) by using as approximating model the linearised version (6). In 
the aim of the second solution, Danielsson and Richard (1993) propose a sequentially 
optimized importance sampling, which Danielsson (1994) applies to the SV model22. 
In both cases, the Simulated Maximum Likelihood estimates of model parameters are 
obtained by numerical optimization of the logarithm of the simulated likelihood23. 

4.3.2.3. Bayesian approach 
In the Bayesian setting, there are also serious difficulties in estimating the SV model. 

In general, the posterior density ( )TYf θ  and the posterior expectation of θ  cannot 

be computed in a closed form. Again, this complex setting requires a simulation-based 
approach. The data augmentation principle, which considers the latent variable th  as 
nuisance parameters, and the utilisation of Gibbs sampling (Gelfand and Smith 

(1990)), by iterating simulations from ( )θ,TT YHf  (data augmentation step) and 

( )TT HYf ,θ  (parameter simulation step), allow simulation from the joint posterior 

distribution ( )TT YHf θ, , derivation of the distribution of interest as the marginal 

distribution of θ  and approximation of the posterior expectation by a sample average. 
When conditional distributions cannot be directly simulated, the corresponding steps 
in the Gibbs algorithm are replaced by Metropolis-Hastings steps24. Moreover, the 
prior modelling on the parameters is usually quasi non-informative. 
 
One way of considering this approach is to regard it as an empirical Bayes procedure, 
reporting the mean of the posterior distributions as an estimator of θ . This is the 
approach followed by Jacquier, Polson and Rossi (1994) who show empirical Bayes 
outperforms QML and GMM in the SV case.  
                                                 
22 The details will not be dealt with here as they are quite involved, even for the simplest model. 
23 As for non-efficient methods, numerical and statistical accuracy is obtained by recycling the random 
numbers used in the calculation for each parameter value. 
24 Such hybrid algorithms are validated in Tierney (1994). 
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In Jacquier, Polson and Rossi (1994) the posterior distribution of the parameters was 
sampled by MCMC methods using a one-move approach (i.e. the latent variables th   

were sampled each at time from ( )2,,,, ησβαtT
t HYhf − , where tH −  denotes all 

the elements of TH  excluding th ). Although this algorithm is conceptually simple, it 
is not particularly efficient from a simulation perspective, as is shown by Kim, 
Shephard and Chib (1998), who develop an alternative, more efficient, multi-move 
MCMC algorithm. The efficiency gain in the Kim, Shephard and Chib (1998) 
algorithm arises from the joint sampling of TH  in one block conditioned on 
everything else in the model. Finally, Chib, Nardari and Shephard (2002) develop 
efficient Markov Chain Monte Carlo algorithms for estimating generalized models of 
SV defined by heavy-tailed Student-t distributions, exogenous variables in the 
observation and volatility equations, and a jump component in the observation 
equation (see section 5.1). 

4.3.2.4. A MCMC approach to maximum likelihood estimation 
Although the Bayesian approach is straightforward to state and computationally 
attractive, it requires the elicitation of a prior, which is often regarded by some 
econometricians as being difficult in dynamic models. Even if this is not an 
insurmountable problem, alternatives are available which allow us to perform 
maximum likelihood estimation using MCMC methods. 
 
The first possibility is the Simulated Expectation Maximisation (SEM) algorithm 
proposed by Shephard (1993). The EM algorithm exploits the following 
decomposition of the log likelihood function: 
 
 

( ) ( ) ( )
( )[ ] ( )[ ]TTTTTT

TTTTT
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and iterates: 
 

( )[ ]TTTi YHYfE i θθ θθ
;,logmaxarg1 =+  

 
This is an increasing algorithm such that the sequence iθ  converges to the ML 
estimator. The problem is that, although ( )θ;,log TT HYf  has in general a closed 
form, the same is not true for its conditional expectation. In the SEM algorithm this 
expectation is replaced by an approximation based on simulations. Thus, the problem 
is now to be able to draw in the conditional distribution of TH  given TY  and θ . 
Shephard (1993), in the context of a non-linear state space model, uses the Hastings-
Metropolis algorithm to solve this problem, and applies it to the SV model. 
 
Another possible approach is the Simulated Likelihood Ratio (SLR) method proposed 
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by Billio, Monfort and Robert (1998). The general principle is: 
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where θ   is an arbitrary fixed value of the parameters. Obviously,  
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and with TnH~ , Nn ,...,2,1= , simulated paths in the conditional distribution  

( )θ;TT YHf , the SLR method amounts to maximising: 
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with respect to θ . The method can be implemented by simulating the conditional 

distribution25 ( )θ;TT YHf . As already noted, it is impossible to simulate directly 

this distribution, thus a Hastings-Metropolis approach is suggested. 
 
Contrary to the SEM approach, the SLR method allows for the computation of the 
likelihood surface and then of likelihood ratio test statistics. It needs only one 
optimisation run and not a sequence of optimisations; it is possible to store the 
simulated paths, and then only one simulation run is required. Moreover, as the 
simulation is made for only one value of the parameter, the objective function will be 
smooth with respect to θ , even if simulations involve rejection methods. 
 
Billio, Monfort and Robert (1998) apply the SLR method also to the SV model (2). 
 

5. EXTENSIONS OF SV MODELS 
 
The basic SV models can be generalised in a number of directions. Straightforward 
generalisations might allow tε  to have heavy-tailed Student-t distributions and 
exogenous variables in the observation and volatility equations. 
 
Moreover, the ARCH in mean model of Engle, Lilien and Robins (1987) can be 
extended to the SV framework, by specifying ( ) ( )2expexp10 tttt hhy εµµ ++= . 
                                                 
25 The resulting Monte Carlo approximation of (9) could be only locally good around θ , and so Geyer 

(1996) suggests updating θ  to the maximiser of the Monte Carlo likelihood and repeating the Monte 

Carlo procedure using the new θ . By updating θ  a few times, one should obtain better 
approximations of the relative likelihood function near the true maximum likelihood estimate. 
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This model allows ty  to be moderately serially correlated, but in the discrete SV 
model the Hamilton filter no longer works, because tt hy ,  are not jointly Markovian. 

5.1. Extensions of continuous SV models 
 
In the context of continuous SV models, Harvey, Ruiz and Shephard (1994) 
concentrated their attention on models based on Student-t error; Mahieu and 
Schotman (1998) analysed the possibility of using a mixture distribution. Jacquier, 
Polson and Rossi (1995) have computed the posterior density of the parameters of a 
Student-t-based SV model. This particular type of model in fact can be viewed as a 
Euler discretisation of a Student-t based Levy process but with additional stochastic 
volatility effects; further articles are available in (continuous-time) mathematical 
options and risk assessment literature26.  By building on the work of Kim, Shephard 
and Chib (1998), Chib, Nardari and Shephard (2002) develop efficient Markov Chain 
Monte Carlo algorithms for estimating these models. They also consider a second type 
of models which contain a jump component27 in the observation equation to allow for 
large, transient movements.  
 
Moreover, a natural framework for extension of continuous SV models might be 
based on adapting the Gaussian state space so that: 
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and then on allowing th  to follow a more complicated ARMA process. Another 
simple example would be: 
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Now, the second component of th  is a random walk, allowing the permanent level of 
the volatility to slowly change. This is analogous to the Engle and Lee (1992) 
decomposition of shocks into permanent and transitory. A model along the same lines 
has been suggested by Harvey and Shephard (1993), who allow (ignoring the cyclical 
AR(1) component): 
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26 Leading references include Eberlein (2001) and Eberlein and Prause (2001). The extension to allow 
for stochastic volatility effects is discussed in Eberlein and Prause (2001) and Eberlein, Kallsen  and 
Kristen (2001). 
27 Jump models are quite popular in continuous time models of financial asset pricing. See, for 
example, Merton (1976), Ball and Torous (1985), Bates (1996), Duffie, Pan and Singleton (2000). 
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This uses the Kitagawa and Gersch (1984) smooth trend model in the SV context, 
which in turn is close to putting a cubic spline through the data. This may provide a 
good summary of historical levels of volatility, but it could be poor as a vehicle for 
forecasting as confidence intervals for forecasted volatilities rth +  may grow very 
quickly with r. 
 
Another suggestion is to allow th  to be a fractional process, giving the long-memory 
SV model. For financial time series, there is strong evidence that the effect of a shock 
to volatility persists (i.e. is not absorbed) for a long number of periods (see e.g. 
Andersen and Bollerslev (1997), Lobato and Savin (1998), Harvey (1998), Bollerslev 
and Jubinski (1999), Bollerslev and Mikkelsen (1999), Bollerslev and Wright (2000) 
and Ray and Tsay (2000)), thus the concept of long memory seems suitable and has 
been suggested by Breidt, Crato and de Lima (1998). A covariance stationary time 
series ty  has long memory if:  
 

( ) ∞=∑
∞

=
−

0
,

r
rtt yyCov  

 
with ( ) ∞<tyVar . Basically, it says that the autocovariances do decay as the lag 
increases but very slowly, usually hyperbolically. 
 
Currently there exist four approaches to estimate the long-memory SV model. The 
quasi maximum likelihood estimator of Breidt, Crato and de Lima (1998), the GMM 
approach of Wright (1999), the widely-used semiparametric, log-periodogram 
estimator of Geweke and Porter-Hudak (1983) (see e.g. Andersen and Bollerslev 
(1997), Ray and Tsay (2000), Wright (2000), Deo and Hurvich (2001) and the recent 
developments of Hurvich and Ray (2001), Hurvich, Moulines and Soulier (2001)) and 
the Bayesian estimator based on the Markov Chain Monte Carlo sampler (Chan and 
Petris (1999)) and eventually the wavelet representation of the log-squared returns 
(Jensen (1999), (2000), (2001)).  
 
The quasi MLE of the long-memory SV model is known to be strongly consistent, but 
requires the order of the short-memory autoregressive and moving average parameters 
to be correctly identified, as does the GMM estimator. The difference between the 
quasi MLE and GMM is that when the fractional order of integration is smaller than 
1/4, the asymptotic properties in addition to consistency are known for the GMM 
estimator. Unlike the quasi MLE of a short-memory stochastic volatility model whose 
asymptotic properties are known (Harvey, Ruiz and Shepard (1994) and Ruiz (1994)), 
these other asymptotic properties are not yet known for the quasi MLE of the long- 
memory SV model. However, in simulation experiments, Wright (1999) finds that 
neither estimator's finite-sample properties dominate the other; the GMM estimator of 
the long-memory parameter generally produces smaller standard errors but with a 
significant downward bias. From these simulations Wright (1999) admonishes 
developing alternative estimators of the long-memory SV model that are more 
efficient and less biased. In fact, even if Deo and Hurvich (2001) find the asymptotic 
properties for the log-periodogram estimator of volatility to be similar to those proved 
by Robinson (1995) for the same estimator in the mean, correct inference about the 
degree of long-memory relies on the number of Fourier frequencies in the regression 
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growing at a rate that is dependent on the value of the unknown long-memory 
parameter. It thus seems that neither the quasi MLE nor the log-periodogram 
estimator of the long-memory volatility model lend themselves nicely to the 
construction of confidence intervals or hypothesis testing of the long-memory 
parameter estimate. 
 
Finally, it could be useful to allow the SV model to capture the non-symmetric 
response to shocks. This feature can be modelled by allowing 1−tε  and tη  to be 
correlated. If 1−tε  and tη  are negatively correlated, and if 01 >−tε , then  01 >−ty  

and th  is likely to fall. Hence, a large effect of 2
1−ty  on the estimated th  will be 

accentuated by a negative sign on 1−ty , while its effect will be partially ameliorated 
by a positive sign. This correlation was suggested by Hull and White (1987) and 
estimated using GMM by Melino and Turnbull (1990) and Scott (1991). A simple 
quasi maximum likelihood estimator has been proposed by Harvey and Shephard 
(1996). Jacquier, Polson and Rossi (1995) have extended their single move MCMC 
sampler to estimate this effect. 

5.2. Extensions of discrete SV models 
 
In the discrete case, the basic model might be extended by considering different 
Markov chains, which can allow the decomposition of shocks into permanent and 
transitory as in the continuous case:  
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where tS  represents a vector of Markov chains. However, the vector of Markov 
chains can be easily represented by a single Markov chain with a sufficient number of 
states and then the model (10) formally reduces to the basic model (3).  
 
Finally, the two SV models can be combined by allowing the continuous latent 
volatility to be governed by a first-order Markov chain. In that case, the estimation is 
very difficult. So, Lam and Lee (1998) therefore propose Bayesian estimators which 
are constructed by Gibbs sampling. 
 

6. MULTIVARIATE MODELS 
 
Most macroeconomics and finance is about how variables interact, thus a multivariate 
approach is very important. For multivariate stochastic volatility models this means 
that it is essential to capture changing cross-covariance patterns. Multivariate 
modelling of covariance is rather new and difficult because it is afflicted by extreme 
problems of lack of parsimony. From a modelling point of view, the multivariate SV 
models are easier to extend than the ARCH models, but the estimation problem 
remains.  
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6.1. Multivariate continuous SV models 
 
Some multivariate continuous SV models are easy to state. Harvey, Ruiz and 
Shephard (1994) applied quasi-likelihood Kalman filtering techniques on: 
 

( ) ( ) ( ) ,0~,...,,,...,1,2exp '
1 εεεεε Σ=== NiidMih y Mtttititit             (11) 

 
where εΣ  is a correlation matrix and ( )'

1 ,..., Mttt hhh =  a multivariate random walk, 
although more complicated linear dynamics could be handled. The approach again 
relies on linearising, this time with loss of information, by writing 

22 loglog ititit hy ε+= . The vector of 2log itε  is iid, all with means -1.27, and a 
covariance matrix which is a known function of εΣ . Consequently εΣ  and the 
parameters indexing the dynamics of th  can be estimated. 
 
It is worthwhile pointing out two aspects of  this model. If rank constraints are 
imposed on th , common trends and cycles will be allowed into the process describing 
the volatility. Furthermore, the model is similar to Bollerslev’s (1990) model which is 
characterised by constant conditional correlation. Hence the model is better defined as 
one of changing variances rather than of changing correlation. Consequently, it fails 
to represent important features of the data and so it is of limited interest. 
 
Perhaps a more attractive multivariate SV model can be obtained by introducing 
factors. The simplest one-factor model is: 
 

( )
( ) ( )




+==
Σ+=

−
2

1 ,0~,2exp
,0~,

ησηηβε
λ

Niidhhhf
Niidwwfy

ttttttt

wtttt  

 
where ty  is perturbed by tw  and explained by the scaled univariate SV model tf . 
Typically wΣ  will be assumed diagonal, perhaps driven by independent SV models. 
 
The lack of an obvious linearising transformation for these models prevents us from 
effectively using Kalman filtering methods. MCMC methods do not suffer this 
drawback and are explored in Jacquier, Polson and Rossi (1995) and Pitt and 
Shephard (1999b). 
 

6.2. Multivariate discrete SV models 
 
The multivariate extension of the discrete stochastic volatility model (3) is easy to 
state. We can consider the multivariate framework (11) and allow each component of 

( )'
1 ,..., Mttt hhh =  to follow a two state Markov chain,  i.e.  
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In order to apply the Hamilton filter and to obtain the likelihood function, it is useful 
to define a new Markov chain tS  with M2  states, which represents the M Markov 
chains governing the dynamics of th .  
 
If the M Markov chains are independent, the transition probabilities of tS  are simply 
obtained by multiplying the probabilities that drive the different Markov chains. 
Accordingly, the transition probability matrix will be M21 ...Q Ρ⊗⊗Ρ⊗Ρ= , where 
⊗  indicates the Kronecker product and iΡ  the transition matrix of its , i=1,2,…,M. In 
that case, the number of states rises exponentially with the dimension of th , but the 
number of parameters describing the Markov chains grows linearly with M and is 

M2 . 
 
A more general specification does not make any a priori assumptions about the 
relations between the different Markov chains. The transition probabilities of the 
composite Markov chain tS  are then given by: 
 

( ) M
ttij jiiSjSq 2,...,2,1,,1 ==== −  

 
which requires ( )122 −MM  parameters. To understand the dimension of the 
problem, with M=2 (and two states), the independent case requires 4 parameters, 
while the general specification requires 12 parameters.  
 
Clearly the general specification becomes quickly unfeasible but, in some 
applications, the independent case is not useful to understand the causality between 
the volatility of different assets. Billio (2002a) proposes considering several correlated 
cases with a number of parameters comprised between M2  and ( )122 −MM  by 
exploiting the concept of Granger causality.  
 
As for the continuous SV model, a more interesting multivariate extension can be 
obtained by introducing a latent factor structure where the latent factors are 
characterised by discrete stochastic volatility.  Unfortunately, in that case the joint 
process of the observable variable ty  and of the latent Markov chains is no longer 
Markovian, and then the Hamilton filter no longer works. For the estimation it is thus 
necessary to use some approximation or to use simulation-based methods (see Billio 
and Monfort (1998) and Kim and Nelson (1999)). 
 

7. EMPIRICAL APPLICATIONS 
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To provide simple illustrations of the usefulness of SV models, the two basic models 
are estimated and their output is used to develop standard option pricing and to 
calculate the Value-at-Risk of an asset or a portfolio. 

7.1. The Volatility program 
 
There do not exist statistical packages to easily and directly estimate28 SV models and 
thus the necessary routines have been developed with Ox (version 3.20), a 
programming language created mainly by Jurgen A. Doornik29. These routines can 
also be used within the package GiveWin.  
 
The files required for running the Volatility program30 are "volatilitymain.ox", the 
main program file, "volatility.oxo", a compiled file containing the definition of the 
functions, and the header file "volatility.h", containing the lists of global variables and 
functions. In Ox or GiveWin it is sufficient to load the main program file, to select the 
appropriate options and then to run the program (for the details of the commands and 
options see the enclosed readme.txt file). 
 
Depending on which commands are commented out (// in front of the command) the 
program can: 
 
• estimate a basic continuous or discrete SV model on a user provided series; 
• simulate a basic continuous or discrete SV model; 
• estimate a basic continuous or discrete model on a user provided series and then 

simulate an alternative path with the estimated parameters. 
 
It shall be stressed that GiveWin is not needed to estimate the models but only to 
display graphs. This program can easily be used with the freeware version of Ox in 
conjunction with any text editor, however we recommend the use of OxEdit since it 
integrates with Ox; both packages can be downloaded from Doornik’s website (see 
footnote 29). All the graphic windows presented in this chapter are taken from 
GiveWin. 

                                                 
28 Linear state-space models can be estimated with the Kalman filter in EViews, with the GAUSS 
package FANPAC or the OX package SSFPack (see also STAMP). Thus the linearised version (6) 
could be estimated with a quasi-maximum likelihood approach. For the switching regime models, see 
also MSVAR, an Ox package developed by H.M. Krolzig and designed for the econometric modelling 
of univariate and multiple time series subject to shifts in regime 
(http://www.economics.ox.ac.uk/research/hendry/krolzig/). 
29 Ox is an object-oriented matrix programming language with a comprehensive mathematical and 
statistical function library whose major features are speed, extensive library and well-designed syntax, 
leading to programs which are easy to maintain. In particular, this program takes advantage of the 
concept of class: it is possible to create new classes based on existing ones and to use their functions, 
therefore avoiding the need to rewrite them for the new class. In our case, the program is built on the 
Database class, which is the class designed for handling databases, samples, names of variables, etc… 
The Database class is used as a starting point for the more specific class of Stochastic Volatility Model: 
the functions, both to estimate and to simulate the models and to store the results, are totally rewritten, 
while the functions that manage the time series are part of the Database class.  
More information on OX can be found at http://www.nuff.ox.ac.uk/users/doornik/. See also Doornik 
(2001). 
30 Updated versions of the program will be available for download at the address www.greta.it (under 
the Working Papers section). The package is free of charge for academic and research purposes. For 
commercial use, please contact the author (mgobbo@greta.it).  
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Figure 2: The main program “volatilitymain.ox” loaded with GiveWin with the full 
list of commands. 
 
The first line of code in Figure 2, just before the “main” command, imports the 
"volatility.oxo" file, which contains the functions, recalls the Database class and other 
Ox packages such as the graphic, the probabilistic and the maximisation ones31.  
 
The program is then organised as follows: 
 
• in a first step the time series of interest is requested in an Excel spreadsheet. The 

user has to indicate the exact path of the file to be loaded (other data formats can 
be used, see the readme.txt file for additional details). Data passed to the 
programs must be the price levels, the necessary transformations are directly 
carried out by the estimation routines; 

• in a second step the model is chosen, estimated and, if desired, simulated; 
• finally, the outputs of the model are printed and graphed to the screen and saved. 

 
The available variables in the Excel file “series.xls” are the daily stock indexes 
analyzed in section 1.1, i.e. the FTSE100, the CAC40 and the MIB30 indexes. In the 
example developed in this chapter attention will be focused on the modelling of the 
FTSE100 index.  
In the first part of the program, these variables are loaded in Excel format. Thus the 
full sample of FTSE100 is selected in order to start the analysis and perform the 
estimation. The command “Estimate” is quite complex and requires inputs by the 
user: the type of model, the choice of the initialisation of the parameter values and 
their values if the user wants to define them (see figure 3 and the readme.txt file). 
                                                 
31 Of course, it is possible to modify the program adding functions belonging to the loaded Database 
class or to different others. In this case, the class containing the desired functions must be loaded by 
adding a line of code (#import “…”) before the “main” command.  
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Figure 3: The “Load”, “Select” and “Estimate” commands. 

  

7.1.1. Estimation  
The package allows the analysis of the two basic models, i.e. the log-normal SV 
model (2), called ARSV in the program, which is estimated by quasi maximum 
likelihood with the Kalman filter, and the two regimes switching model (3), called 
SRSV, which is estimated by maximum likelihood with the Hamilton filter.  
 
The first model is: 
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with tε  and tη  independent Gaussian white noises. Their variances are 1 and 2

ησ , 

respectively. The volatility equation is characterised by the constant parameter α, the 
autoregressive parameter β and the variance 2

ησ  of the volatility noise. The mean is 
either imposed equal to zero or estimated with the empirical mean of the series (see 
below equation (12)). 
 
Since the specification of the conditional volatility is an autoregressive process of 

order one, the stationary condition is 1<β . Moreover, the volatility ησ  must be 
strictly positive. In the estimation procedure the following logistic and logarithm 
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reparameterisations 
( )

( ) 1-
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=β , ( )ηησ sexp=  have been considered in 

order to satisfy the above constraints.  
 
The second model is a particular specification of the regime switching model 
introduced by Hamilton.  Precisely the distribution of the returns is described by two 
regimes with same mean but different variances and by constant transition matrix: 
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where32 ts  is a two state Markov chain independent of tε , which is a Gaussian white 
noise with unit variance. The parameters of this model are the mean µ, the low and 
high standard deviation 10 , σσ  and the transition probabilities 00p , 11p  (also called 
regime persistence probabilities). As for the log-normal SV model, the logarithm and 
the logistic transformations ensure the positiveness of the volatilities and constraint 
the transition probabilities to assume values in the (0,1) interval. 
 
Before starting the estimation it is necessary to transform the raw time series, which 
are expressed in level, in the logarithmic returns33 and to set the starting values of the 
parameters in the maximisation algorithm34. Moreover, for the log-normal SV model 
the returns are modified as follows: 
 

( ) 27.1log 2* +−= ttt yyy    (12) 

 
where ty  is the empirical mean. Thus, for the log-normal SV model the mean is not 
estimated but it is simply set equal to the empirical mean. 
 
While these transformations are automatically done by the estimation procedure, the 
setting of the starting parameter values requires a choice by the user from the 
following options: 
� random initialisation: a range of possible values of the parameters is fixed, where 

necessary,  and a value is randomly extracted. This method is useful when the 
user has no idea about the possible value of the parameters but wants to better 
investigate the parametric space. The drawback of this option is that the 
optimisation algorithm may be quite time-consuming, because it needs more 
iterations to converge and the probability that it does not converge to the global 
maximum increases and then several optimization run (with different random 
starting values) may be required; 

                                                 
32 According to the model (3), ( )2exp0 ασ =  and ( )2)(exp1 βασ += . 
33 In the Excel file “series.xls” there are 899 observations of the daily stock indexes analyzed in section 
1.1. In the estimation we therefore consider 898 daily return observations.  
34 Recall that data transformations are directly carried out by the programs that require input price 
levels. 
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� data driven initialisation: the starting values of the parameters are calculated 
considering the time series analyzed. For example, the sample mean is used as an 
approximation of the mean of the switching regime model and the empirical 
variance multiplied respectively by appropriate factors is used for the high and 
low variance. This alternative helps the user to speed up the convergence even if 
he has no opinion on the possible values of the parameters; 

� user initialisation: the starting values of the parameters are directly inserted by the 
user.  

 
In the example, the data driven initialisation has been selected. 
 
During the estimation it is possible to control each step of the algorithm through the 
command MaxControl (see the readme.txt file for more information). The estimation 
output is then given by the estimated values of the parameters, their standard errors 
and relative t-Student statistics35. 
 
Figure 4 shows the final output of the log-normal SV model for the FTSE100 index. 
In this example the numerical optimisation ends after 76 iterations, which take 8.32 
seconds36, and the log-likelihood37 is -1153.7. The volatility of the FTSE100 index is 
very persistent, in fact the autoregressive coefficient of the volatility equation ( β ) is 
equal to 0.956. In practice, for financial time series this coefficient is very often 
bigger than 0.9. 
 
Figure 5 exemplifies the graphic output, which consists of the estimated volatility for 
the FTSE100 index along with the historical return series. The estimated volatility is 

obtained by using the Kalman smoother ( )T
tTt YhEh *

/
ˆ = , which is however not 

immediately useful. In fact, we are interested in ( ) 
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exp . Thus, we consider a first-order Taylor 

expansion of ( )2exp th  around Tth /
ˆ , and compute the conditional mean and 

estimate the volatility in the following way: 
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This computation is performed directly by the program and figure 5 presents the 
estimated volatility. 
 

                                                 
35 The standard errors are calculated following Ruiz (1994) for the log-normal SV model and as the 
inverse of the Information matrix for the switching regime model. In both cases the z-statistics 
asymptotically follow a N(0,1) distribution. 
36 On a Pentium III 933 MHz. 
37 For the log-normal SV model the log-likelihood is computed with the Kalman filter for the 

transformed series *
ty , see equation (12).  
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---- Database information ---- 
Sample:    1 - 899 (899 observations) 
Frequency: 1 
Variables: 3 
 
Variable        #obs  #miss         min        mean         max     std.dev 
FTSE100          899      0      3777.1      5879.6      6930.2       623.5 
CAC40            899      0      3023.7      5091.7      6922.3      892.33 
MIB30            899      0       23564       37752       51093      6472.4 
 
Starting values 
parameters 
  -0.00037495     0.020098      -5.9420 
gradients 
      -1628.7      0.56669      0.50753 
Initial function =      -8311.86544015 
 
Position after 76 BFGS iterations 
Status: Strong convergence 
parameters 
     -0.39130       3.7872      -3.1959 
gradients 
  4.5475e-007 -2.2737e-007 -2.2737e-008 
function value =      -1153.70477274 
 
Stochastic Volatility Model, version 1.00 
Strong convergence 
 
                    parameters value    standard error         z-statistic 
costant                    -0.391298          0.195784          -1.99862 
AR part                     0.955684         0.0220615           43.3191 
standard deviation           0.19665         0.0578519            3.3992 
elapsed time 8.32 secs              loglikelihood -1153.7 
forecasted volatility 0.0189846 

 
Figure 4: Estimation output of the log-normal SV model for the FTSE100 index. 
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Figure 5: Historical returns and estimated volatility for the FTSE100 index obtained 
with the log-normal SV model. 
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Figure 6 shows the final output38 of the switching regime model for the FTSE100 
index. In this case the numerical optimisation ends after 26 iterations, which take 7.65 
seconds, and the log-likelihood39 is -2680.18. For this model we can judge the 
persistence of the volatility by the value taken by the transition (or persistence) 
probabilities 00p , 11p . They are very high (0.99 and 0.96), confirming the high 
persistence of the volatility of the FTSE100 index. Moreover, the levels of the high 
and low volatility are perfectly in line with the values of the volatility estimated with 
the log-normal SV model. 
 
---- Database information ---- 
Sample:    1 - 899 (899 observations) 
Frequency: 1 
Variables: 3 
 
Variable        #obs  #miss         min        mean         max     std.dev 
FTSE100          899      0      3777.1      5879.6      6930.2       623.5 
CAC40            899      0      3023.7      5091.7      6922.3      892.33 
MIB30            899      0       23564       37752       51093      6472.4 
 
Starting values 
parameters 
  -0.00036337     -0.69315     -0.69315      -4.6792      -4.0521 
gradients 
       433.59       6.8030     -0.17620      -19.442      -54.401 
Initial function =       2626.32194786 
 
Position after 26 BFGS iterations 
Status: Strong convergence 
parameters 
  -0.00017494       4.9389       3.2807      -4.5279      -3.7532 
gradients 
  5.3524e-005      0.00000 -4.5475e-008  4.3201e-006 -8.6402e-007 
function value =       2680.17860015 
 
Stochastic Volatility Model, version 1.00 
Strong convergence 
 
                        parameters value    standard error         z-statistic 
mean                        -0.000174935       0.000387296         -0.451684 
low persistence prob.           0.992889        0.00435136           228.179 
high persistence prob.          0.963762         0.0227076           42.4422 
low volatility reg.            0.0108036       0.000399697           27.0294 
high volatility reg.           0.0234427        0.00231372            10.132 
elapsed time  7.65 secs                  loglikelihood -2680.18 
forecasted volatility 0.0196862 

 
Figure 6: Estimation output of the switching regime model for the FTSE100 index. 
 
In figure 7 the graphic output of the switching regime model is presented. It consists 
of the historical return series, the weighted or estimated volatility and the estimated 
switches between regimes40.  
 
To estimate the volatility we consider the output of the Kim smoother. Since 

( )( ) ( )( ) ( ) ttttt ssss 10 12exp12exp σσβαασ +−=++−= , we can compute: 

                                                 
38 It is important to underline that the z-statistics for the transition probabilities are not useful for testing 

1,0,1,0 === ipp iiii . In fact, these tests are not standard since they imply testing for the 
presence of two regimes (see Davies (1977, 1987) and Hansen (1992, 1996)). 
39 In this case the log-likelihood is computed with the Hamilton filter for the return series and thus it is 
not directly comparable with the log-likelihood of the log-normal SV model.  
40 The regime is 0 if ( ) 5.0≥= T

t YhP α  and 1 otherwise. 
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( ) ( ) ( )T
t

T
t

T
tTt YsPYsPYE 10ˆ 10/ =+=== σσσσ  (13) 

 

where ( ) ( )T
t

T
t YhPYsP α=== 0  and ( ) ( )T

t
T

t YhPYsP βα +=== 1 . 
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Figure 7: Historical returns, weighted volatility and estimated switches between 
regimes for the FTSE100 index obtained with the regime switching model. 
 
Finally, it is possible to save the estimated volatility. Since the visualisation of the 
graphs is possible only with the commercial version of Ox, if this is not available the 
program allows only the saving of the estimated volatility series. The “SeriesEst” 
command allows the saving of the following series in an Excel format41: historical 
returns, estimated volatilities and for the switching regime model the smoothed and 
filtered probabilities of the high volatility regime and the regime shifts. Moreover, the 
graphs can be directly saved in a postscript format with the “Graph” command. In 
both cases the user should provide a path including the name and extension of the 
destination file. The “Graph” command includes also an additional control variable to 
choose whether or not to plot the series (see figure 8). 
 

                                                 
41 In the output file, for the ARSV model, Var1 indicates the historical returns and Var2 the estimated 
volatilities. For the SRSV, Var1 indicates the historical returns, Var2 the estimated volatilities, Var3 
and Var4 the smoothed and filtered probabilities of the high volatility regime and Var5 the regime 
shifts. 
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Figure 8: The “Simulation”, “SeriesEst”, “SeriesSim” and “Graph” commands. 
 

7.1.2. Simulation 
The Volatility program also allows simulation of both the models. The “Simulation” 
command gives the possibility to choose the type of model, the values of the 
parameters and the length of the simulated series. If the user wants to simulate the 
model characterised by the parameters just estimated, the last input of the 
“Simulation” command must be set to 0, otherwise it has to be replaced by the column 
vector of the desired parameters. 
 
The graphic output of the simulation is composed by the simulated series and their 
volatilities. A final possibility is to plot both the estimation and simulation phases (see 
figures 9 and 10). In particular, for the switching regime model the program plots the 
simulated volatility, which jumps between the low and high level, and the smoothed 
(weighted) simulated volatility, which is computed in the same way as the estimated 
volatility (see equation (13)). 
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Figure 9: Estimation and simulation graphic output of the log-normal SV model. 
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Figure 10: Estimation and simulation graphic output of the switching regime model. 
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Finally, it is possible to save the simulated volatility. The “SeriesSim” command 
allows the saving of the following series in an Excel format42: simulated returns, 
simulated volatilities and for the switching regime model the smoothed probabilities 
of the high volatility regime and the regime shifts. 

7.1.3. Forecasting 
The final output given by the Volatility program is the forecasted volatility for the 
following period. The Kalman and Hamilton filters also give the prediction density of 

1+th  then it is possible to forecast the next value of the volatility.  
 
For the log-normal SV model, we consider a first-order Taylor expansion of 

( )2exp th  around TTh /1
ˆ

+  and by taking the conditional expectation we forecast the 
volatility in the following way: 
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With regard to the switching regime model, since ( ) ttt ss 10 1 σσσ +−= , we can 
forecast the volatility as follows: 
 

( ) ( ) ( )T
T

T
T

T
TTT YsPYsPYE 10ˆ 11101/1 =+=== ++++ σσσσ  

 

where ( ) ( )T
T

T
T YhPYsP α=== ++ 11 0 , ( ) ( )T

T
T

T YhPYsP βα +=== ++ 11 1  

are the prediction probabilities43 obtained with the last iteration of the Hamilton filter. 
 
The forecasted volatility is evidenced in the output and it is saved as the last value of 
the estimated volatility44. 
 
Let us now consider some practical utilisations of the estimated volatilities. 

7.2. Option pricing 
 
As seen in section 1.2, the option price in the Black and Scholes framework can be 
expressed as a conditional expectation given the current price of the underlying asset: 
                                                 
42 For the ARSV model, Var1 indicates the simulated returns and Var2 the simulated volatilities. For 
the SRSV, Var1 indicates the simulated returns, Var2 the simulated volatilities, Var3 the smoothed 
probabilities of the high volatility regime and Var4 the regime shifts. 
43 It is possible to obtain the prediction probabilities by multiplying the transition matrix Ρ  by the 
filtered probabilities (which are saved in the estimation output file as Var4), i.e. 
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44 In the estimation output file, in the last row the only non-zero value is the forecasted volatility (all 
the other variables are set equal to zero). 
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( ) ( )[ ]0,max-exp | KSErC tSS

BS
t tt

−= ++ ττ
τ  

 
where the dynamic of the asset is described by a geometric diffusion process and the 
expectation is taken with respect to the risk-neutral probability measure.  
 
Since the Black and Scholes formula can be expressed as a function only of the 
volatility, a great effort has been made in modelling its behaviour. While Black and 
Scholes assume that it is constant over the life of the option, a series of models 
proposed in the late 1980s supposes that it varies through time in a deterministic or 
stochastic way, in the attempt to capture the empirical features of the option prices. In 
fact, an analysis of the volatility implied in the market option prices (the so-called 
implied volatility) highlights that the volatility is neither constant through time nor 
independent of the strike price (the so-called “smile” and “sneer” effect) (see 
Rubinstein (1985)).  
 
A very simple approach consists in using the volatility estimated with stochastic 
volatility models as input of the Black and Scholes formula. In that case, it is 
sufficient to consider the forecasted volatility 1/ˆ −ttσ  as the volatility parameter in the 
formula to obtain the option price: 
 

( )1/ˆ −= tt
BS
tt CC σ  

 
In the following we review some stochastic volatility models for the option pricing, 
which consider the volatility as an exogenous stochastic process.  
 
The path-breaking work on stochastic volatility models applied to option pricing is the 
paper by Hull and White (1987). The authors assume that both the underlying security 
S  and the variance 2σ  follow a geometric diffusion process: 
 

ωξσφσσ

σµ

ddtd
dzSdtSdS

222 +=

+=
 

 
where the correlation ρ  between the two Brownian motions ωddz,  is a constant 
with modulus less than one. Hull and White take 0≡ρ . Scott (1987) considers the 
case in which the volatility follows an Ornstein Uhlenbeck process and also imposes 
the restriction 0≡ρ . Finally, Heston (1993) proposes the familiar mean reverting 
square root process for the volatility: 
 

( ) ωξσσφγσ

σµ

ddtd

dzSdtSdS

+−=

+=
22  

where φ  is the long run average variance and he takes the assumption 0≠ρ .  
 
Introducing stochastic volatility in the definition of the stochastic differential equation 
of the underlying asset creates several complications. A dynamic portfolio with only 
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one option and one underlying asset is not sufficient to create a riskless investment 
strategy. The problem arises since the stochastic differential equation for the option 
contains two sources of uncertainty. Unfortunately, it is impossible to eliminate 
volatility market risk premium and correlation parameters from the partial differential 
equation using only one option and one underlying asset. Moreover, these parameters 
are difficult to estimate45

 and extensive use of numerical techniques is required to 
solve the two-dimensional partial differential equation.  
  
In the Hull and White (1987) formula, the option price is determined assuming that 
the volatility market risk premium is zero and there is zero correlation between the 
two Brownian motions describing the underlying asset and the volatility, i.e. the 
volatility is uncorrelated with the asset price. With these assumptions and using a risk-
neutral valuation procedure, they show that the price of an option with stochastic 
volatility is the Black and Scholes price integrated over the distribution of the mean 
volatility: 
  

( ) ( ) 2222 | σσσσ dgCC t
BS
t

HW
t ∫=  

 
where  
 

( )∫
+

=
τ
σ

τ
σ

t

t
duu22 1

 

 
and ( )2| tg σσ  is the conditional probability density of the mean variance 2σ  over 
the period τ .  
 
In the more general case of non-zero correlation, the framework becomes more 
complex, allowing only numerical solutions. 
 
It can be observed that continuous time stochastic volatility provides an attractive and 
intuitive explanation for observed volatility patterns and for observed biases in 
implied volatility. Precisely, smiles, skews, upward and downward term structures of 
implied volatility arise naturally from a stochastic volatility model. However the fact 
that stochastic volatility models fit empirical patterns does not mean that those models 
are correct and the biases in market prices may be the results of other factors, non 
considered, such as liquidity problems. 
 
A work related to that of Hull and White is Naik (1993). While in the Hull and White 
specification the volatility follows a continuous diffusion process, Naik analyses the 
case where the instantaneous variance of an asset is subject to random discontinuous 
shifts. In particular, the volatility is described with a right-continuous Markov chain 
process: it remains in the same state for a random amount of time and then shifts to 
another state with transition probabilities determined by a matrix. In the case of a two-
state volatility process the transition matrix is simply: 
                                                 
45 An exception occurs when the volatility is a deterministic function of the asset price or time. In this 
case it is possible to easily find a solution to the partial differential equation.  
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Assuming that the underlying process is continuous, the risk of a shift in volatility is 
diversifiable, and therefore not priced, and that the two processes are uncorrelated, the 
option valuation equation can be expressed in a closed form as follows: 
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where 1σ  indicates the high volatility level, ( ) ( )
τ

τσσ
σ
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−+
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2
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2
12 , τ≤≤ x0  

and ( )1|σxg  denotes the unconditional density of the time spent by the volatility 
process in the high volatility state, given the current high volatility state. In the same 
way it is possible to determine the option price conditional on the current low 
volatility state ( ( )0σN

tC  with 0σ  the low volatility level). 
 
As in the Hull and White model, the option price is the expectation of the Black and 
Scholes formula computed for the average future volatility, given the current state. 
Since two regimes are considered, the final option price can be obtained by a 
weighted average of the two conditional values ( )1σN

tC  and ( )0σN
tC . 

 
This analysis can be extended by considering multiple states and correlation between 
changes of the underlying and shifts in volatility, but unfortunately in these cases the 
option price can be obtained only via numerical methods. In this kind of procedure a 
discrete time Markov chain is used as an approximation of the volatility process.  
 
We briefly present two examples of this approach, due to Billio and Pelizzon (1997) 
and Bollen (1998) (see also Bollen, Gray and Whaley (2000)). Both these works are 
based on the hypothesis that the returns of the underlying asset follow a switching 
regime model. The distribution is characterised by a mixture of distribution with 
different variance, where the weights depend on a hidden Markov chain process 
which represents possible different volatility regimes of the market. To obtain the 
numerical solution, the basic idea is to approximate the distribution through a 
multinomial approach, considering a binomial tree for each of the two distributions 
characterised by different variance.  
 
Following Cox, Ross, Rubinstein (1979), the future value of the underlying process 
can be expressed as: 
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One possible specification of the parameters that guaranties asymptotic normality and 
convergence to the desired mean and variance of the continuously compounded 

returns is 
222 trteu ∆+∆= σ , 1−= ud  and 

du
dep

tr

−
−

=
∆

. In this case the process is 

fully characterised by the parameter representing the variance 2σ , since the step size 
t∆  and the free risk interest rate r  are given. Once the variance is estimated it is 

possible to construct a tree to represent the possible future paths of the variable and 
hence the distribution of returns (at the maturity).  
 
If a regime switching model is considered, the distribution of the returns is simply a 
mixture of the distributions characterizing each state. Therefore a discrete process can 
be used to approximate the continuous time process, and hence the distribution of 
returns, in each state. In this case, two binomial distributions are used as an 
approximation of the mixture of the two distributions.  
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where ts  denotes the regime. 
 
In this case it is necessary to invoke the risk neutral hypothesis to determine the 

values of the parameters that are 
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the high volatility regime and 
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for the low volatility regime. This model is usually called quadrinomial tree (or 
lattice). The inner two branches correspond to the low volatility regime while the 
outer ones correspond to the high volatility regime. Each set of probabilities 
( )iiii pp −1,  must be interpreted as the branch probability conditional on the regime 
i , with 1,0=i .  
 
Although the quadrinomial tree represents accurately both distributions, its branches 
do not recombine efficiently, exhibiting an exponential growth of the computational 
time as the number of steps increases.  
 
Bollen (1998) proposes a method to overcome this problem and develops a 
pentanomial tree. The definition of the parameters is modified to yield both the 
possibility to recombine the tree and the convergence of the discrete process to the 
mixture of distributions. This is obtained by approximating each regime density by a 
trinomial distribution instead of the binomial one. The modified tree has five evenly 
spaced branches because the step size of the two regimes are in 1 over 2 ratio 
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where dsus tt

pp ,, ,  are the probabilities to go up and down conditional to the 

regime ts  and mp  is the probability to remain at the same level price tS . 
 
Once the tree is generated, the option value is calculated operating backward from the 
terminal values, i.e. the payoffs, to the valuation time. In the regime switching 
approaches, for simplicity two conditional option values are calculated at each step, 
where the conditioning information is the regime at the valuation time t : 
 

( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( )[ ]





=+=−==
=−+===

∆−
++++

∆−
++++

tr
tttttt

tr
tttttt

esCpsCpsC
esCpsCpsC

1011
1100

11111111

11001100  

 
At the valuation time the value of the option is obtained as a weighted average of the 
two conditional option values, where the weights depend on the knowledge of the 
current regime. If the regime is unknown, the unconditional probabilities 
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) are used. 

 
Let us take an example of the pentanomial approach by considering the parameters 
estimated in section 7.1.1. 
 
We deal with a European call option on the FTSE100 index quoted at LIFFE on 22nd 
August 2000 (when the FTSE100 index quoted 6584.82), with maturity June 2001 
and strike price 5900. The risk free interest rate r  is approximated with three month 
Libor46 and the time to maturity in terms of trading days is 213. In this example 

1=∆t . 
 
Taking the estimated volatilities of section 7.1.1, the parameters of the pentanomial 
model can be computed as follows:  
 

                                                 
46 London Interbank Offered Rate. 
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Once the tree is generated, the payoffs are calculated with the usual procedure (see 
appendix A for the details). The conditional option values ( ) ( )1,0 == tttt sCsC  
are obtained using the estimated transition probabilities, while the final value of the 
option is a weighted average where the weights are the unconditional probabilities 
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The pentanomial option value is therefore 1055.14, while the market value was 
1047.5.  

7.3. Value at Risk 
 
VaR is a very intuitive measure to evaluate market risk because it indicates the 
maximum potential loss at a given level of confidence (a) for a portfolio of financial 
assets over a specified time horizon (h).  
 
In practice, the value of a portfolio is expressed as a function of K risk factors, 

( )∑
=

=
N

i
Kiti Pwx

1
,,1,, ,, τττ χχτ K . The factors influencing the portfolio value are 

usually identified with some market variables such as interest rates, exchange rates or 
stock indexes.  If their distribution is known in a closed form, we need to estimate the 
distribution of the future value of the portfolio conditional to the available information 
and the VaR is then the solution to: 
 

( )( )
∫ ∞− +=

ahVaR
ht dxxfa ,

 

 
Different parametric models can be used to forecast portfolio return distribution. The 
simple way to calculate VaR involves assuming that the risk factor returns follow a 
multivariate normal distribution conditional to the available information. If the 
portfolio return is linearly dependent on them, its probability distribution is also 
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normal and the VaR is simply the quantile of this analytic distribution. If the linear 
assumption is inappropriate, the portfolio return can be approximated as a quadratic 
function of the risk factor returns. 
  
An alternative way to handle the non-linearity is to use Monte Carlo simulation. The 
idea is to simulate repeatedly the random processes governing the risk factors. Each 
simulation gives us a possible value for the portfolio at the end of our time horizon. If 
enough of these simulations are considered, it is possible to infer the VaR, as the 
relevant quantile of the simulated distribution.  
 
Since market risk factors have usually fatter tails than the normal distribution, it is 
also possible to use historical simulation rather than a parametric approach. The idea 
behind this technique is to use the historical distribution of returns to the assets in the 
portfolio to simulate the portfolio’s VaR, on the hypothetical assumption that we held 
this portfolio over the period of time covered by our historical data set. Thus, the 
historical simulation involves collecting historic asset returns over some observation 
period and using the weights of the current portfolio to simulate the hypothetical 
returns we would have had if we had held our current portfolio over the observation 
period. It is then assumed that this historical distribution of returns is also a good 
proxy for the portfolio return distribution it will face over the next holding period and 
VaR is calculated as the relevant quantile of this distribution.  
 
The advantage of the parametric approach is that the factors variance covariance 
matrix can be updated using a general model of changing or stochastic volatility. The 
main disadvantage is that the factor returns are usually assumed to be conditionally 
normal, losing the possibility to take into account nonlinear correlations among them. 
Historical simulation has the advantage of reflecting the historical multivariate 
probability distribution of the risk factor returns, avoiding ad hoc assumptions. 
However the method suffers a serious drawback. Its main disadvantage is that it does 
not incorporate volatility updating. Moreover extreme quantiles are difficult to 
estimate, as extrapolation beyond past observations is impossible. Finally, quantile 
estimates tend to be very volatile whenever a large observation enters the sample and 
the database is not sufficiently large. 
 
The advantage of the parametric approach to update the volatility suggests the 
simplest utilisation of the SV models for the VaR computation. Chosen the asset or 
portfolio distribution (usually the normal one), it is possible to use the forecasted 
volatility to characterise the future return distribution. Thus, TT /1ˆ +σ  can be used to 
calculate the VaR over the next period. 
 
A different approach using the SV model is to devolatilise the observed returns series 
and to revolatilise it with an appropriate forecasted value, obtained with a particular 
model of changing volatility. This approach is considered in several recent works 
(Barone-Adesi, Burgoin and Giannopoulos (1998), Hull and White (1998)) and is a 
way of combining different methods and partially overcoming the drawbacks of each.  
 
To make the historical simulation consistent with empirical findings, the log-normal 
SV model and the regime switching model may be considered to describe the 
volatility behaviour. Past returns are standardised by the estimated volatility to obtain 
standardised residuals. Statistical tests can confirm that these standardised residuals 
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behave approximately as an iid series which exhibits heavy tails. Historical simulation 
can then be used. Finally, to adjust them to the current market conditions, the 
randomly selected standardised residuals are multiplied by the forecasted volatility 
obtained with the SV model.  
 
For example, table 2 shows the results obtained with the FTSE100 index return by 
considering 1,000,000 historical simulations47 (see appendix B for the details). 
 
 

Confidence level Log-normal SV model Regime switching model 
0.1 2.5442 2.7503 
0.05 3.9298 3.5874 
0.01 5.3417 4.6502 

 
Table 2: VaR at different confidence levels for the FTSE100 index return. 
 
Clearly, this approach allows a wide range of stochastic and changing volatility 
models, such as ARCH-GARCH models, to be considered. Moreover, it must be 
pointed out that instead of using historical simulation, an appropriate standard 
distribution can also be considered to model the transformed returns and then several 
probability distributions can be assumed for the unconditional returns (McNeil and 
Frey (2000), Eberlein, Kallsen and Kristen (2001)). 
 
Another example of parametric approach to VaR calculation considers the hypothesis 
that a regime switching model governs the asset returns (Billio and Pelizzon 2000): 
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where tε  ~N(0,1) is independent of ts . 
 
To calculate the VaR it is necessary to determine the value of the conditional 
distribution for which the cumulative density is a, i.e. 
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where ( )thts Iyf

ht
|++

 is the probability density of hty +  when the regime is hts +  

and conditional to the available information set tI  (usually containing past returns), 
( )tht IsP |+  is the prediction probability obtained by the Hamilton filter. 

 
Given the parameters estimated in section 7.1.1 for the switching regime model and 
the prediction probabilities at time t+h (obtained by the product of the transition 

                                                 
47 Each operation takes about 12 seconds. 
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matrix, for h-1 steps, and the conditional probabilities )( 1 tt IsP +  given by the 
Hamilton filter), the VaR is the relevant quantile of the mixture distribution. 
 
The model can be generalised to the case of N risky assets providing an explicit link 
between the return on the asset and the return on the market index, thus by explicitly 
modelling the correlation between different assets. The Multivariate Switching 
Regime Beta Model (Billio and Pelizzon (2002)) is a sort of market model or better a 
single factor model in the Arbitrage Pricing Theory framework where the return of a 
single stock i is characterized by the regime switching of the market index and the 
regime switching of the specific risk of the asset. It can be written as: 
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where mty   is the market return, the market regime variable ts  and the single stock 
regime variables jts , Nj ,..,1=  are independent Markov chains, tε  and jtε , 

Nj ,..,1= , are independently distributed. 
 
Using this approach it is possible to take into account the correlation between 
different assets. In fact, the variance-covariance matrix between the two assets i and j 
is: 
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then the correlation between different assets depends on the extent to which each asset 
is linked, through the factor loading β , to the market index. 
 
To calculate VaR for a portfolio based on N assets it is sufficient to use the approach 
presented above. In particular, considering two assets and assuming that the number 
of regimes is 2  for all three Markov chains we have: 
 

( ) ( )∫∑ ∑ ∑ ∞−
= = =

+++ +++
+ + +

=
),(

,,
1,0 1,0 1,0

,, ||,,
,,

, ,

ahVaR
tsss

s s s
thtjhtiht dyIyfIsssPa

htjhtiht
ht hti htj

 
 
where ( )tsss Iyf

htjhtiht
|

,, ,, +++
  is the probability density of the portfolio return y  

when the regimes are htjhtiht sss +++ ,, ,,  and conditional to the available information 

set tI . This distribution has mean ( )htjhtiht sss +++′ ,, ,,µw  and variance 
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( )ww htjhtiht sss +++Σ′ ,, ,,  where w  is the vector of the percentage of wealth 

invested in the two assets and ( )htjhtiht sss +++ ,, ,,µ  is the vector of risky asset mean 
returns, i.e. 
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The drawback of this approach is that it requires the estimation of a number of 
parameters that grows exponentially with the number of the assets. In fact, the number 
of possible regimes generated by this model is 2N+1. 
 
One possible solution is to consider the idiosyncratic risk distributed as ( )2,0 iIIN σ  
(without a specific Markov chain dependency) and to characterize the systematic risk 
with more than one source of risk. This approach is in line with the Arbitrage Pricing 
Theory model where the risky factors are characterized by switching regime 
processes. Formally, we can write this model as: 
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where jtF  is the value of factor j  at time t, ( ),..,2,1 Kj =  ( )jtij sβ  is the factor 

loading of the asset i  on factor j , jts , Kj ..,2,1= , are independent Markov chains, 
and jtε , Kj ..,2,1= , and jtε , Nj ..,2,1= , are independently distributed. 
 
This model is more parsimonious, in fact the introduction of an extra asset implies 
that only 2+K  parameters need to be estimated. This approach is valid when the 
number of assets in the portfolio is high and the specific risk is easily eliminated by 
diversification. 
 

8. CONCLUDING REMARKS 
 
We have tried to develop an introduction to the current literature on stochastic 
volatility models. Other than the classical log-normal model introduced by Taylor 
(1986), we have also presented the discrete volatility model in which the latent 
stochastic structure of the volatility is described by a Markov chain. 
 
Both models (with continuous and discrete volatility) fit in the framework of a non 
linear and non Gaussian state-space model, thus the estimation and smoothing 
problems are developed along the same lines. Only for the discrete case does the 
general algorithm introduced allow us to compute the likelihood function and then to 
obtain maximum likelihood estimates. In the continuous case, approximations or 
simulations must be introduced. 
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Some extensions and multivariate models are also presented, however there is still a 
great deal of work to be done. 
 
Finally, the estimation program presented considers the two basic models and allows 
an estimation of the latent volatility. Some possible applications are suggested and 
discussed. 

APPENDIX A: APPLICATION OF THE PENTANOMIAL MODEL 
 
The example considers a European call option on the FTSE100 index, with maturity 
June 2001 and strike price 5900 traded at LIFFE on 22nd August 2000. Three month  
Libor is used as an approximation of the free risk interest rate r . The FTSE100 index 
quoted 6584.82 and Libor was 6.22%.  
 
The FTSE100 index being a weighted average of the prices of 100 stocks, the 
dividend effect must be considered. In the example, this parameter is considered 
constant48 and equal to %3=q . The time to maturity in terms of trading days is 213 
and the step size is the single trading day ( 1=∆t ). 
 
Taking the estimated volatilities of section 7.1.1 ( =0σ̂ 0.0108036 and 

=1σ̂ 0.0234427), the parameters of the pentanomial model can be computed as 
follows:  
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Given 1u , 0u , 0d , 1d , the possible one step ahead values for the FTSE100 index can 
be calculated as follows: 
 

                                                 
48 During the period of analysis the dividend yield was nearly constant. For details, see 
http://www.londonstockexchange.com. 
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and the tree is recursively generated.  
 
The payoffs at maturity are calculated with the usual formula: 
 

( )0,max KSC TT −=  
 
and the values of the option in the previous periods are obtained operating backwards. 
In particular:  
 
� at time T-1, the conditional values of the option at the ith node, 

( ) ( )1,0 1111 == −−−− T
i
TT

i
T sCsC , are given by 
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Note that the nodes 1±  consider the option values obtained with 0u  and 0d , while 
the nodes 2±  consider 1u  and 1d . The calculation is repeated for all the nodes at 

time T-1 and we obtain two sets of conditional option values ( )011 =−− T
i
T sC , 

( )111 =−− T
i
T sC . 

 
� at time T-2,  
− for each node i, the values of the option are obtained conditional on the regime in 

T-1: 
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− using the estimated transition probabilities ( 00p̂ = 0.992889, 11p̂ =0.963762), they 

are then discounted considering the possibility that a switch occurs between time 
T-1 and T-2: 
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Again we obtain two sets of conditional option values ( )022 =−− T
i
T sC , 

( )122 =−− T
i
T sC . 

 
� This computation is iterated for T-3, T-4,…, t. 
 
At the evaluation time t, we obtain two conditional values ( ) ( )1,0 == tttt sCsC , 
which are respectively 1047.61 and 1093.54. Finally, the value of the option is 
calculated as a weighted average of these two values, where the weights depend on 
the knowledge on the current regime. If the regime is unknown, the estimated 

unconditional probabilities 
1100
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pp
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00
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ˆ1ˆ
pp

pp
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=  can be used.  

 
The pentanomial option value is therefore 1055.14 while the market value was 
1047.5. Another possibility, probably better from a methodological point of view as it 
uses all the available information, is to consider the filtered probabilities obtained as 

output of the estimation step, i.e. ( )t
t YsP 0= =0.98636043 and 

( )t
t YsP 1= =0,01363957. In that case, the pentanomial option value is 1048.24. 

 
As an exercise, readers may wish to replicate the following examples: 
1) European put option quoted on 23/10/2000, strike price: 7000, FTSE100: 6315.9, 
Libor: 6.1475%, days to maturity: 39, option price: 700. 
Results: Conditional option values: 756.15 and 679.89. Option value considering 
unconditional probabilities: 692.4. 
2) European put option quoted on 03/11/2000, strike price: 5500, FTSE100: 6385.44, 
Libor: 6.12625%, days to maturity: 160, option price: 117. 
Results: Conditional option values: 143.29 and 101.08. Option value considering 
unconditional probabilities: 108. 

APPENDIX B: APPLICATION TO VALUE AT RISK 
 
Consider a portfolio which perfectly replicates the composition of the FTSE100 
index. Given the estimated volatility of the stochastic volatility models, the VaR of 
this portfolio can be obtained following the procedure proposed in Barone-Adesi, 
Burgoin and Giannopoulos (1998).  
 
The historical portfolio returns are rescaled by the estimated volatility series to obtain 

the standardised residuals 
t

t
t

yu
σ

= , t=1,…,T (in our case T=898, see footnote 33).  

The historical simulation can be performed by bootstrapping the standardised returns 
to obtain the desired number of residuals Mju j ,...,1,* = , where M can be arbitrarily 
large. To calculate the next period returns, it is sufficient to multiply the simulated 
residuals by the forecasted volatility TT /1ˆ +σ :  
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TTjj uy /1
** ˆ += σ . 

 
The VaR for the next day, at the desired level of confidence h , is then calculated as 
the Mh th element of these returns sorted in ascending order. 
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