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Abstract

In a Montecarlo setting, generating data with a FIGARCH process, we
analyse the effects of a misspecification and data aggregation on Value-
at-Risk measures. The analysis is performed on a backtesting approach
comparing different GARCH-type models fitted on the simulated data.
The alternative VaR measures are compared with a groups of tests and loss
functions. We show that on daily data the generator is always preferred,
while on aggregated data the loss function approach prefer the RiskMetrics
model on daily data, while the tests choice is for a misspecified model on
high frequency data.

In the last few years there has been a huge increment in analysis concern-
ing Value-at-Risk (VaR), both from a theoretical point and from the empirical
approach, in particular dealing with: the best methods to compute the risk ex-
posure needed to satisy regulators requirements, the choice of the best model
for VaR computation, the evaluation of performances of different VaR models.
The literature is still growing and with this work we will add some extensions
showing how VaR is affected by model misspecification when variance follow
a long memory conditional heteroskedastic process. This is related with the
numerous findings of persistence in financial markets, coupled with the use of
high frequency data for VaR computation, see among other Christoffersen and
Diebold (2000) and Beltratti and Morana (1999). In many VaR papers the long
memory behavior of the series has not been taken yet into account; even if Bel-
tratti and Morana introduced a first empirical analysis, some problems arise,
as pointed out by Christoffersen and Diebold (2000): what does really mean
having a long range forecast with high frequency data? in other words is it cor-
rect estimating 1-day VaR (or more) using intra-day observations? Belatratti
and Morana (2000) solved that using the traditional

√
T−rule for computing

s-step-ahead variance forecasts, but ending with a choice of a GARCH process
for their foreign exchange data even if the observations showed a clear long
memory behavior. They motivated the choice by the closeness of the results
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obtained by the long and short memory models, preferring then the simplest
one, the GARCH. This is a particular effect, maybe due to the data used and is
not yet proved in a general context. Apart these considerations the square root
rule is not optimal as a scaling in a GARCH framework as Diebold et al. (1996)
showed. With this work we will shed some light in a couple of situations, in
the next section we will give a brief introduction on the Value-at-Risk, dealing
with the Basel accord of 1996, the evaluation schemes of regulators, and the
problems connected with the use of the VaR as a risk measure, in particular
referring to its coherence. In section 2 we will focus our attention to a specific
case, assuming that our world (that is our generators for the simulated return
series) follow a FIGARCH scheme. We present the forecasting equations for
GARCH and FIGARCH specifications, precisely the forecasting equations for
the mean square error of the mean predictor, when the residulas follow a condi-
tional heteroskedastic model, extending in such a way the results of Baillie and
Bollerslev (1992). In this part we will focus on point forecasts, not on density
forecasts, for such an extension, which is straightforward, refer again to Baillie
and Bollerslev (1992). In section 3 we will present a survey on the usual methods
applied by banks to evaluate VaR performances on their models, introducing a
new loss function that will show the discrepancy between the best choice for the
regulators and the best one for a bank, the regulator may push to the choice of a
misspecified model; in section 4 we will run a first montecarlo experiment with
GARCH(1,1) and FIGARCH data generating processes, estimating then, on
both DGP, GARCH, IGARCH and FIGARCH models. For all model specified,
even if uncorrectly, we will compute VaR for 1-day horizon, both assuming that
the simulated series is a daily series, and also a high frequency series, comparing
the different results, using backtesting procedures and the evaluation techniques
of section 2. In section 5 we will investigate the effects of aggregation on quasi
maximum likelihood estimators with a FIGARCH generator for high frequency
data, and then test the ability of a forecast made with higher frequency data,
comparing it to the ones obtained from daily data. In section 6 we will conclude.

1 The Value-at-Risk as a risk measure: a coher-
ent need?

The use of risk measures to determine the market risk implicit in any portfolio,
investment or financial instrument is a need for all banks, investors and any firms
that operate with in financial markets. This need is particularly important for
banks acting on both sides of the money market, investing with their funds
and collecting savings, all banks have to fulfill requiremts that are there to
prevent q default that will be particularly burdensome for the collectivity. In
this view most of the banks started in the last decades, given the increased
sofistication in the financial markets, to measure the risk of their positions and
balance sheets (the whole bank can be viewed as a portfolio of credits and
debts, including by this way direct investments and other credit positions) with
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adequate and therefore complicated instruments. This lead to the diffusion of
many ”internal” models whose ultimate purpose was the same: monitoring the
risk and the losses of all positions. In this situation the Basle Commitee on
Banking Supervision, gave a regulated framework, with minimal requirements
in term of model choice, to measure and compare the ability of internal models
in meeting some very basilar qualifications, giving also an alternative valuation
method, that is the ”standardised approach”. These were included in the accord
of 1996, the well known, Amendement to the Capital accord to incorporate
market risk (MRA). With this document the Basle Committee, stated the formal
rules that an internal model for market risk should meet, how to compute the
exposure to this kind of risk, how to define the minimal capital requirements
needed to cover this risk. The MRA require that each bank communicate daily
the market exposure determined with any internal model or the standardized
approach to the national regulator, this exposure has to be determined with a
99% one tail probability and with an holding period of 10 days. The measure of
risk should represent the maximum loss with the 99% probability in the holding
period. This is just the definition of the Value-at-Risk. Given these measures
the regulator will verify if the internal model meet a minimal requirement: in
the past year does this model gave a 1% of failures or more? The verification
is conducted with a techniques described in the MRA accord, the backtesting
approach, that is the regulator verify the performances of the internal model in
the last 250 days, and simply counts the exceptions, how many time the internal
model fails. Given this number of exceptions the regulator classify the internal
model with a grid in the exceptions (0-4, 5-9, more then 9) matched with a
colour (green, yellow and red!). The classification allow the regulator to impose
some penalty, this because the MRA compute the correct VaR as the maximum
between today’s VaR and the average of last 60 VaR measures, multiplied by a
scaling factor that depend on the classification.
This methodolgy however may be inefficient for banks, as may lead to the

application of a model that fulfill the requirements of the Basel accord but
translate in a bigger cost: the minimal capital requirement can be viewed as
an immobilization of resources, of liquidity, and given the operativity of the
banks this represent an opportunity cost of investing resources. This point will
be discussed in the next section, here we want to stress that the VaR is now
used to determine market risk exposure because is the methodology required
by the Basle Committee, the one used by the regulators to verify the minimal
capital requirements, however its characteristics are such that it is a ”coherent”
risk measure in limited cases. Let us clarify this point: the coherency of a
risk measure was the object of a recent paper of .Artzner, Delbaen, Eber and
Heath (1998). In that paper they considered market risks and presented a group
of properties that a risk measure should fulfill. In this framework they called
”coherent” a risk measure that satisfy all these axioms. Let us summarize the
first part of the Artzer et al. (1998) work:
given Ω a set of all possible states of nature, X a random variable in this set,

G the set of all possible risks, A the set of acceptable risks (for the regulators)
and assuming that the acceptable risks include all strictly positive risks in G
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and exclude all strictly negative risks, they state that a risk measure is just a
mapping from G to R; given a reference instrument with rate of return r the
risk measure is defined as

ρA,r (X) = inf {m|m · r +X ∈ A}
In this framework four axioms are defined (omitting subscripts)

Axiom 1 Translation invariance: for all X ∈ G and for all real α ρ (X + α · r) =
ρ (X)− α

Axiom 2 Positive homogeneity: for all X ∈ G and for all λ ≥ 0 ρ (λX) =
λρ (X)

Axiom 3 Monotonicity: for all X,Y ∈ G with X ≤ Y ρ (X) ≥ ρ (Y )

Axiom 4 Subadditivity: for all X,Y ∈ G ρ (X + Y ) ≤ ρ (X) + ρ (Y )

and as an outcome

Definition 5 A risk measure that satisfy all the previous axioms is defined
coherent

Given this definition Artzner et al. (1998) show then that the Value-at-
Risk does not fulfill the subadditivity axiom and therefore is a non-coherent
risk measure, however in the particular case of normal and in general elliptical
distributions this characteristic is recovered, see Embrechts et al. (1999) for a
formal proof. Recently Cicchitelli (2002) allow anyway the application of VaR
methodology even if distributions are non elliptical provided we are determining
the VaR of a portfolio with an adequate number of components (read assets or
instruments). In the following we will assume that the return of the hypothetical
instrument we are analysing are extracted from a normal distribution, this to
ensure the existence of the FIGARCH as well as its stationarity, this allow us to
consider VaR as a coherent measure of risk. Therefore we restrict our attention
to a special case: standardized returns follow a standardised normal distribution
and volatility follow a FIGARCH structure. This because we are interested in
analysing performances of Value-at-Risk in presence of long memory.

2 Prediction mean square errors with FIGARCH
In this section we will follow the approach of Baillie and Bollerslev (1992) who
were considering prediction with dynamic models and conditional heteroskedas-
ticity. Assume that the series object of our study follow a generic process in the
mean

yt = µt + εt
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and that the residuals are such that εt|It−1 ∼ iid
¡
0,σ2t

¢
, where with It−1

we identify the information set up to time t-1. Assuming that the mean term
is always zero, we are in the framework of a GARCH-type process, where the
forecast for the mean process is always zero and the MSE depend on the s-step
ahead prediction for the variance. The last will also depend nontrivially on the
information set, an extensive discussion and numerous expression can be found
in the above cited paper. For the simple GARCH(1,1) the s-step ahead predictor
for the variance (the MSE of the s-step ahead predictior for the mean) is:

E
£
ε2t+s|It−1

¤
= E

£
σ2t+s|It−1

¤
= ω

s−1X
i=1

(α1 + β1)
i
+ (α1 + β1)

s−1
σ2t+1 (1)

If the DGP is a FIGARCH process the predictor depend nontrivially on all
past values, and an expression like the previous one cannot be derived given the
dependence on infinite past. The volatility structure induced by a FIGARCH
can be defined as follows:

σ2t = ω + β (L)σ2t +
h
1− β (L)− Φ (L) (1− L)d

i
ε2t

where β (L) =
Pp
j=1 βjL

j , Φ (L) =
Pm

j=0 φjL
j and (1− L)d is the fractional

integration component. In our analysis we will use the following representation,
which is derived after some boring algebra (see Appendix):

E
£
σ2t+s|It−1

¤
= θsω +

∞X
i=0

ψi+1ε
2
t−i (2)

ψk =
sX
i=1

φiλk+s−i φ1 = 1 φi =
i−1X
j=1

λjφi−j θs =
sX
i=1

φi

One question on the worthness of the previuos formula arise: why not using
a recursion based on

E
£
σ2t+s|It−1

¤
= θsω +

∞X
i=0

λi+1E
£
ε2t+s−i|It−1

¤
(3)

E
£
ε2t+i|It−1

¤
= ε2t+i if s ≤ 0

E
£
ε2t+i|It−1

¤
= E

£
σ2t+i|It−1

¤
if s > 0

The main reasons is only based on computational advantages and rounding
error that, implementing procedures with any software, arises: in every point
or density forecast of the conditional variance we use the past value of the
observed series or residuals, given the infinite past dependence of any conditional
variances with the simple recursion formula we induce a greater rounding error
than the one induced by aggregating coefficients. By our formula we just induce
one rounding error not the sum of s rounding errors.
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3 Comparing Value-at-Risk estimates
The main task of risk management is the evaluation of market risk implicit
in the positions (on financial instruments or portfolios) helded. This risk is
mainly measured by the Value-at-Risk, the maximum amount of loss we can
incur in a given time interval and at a specific level of confidence. The exposure
measured by the VaR depend crucially on the underlying model employed for
the return series of thefinancial instrument of interest. A group of questions
arise: how can we judge if the underlying model is correct? how should the
Value-at-Risk perform under different approaches? What are the consequences
of a misspecification? In this section we will try to give an answer to some
of these question in a particular case: we assume the the true data generating
process (DGP) follow a FIGARCH in the variance, and we will compare via
tests and other approaches the true DGP with a gruop of misspecified models.
The main works in this field are the ones of Kupiec (1995), Christoffersen (1998)
and Lopez (1998) who proposed, respectively, a statistical based procedure and
a loss function approach to test if the VaR estimates are correct and consistent
with the data.
The reliability of VaR measures depend on the correct specification of the

underlying models, this is necessary in providing an accurate measure of risk
exposure. Considering the computation of Value-at-Risk using instruments (or
portfolio) returns,indexing VaR estimates with time t, and model index m,
assuming that the return follow a possibly time-dependent distribution ft, the
Value-at-Risk computed conditional on the information set on time t, for k-
steps-ahead, is the α-quantile of the forecasted distribution f given for the
model m. VaRm,t (α, k) is the solution of the following equationZ V aRm,t(α,k)

−∞
fm,t+k (x) dx = α (4)

Two different approaches are actually available to evaluate the VaR esti-
mates: statistical based procedures, and loss functions approaches. To the first
group belong the Proportion Failure test (or Unconditional coverage test), the
Time Until First Failure test of Kupiec (1995) and the Conditional coverage
test of Christoffersen (1998) and Lopez (1998). To the second group belong the
approach of Lopez (1998). The main difference bewteen the two is that with
statistical procedure, inference analysis is available. The tests of Kupiec and
Christoffersen are based on likelihood ratios, and on the assumption that VaR
should exhibit a conditional or unconditional coverage equal to α.
The Unconditional Coverage test (UC) of Kupiec is based precisely on the

first assumption: if VaR estimates are accurate, the exceptions x (the number
of times return underperform VaR measures) can be modeled with a binomial
distribution with probability of occurrence equal to α. In this case, comparing
the required unconditional coverage α (usually set to 0.05 or 0.01), with the
measured coverage bα = x/T , is possible to derive a likelihood ratio test under
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the null hypothesis α = bα
LRUC = 2

h
ln
³bαx ³1− bαT−x´´− ln ¡αx ¡1− αT−x

¢¢i
(5)

Under the null huypothesis LRuc is distributed as a χ2 (1). The UC test is also
the statistica transposition of the procedure used by the regulator authority in
judging if the internal model is accurate. As pointed out by Lopez (1998) this
method does not show any power in distinguishing among different, but close,
alternatives.
This test, as pointed out by Christoffersen (1998), consider only exceptions

over the sample size, however in presence of conditional heteroskedasticity, also
the conditional coverage is important. Ignoring this issue, the volatility dynam-
ics, we could have forecasts (VaR estimates with a GARCH-type model, include
the forecast of the conditional variance as we will see) with correct unconditional
coverage and uncorrect conditional coverage,in this cases UC test is of limited
accuracy. Lopez adapted the general approach of Christoffersen formulating the
following Conditional Coverage (CC) test. First a dummy variable is setted to
identify exceptions

Dm,t+1 =

½
1 if εt+1 < V aRm,t+1
0 if εt+1 ≥ V aRm,t+1

Under the null hypothesis that the VaR present correct conditional and
unconditional coverage, this indicator variable should be independent. Thus the
CC test is computed as the sum of the UC test and of a test of independence
on Dm,t+1, against a first-order Markoc process. The independence test is
constructed as follow: with Ti,j we identify the number of observations in the
sample T in state j after having been in state i, under the Markov process the
likelihood function is

LM = (1− π0,1)
T0,0 π

T0,1
0,1 (1− π1,1)

T1,0 π
T1,1
1,1 (6)

where π0,1 = T0,1/ (T0,0 + T0,1) and π1,1 = T1,1/ (T1,0 + T1,1). Under serial
independence the likelihood function is

LI = (1− π)T0,0+T1,0 πT0,1+T1,1 (7)

where π = (T0,1 + T1,1) /T . The test statistic is then

LRCC = LUC + 2 [ln (LM )− ln (LI)] (8)

and is distributed as a χ2 (2) under the null hypothesis of correct coverage
(undel the null hypothesis of independence the dependence test is a likelihood
ratio test, whose limiting distribution is a χ2 (1)).
We turn now to another approach, the one of loss functions. The main work

in this area is the one of Lopez, based on computing a loss function distinguish-
ing between exception and not-exception. In the general form he propose the
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following formula

Cm,t+1 =

½
f (εt+1, V aRm,t+1) if εt+1 < V aRm,t+1
g (εt+1, V aRm,t+1) if εt+1 ≥ V aRm,t+1 (9)

where f (x, y) and g (x, y) are such that f (x, y) ≥ g (x, y). In this formulation
higher values of the functions are associated with exceptions, thus summing
Cm,t+1 over the backtesting sample used by regulators we obtain

Cm =
TX
i=1

Cm,t+i (10)

and the best model is the one that minimise 10. The choice of the correct model
can be done referring to a benchmark, once the functions heve been specified.
Lopez proposed different functions: one derived from the dummy for exception,
another using weight as for the regulator choices, and then the following, that
take into account the exception and the discrepancy between the realization and
the VaR forecasted measure.

Cm,t+1 =

½
1 + (εt+1 − V aRm,t+1)2 if εt+1 < V aRm,t+1
0 if εt+1 ≥ V aRm,t+1 (11)

This function was suggested in order to take into account not only the risk
but also the amount of the possible default in the position. This function was
built mainly for regulatory purposes, helping the regulator in the evaluation
of bank internal models. But there is an open point, with this function we
may be tempted to reject a model only because, at parity of exceptions, it
realize an higher loss function. In this case we may reject a correct model, a
correctly specified and identified model for the series of returns, choosing an
incorrect model. This may, up to some extent, observed in the work of Beltratti
and Morana (2000) on FX data, when they end choosing a Garch process for
computing VaR even if the data show a clear long memory proporty, because
the number of exceptions of the Figarch was lower, too conservative (this is a
loss function based on the dummy). This can be clarified with an example:
assume that two different models are fitted to a real series, a GRACH(1,1) and
an IGARCH(1,1); the forecast from both models differ only in the wideness
of 1-sted-ahead prediction intervals for the mean, the one of the IGARCH is
bigger; moreover assume that both models present exactly the same number
of exceptions, then using the loss function suggested by Lopez we will choose
the IGARCH model because its bands are wider and therefore the loss function
is lower (the difference between VaR and the realisation in the market is lower
given that bands are wider); this will be translated in an higher cost for the bank,
they will have to fulfill higher capital margin to stick to the IGARCH bands,
even if the exceptions of the two models are the same. To solve this point we
suggest using different loss functions, dealing not only with the failure of the
VaR measures but also taking into account the distance between the different
forecasts and the past realisations. We suggest to check that the model fulfill
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the quantile requirements and also have to be stick to the realisation of the
underlying process. We propose three different distance measures, adopting the
same terminology of Lopez:

1f (εt+1,V aRm,t+1) =

¯̄̄̄
εt

V aRm,t+1

¯̄̄̄
(12)

2f (εt+1,V aRm,t+1) =
(εt − V aRm,t+1)2
|V aRm,t+1|

3f (εt+1,V aRm,t+1) = |εt − V aRm,t+1|
In all three cases the best choice is the model that minimize the loss function.
Taking these as they are we can incurr in the same problems as using the loss
functions of Lopez: we may be not able to correctly choose the right model,
preferring a solution with narrower bands. For this reason we suggest also to
apply these loss functions not only to the exceptions but to the whole sample:

1f (εt+1,V aRm,t+1) =
1 g (εt+1,V aRm,t+1) (13)

2f (εt+1,V aRm,t+1) =
2 g (εt+1,V aRm,t+1)

3f (εt+1,V aRm,t+1) =
3 g (εt+1,V aRm,t+1)

The three functions suggested consider different approaches to testing the dis-
crepancy between the identified model and the realisations: the first one consider
the ratio between one step VaR and the realisation, the second is the squared
error realised with the VaR, divided by the VaR itself to be standardised to the
same quantity of the first function, to be able to build a fourth criteria addig
the 2 measures, just a kind of first and second order loss; the third function take
into consideration only the difference between VaR measure and the realisation.
The effect of such different approaches will be presented in the following chap-
ter with a limited Montecarlo experiment (we deal with FIGARCH DGP, an
extensive Montecarlo dealing with different generators will be object of future
reseaches).
With these functions we can apply at a first stage the usual analysis of Kupiec

and Christoffersen and then use the loss function approach to compare the cost
of different admissible choices. Clearly from a regulatory point of view this
choice may not be worthwile because regulators objective is to reduce the risk
of default in case of extreme events, position represented by the loss function of
Lopez, but the function we propose represent the best choice for bank purposes,
choosing model that fulfill regulatory requirements (compare with the Basel
agreement...) and allow for a lower cost. Considering the system in a whole
these functions may help in choosing a model that is closer to the data, just
choose the ”true” model, leaving aside only real extreme events, that, if the
model is really the true, and will be used by all economic agents in the economy
(or all financial intermediaries, read banks) will hit all of them, really an extreme
event. With this choice we ensure both conditional and unconditional coverage,
instead of choices of misspecified models that may lead to uncorrect conditional
coverage.
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3.1 A GMM-based testing approach

Recently Christoffersen, Hahn and Inoue (2001) introduced a new approach in
the evaluation of Value-at-risk measures. In a general approach we can define
the VaR via a quantile regression:

V aRm,t (α,β) = β1,m (α) + β2,m (α)σt,m (14)

where the conditional volatility depend on the model we are using and param-
eters depend both on the model and on the significance level (coverage proba-
bility). Then we can state the following

Definition 6 (CHI 2001 definition 1) The VaR is efficient with respect to the
information set Ψt−1 when

E
£
I (εt < V aRm,t (α))− p|Ψt−1

¤
= 0

where I(.) is the indicator function

Using then this efficient condition we can test if VaR measure satisfy it,
but also by this way we can compare different VaR even if misspecified. The
methodology of the analysis require conditioning on some information set, and
the choice among different models. The first point is achieved considering as
the information set at time t, as the measure of volatility in time t-1 obtained
with the different models we are comparing and wih a constant

E [(I (εt < V aRm,t (α,β))− p)× k (1,σt−1,m1,σt−1,m2,σt−1,m3...)] = 0 = E [f (εt,β)]
(15)

Specification testing is achieved using the test suggested by Kitamura and
Stutzer (1997), the information theoretic alternative to a general method of
moments (GMM) based test. Define the following quantity

MT (β, γ) =
1

T

TX
i=1

exp (γ0f (εt,β))

and maximizing over the two parameter sets

M̂T

³
β̂T , γ̂T

´
= max

β
min
γ

1

T

TX
i=1

exp (γ0f (εt,β))

then the Kitamura Stutzer test has the following equation

κT = −2T log
³
M̂T

´
→ χ2 (r − k) (16)

where r are the number of conditioning information variables (constant in-
cluded) and k are the estimated parameters (β) in the quantile regression. The
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null hypothesis of this test is that the VaR measure satisfy the efficiency con-
dition, therefore accepting the null will mean that the VaR model is correctly
specified. In this approach we have, however, a challenge: the funtion f (εt,β)
is non-differentiable due to the presence of the indicator function. This prob-
lem will cause the traditional optimization techniques to burn down, requiring
simulation based methods to estimate parameters or to employ generalised algo-
rithm such as the simplex method or simulated annealing. This problem can be
easily avoided in our case: considering that we focus on GARCH-type models,
the VaR measure depend only on the evaluated conditional variance and on the
coverage probability

V aRm,t (α,β) = Φ
−1 (α)σt,m (17)

using the cumulative standard normal inverse and excluding the effect of a
constant. By this way we exclude the optimization over the parameters in
the quantile regression and the traditional optimization routines can be used
without problems.
Christoffersen et al. (2001) introduced another testing approach that allow

to compare directly two different VaR measures. This test is based on the dif-
ference between two KLIC distances. If we consider two different VaR measures
m1 and m2, and we define the KLIC respectively as

M̂T,m1

³
β̂T , γ̂T

´
and M̂T,m2

³
β̂T , γ̂T

´
CHI generalising a result of Kitamura (1997) state the following:

Theorem 7 (CHI theorem 1) Let

Mm1,T (β
∗
1, γ
∗
1) = max

β1
min
γ1
Mm1,T (β1, γ1)

Mm2,T (β
∗
2, γ
∗
2) = max

β2
min
γ2
Mm2,T (β2, γ2)

Under the null that Mm1 (β
∗
1, γ
∗
1) =Mm2 (β

∗
2, γ
∗
2) we have

√
T
³
M̂T,m1

³
β̂T , γ̂T

´
− M̂T,m2

³
β̂T , γ̂T

´´
→ N

¡
0,σ2∞

¢
where σ2∞ = limT→∞ V ar

³
1√
T

PT
t=1 (exp (γ

∗0
1 f (εt,β

∗
1))− exp (γ∗02 f (εt,β∗2)))

´
and the T subscript denote quantities computed with T observations instead of
the infinite past.
Proof. See the appendix for a revised proof of this theorem and the applica-

tion to GARCH-type models

In this case the rejection of the null hypothesis will imply that the two
measures do not match equally well the efficiency condition in favour of the
model 2. When the null is accepted a positive measure imply the preference of
model 1, a negative result the preference of model 2.
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4 VaR and Long memory GARCH
In analyzing the performances of tests and loss functions in identifying and
choosing the best model for VaR computation we run a Montecarlo experiment:
we deal with a group of simulating DGP, eight FIGARCH with differents or-
ders and parameter values and a GARCH(1,1) used as a comparative test for
evaluating the ability of tests and measures on Value-at-Risk. The DGP are
described in the following table.

DGP µ ω d β φ
FIGARCH(1,d,1) 0 0.01 0.8 0.5 0.3
FIGARCH(1,d,1) 0 0.01 0.8 0.5 0.05
FIGARCH(1,d,0) 0 0.01 0.8 0.5 0
FIGARCH(0,d,0) 0 0.01 0.8 0 0
FIGARCH(1,d,1) 0 0.01 0.1 0.4 0.5
FIGARCH(1,d,1) 0 0.01 0.4 0.3 0.2
FIGARCH(1,d,0) 0 0.01 0.4 0.3 0
FIGARCH(0,d,0) 0 0.01 0.4 0 0
GARCH(1,1) 0 0.01 0 0.65 0.3 (α)

In this experiment we act as the simulated series were daily series, simulat-
ing 2250 observations, using the first 2000 to estimate the model and the last
250 to assess the validity of Value at risk measures in a backtesting approach.
On all simulated series we estimate 4 different models: the true DGP (on the
identification problem see the first part of this dissertation), a GARCH(1,1), an
IGARCH(1,1) and an exponentially weighted moving average (EWMA, the well
known RiskMetrics model), with smoothing parameter set to 0.97. Given the
parameter and variance estimates, we use these to compute VaR and then we
test the correctness of these risk measures. We use the tests and loss functions
described in the previuos section. For all DGP we ran 1000 replications. The re-
sults are summarized in tables from (2) to (71). Tables are grouped with respect
to the DGP and contain in the order (inside each group): the average number
of exceptions across the 1000 replications, for each of the four fitted models, the
standard deviation and the average percentage of exceptions; the frequency of
less exception, that is, we count how many times each model is the one that give
a lower number of exceptions, note that the cumulate frequency can be above
one since different models can lead to the same number of exceptions; the fre-
quency of accepting the null hypothesis for the test of Unconditional Coverage
(UC), Independence (I) and Conditional Coverage (CC); the frequency of model
selection using Lopez loss function, that is we count how many time each model
minimize the loss function; the frequency of model selection with the alternative
loss functions previously suggested, and their combinations, computed only on
exceptions (E) or on the full sample (T); the results of the model comparison
test of Christoffersen et al. (2000), we consider 4 different VaR p-level (1%,
5%, 10% and 25% to compare results with the cited paper), and we report the
frequencies of having a significant test statistics and the frequency of choice of
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the first or of the second model, all at confidence levels of 1%, 5% and 10%;
finally the results of the model specification test of Christoffersen et al. (2000),
again computed at the previuos 4 VaR p-values and confidence levels. The
tests developed by Christoffersen et al. (2000) presume a comparison of non-
nested models; as we verified in the first part of this dissertation FIGARCH
and GARCH (or IGARCH) most of the time are non-nested models, this let us
compute the tests and perform the analysis. However GARCH, IGARCH and
EWMA are nested models, therefore we expect significant results comparing
long and short memory models, while we will have to take with care results
among short memory specification. All tables are listed in the Annex. The
following conclusions arise from the Montecarlo study:

Average exceptions and MRA. In most of the cases (excluding only the FI-
GARCH(0,d,0) with d=0.8) at 1% Value-at-Risk p-level, the RiskMetrics
model is too conservative, leading to an average number (and percent-
age) of exceptions strictly below 2.5 (correspondent to 1%). This effect
is, even if with less evident, present also at 5% level and is influenced
by the memory property of the generator: with higher memory (lower
d) the RiskMetrics is much more conservative. This is probably due to
the different structure of the two processes: in the FIGARCH case a big-
ger weight is given to past innovations, so there is a greater sensitivity
to market movements, this imply a variance forecast with abrupt changes
without signals of convergence of variances to an unconditional level, while
in the RiskMetrics, a particular IGARCH model, the parameter configu-
ration give much more importance to movement in the variances (the β
parameter is 0.97) leading to gradual movement and slower convergence
to unconditional variance level. This effect remain also in GARCH and
IGARCH specifications, since no constraints are imposed (apart the one
for positivity of variances) on the parameters, and this lead to an esti-
mated β much smaller than 0.9. Comparing then FIGARCH, GARCH
and IGARCH results we can see that they are very close showing that a
misspecified model, can be good enough for MRA requirements, however
we must precise that the forecasts obtained with misspecified models lead
to uncorrect conditional coverage. In all cases, on average, all models
strongly satisfy the requirements of the amendement to Basle accord for
market risks, leading to Green zone positioning (exceptions lower than 5).
Considering now the frequencies of model selection in particular just the
number of exceptions, the best choice is most of the time the EWMA, but
this result is strictly related to the fact that this is the most conservative
of the models, and is therefore of limited significance. As an example we
reported in graphs from 1 to 8 (in the appendix) two experiments, showing
two very different paths that can be generated by a long memory structure.
In the graphs (1), (2), (5) and (6) are reported the simulated series and the
simulated conditional variances, while in graphs (3) and (7) we show the
estimated conditional variances in the backtesting period (or part of it).
Finally in graphs (4) and (8) we report the Value-at-Risk bound computed
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on the two series with the true model and the RiskMetrics, evidencing the
exceptions.

Tests of Conditional and Unconditional Coverage. As in the previuos
work of Lopez (1999), we find that these test show no power in distinguish-
ing among different models. All null hypothesis of correct unconditional or
conditional coverage and of independence among exception are accepted
with a percentage ranging from 75% to 100% at the 1% level of the test
and for both 1% and 5% VaR. Results do not depend on parameter values.
For the test at 5% significance level the null hypothesis is rejected with
higer probability, especially for the Independence test, however this is true
for all the 4 models, again we cannot infer on the best solution for our
purposes.

Loss functions. We can observe that the Lopez loss function, given its for-
mulation, depend crucially on the number of exceptions, this influence its
value and therefore the model selection frequencies based on it. In all
cases considered (again apart the FIGARCH(0,d,0) with d set to 0.8) the
Lopez approach lead to the choice of the RiskMetrics as the best model
for Value-at-Risk computation. This in the sense that the best model is
the one that minimize the cost of an exception, is a choice based on the
risk of default, a choice driven by regulators objectives. However this does
not imply that the best model is the true generator or the one that min-
imize the cost for a private bank: as we can observe from figure (4) and
(8) the EWMA has a smaller number of exceptions, sice its VaR bands
are much widers compared to the bands of the true generator, this can
be interpreted as an higher cost for the bank, in fact the VaR level rep-
resent a minimal capital requirement that banks must hold on to cover
market risks. Immobilizing this capital translate to an opportunit cost
of liquidity resources, and reduce the operativity for the bank. A VaR
based on the true generator meet the Basle MRA requirements and give a
correct conditional coverage for market risks, with narrower VaR bands.
In spite of that none of the loss functions lead to a correct choice of the
generator as the best model. All the functions considered, if applied only
on the exceptions, select most of the times the EWMA, with percentange
ranging fro 40% to 60%, second best choice switch between GARCH and
IGARCH, in none of the cases the FIGARCH is chosen. Considering the
whole sample the FIGARCH does not appear as the best model, even if
its frequencies of selections increase. In this case the best choice switch
between GARCH and EWMA, leading again a possible choice of a mis-
specified model. Now this solution can be considered on a different point
of view: should we prefer a model that minimize the number of excep-
tions but impose a greter opportunitity cost, or will be better a choice
of a model that is closer to the true generator, satisfy in the meantime
regulators requirements and allow for narrower VaR bands? The answer
depend on the subject whom is posed: a regulator will surely prefer the
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first solution, while private banks will chose the second one. A consider-
ation on the GARCH generator case: the model is correctly chosen with
our alternative loss functions, but only if we consider the whole sample, if
not IGARCH or EWMA are preferred.

Model comparison test. Now choices change. A first group of observation
on the tables: the test is labelled as ”not significant” when the two models
equally well match the efficient moment condition, therefor the label ”sig-
nificant” is given to the rejection of the null hypothesis; we can observe
that the null is accepted with high percentage when we compare very close
models, that is the case of GARCH and IGARCH, when the GARCH pa-
rameters are close to the constraint α+β < 1; the frequencies of selection
of the first or of the second model are computed as percentages on the
”significant” tests, they always sum to one, moreover I can always choose
between the two models, provided I rejected the null, depending on the
sign of the test statistics. All tables show a similar behaviuor, the EWMA
model is never preferred to the DGP with a percentage greater than 40%,
and most of the time this is true also for GARCH and IGARCH. This can
be interpreted as a result of our observations on the correct conditional
coverage given by the true generator, a condition that is extracted form
the information set (here this is represente by the forects obtained with
the four models in the past) by the estimation procedure. Moreover the
true FIGARCH generator is preferred also to the GARCH and IGARCH
with frequencies always above 50% in all cases considered.

Model specification test. In this case the test show dependence on the
VaR p-level, leading to very poor results, none of the model are correctly
specifed for the simulated series, for the 1% case, while for the remaining
the percentage of accepting the null (the model is correctly specified) in-
crease with p, with a jump from 1% to 5%. This may be due to the very
limited number of exceptions in the 1% case, not sufficient to extract an
indication on the ability of the model in matching the efficient moment
condition. This result will probably change extending the backtesting pe-
riod, however we will not pursue this point since we focus on the selection
process of a model that should be analysed by a regulator who use 250
period for backtesting (see MRA).

We conclude this section with a word of advise on the results we obtained
compared to the ones of Christoffersen et al. (2001): we developed this Mon-
tecarlo on a backtesting approach, to verify the power of the VaR specification
test and VaR comparison test in the framework used by regulators following
the MRA, that is on 250 observations. In this setup the number of exception
is very limited and the size and power of the two test is affected: the tests are
built on an efficiency condition that depend on an indicator function selecting
exceptions, lower the number of exceptions lower will be the number of signif-
icant points used in (15 )and in the tests. Moreover we want to stress that
once the number of exceptions are the same in two or more models, the VaR
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specification test will lead to the very same result and the VaR comparison test
will show clustered results including one or more groups of zeros. We tried, in
a limited Montecarlo, to compute tests on the whole sample, results seem not
to differ from the ones here presented, however an additional analysis in this
direction will be necessary and left for future researches, but we stress that it
must be developed as a suggestion for an alternative framework that will allow
regulators to test the reliability of internal models, otherwise, with the current
MRA, the results of this work apply.

5 VaR, FIGARCH and aggregation
A point rised up by the Beltratti and Morana (2000) paper was the following:
using high frequency data could we get better estimates of our 1-day VaR? Their
conclusion was that the simple GARCH(1,1), on high frequency data, will do
the task even if there is an evident long memory in the data. We examine this
relation in detail with a limited Montecarlo study dealing with a group of ques-
tions. We generate data as they were hourly returns and then aggregate them
in order to obtain daily returns, assuming that a normal open market day last
for eight hours. The data are generated with normal distributed standardized
residuals, to ensure stationarity. On the aggregated data we are at first inter-
ested in assessing if there are changes in parameter estimates, specially on the
memory behaviour, therefore we examine this point computing kernel density
estimates of the parameters of interes and a calculating group of information
criteria on different models, a GARCH(1,1), an IGARCH(1,1) and three FI-
GARCH(p,d,m) with p=m=0, p=1 and m=0 and p=m=1, that will be used to
identify the preferred model. By this methods, given the results of chapter 1,
we will asses if the aggregation process change the structure of the series into
an integrated GARCH, a short memory model or if the long memory behaviour
is robust against the aggregation.
All experiments consist of 1000 replications with time series of 18000 non

aggregated observations. We considered five different DGP with the following
parameters combinations: d = 0.8, β = 0.5, ψ = 0; d = 0.8, β = 0.5, ψ = 0.05;
d = 0.8, β = 0.5, ψ = 0.3; d = 0.4, β = 0.3, ψ = 0; d = 0.4, β = 0.3,
ψ = 0.2. The identification analysis is limited to the first 2000 aggregated data
(16000 non aggregated points) leaving the last 250 (2000 non aggregated) for
a VaR backtesting evaluation. We consider this as a limited Montecarlo since
we do not take into consideration the consistence of model selection based on
information cirteria and we restrict our attention to a limited range of models
and parameter combinations. This choice strictly depend on CPU time needed
to run a full experiment: to simulate 18000 observations (plus 2000 points added
to avoid dependance from initial values), run the identification tests and then
the VaR evaluation, we need between 6 and 15 days, depending on DGP and
”external” events (blackouts, computer failures etc.). In all cases on aggregated
data we estimated the following models: FIGARCH(1,d,1), FIGARCH(1,d,0),

16



FIGARCH(0,d,0), GARCH(1,1) and IGARCH(1,1). In the tables and graphs
included in Annex 3 we report the frequency of model selection based on the
information criteria of Akaike (AIC), Hannan-Quinn (HQ), Schwarz (BIC) and
Shibata (SH), together with the frequency of accepting the null hypothesis of
the following tests: Box-Pierce for residuals autocorrelation, computed also for
squared residuals; Engle, lagrange multiplier for residuals ARCH effects; Jarque-
Bera normality test for residuals. For all the different DGP we report also the
estimated parameters and standard errors, together with a kernel density of the
distribution of the quasi maximum likelihood estimator. The tables and graphs
used on which the following observations are based can be found in the Annex
2. We can summarize our results as follows:

• A first consideration on the memory parameter estimates: in general we
can observe that the aggregation does not change the Montecarlo aver-
age of the long memory coefficient, d. This result is much stronger for
the expreriments conducted with d setted equal to 0.8, rather than in the
case where it assume the value 0.4. Compare as an eample table 68 with
table 72, the discrepance between the non-aggregated true value and the
Montecarlo average is less than 0.01 in the first while it is close to 0.1
in the second. Even with this evidence we are not sure that this can be
interpreted as a true effect of aggregation. The picture can be clarified
analysing also the Montecarlo standard deviation, and comparing it with
the one obtained on non-aggregated estimates: we can observe that it
heavily increase for d=0.8 while the change for 0.4 is less evident. This
may be much more evident comparing the kernel density estimates of this
section (in the Annex 2) with the one on the first chapter. From these
observation we extrapolate the following picture: we believe that the effect
of aggregation depend on the memory parameter level, we can therefore
distinguish between series with high memory (d=0.4) and intermediate
memory (d=0.8): in the first case aggregation matter, memory properties
increase (the distribution of the estimator has a stable variance across
aggregated and non aggregated data), while in the second case the aggre-
gation does not affect the memory structure but lead to an increase in
variation among parameter estimates.

• Consider now the estimates of the other FIGARCH parameters: these are
much more affected from the aggregation process, as if this will change
the short-memory structure of the underlying process. Here we must note
that kernel densityes evidence a problem in the consistence and in the
biasedness of the QML estimator for the FIGARCH(1,d,1). This might
be coupled with the algorithm convergence problem evidenced in the first
chapter, and can be interpreted as an effect of the aggregation, valid for
all the cases considered even if in the series with intermediate memory this
is much more evident. We believe that in these processes the aggregation
process push the model to the critic region for the optimization process,
therefore small variations can be sufficients to obtain different otptima
from similar non-aggregated series.
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• As we can expect the aggregation process highly affect the constant in
the variance that highly increase, while the constant in the mean is not
affected. This last effect is due to the fact that it was fixed to zero, with
a different value the aggregation will affect it.

• Finally observe the parameters of the GARCH and IGARCH: in these case
with the high memory processes the two models appear to be different, the
sum of the GARCH parameter, at least in average, is different from one,
while in the models with d=0.8, GARCH and IGARCH are very close, as
if the aggregation push the model to a new process with d=1.

• Take a look now at the identification: the memory property of the simu-
lated series is identified by the information criteria with an error percent-
age of 20%, near the value recorded for non aggregated series. Again we
can note that the identification is affect by the structure of the process
and by parameter values. Moreover none of the criteria appear to prevail
on the others.

We will now turn to our main point, the evaluation of 1-day-Value-at-Risk
both with aggregated and non aggregated data. Given the structure of the test
for Value-at-Risk comparison and the time requested to run a Montecarlo ex-
periment on simulated high frequency data we decided to split this analysis in
two parts: in the first we compare the VaR computed on aggregated data with
the correct DGP, a GARCH(1,1) an IGARCH(1,1), the EWMA with smooth-
ing parameter set to 0.97 and finally with the VaR computed on hourly data
with the true DGP; in a second group of simulations we compare the VaR per-
formances with the following models, again on aggregated data the true DGP
and the EWMA(0.97) while on high frequency data with the true DGP and a
GARCH(1,1). In all cases we estimate the different models and we compare
the 1-day ahead VaR. However a point arise: on daily data the computation
of 1-day-ahead prediction intervals is a standard procedure, as in the previous
Montecarlo, while on hourly data we could in principle use two different ap-
proaches. A normal practice in this field, employed to obtain a T-step-ahead
forecast of the volatility (T=8 in our case), is to multiply the 1-step-ahead fore-
cast by

√
T , a solution based on the independence and identically distribution

hypothesis of the residuals. However in the GARCH-type model framework
this can be differently interpreted, the T-step-ahead forecast maybe computed
as the sum of 1 to T step forecasts. The T step return could be expressed as the
sum of single step returns and, postulating independence in the mean, its ex-
pected value will be the sum of expected values, therefore with a pure GARCH
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generator, without any dynamics in the mean, this will be zero:

rT =
TX
j=1

rt+j (18)

Et [rT ] =
TX
j=1

Et [rT ] = 0

The variance computed conditionally at time t, will be therefore

V art [rT ] = V art

 TX
j=1

rt+j

 (19)

the law of iterated expectations allow us to set covariances between time-
dependent returns to zero obtaining

V art [rT ] =
TX
j=1

V art [rT ] (20)

that is the sum of the predictions from 1 to T steps ahead variance made in time
T. This will be the second computation technique used to forecast daily variance
with hourly data. In the following we will refer to the forecast obtained with
the first methods as ”square root forecasts”, while the second will be labelled
”sum forecasts”. On the VaR measures otained we will compute all the tests
and the loss functions as in the previuos Montecarlo.
These two sets of Montecarlo experiments are run on the same generators

used for aggregated data model identification analysis. The Value-at-Risk anal-
ysis is performed again on a backtesting approach using 250 daily observations
to assess number of exceptions, compute tests and loss functions. The tables
of these Montecarlo expreriments can be found in Annex 3. As in the previous
analysis we summarize the tables with the following observations:

Average exceptions and MRA. Consider first the comparison among the
aggregated FIGARCH, the RiskMetrics and the high frequency FIGARCH
and GARCH. In these cases aggregated models give the smaller percentage
of exceptions for the 1-day VaR, while, among the high frequency mod-
els, the FIGARCH with square root forecasts produce the better results.
This behaviour indicate that even if the true generator is an high fre-
quency process with long memory, in computing 1-day VaR better results
are obtained by aggregated data. This result is confimed in the second
Montecarlo where we compare different aggregated specifications with the
true high frequency generator. We restrict now our attention on the aggre-
gated models, among these specifications two cleraly dominates the other,
the long memory GARCH and the RiskMetrics, with a prevalence of the
latter at the 1% VaR while the FIGARCH is preferred at the 5% VaR
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level. A final comments on the MRA: here the models differenlty satisfy
the requirements, leading to different zones, in most cases the green zone
is reached by the long memory GARCH on aggregated data and by the
RiskMetrics, while the other sepcifications switch beteen the green and
the yellow zone. Again this indicate that aggregated data are preferred to
high frequency specifications.

Tests of Conditional and Unconditional Coverage. Test results again
cannot help in the choice of the best specification, however we must note
that variation in tests results among different models is wider than in the
previous analysis allowing to exlude, in some cases, one of the models
employed. As an example consider the FIGARCH(0.5,0.8,0.3) in table
90, the CC test allow to exclude at least the high frequency FIGARCH
specifications, or again consider the FIGARCH(0.3,0.4,0) in table 125, the
Independence test at 5% allow to exclude all daily models. Unfortunately
in all these cases we cannot reduce our choices to one model, leading to a
small power of these test in discerning among the alternative specifications.

Loss functions. Now the situation change: while considering only the ecep-
tions aggregated data are always preferred, turning to a loss funcion ap-
proach high frequency data are in some cases the best choice. Consider
the Lopez loss function: the preferred models are the RiskMetrics and
the high frequency FIGARCH with square root forecasts, and the choice
switch between this two models, a good example is in table 91 or 119. Fo-
cusing on the loss functions previuosly suggested, computed on the whole
backtesting period and not only on the exceptions, results are different,
here the model choice switch between the RiskMetrics and the GARCH
with square root forecasts in the first Montecarlo while in the second the
preferred models are again the RiskMetrics this time with the FIGARCH
with sum forecasts. These observations, coupled with the ones on the
numer of exceptions, allow to identify in the RiskMetrics model a ggod
choice, it satisfy regulator requirements and is one of the best choices if
we focus on loss functions.

Model comparison test. If we consider the first Montecarlo, which include
high frequency GARCH and FIGARCH specifications, this test allow the
derivation of a preference ordering among the different models. This test
compute a pairwise comparison among the models and report a frequency
of preference of the first or of the second model. If we state that, given
the test comparison of two models, one is preferred to the other when the
frequency of preference is above 50%, we have a set of reference relations
that may allow to construct an ordering. In the first Montecarlo this is
possible with the full set of generators and all the orderings have a common
point: the high frequency GARCH specification with square root forecast
is always the preferred. The ordering of the remaining models change
across the generators. This result allow to conjecture that in computing
1-day Value-at-Risk with high frequency data, even if in presence of long
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memory, a short memory model give a finer matching to the efficient mo-
ment condition. A similar result was obtained by Beltratti and Morana
(1999) in an applied framework. Their conclusion was mainly driven by
the closeness of forecasts obtained by the FIGARCH and GARCH spec-
ifications, while in this case we obtain this conclusion via a Montecarlo
approach. Turn now the attention to the second Montecarlo, that report
the comparison across daily specifications and the high frequency true gen-
erator. In this case the preference raltion among the specifications do not
exist, in most of the cases the relation is not transitive, however the high
frequency FIGARCH specification with sum forecasts is the candidate to
be the preferred solution. The preference ordering are reported in the
appendix whenerer thy exists. A couple of additional remarks is needed:
first of all we strees on the fact that high frequency specifications are most
of the times preferred to the daily ones, showing that, even if with a mis-
specified model, high frequency data matter; moreover the RiskMetrics
model is most of the time the worst solution in the model comparison
tests, this is due, to our advise, to the structure of the model, in the sense
that any GARCH specification, even an highly misspecified one, long or
short memory, has a greater flexibility that allow to adequately match the
(simulated) data; finally, note that this result is not influenced by the true
data generating process.

Model specification test. The results obtained by this last instruments
are similar across the Montecarlo experiments and the different models,
showing that the Value-at-Risks is not correctly specified. We conjecture
that this is due to the limited number of points used in our analysis, 250
observations, that might influence test power.

6 Conclusions
In this chapter we derived the equations for the mean squared error when the
underlying noise has a long memory GARCH structure. We then used these
formulae to asses the effects of misspecification in the Value-at-Risk framework.
Our analysis was conducted comparing different VaR measures with a group
of tests and loss functions. The results shows that the tests of Kupiec (1995)
and Christoffersen (1998), together with the loss functions approach of Lopez
(1999) have limited power in distinguishing among a group of alternative VaR
models, a similar result was obtained by Lopez (1999) with a restricted set of
loss functions and tests. In this framework we extended the current literature
including in the Montecarlo analysis two recent tests of Christoffersen et al.
(2001), tests that are based on a moment condition. By this way a pairwise
comparison among different models is possible and our Montecarlo showed that:
the RiskMetrics model is never preferred to any other GARCH specification;
the true generator is the best solution. In the second part of this chapter we
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focused on a slightly different problem, trying to asses the effects of aggregation
on long memory and Value-at-Risk computation. We showed that the memory
properties are influenced by the aggregation process if the variance is highly
persistent (memory parameter around 0.4) while the effects are lower when
we have intermediate memory (parameter around 0.8). We compared then in
two different Montecarlo the VaR measures computed by aggregated and non-
aggregated data, showing that for 1-day VaR computation high frequency data
allow a finer matching with the moment condition used by Christofferesen et. al.
(2001) in their tests. However different results are obtained by the loss function
approach where aggregated estimates of the VaR are preferred. If we consider
the problem of VaR model selection on the basis of the regulators requirements
the best choice seem the RiskMetrics approach if we use daily data obtained
from the aggregation of hourly FIGARCH data. We must evidence that this
result strictly depend on the setup we considered and is not valid in general.

Baillie R.T and T. Bollerslev, 1992, Prediction in dynamic models with time-
dependent conditional variances, Journal of Econometrics, 52, 91-113
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7 Appendix

7.1 Forecasting with FIGARCH

Turn now to the analysis of forecasting the mean of a series when the error
component is heteroskedastic, and in particular we will describe the behaviuor
of prediction in presence of a FIGARCH structure. This chapter represent the
extension to FIGARCH case of the study of Baillie and Bollerslev (1992). Given
the assumptions introduced on chapter 1, that the mean process µt = 0, we can
derive the following relations:

Et [yt+s] = Et [εt+s] = 0 s ≥ 1

et,s = yt+s −Et [yt+s] = εt+s

Conditional on the information set up to time t, the s-step-ahead predictor
for the mean is zero, indipendently from s, and the prediction error, again for
s-step ahead, is equal to the innovation in time t+s. We are interested now
in computing the Prediction Mean Square Error (PMSE), whose expression is
simply

Et
£
e2t,s
¤

(21)

again conditional on time t information set. Assume also that the conditional
variance follow a long memory GARCH model

εt|It−1 ∼ id
¡
0,σ2t

¢
σ2t ∼ FIGARCH(p, d,m)

with the parameters satisfying all usual restrictions that ensure the condi-
tional variance to be positive. We are now interested in computing the PMSE
for the mean forecast given the FIGARCH structure on residuals. For the PMSE
for a general model for the mean (µt 6= 0) see the cited paper of Baillie-Bollerslev
(1992). We make use of the following relations, derived by the application of
the law of iterated expectations:

Et
£
ε2t+j

¤
= Et

£
σ2t+j

¤
j > 0

Et
£
ε2t+j

¤
= ε2t+j j ≤ 0

Et
£
σ2t+j

¤
= σ2t+j j ≤ 0

(22)

Now we can express the PMSE as

Et
£
e2t,s
¤
= Et

£
ε2t+s

¤
= Et

£
σ2t+s

¤
We are then interested in computing the s-step-ahead predictor of the condi-
tional variance, conditional on time t information set. Consider the standard
FIGARCH(m,d,q) formulation for the conditional variance process

[1− β (L)]σ2t = ω̃ +
h
1− β (L)− (1− L)d φ (L)

i
ε2t

24



and using ω = ω̃/ [1− β (1)] and
h
1− β (L)− (1− L)d φ (L)

i
[1− β (1)]−1 =

λ (L) =
P∞
i=1 λiL

i we can write

σ2t = ω +
∞X
i=1

λiε
2
t−i

Our objective is the computation of the following quantity (using 22):

Et
£
σ2t+s

¤
= ω +

∞X
i=1

λiε
2
t−i = ω +

s−1X
i=1

λiEt
£
σ2t−i

¤
+
∞X
i=s

λiε
2
t−i (23)

The best s-step ahead predictor for the conditional variance depend on all
past history of the error term, and on the forecast made for 1,2..to s-1 step
ahead (all made conditional to the information set in time t). This directly give
an important information: the computation of the forecast s-step ahead with
real data will obviously require a truncation in formula 23, given the limited
dimension of sample for time series. This will introduce an error in the estimated
MSE and, given the structure of equation 23, we will underestimate the forecast
of the conditional variance (all terms in 23 are positives). We will give now a
more compact formulation of 23 expressing it only in term of the infinite past
history of the error term, and we will add another representation that will be
used later.
Define the following quantity:

Aj =
∞X
i=j

λiε
2
t+j−i (24)

Substituting recursively Et
£
σ2t−i

¤
in 23 and using 24 we obtain

Et
£
σ2t+s

¤
= ωθs +

sX
i=1

φiAs+1−i (25)

φi =
i−1X
j=1

λjφi−j θs =
sX
i=1

φi

exploiting the relation implicit in 24 we can finally rewrite the predictor for the
conditional variance as

Et
£
σ2t+s

¤
= θsω +

∞X
i=0

ψi+1ε
2
t−i (26)

ψk =
sX
i=1

φiλk+s−i φ1 = 1

Via 23 come out an interesting observation: given that the coefficients in 24
are constrained to be positive to ensure the conditional variances to be strictly
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positive, we see that the predictor for the conditional variance diverge increas-
ing the forecasting horizon. Figarch processes share this characteristic with
IGARCH, the predictor diverge to infinity, even if the process is ergodic and
stationary and the impact of shocks (or news) decay to zero at an hyperbolic
rate, laying in between GARCH and IGARCH which present respectively ex-
ponential decaying and constant effect. This behaviour make Figarch usage
for long range forecasting very difficult, but a correct approach must take into
consideration also the impact of short memory parameters. At the moment we
know that the predictor diverge, but will diverge so quickly in the IGARCH case
or slowly? This can be assessed analysing the behaviour of the MA coefficients
and of the coefficients of formula 26.
(insert analysis on coefficients)
Using a one-step-ahead strategy, predicting for t+s with information set up

to t+s-1, Figarch processes should give better results, specially when the DGP
is correctly identified and the parameters consistently and correctly estimate.
We will deal with these problems in a next section.
We define also another alternative formulation, not compact as the previous,

but that will be useful in the following. This representation has a recursive
structure and avoid the computation of the θ, ψ and φ coefficients:
Note at first that: Et

£
σ2t+1

¤
= σ2t+1(known in t)

Consider now the following equality and definitions:

σ2t+1 = Ã1 = B1

Ãj = ω +
∞X
i=j

λiε
2
t+j−i (27)

Et
£
σ2t+j

¤
= Bj (28)

we can now write

Et
£
σ2t+s

¤
= Ãs +

s−1X
i=1

λiBs−i (29)

With s=2, this will depend on B1, known, and on the past: we get B2. With
these two we can compute recursively B3, and then all easily follows.
Using indifferently 25, 26 or 29 we are now able to compute the MSE of the

mean-predictor, in the Baillie-Bollerslev framework, for the case in which the
error term has a conditional long memory structure.
Another important issue in forecasting with long memory behaviour is con-

nected directly with volatility. As example in the Value-at-Risk framework is
of direct interest the forecast of the conditional volatility, and then will come
into role also the computation of the MSE of this quantity. The MSE of the
volatility predictor will be also useful in computing density prediction instead
of point prediction as we will se later on.
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The best predictor for the conditional volatility was previously computed,
In this section we focus on the computation of the MSE for the conditional
volatility predictor. Define the forecast error for s-step ahead prediction of the
conditional variance as :

evt,s = σ2t+s −Et
£
σ2t+s

¤
(30)

Note that in this case evt,1 = 0 given that we are not dealing with estimated
models or correct specification. This will be true only in theory, applying this
methodologies we will have to take into account also some additional stochastic
term involved in the estimated parameters distributions.
Rearranging using 29 and noting that

σ2t+j = Ãj +

j−1X
i=1

λiε
2
t+j−i (31)

we can write

evt,s = σ2t+s − Ãs −
s−1X
i=1

λiBs−i =
s−1X
i=1

λiε
2
t+s−i −

s−1X
i=1

λiBs−i (32)

substituting then recursively Bs−i with its expression and using 27 and 28, then
substituting the conditional variance with 30 and 31 and rearranging we obtain
this nice expression:

evt,s =
s−1X
i=1

λi
¡
υt+s−i − evt,s−i

¢
(33)

whereυt = ε2t − σ2t .
Working again with iterated substitutions for j=2,...s-1 and reorganizing

formulae we find this final representation :

evt,s =
s−1X
i=1

φs−i+1υt+i (34)

where the coefficients are the same of formula 25. This was only the formula
for the prediction error, to evaluate the PMSE we have to derive an expression

for Et
h¡
evt,s
¢2i
. In doing that we will make use of the following relations:

Et [υt+jυt+i] = 0 1 ≤ j < i < s (35)

Et
£
υ2t+j

¤
= (κ2 − 1)Et

£
σ4t+j

¤
(36)
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where in the last equation κ2 is the second order cumulant for the conditional
distribution of the error term. Using 34, 35 and 36 we can write

Et

h¡
evt,s
¢2i

= Et

Ãs−1X
i=1

φs−i+1υt+i

!2 = Et "s−1X
i=1

φ2s−i+1υ
2
t+i

#
=

s−1X
i=1

φ2s−i+1Et
£
υ2t+i

¤
(37)

= (κ2 − 1)
s−1X
i=1

φ2s−i+1Et
£
σ4t+j

¤
To evaluate the MSE of the variance forecast we need to know the 4th order
conditional moment of the distribution of εt, we state the following

Lemma 8 The 4th order conditional moment of εt when σ2t follow a FIGARCH(p,d,m)
process is equal to:

Et
£
σ4t+j

¤
= ω2 + κ2

j−1X
i=1

λ2iEt
£
σ4t+j−i

¤
+ 2ω

j−1X
i=1

λiEt
£
σ2t+j−i

¤
+

+
∞X
i=j

λ2i ε
4
t+j−i + 2ω

∞X
i=j

λiε
2
t+j−i + 2

∞X
i=j

∞X
h>i

λiλhε
2
t+j−iε

2
t+j−h +

+2

j−1X
i=1

∞X
h=j

λiλhε
2
t+j−hEt

£
σ2t+j−i

¤
+ 2

j−1X
i=1

j−1X
h>1

λiλhEt
£
ε2t+j−iε

2
t+j−h

¤
where

Et
£
ε2t+j−iε

2
t+j−h

¤
= ωEt

£
σ2t+j−h

¤
+

j−i−1X
l=1

λlEt
£
ε2t+j−i−lε

2
t+j−h

¤
+ Et

£
σ2t+j−i

¤ ∞X
l=j−i

λlε
2
j+j−i−l

(38)

Proof. Just square the process out and with some tedious algebra

Et
£
σ4t+j

¤
= Et

Ãω + ∞X
i=1

λiε
2
t+j−i

!2 =
= Et

"
ω2 +

∞X
i=1

λ2i ε
4
t+j−i + 2ω

∞X
i=1

λiε
2
t+j−i + 2

∞X
i=1

∞X
h>1

λiλhε
2
t+j−iε

2
t+j−h

#
=

= ω2 +
∞X
i=1

λ2iEt
£
ε4t+j−i

¤
+ 2ω

∞X
i=1

λiEt
£
ε2t+j−i

¤
+ 2

∞X
i=1

∞X
h>1

λiλhEt
£
ε2t+j−iε

2
t+j−h

¤

28



by law of iterated expectations we can extend Baillie and Bollerslev (1992)
theorem 1, p 102, to

Et
£
ε4t+j

¤
= κ2Et

£
σ4t+j

¤
for j ≤ 0

therefore

Et
£
σ4t+j

¤
= ω2 + κ2

j−1X
i=1

λ2iEt
£
σ4t+j−i

¤
+
∞X
i=j

λ2iEt
£
ε4t+j−i

¤
+

+ 2ω

j−1X
i=1

λiEt
£
σ2t+j−i

¤
+ 2ω

∞X
i=j

λiε
2
t+j−i +

+ 2
∞X
i=1

∞X
h>1

λiλhEt
£
ε2t+j−iε

2
t+j−h

¤
last summation can be rewritten as
∞X
i=1

∞X
h>1

λiλhEt
£
ε2t+j−iε

2
t+j−h

¤
=
∞X
i=j

∞X
h>i

λiλhε
2
t+j−iε

2
t+j−h +

j−1X
i=1

∞X
h=j

λiλhε
2
t+j−hEt

£
σ2t+j−i

¤
+

+

j−1X
i=1

j−1X
h>1

λiλhEt
£
ε2t+j−iε

2
t+j−h

¤
j−1X
i=1

j−1X
h>1

λiλhEt
£
ε2t+j−iε

2
t+j−h

¤
=

j−1X
i=1

j−1X
h>1

λiλh

Ã
ωEt

h
σ2t+j−h

i
+
Pj−i−1

l=1 λlEt

h
ε2t+j−i−lε

2
t+j−h

i
+

Et
£
σ2t+j−i

¤P∞
l=j−i λlε

2
j+j−i−l

!

In the first expansion the first term has all known elements in time t, the
second 1 element is known and then is straightforward compute the expectation,
substituting with the predictor of the conditional variance and for the third we
have to evaluate an s(s-1)/2 matrix of unknown elements, whose final expan-
sion is given in the second formula. Combining these two terms we obtain the
expression for the 4th order conditional moment. Since expressions for higher
order conditional moments are not needed for the purpose of this work (up to
this moment) their expression is not computed.
Given formulae for the FIGARCH formulation of Baillie-Bollerslev-Mikkelsen,

is easy to derive the correspondent expressions for the reparametrisation pro-
posed by Chung. His model can be written as:

[1− β (L)]σ2t = [1− β (L)] ε2t −
h
(1− L)d φ (L)

i ¡
ε2t − σ2

¢
(39)

rearranging and noting that the infinite summation of the long memory operator
coefficients is identically equal to zero, we get that the model can be simply
written also as:

σ2t =
∞X
i=1

λiε
2
t−i (40)

λ (L) = 1− (1− L)d φ (L) [1− β (L)]
−1
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From this formulation we can derive formulae for predictor and MSE from the
previous case just substituting a constant equal to zero. In this case we will
loose the relation between constant and the other parameters; given that we
will use the following formulation, equivalent to 40:

σ2t = σ2 +
∞X
i=1

λi
¡
ε2t−i − σ2

¢
(41)

From 40 we can see directly that the main changes are due to the cross products
between observations of ε2t in ??, since

Et
£
ε2t−i − σ2

¤
=

½
Et
£
σ2t−i

¤− σ2 i ≥ 1
ε2t−i − σ2 i ≤ 0

we give the correspondent expression of the predictor. Define this quantity:

Âj =
∞X
i=j

λi
£
ε2t+j−i − σ2

¤
(42)

and using it and substituting recursively we get

Et
£
σ2t+s

¤
= σ2 +

∞X
i=1

λiEt
£
ε2t+s−i − σ2

¤
=

= σ2 +
s−1X
i=1

λiEt
£
ε2t+s−i − σ2

¤
+
∞X
i=s

λi
£
ε2t+s−i − σ2

¤

Et
£
σ2t+s − σ2

¤
=

s−1X
i=1

λiEt
£
ε2t+s−i − σ2

¤
+
∞X
i=s

λi
£
ε2t+s−i − σ2

¤
=

s−1X
i=1

φiÂi

(43)

with the same coefficients of 25. Then the constant can be easily moved on the
right side of the equation. By a similar argument is straightforward obtaining,
the recursive formulation of (12b), the correspondent of (16), that is used for
the computation of the MSE of the conditional volatility predictor:

Et
£
σ2t+s − σ2

¤
= Bs = Âs +

s−1X
j=1

λjBs−j (44)

again we make use of 42 and we define everything in deviation from the constant
term. Making use of expected values in deviation from the constant and noting
that:

σ2t+j − σ2 = Âj +

j−1X
i=1

λiεt+j−i (45)
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is possible to verify that the expressions 37 and 34 are valid also for the alterna-
tive parametrisation of FIGARCH models. By the way there are changes in the
4th order conditional moment. Reconsidering the proof of the revious lemma:
Proof.

Et
£
σ4t+j

¤
= Et

Ãσ2 + ∞X
i=1

λi
¡
ε2t+j−i − σ2

¢!2 =
= Et

"
σ4 +

P∞
i=1 λ

2
i

¡
ε2t+j−i − σ2

¢2
+ 2σ2

P∞
i=1 λi

¡
ε2t+j−i − σ2

¢
+

+2
P∞
i=1

P∞
h>1 λiλh

¡
ε2t+j−i − σ2

¢ ³
ε2t+j−h − σ2

´ #

we can observe that the terms increase, given the innovation deviation from
the mean. The formula can be simplified noting that

σ2 +
∞X
i=1

λi
¡−σ2¢ = 0

burning down to

Et

Ã ∞X
i=1

λiε
2
t+j−i

!2
and from this last expression we can compute the 4th order conditional moment
of the error component under the Chung parametrisation, using the previously
derived equation for the FIGARCH I. In last formula the constant term does not
appear directly, but it influence the moment through its effect in the innovation.
The previous section we were dealing with point prediction of the mean

process and of the computation of its MSE. The same approach can be used
also to compute the predictor and the MSE for the conditional variance. In
the following we will focus on density forecasting, we will extend the approach
of Baillie and Bollerslev to the FIGARCH case, giving an expression for the
Cornish-Fischer expansion under a FIGARCH DGP.

In order to compute prediction interval for a FIGARCH model, we have to
compute

et,s = yt+s −Et [yt+s] = yt+s
and the conditional mean square error

Et
£
e2t,s
¤
= Et

£
y2t+s

¤
= Et

£
σ2t+s

¤
However in presence of ARCH-type effect, the unconditional distribution

of the observations (or residuals for the mean model) have fatter tails than
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the conditional one. Moreover the prediction error distribution depend on the
information set available at time t. In these cases the usual computation of
prediction intervals, based on (assuming that the model is a pure FIGARCH):n

−Φ−1 (p)Et
£
σ2t+s

¤1/2
,Φ−1 (p)Et

£
σ2t+s

¤1/2o
where Φ−1 (p) is the p-quantile of the standardized normal, is no more valid.

Following Baillie and Bolloerslev we will use in this case the Cornish-Fisher
expansion for a correction up to the fourth moment. This expansion allow to
compute the p-quantile for the conditional distribution for the s-step ahead
prediction error. The Cornish-Fischer approximation for the s-step-ahead time
varying p-quantile is defined as

zt,s (p) = ρt,s (p)Et
£
e2t,s
¤1/2

ρt,s (p) = Φ
−1 (p) + ρ2

¡
Φ−1 (p)

¢
γ2,t,s

ρ2 (z) =
¡
z3 − 3z¢ /24

for a correction up to the fourth order moment. In this expression γ2,t,s represent
the conditional excess curtosis for the s-step-ahead prediction error. Letting
ρ2 (z) = 0 we get back to the usual interval definition. Under the FIGARCH
model we just have to define and derive an expression for the excess kurtosis.
Consider that

γ2,t,s =
Et
£
ε4t+s

¤− 3 ¡Et £ε2t+s¤¢2¡
Et
£
ε2t+s

¤¢2
and using previous results we have only to compute

¡
Et
£
ε2t+s

¤¢2
recalling that

Et
£
ε4t+s

¤
= κ2Et

£
σ4t+s

¤
.

7.2 Implementing the VaR comparison tests

In this Montecarlo we used an adapted version of the Christoffersen at. el.
(2001) GMM based test. The formulae for the asymptotic variance on which it
is evaluated is computed as follows:

V ar

Ã
1√
T

TX
t=1

¡
exp

¡
γ̂01f (εt,β

∗
1)
¢− exp ¡γ̂02f (εt,β∗2)¢¢

!
= V ar

Ã
1√
T

TX
t=1

exp
¡
γ̂01f (εt,β

∗
1)
¢!
+

V ar

Ã
1√
T

TX
t=1

exp
¡
γ̂02f (εt,β

∗
2)
¢!− 2Cov "Ã 1√

T

TX
t=1

exp
¡
γ̂01f (εt,β

∗
1)
¢!Ã 1√

T

TX
t=1

exp
¡
γ̂02f (εt,β

∗
2)
¢!#
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under the hypothesis that the two VaR measures are independent the co-
variance is null given that they equally match the efficient moment condition

V ar

Ã
1√
T

TX
t=1

exp
¡
γ̂01f (εt,β

∗
1)
¢!

=
1

T

TX
t=1

V ar
£
exp

¡
γ̂01f (εt,β

∗
1)
¢¤
+

2

T

TX
t=1

TX
j=t+1

Cov
£
exp

¡
γ̂01f (εt,β

∗
1)
¢
exp

¡
γ̂01f (εj ,β

∗
1)
¢¤

under the hypothesis that the moment condition is satisfaid in a non-time-
dependent fashion, otherwise we will find a property of a Markov process, for
which we tested previously, again the covariance is null

V ar
£
exp

¡
γ̂01f (εt,β

∗
1)
¢¤
= E

h¡
exp

¡
γ̂01f (εt,β

∗
1)
¢−E £exp ¡γ̂01f (εt,β∗1)¢¤¢2i

recalling the moment generating function of a multinormal variable

E
£
exp γ̂01f

¤
= Eγ

£
exp γ̂01f

¤
= exp(γ∗01 f + 0.5f

0
Ωf/T )

√
T (γ̂ − γ∗)→ N (0,Ω)

then

V ar
£
exp

¡
γ̂01f (εt,β

∗
1)
¢¤

= E

·³
exp

¡
γ̂01f (εt,β

∗
1)
¢− exp(γ∗01 f + 0.5f 0Ωf/T )´2¸ =

= E

"
exp

¡
2γ̂01f

¢
+ exp(2γ∗01 f + f

0
Ωf/T )

−2 exp
³
γ̂01f + γ̂01f + 0.5f

0
Ωf/T

´ #
= exp(2γ∗01 f + 2f

0
Ωf/T ) + exp(2γ∗01 f + f

0
Ωf/T )−

−2 exp(γ∗01 f + 0.5f
0
Ωf/T ) exp(γ∗01 f + 0.5f

0
Ωf/T )

= exp(2γ∗01 f + 2f
0
Ωf/T )− exp(2γ∗01 f + f

0
Ωf/T ) = V1,t

therefore

V ar

Ã
1√
T

TX
t=1

¡
exp

¡
γ̂01f (εt,β

∗
1)
¢− exp ¡γ̂02f (εt,β∗2)¢¢

!
=
1

T

TX
t=1

(V1,t + V2,t)

Here we consider three different FIGARCHDGP: in two cases a FIGARCH(1,d,0)
and a FIGARCH(1,d,1). For all the models considered we estimate the true
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DGP, therefore assuming a correct identification of the model and of its orders,
and two ”short” memory formulations, a IGARCH(1,1) and a GARCH(1,1).
The evaluation of VaR measures is carried out both with backtesting. The
lenght of simulated series is of 2250 observations, the first 2000 points are used
for model estimation, the other 250 for out of sample forecasting of volatility,
only 1-step-ahead. In all cases we use also 500 observations, from 1501 to 2000,
to check VaR performances with backtesting.

7.3 Proof Christoffersen Inoue and Hahn theorem

This is a partially revised proof of this theorem. The author prooved at a
first stage the stochastic equicontinuity of Mm1 (β

∗
1, γ
∗
1) and then used that to

derive a relation between this quantity and its correspondant with estimated
parameters. These derivation are a bit unclear and partially unnecessary. A
direct application of the ergodic theorem allow us to write for model 1¯̄̄

Mm1 (β
∗
1, γ
∗
1)−Mm1,T

³
β̂1, γ̂1

´¯̄̄
= op (1)

and similarly for model 2¯̄̄
Mm2 (β

∗
2, γ
∗
2)−Mm2,T

³
β̂2, γ̂2

´¯̄̄
= op (1)

using this equations we ca rewrite the test as

√
T
h
Mm1,T

³
β̂1, γ̂1

´
−Mm2,T

³
β̂2, γ̂2

´i
=
√
T
h
Mm1,T

³
β̂2, γ̂2

´
−Mm2,T (β

∗
2, γ
∗
2) + op (1)

i

then using the null hypothesis the asymptotic distribution we get the asymptotic
relation.

34



Graphs of two simulations
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Graph 1: Simulated series FIGARCH(0.5,0.8,0)
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Graph 2: simulated conditional variance, series of Graph 1
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Graph 3: estimated conditional variance, last 100 observations of Graph 1
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8 Annexes

8.1 Tables of Montecarlo on non-aggregated data

In the following pages you will find the tables for the Montecarlo described in
section 5. The tables are grouped by DGP, listed in the first row at the beginnig
of each group. In the next rows we just describe table contents:

• Tables 1, 8, 15, 22, 29, 36, 43, 50, 57: the tables list for each of the four
model considered and two level of Value-at-Risk coverage (1% and 5%)
the average number of exceptions, its standard deviation and the average
percentage of exceptions for an experiment conducted on 1000 replica-
tions and for a sample of 250 1-day-ahead forecasts, using the backtesting
approach.

• Tables 2, 9, 16, 23, 30, 37, 44, 51, 58: in this case for the models and VaR
coverage levels we report frequency of model selction based on counting ax-
ceptions, a model is preferred to the others when its number of exceptions
is lower. Given that the exceptions are integer numbers the frequencies
sum may be higher than 1.

• Tables 3, 10, 17, 24, 31, 38, 45, 52, 59: these tables report the frequen-
cies of accepting the null hypothesis of the tests of unconditional coverage
of Kupiec (1995 - null is correct coverage), the test of independence of
Christoffersen-Lopez (1998 - null is independence) and the test of condi-
tional coverage of Christoffersen-Lopez (1998 - null is again correct cover-
age).

• Tables 4, 11, 18, 25, 32, 39, 46, 53, 60: these are the first tables on the
loss funcions results, they report the frequency of model selection based
on the application of the loss function suggested by Lopez (1999) that
focus only on exceptions. Given that the parameters of GARCH(1,1) and
IGARCH(1,1) are often very close this cause an identical loss function for
the two models, same exceptions and same forecast, therefore the frequen-
cies sum may be higher than 1.

• Tables 5, 12, 19, 26, 33, 40, 47, 54, 61: in these tables we report the
frequencies of selection based on our alternative loss functions, that focus
on exceptions (rows labelled with an E) and on the whole backtesting
sample, 250 observations (rows labelled with a T). Again the closeness
of GARCH and IGARCH may cause a sum of frequencies over 1. The
results are grouped by loss functions and combination of loss functions as
described in the italics rows.

• Tables 6, 13, 20, 27, 34, 41, 48, 55, 62: in these tables and in the next group
we deal with the test of Christoffersen et al. (2001). These tables report
the result of the test of model comparison and consider four different
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Value-at-Risk coverage. For each one of these levels of confidence the
tables report the test results for a pairwise comparison between models,
using the legend at the bottom of the table. For each level and comparison
we reported the frequence of accepting the test (null hypothesis is the
the two models do not equally match the efficiency moment condition of
Christoffersen et al. 2001, this is implied by a significat test statistic)
and then usign the sign of the test statistic we report the percentage of
preference of the first or of the second model. The percentage is computed
using only the cases when the test null hypothesis is accepted. In all
cases we considered three level of confidence for the test statistics, the
percentage indicated with test α-value.

• Tables 7, 14, 21, 28, 35, 42, 49, 56, 63: in these last group of tables we
report the second test suggested by Christoffersen et al. (2001) the test
on Value-at-Risk specification. In these tables we report for the different
model considered at the four level of VaR confidence used in the previuos
tables the frequency of accepting the null hypothesis of the test (null is
that the VaR is correctly specified). As in the previuos case we report
three level of confidence for the test statistic.
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DGP FIGARCH(1,d,1) d=0.4 β=0.3 φ=0.2 - % represent VaR p-level unless differently specified 
 

1 - Average number of exceptions – (standard deviation) -  
average percentage of exceptions - 1000 replications – 250 forecasts 

Fitted models  
Figarch(1,d,1) Garch(1,1) Igarch(1,1) EWMA(0.97) 

2.561 2.758 2.384 1.436 
(1.628) (1.943) (1.622) (1.144) 1% VaR 
1.024 1.103 0.954 0.574 

12.749 12.852 11.665 11.590 
(3.393) (4.354) (3.494) (3.031) 5% VaR 
5.100 5.141 4.666 4.636 

 
2 - Frequency of less exceptions – 1000 replications – 250 forecasts 

Fitted models  
Figarch(1,d,1) Garch(1,1) Igarch(1,1) EWMA(0.97) 

1% VaR 0.271 0.321 0.382 0.814 
5% VaR 0.380 0.283 0.283 0.539 

 
3 - Tests - Frequency of accepting H0 – 1000 replications – 250 forecasts 

Fitted models  α Figarch(1,d,1) Garch(1,1) Igarch(1,1) EWMA(0.97) 

Test of Unconditional Coverage of Kupiec 
1% 0.992 0.981 0.995 1.000 1% VaR 5% 0.913 0.848 0.881 0.764 
1% 0.994 0.964 0.991 0.994 5% VaR 5% 0.940 0.873 0.925 0.951 

Test of Independence of Christoffersen-Lopez 
1% 0.748 0.781 0.742 0.630 1% VaR 5% 0.313 0.404 0.312 0.273 
1% 0.981 0.968 0.969 0.852 5% VaR 5% 0.924 0.890 0.892 0.693 

Test of Conditional Coverage of Christoffersen-Lopez 
1% 0.967 0.955 0.966 0.945 1% VaR 5% 0.725 0.731 0.722 0.623 
1% 0.986 0.958 0.970 0.905 5% VaR 5% 0.906 0.833 0.868 0.723 

 
4 - Lopez loss function – frequency of model selection 

1000 replications – 250 forecasts 
Fitted models  

Figarch(1,d,1) Garch(1,1) Igarch(1,1) EWMA(0.97) 
1% VaR 0.120 0.156 0.224 0.727 
5% VaR 0.120 0.107 0.138 0.635 

 



 
 
 
 
 
 

5 - Loss functions - Frequency of model selection – 1000 replications – 250 forecasts 
Fitted models  

Figarch(1,d,1) Garch(1,1) Igarch(1,1) EWMA(0.97) 

Loss Function 1: absolute value of return VaR measure ratio 
E 0.115 0.158 0.213 0.741 1% VaR T 0.033 0.143 0.414 0.410 
E 0.058 0.169 0.266 0.507 5% VaR T 0.033 0.143 0.414 0.410 

Loss Function 2: square return-VaR normalized by absolute VaR measure 
E 0.115 0.140 0.202 0.770 1% VaR T 0.080 0.366 0.003 0.551 
E 0.038 0.088 0.181 0.693 5% VaR T 0.065 0.307 0.001 0.627 

Loss Function 3: absolute of return-VaR 
E 0.109 0.139 0.216 0.763 1% VaR T 0.100 0.381 0.004 0.515 
E 0.037 0.106 0.283 0.574 5% VaR T 0.089 0.365 0.004 0.542 

Loss Function 1 + Loss Function 2 
E 0.115 0.157 0.213 0.742 1% VaR T 0.060 0.258 0.001 0.681 
E 0.053 0.162 0.259 0.526 5% VaR T 0.052 0.070 0.000 0.878 

Loss Function 1 + Loss Function 3 
E 0.117 0.158 0.215 0.737 1% VaR T 0.075 0.314 0.003 0.608 
E 0.050 0.163 0.274 0.513 5% VaR T 0.051 0.127 0.000 0.822 

Loss Function 2 + Loss Function 3 
E 0.112 0.140 0.214 0.761 1% VaR T 0.093 0.376 0.004 0.527 
E 0.033 0.102 0.235 0.630 5% VaR T 0.083 0.346 0.003 0.568 

Loss Function 1 + Loss Function 2 + Loss Function 3 
E 0.117 0.158 0.214 0.738 1% VaR T 0.083 0.344 0.003 0.570 
E 0.044 0.160 0.266 0.530 5% VaR T 0.060 0.221 0.000 0.719 

 



 
 
 
 
 
 

6 - Test of model comparison –1000 replications – 250 forecasts 
Model comparison frequencies of α 1-2 1-3 1-4 2-3 2-4 3-4 

VaR(1%) 
1% 0.676 0.680 0.874 0.509 0.843 0.846 
5% 0.677 0.682 0.874 0.511 0.845 0.849 Test is significant 

10% 0.678 0.682 0.874 0.513 0.846 0.850 
1% 0.533 0.699 0.811 0.729 0.807 0.734 
5% 0.533 0.698 0.811 0.726 0.805 0.731 Prefer 1st model 

10% 0.534 0.698 0.811 0.723 0.804 0.732 
1% 0.467 0.301 0.189 0.271 0.193 0.266 
5% 0.467 0.302 0.189 0.274 0.195 0.269 Prefer 2nd model 

10% 0.466 0.302 0.189 0.277 0.196 0.268 
VaR(5%) 

1% 0.913 0.922 0.976 0.733 0.981 0.978 
5% 0.916 0.926 0.983 0.741 0.986 0.985 Test is significant 

10% 0.918 0.927 0.984 0.743 0.989 0.987 
1% 0.645 0.767 0.662 0.673 0.556 0.466 
5% 0.644 0.767 0.659 0.671 0.554 0.465 Prefer 1st model 

10% 0.644 0.767 0.659 0.672 0.554 0.465 
1% 0.355 0.233 0.338 0.327 0.444 0.534 
5% 0.356 0.233 0.341 0.329 0.446 0.535 Prefer 2nd model 

10% 0.356 0.233 0.341 0.328 0.446 0.535 
VaR(10%) 

1% 0.961 0.975 0.984 0.815 0.987 0.988 
5% 0.963 0.977 0.986 0.821 0.989 0.989 Test is significant 

10% 0.965 0.977 0.990 0.823 0.989 0.992 
1% 0.670 0.760 0.678 0.640 0.555 0.470 
5% 0.670 0.759 0.676 0.638 0.554 0.469 Prefer 1st model 

10% 0.669 0.759 0.676 0.639 0.554 0.470 
1% 0.330 0.240 0.322 0.360 0.445 0.530 
5% 0.330 0.241 0.324 0.362 0.446 0.531 Prefer 2nd model 

10% 0.331 0.241 0.324 0.361 0.446 0.530 
VaR(25%) 

1% 0.953 0.969 0.989 0.842 0.990 0.991 
5% 0.954 0.971 0.991 0.846 0.992 0.993 Test is significant 

10% 0.957 0.972 0.992 0.849 0.996 0.996 
1% 0.592 0.665 0.627 0.594 0.563 0.503 
5% 0.591 0.664 0.626 0.593 0.563 0.503 Prefer 1st model 

10% 0.591 0.664 0.625 0.594 0.562 0.503 
1% 0.408 0.335 0.373 0.406 0.437 0.497 
5% 0.409 0.336 0.374 0.407 0.438 0.497 Prefer 2nd model 

10% 0.409 0.336 0.375 0.406 0.438 0.497 
 

Model reference:1 - Figarch(1,d,1); 2 - Garch(1,1); 3 - Igarch(1,1); 4 - EWMA(0.97) 
 
 
 
 
 
 
 



 
 
 
 
 
 

7 - Test of VaR model specification (null: VaR(p) is correctly specified) 
Frequency of accepting H0 – 1000 replications – 250 forecasts 

Fitted models VaR 
p-value 

Test 
α-value Figarch(1,d,1) Garch(1,1) Igarch(1,1) EWMA(0.97) 

1% 0.027 0.017 0.011 0.005 
5% 0.020 0.012 0.009 0.004 1% 

10% 0.017 0.009 0.007 0.003 
1% 0.392 0.314 0.209 0.240 
5% 0.270 0.210 0.143 0.175 5% 

10% 0.211 0.164 0.116 0.141 
1% 0.586 0.480 0.389 0.425 
5% 0.442 0.333 0.267 0.303 10% 

10% 0.360 0.249 0.209 0.235 
1% 0.725 0.683 0.625 0.648 
5% 0.573 0.523 0.469 0.466 25% 

10% 0.486 0.424 0.381 0.358 
 
 
 



 
 
 
 
 
 

DGP FIGARCH(1,d,0) d=0.4 β=0.3 - % represent VaR p-level unless differently specified 
 

8 - Average number of exceptions – (standard deviation) - 
 average percentage of exception - 1000 replications – 250 forecasts 

Fitted models  
Figarch(1,d,0) Garch(1,1) Igarch(1,1) EWMA(0.97) 

2.606 2.704 2.270 1.152 
(1.641) (1.848) (1.516) (1.086) 1% VaR 
1.042 1.082 0.908 0.461 

12.771 12.867 11.671 11.449 
(3.548) (4.191) (3.221) (2.967) 5% VaR 
5.108 5.147 4.668 4.580 

 
9 - Frequency of less exceptions – 1000 replications – 250 forecasts 

Fitted models  
Figarch(1,d,0) Garch(1,1) Igarch(1,1) EWMA(0.97) 

1% VaR 0.243 0.278 0.319 0.946 
5% VaR 0.352 0.229 0.274 0.634 

 
10 - Tests - Frequency of accepting H0 – 1000 replications – 250 forecasts 

Fitted models  α Figarch(1,d,0) Garch(1,1) Igarch(1,1) EWMA(0.97) 

Test of Unconditional Coverage of Kupiec 
1% 0.995 0.989 0.997 1.000 1% VaR 5% 0.900 0.869 0.892 0.684 
1% 0.987 0.968 0.990 0.994 5% VaR 5% 0.935 0.881 0.942 0.961 

Test of Independence of Christoffersen-Lopez 
1% 0.779 0.780 0.744 0.623 1% VaR 5% 0.313 0.370 0.286 0.336 
1% 0.973 0.976 0.981 0.951 5% VaR 5% 0.909 0.924 0.923 0.852 

Test of Conditional Coverage of Christoffersen-Lopez 
1% 0.964 0.968 0.980 0.987 1% VaR 5% 0.756 0.737 0.734 0.621 
1% 0.970 0.960 0.977 0.966 5% VaR 5% 0.895 0.859 0.897 0.857 

 
11 - Lopez loss function – frequency of model selection 

1000 replications – 250 forecasts 
Fitted models  

Figarch(1,d,0) Garch(1,1) Igarch(1,1) EWMA(0.97) 
1% VaR 0.094 0.123 0.115 0.923 
5% VaR 0.094 0.065 0.038 0.803 

 
 
 
 
 



 
 
 
 
 
 

12 - Loss - Frequency of model selection – 1000 replications – 250 forecasts 
Fitted models  

Figarch(1,d,0) Garch(1,1) Igarch(1,1) EWMA(0.97) 

Loss Function 1: absolute value of return VaR measure ratio 
E 0.092 0.125 0.115 0.923 1% VaR T 0.052 0.193 0.472 0.283 
E 0.043 0.170 0.189 0.598 5% VaR T 0.052 0.193 0.472 0.283 

Loss Function 2: square return-VaR normalized by absolute VaR measure 
E 0.090 0.118 0.118 0.929 1% VaR T 0.066 0.339 0.000 0.595 
E 0.009 0.081 0.021 0.889 5% VaR T 0.034 0.234 0.000 0.732 

Loss Function 3: absolute of return-VaR 
E 0.089 0.119 0.115 0.932 1% VaR T 0.094 0.375 0.000 0.531 
E 0.010 0.105 0.068 0.817 5% VaR T 0.073 0.331 0.000 0.596 

Loss Function 1 + Loss Function 2 
E 0.093 0.124 0.115 0.923 1% VaR T 0.031 0.208 0.000 0.761 
E 0.036 0.163 0.164 0.637 5% VaR T 0.004 0.036 0.000 0.960 

Loss Function 1 + Loss Function 3 
E 0.092 0.125 0.115 0.923 1% VaR T 0.059 0.307 0.000 0.634 
E 0.034 0.163 0.167 0.636 5% VaR T 0.021 0.096 0.000 0.883 

Loss Function 2 + Loss Function 3 
E 0.089 0.118 0.114 0.934 1% VaR T 0.082 0.361 0.000 0.557 
E 0.009 0.093 0.049 0.849 5% VaR T 0.051 0.302 0.000 0.647 

Loss Function 1 + Loss Function 2 + Loss Function 3 
E 0.091 0.124 0.115 0.925 1% VaR T 0.065 0.324 0.000 0.611 
E 0.030 0.154 0.141 0.675 5% VaR T 0.020 0.166 0.000 0.814 

 



 
 
 
 
 
 

13 - Test of model comparison – 1000 replications – 250 forecasts 
Model comparison Frequencies of α 1-2 1-3 1-4 2-3 2-4 3-4 

VaR(1%) 
1% 0.552 0.606 0.785 0.510 0.778 0.724 
5% 0.553 0.607 0.787 0.510 0.778 0.725 Test is significant 

10% 0.554 0.608 0.787 0.510 0.778 0.726 
1% 0.478 0.711 0.925 0.747 0.919 0.870 
5% 0.479 0.712 0.925 0.747 0.919 0.870 Prefer 1st model 

10% 0.478 0.712 0.925 0.747 0.919 0.869 
1% 0.522 0.289 0.075 0.253 0.081 0.130 
5% 0.521 0.288 0.075 0.253 0.081 0.130 Prefer 2nd model 

10% 0.522 0.288 0.075 0.253 0.081 0.131 
VaR(5%) 

1% 0.848 0.877 0.955 0.778 0.948 0.914 
5% 0.851 0.882 0.958 0.782 0.954 0.917 Test is significant 

10% 0.852 0.888 0.958 0.785 0.956 0.920 
1% 0.560 0.673 0.711 0.622 0.679 0.592 
5% 0.559 0.670 0.709 0.620 0.676 0.592 Prefer 1st model 

10% 0.560 0.668 0.709 0.619 0.677 0.591 
1% 0.440 0.327 0.289 0.378 0.321 0.408 
5% 0.441 0.330 0.291 0.380 0.324 0.408 Prefer 2nd model 

10% 0.440 0.332 0.291 0.381 0.323 0.409 
VaR(10%) 

1% 0.910 0.939 0.983 0.860 0.977 0.970 
5% 0.916 0.944 0.985 0.864 0.980 0.973 Test is significant 

10% 0.919 0.948 0.986 0.864 0.980 0.974 
1% 0.575 0.649 0.635 0.610 0.598 0.513 
5% 0.575 0.648 0.636 0.611 0.598 0.513 Prefer 1st model 

10% 0.575 0.649 0.636 0.611 0.598 0.513 
1% 0.425 0.351 0.365 0.390 0.402 0.487 
5% 0.425 0.352 0.364 0.389 0.402 0.487 Prefer 2nd model 

10% 0.425 0.351 0.364 0.389 0.402 0.487 
VaR(25%) 

1% 0.893 0.953 0.979 0.854 0.987 0.983 
5% 0.894 0.953 0.983 0.855 0.988 0.985 Test is significant 

10% 0.897 0.953 0.984 0.855 0.989 0.987 
1% 0.560 0.594 0.612 0.546 0.579 0.534 
5% 0.559 0.594 0.610 0.546 0.578 0.534 Prefer 1st model 

10% 0.561 0.594 0.610 0.546 0.577 0.534 
1% 0.440 0.406 0.388 0.454 0.421 0.466 
5% 0.441 0.406 0.390 0.454 0.422 0.466 Prefer 2nd model 

10% 0.439 0.406 0.390 0.454 0.423 0.466 
 

Model reference:1 - Figarch(1,d,0); 2 - Garch(1,1); 3 - Igarch(1,1); 4 - EWMA(0.97) 
 
 
 
 
 
 
 



 
 
 
 
 
 

14 - Test of VaR model specification (null: VaR(p) is correctly specified) 
Frequency of accepting H0 – 1000 replications – 250 forecasts 

Fitted models VaR 
p-value 

Test 
α-value Figarch(1,d,0) Garch(1,1) Igarch(1,1) EWMA(0.97) 

1% 0.030 0.035 0.015 0.002 
5% 0.022 0.018 0.009 0.001 1% 

10% 0.020 0.017 0.008 0.001 
1% 0.456 0.415 0.312 0.279 
5% 0.326 0.300 0.235 0.180 5% 

10% 0.268 0.227 0.184 0.137 
1% 0.588 0.565 0.487 0.490 
5% 0.446 0.410 0.340 0.331 10% 

10% 0.347 0.329 0.271 0.258 
1% 0.750 0.722 0.690 0.698 
5% 0.581 0.543 0.525 0.528 25% 

10% 0.463 0.440 0.423 0.412 
 
 



 
 
 
 
 
 

DGP FIGARCH(0,d,0) d=0.4 - % represent VaR p-level unless differently specified 
 

15 - Average number of exceptions – (standard deviation) -  
average percentage of exceptions - 1000 replications – 250 forecasts 

Fitted models  
Figarch(0,d,0) Garch(1,1) Igarch(1,1) EWMA(0.97) 

2.571 2.893 2.493 1.712 
(1.665) (2.178) (1.867) (1.287) 1% VaR 
1.028 1.157 0.997 0.685 

12.593 12.642 11.557 11.394 
(3.505) (4.648) (3.809) (3.004) 5% VaR 
5.037 5.057 4.623 4.558 

 
16 - Frequency of less exceptions – 1000 replications – 250 forecasts 

Fitted models  
Figarch(0,d,0) Garch(1,1) Igarch(1,1) EWMA(0.97) 

1% VaR 0.318 0.329 0.435 0.702 
5% VaR 0.418 0.282 0.261 0.485 

 
17 – Tests - Frequency of accepting H0 – 1000 replications – 250 forecasts 

Fitted models  α Figarch(0,d,0) Garch(1,1) Igarch(1,1) EWMA(0.97) 

Test of Unconditional Coverage of Kupiec 
1% 0.988 0.963 0.989 1.000 1% VaR 5% 0.898 0.828 0.844 0.818 
1% 0.989 0.946 0.976 0.996 5% VaR 5% 0.935 0.832 0.882 0.952 

Test of Independence of Christoffersen-Lopez 
1% 0.774 0.767 0.749 0.597 1% VaR 5% 0.309 0.389 0.368 0.226 
1% 0.977 0.957 0.965 0.785 5% VaR 5% 0.910 0.853 0.873 0.592 

Test of Conditional Coverage of Christoffersen-Lopez 
1% 0.955 0.926 0.962 0.902 1% VaR 5% 0.749 0.695 0.720 0.590 
1% 0.978 0.930 0.953 0.855 5% VaR 5% 0.900 0.780 0.816 0.624 

 
18 - Lopez loss function – frequency of model selection 

1000 replications – 250 forecasts 
Fitted models  

Figarch(0,d,0) Garch(1,1) Igarch(1,1) EWMA(0.97) 
1% VaR 0.166 0.151 0.282 0.611 
5% VaR 0.166 0.101 0.188 0.545 

 
 
 
 
 



 
 
 
 
 
 

19 – Loss functions - Frequency of model selection – 1000 replications – 250 forecasts 
Fitted models  

Figarch(0,d,0) Garch(1,1) Igarch(1,1) EWMA(0.97) 

Loss Function 1: absolute value of return VaR measure ratio 
E 0.161 0.148 0.272 0.629 1% VaR T 0.025 0.113 0.405 0.457 
E 0.072 0.155 0.290 0.483 5% VaR T 0.025 0.113 0.405 0.457 

Loss Function 2: square return-VaR normalized by absolute VaR measure 
E 0.182 0.144 0.264 0.620 1% VaR T 0.188 0.361 0.005 0.446 
E 0.088 0.073 0.310 0.529 5% VaR T 0.159 0.333 0.003 0.505 

Loss Function 3: absolute of return-VaR 
E 0.171 0.141 0.286 0.612 1% VaR T 0.208 0.372 0.007 0.413 
E 0.077 0.081 0.390 0.452 5% VaR T 0.194 0.357 0.005 0.444 

Loss Function 1 + Loss Function 2 
E 0.161 0.149 0.274 0.626 1% VaR T 0.140 0.267 0.002 0.591 
E 0.072 0.145 0.290 0.493 5% VaR T 0.132 0.115 0.001 0.752 

Loss Function 1 + Loss Function 3 
E 0.164 0.148 0.277 0.621 1% VaR T 0.147 0.313 0.004 0.536 
E 0.071 0.147 0.304 0.478 5% VaR T 0.119 0.126 0.000 0.755 

Loss Function 2 + Loss Function 3 
E 0.172 0.144 0.284 0.610 1% VaR T 0.195 0.369 0.005 0.431 
E 0.076 0.071 0.361 0.492 5% VaR T 0.180 0.348 0.004 0.468 

Loss Function 1 + Loss Function 2 + Loss Function 3 

Fitted models  
Figarch(0,d,0) Garch(1,1) Igarch(1,1) EWMA(0.97) 

E 0.162 0.149 0.276 0.623 1% VaR T 0.157 0.340 0.005 0.498 
E 0.067 0.142 0.304 0.487 5% VaR T 0.138 0.241 0.001 0.620 

 



 
 
 
 
 
 

20 - Test of model comparison –description1000 replications – 250 forecasts 
Model comparison frequncies of α 1-2 1-3 1-4 2-3 2-4 3-4 

VaR(1%) 
1% 0.733 0.752 0.900 0.485 0.892 0.895 
5% 0.734 0.754 0.902 0.487 0.893 0.896 Test is significant 

10% 0.737 0.755 0.902 0.490 0.895 0.897 
1% 0.536 0.670 0.697 0.742 0.679 0.606 
5% 0.537 0.671 0.696 0.743 0.679 0.606 Prefer 1st model 

10% 0.536 0.672 0.696 0.743 0.679 0.605 
1% 0.464 0.330 0.303 0.258 0.321 0.394 
5% 0.463 0.329 0.304 0.257 0.321 0.394 Prefer 2nd model 

10% 0.464 0.328 0.304 0.257 0.321 0.395 
VaR(5%) 

1% 0.939 0.950 0.989 0.717 0.993 0.991 
5% 0.947 0.954 0.992 0.723 0.995 0.993 Test is significant 

10% 0.949 0.956 0.993 0.724 0.996 0.994 
1% 0.661 0.800 0.638 0.710 0.546 0.425 
5% 0.660 0.797 0.639 0.710 0.546 0.424 Prefer 1st model 

10% 0.661 0.796 0.639 0.709 0.545 0.425 
1% 0.339 0.200 0.362 0.290 0.454 0.575 
5% 0.340 0.203 0.361 0.290 0.454 0.576 Prefer 2nd model 

10% 0.339 0.204 0.361 0.291 0.455 0.575 
VaR(10%) 

1% 0.974 0.982 0.994 0.808 0.991 0.995 
5% 0.976 0.986 0.996 0.809 0.992 0.995 Test is significant 

10% 0.978 0.987 0.997 0.811 0.994 0.996 
1% 0.699 0.774 0.649 0.635 0.505 0.421 
5% 0.699 0.774 0.650 0.635 0.504 0.421 Prefer 1st model 

10% 0.698 0.774 0.650 0.635 0.505 0.422 
1% 0.301 0.226 0.351 0.365 0.495 0.579 
5% 0.301 0.226 0.350 0.365 0.496 0.579 Prefer 2nd model 

10% 0.302 0.226 0.350 0.365 0.495 0.578 
VaR(25%) 

1% 0.969 0.981 0.995 0.805 0.991 0.992 
5% 0.973 0.983 0.995 0.809 0.994 0.995 Test is significant 

10% 0.976 0.984 0.995 0.812 0.995 0.996 
1% 0.658 0.660 0.629 0.532 0.501 0.473 
5% 0.657 0.659 0.629 0.532 0.501 0.472 Prefer 1st model 

10% 0.657 0.660 0.629 0.532 0.502 0.473 
1% 0.342 0.340 0.371 0.468 0.499 0.527 
5% 0.343 0.341 0.371 0.468 0.499 0.528 Prefer 2nd model 

10% 0.343 0.340 0.371 0.468 0.498 0.527 
 

Model reference:1 - Figarch(0,d,0); 2 - Garch(1,1); 3 - Igarch(1,1); 4 - EWMA(0.97) 
 
 
 
 
 
 
 



 
 
 
 
 
 

21 - Test of VaR model specification (null: VaR(p) is correctly specified) 
Frequency of accepting H0 – 1000 replications – 250 forecasts 

Fitted models VaR 
p-value 

Test 
α-value Figarch(0,d,0) Garch(1,1) Igarch(1,1) EWMA(0.97) 

1% 0.037 0.023 0.016 0.010 
5% 0.024 0.014 0.009 0.005 1% 

10% 0.018 0.011 0.007 0.004 
1% 0.375 0.256 0.170 0.230 
5% 0.266 0.178 0.116 0.164 5% 

10% 0.220 0.140 0.094 0.134 
1% 0.543 0.396 0.293 0.407 
5% 0.410 0.277 0.200 0.269 10% 

10% 0.322 0.205 0.139 0.209 
1% 0.692 0.602 0.582 0.613 
5% 0.518 0.445 0.433 0.444 25% 

10% 0.427 0.356 0.338 0.365 
 
 



 
 
 
 
 
 

DGP FIGARCH(1,d,1) d=0.5 β=0.8 φ=0.3 - % represent VaR p-level unless differently specified 
 

22 - Average number of exceptions – (standard deviation) - 
 average percentage of exception - 1000 replications – 250 forecasts 

Fitted models  
Figarch(1,d,1) Garch(1,1) Igarch(1,1) EWMA(0.97) 

2.375 2.245 2.167 2.099 
(1.680) (1.670) (1.618) (1.458) 1% VaR 
0.950 0.898 0.867 0.840 

11.933 11.517 11.305 11.383 
(3.699) (3.893) (3.782) (3.273) 5% VaR 
4.773 4.607 4.522 4.553 

 
23 - Frequency of less exceptions – 1000 replications – 250 forecasts 

Fitted models  
Figarch(1,d,1) Garch(1,1) Igarch(1,1) EWMA(0.97) 

1% VaR 0.477 0.555 0.595 0.602 
5% VaR 0.573 0.385 0.386 0.355 

 
24 – Tests - Frequency of accepting H0 – 1000 replications – 250 forecasts 

Fitted models  α Figarch(1,d,1) Garch(1,1) Igarch(1,1) EWMA(0.97) 

Test of Unconditional Coverage of Kupiec 
1% 0.992 0.993 0.995 0.999 1% VaR 5% 0.882 0.858 0.854 0.867 
1% 0.979 0.974 0.974 0.985 5% VaR 5% 0.919 0.888 0.887 0.926 

Test of Independence of Christoffersen-Lopez 
1% 0.741 0.709 0.706 0.595 1% VaR 5% 0.303 0.310 0.300 0.211 
1% 0.977 0.958 0.959 0.714 5% VaR 5% 0.895 0.871 0.873 0.541 

Test of Conditional Coverage of Christoffersen-Lopez 
1% 0.965 0.962 0.966 0.842 1% VaR 5% 0.720 0.690 0.688 0.587 
1% 0.969 0.953 0.953 0.778 5% VaR 5% 0.852 0.806 0.806 0.556 

 
25 - Lopez loss function – frequency of model selection 

1000 replications – 250 forecasts 
Fitted models  

Figarch(1,d,1) Garch(1,1) Igarch(1,1) EWMA(0.97) 
1% VaR 0.245 0.212 0.334 0.470 
5% VaR 0.245 0.134 0.206 0.415 

 
 
 
 
 



 
 
 
 
 
 

26 – Loss functions - Frequency of model selection – 1000 replications – 250 forecasts 
Fitted models  

Figarch(1,d,1) Garch(1,1) Igarch(1,1) EWMA(0.97) 

Loss Function 1: absolute value of return VaR measure ratio 
E 0.229 0.214 0.324 0.494 1% VaR T 0.021 0.136 0.317 0.526 
E 0.102 0.158 0.285 0.455 5% VaR T 0.021 0.136 0.317 0.526 

Loss Function 2: square return-VaR normalized by absolute VaR measure 
E 0.252 0.202 0.319 0.488 1% VaR T 0.282 0.241 0.037 0.440 
E 0.164 0.127 0.357 0.352 5% VaR T 0.313 0.224 0.034 0.429 

Loss Function 3: absolute of return-VaR 
E 0.247 0.212 0.336 0.466 1% VaR T 0.253 0.239 0.040 0.468 
E 0.143 0.142 0.404 0.311 5% VaR T 0.278 0.234 0.036 0.452 

Loss Function 1 + Loss Function 2 
E 0.227 0.214 0.325 0.495 1% VaR T 0.271 0.187 0.021 0.521 
E 0.106 0.155 0.291 0.448 5% VaR T 0.213 0.224 0.067 0.496 

Loss Function 1 + Loss Function 3 
E 0.235 0.213 0.329 0.484 1% VaR T 0.247 0.192 0.025 0.536 
E 0.111 0.151 0.301 0.437 5% VaR T 0.199 0.192 0.024 0.585 

Loss Function 2 + Loss Function 3 
E 0.244 0.212 0.337 0.468 1% VaR T 0.268 0.238 0.037 0.457 
E 0.157 0.136 0.397 0.310 5% VaR T 0.290 0.234 0.036 0.440 

Loss Function 1 + Loss Function 2 + Loss Function 3 
E 0.234 0.212 0.329 0.486 1% VaR T 0.268 0.217 0.031 0.484 
E 0.113 0.154 0.309 0.424 5% VaR T 0.289 0.177 0.020 0.514 

 



 
 
 
 
 
 

27 - Test of model comparison – 1000 replications – 250 forecasts 
Model comparison Frequencies of α 1-2 1-3 1-4 2-3 2-4 3-4 

VaR(1%) 
1% 0.572 0.571 0.894 0.199 0.885 0.886 
5% 0.576 0.573 0.896 0.206 0.887 0.888 Test is significant 

10% 0.579 0.577 0.897 0.211 0.889 0.890 
1% 0.568 0.623 0.556 0.603 0.501 0.484 
5% 0.566 0.621 0.556 0.597 0.502 0.485 Prefer 1st model 

10% 0.566 0.622 0.555 0.592 0.502 0.485 
1% 0.432 0.377 0.444 0.397 0.499 0.516 
5% 0.434 0.379 0.444 0.403 0.498 0.515 Prefer 2nd model 

10% 0.434 0.378 0.445 0.408 0.498 0.515 
VaR(5%) 

1% 0.785 0.768 0.993 0.221 0.990 0.989 
5% 0.791 0.773 0.995 0.223 0.993 0.992 Test is significant 

10% 0.793 0.774 0.995 0.223 0.995 0.994 
1% 0.576 0.608 0.655 0.588 0.602 0.586 
5% 0.575 0.609 0.655 0.587 0.602 0.587 Prefer 1st model 

10% 0.574 0.609 0.655 0.587 0.602 0.587 
1% 0.424 0.392 0.345 0.412 0.398 0.414 
5% 0.425 0.391 0.345 0.413 0.398 0.413 Prefer 2nd model 

10% 0.426 0.391 0.345 0.413 0.398 0.413 
VaR(10%) 

1% 0.867 0.857 0.994 0.247 0.992 0.990 
5% 0.870 0.860 0.995 0.247 0.993 0.991 Test is significant 

10% 0.873 0.862 0.995 0.248 0.993 0.992 
1% 0.612 0.634 0.678 0.575 0.625 0.610 
5% 0.613 0.634 0.677 0.575 0.625 0.610 Prefer 1st model 

10% 0.614 0.635 0.677 0.573 0.625 0.610 
1% 0.388 0.366 0.322 0.425 0.375 0.390 
5% 0.387 0.366 0.323 0.425 0.375 0.390 Prefer 2nd model 

10% 0.386 0.365 0.323 0.427 0.375 0.390 
VaR(25%) 

1% 0.873 0.874 0.996 0.278 0.994 0.995 
5% 0.878 0.878 0.997 0.280 0.996 0.996 Test is significant 

10% 0.881 0.879 0.999 0.281 0.998 0.998 
1% 0.576 0.598 0.678 0.507 0.634 0.625 
5% 0.576 0.599 0.678 0.507 0.635 0.626 Prefer 1st model 

10% 0.575 0.598 0.677 0.505 0.633 0.624 
1% 0.424 0.402 0.322 0.493 0.366 0.375 
5% 0.424 0.401 0.322 0.493 0.365 0.374 Prefer 2nd model 

10% 0.425 0.402 0.323 0.495 0.367 0.376 
 

Model reference:1 - Figarch(.d.); 2 - Garch(1,1); 3 - Igarch(1,1); 4 - EWMA(0.97) 
 
 
 
 
 
 
 



 
 
 
 
 
 

28 - Test of VaR model specification (null: VaR(p) is correctly specified) 
Frequency of accepting H0 – 1000 replications – 250 forecasts 

Fitted models VaR 
p-value 

Test 
α-value Figarch(1,d,1) Garch(1,1) Igarch(1,1) EWMA(0.97) 

1% 0.055 0.045 0.037 0.033 
5% 0.043 0.031 0.029 0.027 1% 

10% 0.038 0.027 0.024 0.021 
1% 0.395 0.340 0.330 0.229 
5% 0.297 0.254 0.248 0.154 5% 

10% 0.256 0.207 0.200 0.116 
1% 0.562 0.493 0.477 0.333 
5% 0.409 0.375 0.360 0.220 10% 

10% 0.340 0.309 0.299 0.173 
1% 0.741 0.708 0.704 0.540 
5% 0.579 0.558 0.555 0.385 25% 

10% 0.486 0.466 0.467 0.303 
 
 
 



 
 
 
 
 
 

DGP FIGARCH(1,d,1) d=0.8 β=0.5 φ=0.05- % represent VaR p-level unless differently specified 
 

29 - Average number of exceptions – (standard deviation) -  
average percentage of exceptions - 1000 replications – 250 forecasts 

Fitted models  
Figarch(1,d,1) Garch(1,1) Igarch(1,1) EWMA(0.97) 

2.309 2.362 2.295 1.954 
(1.767) (1.725) (1.672) (1.481) 1% VaR 
0.924 0.945 0.918 0.782 

11.792 11.570 11.368 11.575 
(3.811) (4.084) (3.985) (3.390) 5% VaR 
4.717 4.628 4.547 4.630 

 
30 - Frequency of less exceptions – 1000 replications – 250 forecasts 

Fitted models  
Figarch(1,d,1) Garch(1,1) Igarch(1,1) EWMA(0.97) 

1% VaR 0.493 0.508 0.526 0.656 
5% VaR 0.575 0.324 0.312 0.440 

 
31 – Tests - Frequency of accepting H0 – 1000 replications – 250 forecasts 

Fitted models  α Figarch(1,d,1) Garch(1,1) Igarch(1,1) EWMA(0.97) 

Test of Unconditional Coverage of Kupiec 
1% 0.998 0.993 0.993 0.998 1% VaR 5% 0.889 0.859 0.863 0.846 
1% 0.983 0.970 0.968 0.980 5% VaR 5% 0.923 0.876 0.880 0.929 

Test of Independence of Christoffersen-Lopez 
1% 0.727 0.736 0.730 0.607 1% VaR 5% 0.293 0.331 0.318 0.233 
1% 0.968 0.963 0.962 0.781 5% VaR 5% 0.903 0.883 0.883 0.606 

Test of Conditional Coverage of Christoffersen-Lopez 
1% 0.971 0.960 0.965 0.893 1% VaR 5% 0.713 0.714 0.713 0.598 
1% 0.966 0.954 0.951 0.842 5% VaR 5% 0.870 0.818 0.819 0.628 

 
32 - Lopez loss function – frequency of model selection 

1000 replications – 250 forecasts 
Fitted models  

Figarch(1,d,1) Garch(1,1) Igarch(1,1) EWMA(0.97) 
1% VaR 0.227 0.192 0.291 0.547 
5% VaR 0.227 0.104 0.172 0.497 

 
 
 
 
 



 
 
 
 
 
 

33 – Loss functions - Frequency of model selection – 1000 replications – 250 forecasts 
Fitted models  

Figarch(1,d,1) Garch(1,1) Igarch(1,1) EWMA(0.97) 

Loss Function 1: absolute value of return VaR measure ratio 
E 0.213 0.189 0.289 0.566 1% VaR T 0.017 0.141 0.344 0.498 
E 0.100 0.156 0.301 0.443 5% VaR T 0.017 0.141 0.344 0.498 

Loss Function 2: square return-VaR normalized by absolute VaR measure 
E 0.214 0.178 0.274 0.591 1% VaR T 0.174 0.260 0.049 0.517 
E 0.131 0.105 0.319 0.445 5% VaR T 0.180 0.249 0.046 0.525 

Loss Function 3: absolute of return-VaR 
E 0.231 0.179 0.294 0.553 1% VaR T 0.167 0.260 0.049 0.524 
E 0.120 0.130 0.391 0.359 5% VaR T 0.169 0.262 0.047 0.522 

Loss Function 1 + Loss Function 2 
E 0.214 0.189 0.288 0.566 1% VaR T 0.164 0.205 0.035 0.596 
E 0.097 0.152 0.311 0.440 5% VaR T 0.182 0.223 0.056 0.539 

Loss Function 1 + Loss Function 3 
E 0.220 0.187 0.291 0.559 1% VaR T 0.141 0.217 0.044 0.598 
E 0.106 0.149 0.318 0.427 5% VaR T 0.162 0.181 0.032 0.625 

Loss Function 2 + Loss Function 3 
E 0.224 0.177 0.293 0.563 1% VaR T 0.173 0.260 0.048 0.519 
E 0.131 0.125 0.356 0.388 5% VaR T 0.177 0.258 0.048 0.517 

Loss Function 1 + Loss Function 2 + Loss Function 3 
E 0.219 0.187 0.290 0.561 1% VaR T 0.156 0.238 0.048 0.558 
E 0.108 0.147 0.321 0.424 5% VaR T 0.169 0.212 0.028 0.591 

 



 
 
 
 
 
 

34 - Test of model comparison - 1000 replications – 250 forecasts 
Model comparison Frequencies of α 1-2 1-3 1-4 2-3 2-4 3-4 

VaR(1%) 
1% 0.458 0.445 0.879 0.211 0.882 0.884 
5% 0.460 0.446 0.879 0.217 0.882 0.885 Test is significant 

10% 0.462 0.452 0.880 0.222 0.883 0.887 
1% 0.561 0.600 0.580 0.592 0.586 0.569 
5% 0.561 0.601 0.580 0.590 0.586 0.569 Prefer 1st model 

10% 0.561 0.602 0.581 0.590 0.586 0.570 
1% 0.439 0.400 0.420 0.408 0.414 0.431 
5% 0.439 0.399 0.420 0.410 0.414 0.431 Prefer 2nd model 

10% 0.439 0.398 0.419 0.410 0.414 0.430 
VaR(5%) 

1% 0.715 0.712 0.985 0.222 0.984 0.982 
5% 0.725 0.721 0.989 0.223 0.986 0.984 Test is significant 

10% 0.729 0.723 0.991 0.224 0.987 0.986 
1% 0.571 0.604 0.655 0.586 0.624 0.603 
5% 0.571 0.605 0.655 0.587 0.624 0.603 Prefer 1st model 

10% 0.568 0.603 0.654 0.585 0.623 0.601 
1% 0.429 0.396 0.345 0.414 0.376 0.397 
5% 0.429 0.395 0.345 0.413 0.376 0.397 Prefer 2nd model 

10% 0.432 0.397 0.346 0.415 0.377 0.399 
VaR(10%) 

1% 0.819 0.801 0.995 0.285 0.993 0.994 
5% 0.826 0.809 0.996 0.285 0.995 0.996 Test is significant 

10% 0.828 0.811 0.996 0.288 0.996 0.996 
1% 0.598 0.617 0.686 0.540 0.658 0.645 
5% 0.599 0.617 0.686 0.540 0.658 0.646 Prefer 1st model 

10% 0.598 0.615 0.686 0.542 0.658 0.646 
1% 0.402 0.383 0.314 0.460 0.342 0.355 
5% 0.401 0.383 0.314 0.460 0.342 0.354 Prefer 2nd model 

10% 0.402 0.385 0.314 0.458 0.342 0.354 
VaR(25%) 

1% 0.809 0.776 0.995 0.256 0.994 0.993 
5% 0.813 0.778 0.997 0.258 0.994 0.993 Test is significant 

10% 0.818 0.782 0.997 0.260 0.994 0.993 
1% 0.544 0.555 0.658 0.484 0.619 0.625 
5% 0.544 0.555 0.658 0.488 0.619 0.625 Prefer 1st model 

10% 0.544 0.555 0.658 0.485 0.619 0.625 
1% 0.456 0.445 0.342 0.516 0.381 0.375 
5% 0.456 0.445 0.342 0.512 0.381 0.375 Prefer 2nd model 

10% 0.456 0.445 0.342 0.515 0.381 0.375 
 

Model reference:1 - Figarch(1,d,1); 2 - Garch(1,1); 3 - Igarch(1,1); 4 - EWMA(0.97) 
 
 
 
 
 
 
 



 
 
 
 
 
 

35 - Test of VaR model specification (null: VaR(p) is correctly specified) 
Frequency of accepting H0 – 1000 replications – 250 forecasts 

Fitted models VaR 
p-value 

Test 
α-value Figarch(1,d,1) Garch(1,1) Igarch(1,1) EWMA(0.97) 

1% 0.058 0.048 0.044 0.026 
5% 0.044 0.036 0.034 0.023 1% 

10% 0.038 0.029 0.027 0.020 
1% 0.388 0.360 0.339 0.244 
5% 0.297 0.257 0.242 0.158 5% 

10% 0.245 0.213 0.201 0.125 
1% 0.551 0.511 0.497 0.308 
5% 0.426 0.386 0.370 0.217 10% 

10% 0.355 0.326 0.306 0.171 
1% 0.719 0.697 0.695 0.566 
5% 0.563 0.554 0.555 0.410 25% 

10% 0.473 0.458 0.463 0.327 
 
 
 



 
 
 
 
 
 

DGP FIGARCH(1,d,0) d=0.8 β=0.5 - % represent VaR p-level unless differently specified 
 

36 - Average number of exceptions – (standard deviation) - 
 average percentage of exception - 1000 replications – 250 forecasts 

Fitted models  
Figarch(1,d,0) Garch(1,1) Igarch(1,1) EWMA(0.97) 

2.331 2.296 2.200 1.833 
(1.553) (1.709) (1.631) (1.344) 1% VaR 
0.932 0.918 0.880 0.733 

11.799 11.537 11.309 11.353 
(3.329) (3.822) (3.661) (3.332) 5% VaR 
4.720 4.615 4.524 4.541 

 
37 - Frequency of less exceptions – 1000 replications – 250 forecasts 

Fitted models  
Figarch(1,d,0) Garch(1,1) Igarch(1,1) EWMA(0.97) 

1% VaR 0.433 0.512 0.546 0.691 
5% VaR 0.511 0.354 0.347 0.474 

 
38 – Tests - Frequency of accepting H0 – 1000 replications – 250 forecasts 

Fitted models  α Figarch(1,d,0) Garch(1,1) Igarch(1,1) EWMA(0.97) 

Test of Unconditional Coverage of Kupiec 
1% 0.996 0.993 0.994 0.998 1% VaR 5% 0.888 0.848 0.847 0.848 
1% 0.992 0.977 0.977 0.981 5% VaR 5% 0.935 0.883 0.894 0.924 

Test of Independence of Christoffersen-Lopez 
1% 0.751 0.749 0.744 0.625 1% VaR 5% 0.307 0.345 0.331 0.221 
1% 0.982 0.983 0.983 0.828 5% VaR 5% 0.930 0.924 0.925 0.661 

Test of Conditional Coverage of Christoffersen-Lopez 
1% 0.981 0.979 0.982 0.927 1% VaR 5% 0.737 0.727 0.727 0.622 
1% 0.984 0.967 0.968 0.865 5% VaR 5% 0.893 0.851 0.854 0.665 

 
39 - Lopez loss function – frequency of model selection 

1000 replications – 250 forecasts 
Fitted models  

Figarch(1,d,0) Garch(1,1) Igarch(1,1) EWMA(0.97) 
1% VaR 0.183 0.210 0.304 0.586 
5% VaR 0.183 0.120 0.170 0.527 

 
 
 
 
 



 
 
 
 
 
 

40 – Loss functions - Frequency of model selection – 1000 replications – 250 forecasts 
Fitted models  

Figarch(1,d,0) Garch(1,1) Igarch(1,1) EWMA(0.97) 

Loss Function 1: absolute value of return VaR measure ratio 
E 0.179 0.214 0.290 0.600 1% VaR T 0.015 0.151 0.325 0.509 
E 0.087 0.153 0.299 0.461 5% VaR T 0.015 0.151 0.325 0.509 

Loss Function 2: square return-VaR normalized by absolute VaR measure 
E 0.188 0.198 0.298 0.599 1% VaR T 0.182 0.225 0.054 0.539 
E 0.096 0.107 0.314 0.483 5% VaR T 0.185 0.218 0.052 0.545 

Loss Function 3: absolute of return-VaR 
E 0.193 0.204 0.306 0.580 1% VaR T 0.179 0.229 0.056 0.536 
E 0.096 0.133 0.396 0.375 5% VaR T 0.180 0.224 0.054 0.542 

Loss Function 1 + Loss Function 2 
E 0.178 0.213 0.292 0.600 1% VaR T 0.153 0.176 0.041 0.630 
E 0.090 0.148 0.303 0.459 5% VaR T 0.137 0.202 0.060 0.601 

Loss Function 1 + Loss Function 3 
E 0.180 0.212 0.297 0.594 1% VaR T 0.146 0.187 0.042 0.625 
E 0.094 0.140 0.317 0.449 5% VaR T 0.134 0.161 0.027 0.678 

Loss Function 2 + Loss Function 3 
E 0.189 0.201 0.305 0.588 1% VaR T 0.177 0.229 0.055 0.539 
E 0.094 0.117 0.364 0.425 5% VaR T 0.183 0.217 0.053 0.547 

Loss Function 1 + Loss Function 2 + Loss Function 3 
E 0.178 0.212 0.295 0.598 1% VaR T 0.160 0.212 0.049 0.579 
E 0.093 0.140 0.319 0.448 5% VaR T 0.155 0.173 0.039 0.633 

 



 
 
 
 
 
 

41 - Test of model comparison – 1000 replications – 250 forecasts 
Model comparison Frequencies of α 1-2 1-3 1-4 2-3 2-4 3-4 

VaR(1%) 
1% 0.467 0.461 0.870 0.198 0.863 0.863 
5% 0.474 0.467 0.872 0.213 0.863 0.866 Test is significant 

10% 0.475 0.471 0.875 0.219 0.868 0.866 
1% 0.576 0.633 0.643 0.611 0.606 0.579 
5% 0.574 0.632 0.641 0.601 0.606 0.579 Prefer 1st model 

10% 0.575 0.633 0.641 0.607 0.607 0.579 
1% 0.424 0.367 0.357 0.389 0.394 0.421 
5% 0.426 0.368 0.359 0.399 0.394 0.421 Prefer 2nd model 

10% 0.425 0.367 0.359 0.393 0.393 0.421 
VaR(5%) 

1% 0.715 0.709 0.987 0.215 0.984 0.985 
5% 0.722 0.715 0.989 0.218 0.984 0.985 Test is significant 

10% 0.723 0.717 0.991 0.218 0.988 0.988 
1% 0.520 0.574 0.655 0.633 0.641 0.614 
5% 0.519 0.572 0.654 0.633 0.641 0.614 Prefer 1st model 

10% 0.519 0.570 0.655 0.633 0.642 0.615 
1% 0.480 0.426 0.345 0.367 0.359 0.386 
5% 0.481 0.428 0.346 0.367 0.359 0.386 Prefer 2nd model 

10% 0.481 0.430 0.345 0.367 0.358 0.385 
VaR(10%) 

1% 0.790 0.767 0.991 0.264 0.993 0.993 
5% 0.793 0.771 0.993 0.265 0.996 0.996 Test is significant 

10% 0.794 0.773 0.994 0.266 0.996 0.996 
1% 0.571 0.581 0.701 0.557 0.683 0.672 
5% 0.571 0.582 0.702 0.558 0.684 0.673 Prefer 1st model 

10% 0.572 0.582 0.701 0.560 0.684 0.673 
1% 0.429 0.419 0.299 0.443 0.317 0.328 
5% 0.429 0.418 0.298 0.442 0.316 0.327 Prefer 2nd model 

10% 0.428 0.418 0.299 0.440 0.316 0.327 
VaR(25%) 

1% 0.780 0.769 0.998 0.251 0.997 0.997 
5% 0.784 0.772 0.998 0.252 0.997 0.997 Test is significant 

10% 0.785 0.773 0.998 0.253 0.998 0.997 
1% 0.537 0.541 0.680 0.522 0.655 0.659 
5% 0.536 0.539 0.680 0.524 0.655 0.659 Prefer 1st model 

10% 0.536 0.539 0.680 0.522 0.655 0.659 
1% 0.463 0.459 0.320 0.478 0.345 0.341 
5% 0.464 0.461 0.320 0.476 0.345 0.341 Prefer 2nd model 

10% 0.464 0.461 0.320 0.478 0.345 0.341 
 

Model reference:1 - Figarch(1,d,0); 2 - Garch(1,1); 3 - Igarch(1,1); 4 - EWMA(0.97) 
 
 
 
 
 
 
 



 
 
 
 
 
 

42 - Test of VaR model specification (null: VaR(p) is correctly specified) 
Frequency of accepting H0 – 1000 replications – 250 forecasts 

Fitted models VaR 
p-value 

Test 
α-value Figarch(1,d,0) Garch(1,1) Igarch(1,1) EWMA(0.97) 

1% 0.044 0.042 0.037 0.017 
5% 0.030 0.030 0.025 0.014 1% 

10% 0.025 0.027 0.021 0.012 
1% 0.396 0.378 0.356 0.219 
5% 0.307 0.294 0.275 0.152 5% 

10% 0.260 0.237 0.226 0.119 
1% 0.564 0.544 0.542 0.331 
5% 0.423 0.411 0.394 0.229 10% 

10% 0.359 0.334 0.327 0.164 
1% 0.725 0.718 0.715 0.579 
5% 0.587 0.575 0.573 0.400 25% 

10% 0.484 0.479 0.472 0.322 
 
 
 



 
 
 
 
 
 

DGP FIGARCH(0,d,0) d=0.8 - % represent VaR p-level unless differently specified 
 

43 - Average number of exceptions – (standard deviation) - 
average percentage of exceptions - 1000 replications – 250 forecasts 

Fitted models  
Figarch(0,d,0) Garch(1,1) Igarch(1,1) EWMA(0.97) 

2.272 2.380 2.280 3.036 
(1.496) (1.781) (1.727) (1.664) 1% VaR 
0.909 0.952 0.912 1.214 

11.918 11.582 11.278 11.449 
(3.368) (3.995) (3.782) (3.156) 5% VaR 
4.767 4.633 4.511 4.580 

 
44 - Frequency of less exceptions – 1000 replications – 250 forecasts 

Fitted models  
Figarch(0,d,0) Garch(1,1) Igarch(1,1) EWMA(0.97) 

1% VaR 0.584 0.589 0.637 0.365 
5% VaR 0.648 0.367 0.353 0.250 

 
45 – Tests - Frequency of accepting H0 – 1000 replications – 250 forecasts 

Fitted models  α Figarch(0,d,0) Garch(1,1) Igarch(1,1) EWMA(0.97) 

Test of Unconditional Coverage of Kupiec 
1% 0.998 0.989 0.990 0.990 1% VaR 5% 0.889 0.852 0.846 0.927 
1% 0.987 0.966 0.970 0.990 5% VaR 5% 0.935 0.888 0.895 0.940 

Test of Independence of Christoffersen-Lopez 
1% 0.743 0.741 0.739 0.568 1% VaR 5% 0.278 0.327 0.319 0.179 
1% 0.980 0.970 0.972 0.577 5% VaR 5% 0.917 0.908 0.908 0.377 

Test of Conditional Coverage of Christoffersen-Lopez 
1% 0.976 0.970 0.971 0.699 1% VaR 5% 0.723 0.707 0.711 0.551 
1% 0.976 0.954 0.956 0.655 5% VaR 5% 0.893 0.843 0.842 0.409 

 
46 - Lopez loss function – frequency of model selection 

1000 replications – 250 forecasts 
Fitted models  

Figarch(0,d,0) Garch(1,1) Igarch(1,1) EWMA(0.97) 
1% VaR 0.369 0.232 0.375 0.237 
5% VaR 0.369 0.163 0.249 0.219 

 
 
 
 
 



 
 
 
 
 
 

47 – Loss functions - Frequency of model selection – 1000 replications – 250 forecasts 
Fitted models  

Figarch(0,d,0) Garch(1,1) Igarch(1,1) EWMA(0.97) 

Loss Function 1: absolute value of return VaR measure ratio 
E 0.350 0.236 0.368 0.259 1% VaR T 0.001 0.056 0.241 0.702 
E 0.167 0.118 0.344 0.371 5% VaR T 0.001 0.056 0.241 0.702 

Loss Function 2: square return-VaR normalized by absolute VaR measure 
E 0.354 0.221 0.381 0.257 1% VaR T 0.487 0.284 0.016 0.213 
E 0.318 0.126 0.416 0.140 5% VaR T 0.553 0.265 0.014 0.168 

Loss Function 3: absolute of return-VaR 
E 0.376 0.235 0.403 0.199 1% VaR T 0.443 0.288 0.019 0.250 
E 0.288 0.121 0.474 0.117 5% VaR T 0.482 0.280 0.018 0.220 

Loss Function 1 + Loss Function 2 
E 0.351 0.237 0.369 0.256 1% VaR T 0.438 0.224 0.009 0.329 
E 0.187 0.120 0.350 0.343 5% VaR T 0.272 0.258 0.132 0.338 

Loss Function 1 + Loss Function 3 
E 0.355 0.235 0.377 0.246 1% VaR T 0.379 0.235 0.013 0.373 
E 0.186 0.120 0.362 0.332 5% VaR T 0.259 0.228 0.068 0.445 

Loss Function 2 + Loss Function 3 
E 0.376 0.227 0.391 0.219 1% VaR T 0.465 0.288 0.017 0.230 
E 0.294 0.121 0.468 0.117 5% VaR T 0.513 0.275 0.015 0.197 

Loss Function 1 + Loss Function 2 + Loss Function 3 
E 0.357 0.236 0.376 0.244 1% VaR T 0.445 0.274 0.013 0.268 
E 0.202 0.123 0.368 0.307 5% VaR T 0.483 0.224 0.005 0.288 

 



 
 
 
 
 
 

48 - Test of model comparison – 1000 replications – 250 forecasts 
Model comparison Frequencies of α 1-2 1-3 1-4 2-3 2-4 3-4 

VaR(1%) 
1% 0.620 0.620 0.957 0.183 0.954 0.954 
5% 0.625 0.624 0.959 0.191 0.956 0.956 Test is significant 

10% 0.626 0.624 0.962 0.196 0.957 0.958 
1% 0.513 0.552 0.369 0.628 0.360 0.343 
5% 0.515 0.553 0.368 0.618 0.360 0.343 Prefer 1st model 

10% 0.514 0.553 0.368 0.617 0.361 0.344 
1% 0.487 0.448 0.631 0.372 0.640 0.657 
5% 0.485 0.447 0.632 0.382 0.640 0.657 Prefer 2nd model 

10% 0.486 0.447 0.632 0.383 0.639 0.656 
VaR(5%) 

1% 0.886 0.884 0.980 0.250 0.978 0.978 
5% 0.891 0.887 0.982 0.252 0.982 0.983 Test is significant 

10% 0.894 0.891 0.984 0.255 0.985 0.986 
1% 0.573 0.610 0.610 0.628 0.549 0.531 
5% 0.574 0.609 0.610 0.631 0.550 0.531 Prefer 1st model 

10% 0.572 0.606 0.611 0.624 0.549 0.530 
1% 0.427 0.390 0.390 0.372 0.451 0.469 
5% 0.426 0.391 0.390 0.369 0.450 0.469 Prefer 2nd model 

10% 0.428 0.394 0.389 0.376 0.451 0.470 
VaR(10%) 

1% 0.943 0.944 0.991 0.268 0.990 0.989 
5% 0.946 0.946 0.991 0.269 0.992 0.992 Test is significant 

10% 0.948 0.948 0.992 0.269 0.992 0.992 
1% 0.650 0.665 0.752 0.578 0.675 0.670 
5% 0.649 0.665 0.752 0.580 0.674 0.670 Prefer 1st model 

10% 0.648 0.664 0.751 0.580 0.674 0.670 
1% 0.350 0.335 0.248 0.422 0.325 0.330 
5% 0.351 0.335 0.248 0.420 0.326 0.330 Prefer 2nd model 

10% 0.352 0.336 0.249 0.420 0.326 0.330 
VaR(25%) 

1% 0.947 0.949 0.992 0.275 0.993 0.992 
5% 0.950 0.952 0.993 0.276 0.995 0.994 Test is significant 

10% 0.952 0.954 0.993 0.276 0.995 0.994 
1% 0.603 0.614 0.800 0.527 0.744 0.739 
5% 0.603 0.614 0.800 0.529 0.745 0.739 Prefer 1st model 

10% 0.603 0.614 0.800 0.529 0.745 0.739 
1% 0.397 0.386 0.200 0.473 0.256 0.261 
5% 0.397 0.386 0.200 0.471 0.255 0.261 Prefer 2nd model 

10% 0.397 0.386 0.200 0.471 0.255 0.261 
 

Model reference:1 - Figarch(0,d,0); 2 - Garch(1,1); 3 - Igarch(1,1); 4 - EWMA(0.97) 
 
 
 
 
 
 
 



 
 
 
 
 
 

49 - Test of VaR model specification (null: VaR(p) is correctly specified) 
Frequency of accepting H0 – 1000 replications – 250 forecasts 

Fitted models VaR 
p-value 

Test 
α-value Figarch(0,d,0) Garch(1,1) Igarch(1,1) EWMA(0.97) 

1% 0.048 0.041 0.039 0.081 
5% 0.040 0.031 0.029 0.059 1% 

10% 0.036 0.026 0.024 0.045 
1% 0.370 0.286 0.272 0.220 
5% 0.291 0.221 0.204 0.131 5% 

10% 0.249 0.174 0.160 0.109 
1% 0.511 0.424 0.411 0.218 
5% 0.391 0.295 0.277 0.146 10% 

10% 0.321 0.239 0.233 0.114 
1% 0.699 0.656 0.654 0.366 
5% 0.557 0.507 0.507 0.227 25% 

10% 0.462 0.409 0.418 0.169 
 
 
 



 
 
 
 
 
 

 DGP FIGARCH(1,d,1) d=0.1 β=0.4 φ=0.5 - % represent VaR p-level unless differently specified 
 

50 - Average number of exceptions – (standard deviation) -  
average percentage of exceptions - 1000 replications – 250 forecasts 

Fitted models  
Figarch(1,d,1) Garch(1,1) Igarch(1,1) EWMA(0.97) 

2.694 2.498 2.435 1.228 
(1.749) (1.988) (1.470) (1.033) 1% VaR 
1.078 0.999 0.974 0.491 

12.787 11.742 11.273 11.184 
(3.683) (5.214) (3.083) (2.845) 5% VaR 
5.115 4.697 4.509 4.474 

 
51 - Frequency of less exceptions – 1000 replications – 250 forecasts 

Fitted models  
Figarch(1,d,1) Garch(1,1) Igarch(1,1) EWMA(0.97) 

1% VaR 0.257 0.368 0.254 0.848 
5% VaR 0.345 0.321 0.324 0.541 

 
52 – Tests - Frequency of accepting H0 – 1000 replications – 250 forecasts 

Fitted models  α Figarch(1,d,1) Garch(1,1) Igarch(1,1) EWMA(0.97) 

Test of Unconditional Coverage of Kupiec 
1% 0.988 0.981 0.999 1.000 1% VaR 5% 0.896 0.790 0.917 0.735 
1% 0.990 0.877 0.995 0.996 5% VaR 5% 0.925 0.804 0.943 0.949 

Test of Independence of Christoffersen-Lopez 
1% 0.796 0.802 0.727 0.586 1% VaR 5% 0.324 0.413 0.255 0.285 
1% 0.973 0.931 0.912 0.909 5% VaR 5% 0.919 0.862 0.805 0.781 

Test of Conditional Coverage of Christoffersen-Lopez 
1% 0.963 0.960 0.930 0.964 1% VaR 5% 0.765 0.764 0.714 0.580 
1% 0.976 0.871 0.940 0.931 5% VaR 5% 0.896 0.788 0.798 0.791 

 
53 - Lopez loss function – frequency of model selection 

1000 replications – 250 forecasts 
Fitted models  

Figarch(1,d,1) Garch(1,1) Igarch(1,1) EWMA(0.97) 
1% VaR 0.096 0.229 0.101 0.811 
5% VaR 0.096 0.158 0.057 0.689 

 
 
 
 
 



 
 
 
 
 
 

54 – Loss functions - Frequency of model selection – 1000 replications – 250 forecasts 
Fitted models  

Figarch(1,d,1) Garch(1,1) Igarch(1,1) EWMA(0.97) 

Loss Function 1: absolute value of return VaR measure ratio 
E 0.097 0.228 0.099 0.813 1% VaR T 0.007 0.242 0.676 0.075 
E 0.033 0.258 0.180 0.529 5% VaR T 0.007 0.242 0.676 0.075 

Loss Function 2: square return-VaR normalized by absolute VaR measure 
E 0.097 0.228 0.095 0.817 1% VaR T 0.101 0.370 0.002 0.527 
E 0.009 0.174 0.029 0.788 5% VaR T 0.047 0.314 0.001 0.638 

Loss Function 3: absolute of return-VaR 
E 0.094 0.216 0.094 0.833 1% VaR T 0.123 0.389 0.006 0.482 
E 0.010 0.211 0.076 0.703 5% VaR T 0.099 0.370 0.003 0.528 

Loss Function 1 + Loss Function 2 
E 0.097 0.227 0.099 0.814 1% VaR T 0.016 0.015 0.000 0.969 
E 0.033 0.251 0.165 0.551 5% VaR T 0.013 0.276 0.129 0.582 

Loss Function 1 + Loss Function 3 
E 0.097 0.228 0.099 0.813 1% VaR T 0.028 0.069 0.001 0.902 
E 0.032 0.254 0.172 0.542 5% VaR T 0.024 0.258 0.058 0.660 

Loss Function 2 + Loss Function 3 
E 0.094 0.216 0.093 0.834 1% VaR T 0.111 0.384 0.004 0.501 
E 0.010 0.187 0.056 0.747 5% VaR T 0.069 0.351 0.002 0.578 

Loss Function 1 + Loss Function 2 + Loss Function 3 
E 0.096 0.228 0.099 0.814 1% VaR T 0.050 0.300 0.002 0.648 
E 0.031 0.250 0.154 0.565 5% VaR T 0.013 0.012 0.000 0.975 

 



 
 
 
 
 
 

55 - Test of model comparison – 1000 replications – 250 forecasts 
Model comparison Frequencies of α 1-2 1-3 1-4 2-3 2-4 3-4 

VaR(1%) 
1% 0.396 0.810 0.821 0.835 0.813 0.756 
5% 0.396 0.811 0.822 0.835 0.814 0.761 Test is significant 

10% 0.397 0.813 0.822 0.837 0.814 0.762 
1% 0.624 0.669 0.892 0.593 0.812 0.856 
5% 0.624 0.670 0.892 0.593 0.812 0.854 Prefer 1st model 

10% 0.622 0.668 0.892 0.593 0.812 0.854 
1% 0.376 0.331 0.108 0.407 0.188 0.144 
5% 0.376 0.330 0.108 0.407 0.188 0.146 Prefer 2nd model 

10% 0.378 0.332 0.108 0.407 0.188 0.146 
VaR(5%) 

1% 0.644 0.974 0.976 0.984 0.990 0.812 
5% 0.653 0.976 0.977 0.988 0.993 0.819 Test is significant 

10% 0.654 0.976 0.978 0.988 0.994 0.819 
1% 0.620 0.781 0.764 0.685 0.668 0.483 
5% 0.617 0.780 0.765 0.683 0.669 0.485 Prefer 1st model 

10% 0.616 0.780 0.764 0.683 0.669 0.485 
1% 0.380 0.219 0.236 0.315 0.332 0.517 
5% 0.383 0.220 0.235 0.317 0.331 0.515 Prefer 2nd model 

10% 0.384 0.220 0.236 0.317 0.331 0.515 
VaR(10%) 

1% 0.746 0.993 0.991 0.988 0.993 0.929 
5% 0.748 0.996 0.994 0.992 0.994 0.937 Test is significant 

10% 0.751 0.996 0.995 0.993 0.996 0.938 
1% 0.618 0.790 0.725 0.685 0.624 0.405 
5% 0.616 0.787 0.722 0.684 0.624 0.406 Prefer 1st model 

10% 0.617 0.787 0.722 0.684 0.623 0.405 
1% 0.382 0.210 0.275 0.315 0.376 0.595 
5% 0.384 0.213 0.278 0.316 0.376 0.594 Prefer 2nd model 

10% 0.383 0.213 0.278 0.316 0.377 0.595 
VaR(25%) 

1% 0.707 0.996 0.987 0.995 0.990 0.980 
5% 0.711 0.996 0.989 0.996 0.992 0.981 Test is significant 

10% 0.711 0.996 0.989 0.997 0.992 0.981 
1% 0.605 0.691 0.655 0.597 0.557 0.427 
5% 0.603 0.691 0.654 0.597 0.555 0.426 Prefer 1st model 

10% 0.603 0.691 0.654 0.597 0.555 0.426 
1% 0.395 0.309 0.345 0.403 0.443 0.573 
5% 0.397 0.309 0.346 0.403 0.445 0.574 Prefer 2nd model 

10% 0.397 0.309 0.346 0.403 0.445 0.574 
 

Model reference:1 - Figarch(1,d,1); 2 - Garch(1,1); 3 - Igarch(1,1); 4 - EWMA(0.97) 
 
 
 
 
 
 
 



 
 
 
 
 
 

56 - Test of VaR model specification (null: VaR(p) is correctly specified) 
Frequency of accepting H0 – 1000 replications – 250 forecasts 

Fitted models VaR 
p-value 

Test 
α-value Figarch(1,d,1) Garch(1,1) Igarch(1,1) EWMA(0.97) 

1% 0.049 0.052 0.014 0.001 
5% 0.032 0.033 0.008 0.001 1% 

10% 0.022 0.021 0.005 0.001 
1% 0.471 0.417 0.217 0.243 
5% 0.350 0.304 0.136 0.155 5% 

10% 0.281 0.234 0.108 0.132 
1% 0.644 0.572 0.349 0.437 
5% 0.468 0.416 0.232 0.280 10% 

10% 0.369 0.319 0.171 0.216 
1% 0.747 0.663 0.584 0.667 
5% 0.560 0.512 0.425 0.483 25% 

10% 0.473 0.423 0.342 0.379 
 
 
 



 
 
 
 
 
 

DGP GARCH(1.)1 β=0.65 α=0.3 - % represent VaR p-level unless differently specified 
 

57 - Average number of exceptions - standard deviation -  
average percentage of exceptions - 1000 replications – 250 forecasts 

Fitted models  
Figarch(0,d,0) Garch(1,1) Igarch(1,1) EWMA(0.97) 

2.270 2.606 2.231 1.886 
(1.473) (1.652) (1.480) (1.286) 1% VaR 
0.908 1.042 0.892 0.754 

11.656 12.556 11.528 11.598 
(3.168) (3.539) (3.208) (3.028) 5% VaR 
4.662 5.022 4.611 4.639 

 
58 - Frequency of less exceptions – 1000 replications – 250 forecasts 

Fitted models  
Figarch(0,d,0) Garch(1,1) Igarch(1,1) EWMA(0.97) 

1% VaR 0.498 0.355 0.520 0.722 
5% VaR 0.599 0.279 0.454 0.494 

 
59 – Tests - Frequency of accepting H0 – 1000 replications – 250 forecasts 

Fitted models  α Figarch(0,d,0) Garch(1,1) Igarch(1,1) EWMA(0.97) 

Test of Unconditional Coverage of Kupiec 
1% 0.997 0.993 0.997 1.000 1% VaR 5% 0.882 0.893 0.876 0.862 
1% 0.994 0.989 0.993 0.995 5% VaR 5% 0.950 0.935 0.945 0.948 

Test of Independence of Christoffersen-Lopez 
1% 0.769 0.791 0.755 0.634 1% VaR 5% 0.303 0.343 0.303 0.215 
1% 0.973 0.975 0.973 0.820 5% VaR 5% 0.912 0.917 0.918 0.647 

Test of Conditional Coverage of Christoffersen-Lopez 
1% 0.982 0.972 0.982 0.920 1% VaR 5% 0.757 0.768 0.744 0.627 
1% 0.980 0.978 0.979 0.864 5% VaR 5% 0.898 0.896 0.899 0.684 

 
60 - Lopez loss function – frequency of model selection 

1000 replications – 250 forecasts 
Fitted models  

Figarch(0,d,0) Garch(1,1) Igarch(1,1) EWMA(0.97) 
1% VaR 0.208 0.130 0.277 0.617 
5% VaR 0.208 0.053 0.167 0.572 

 
 
 
 
 



 
 
 
 
 
 

61 – Loss functions - Frequency of model selection – 1000 replications – 250 forecasts 
Fitted models  

Figarch(0,d,0) Garch(1,1) Igarch(1,1) EWMA(0.97) 

Loss Function 1: absolute value of return VaR measure ratio 
E 0.205 0.125 0.255 0.647 1% VaR T 0.127 0.017 0.331 0.525 
E 0.184 0.078 0.257 0.481 5% VaR T 0.127 0.017 0.331 0.525 

Loss Function 2: square return-VaR normalized by absolute VaR measure 
E 0.199 0.122 0.258 0.653 1% VaR T 0.001 0.536 0.000 0.463 
E 0.165 0.017 0.301 0.517 5% VaR T 0.001 0.527 0.000 0.472 

Loss Function 3: absolute of return-VaR 
E 0.211 0.120 0.282 0.619 1% VaR T 0.001 0.545 0.000 0.454 
E 0.224 0.017 0.377 0.382 5% VaR T 0.001 0.534 0.000 0.465 

Loss Function 1 + Loss Function 2 
E 0.203 0.126 0.258 0.645 1% VaR T 0.000 0.431 0.001 0.568 
E 0.186 0.074 0.256 0.484 5% VaR T 0.011 0.270 0.000 0.719 

Loss Function 1 + Loss Function 3 
E 0.205 0.130 0.265 0.632 1% VaR T 0.001 0.453 0.000 0.546 
E 0.197 0.071 0.270 0.462 5% VaR T 0.000 0.288 0.000 0.712 

Loss Function 2 + Loss Function 3 
E 0.207 0.119 0.279 0.627 1% VaR T 0.001 0.538 0.000 0.461 
E 0.193 0.014 0.356 0.437 5% VaR T 0.001 0.533 0.000 0.466 

Loss Function 1 + Loss Function 2 + Loss Function 3 
E 0.207 0.129 0.264 0.632 1% VaR T 0.001 0.506 0.000 0.493 
E 0.195 0.066 0.268 0.471 5% VaR T 0.000 0.420 0.001 0.579 

 



 
 
 
 
 
 

62 - Test of model comparison – 1000 replications – 250 forecasts 
Model comparison Frequencies of α 1-2 1-3 1-4 2-3 2-4 3-4 

VaR(1%) 
1% 0.484 0.269 0.864 0.491 0.867 0.872 
5% 0.493 0.274 0.867 0.495 0.871 0.877 Test is significant 

10% 0.495 0.277 0.868 0.496 0.875 0.879 
1% 0.273 0.524 0.604 0.741 0.696 0.599 
5% 0.274 0.522 0.606 0.741 0.697 0.600 Prefer 1st model 

10% 0.275 0.523 0.606 0.740 0.695 0.600 
1% 0.727 0.476 0.396 0.259 0.304 0.401 
5% 0.726 0.478 0.394 0.259 0.303 0.400 Prefer 2nd model 

10% 0.725 0.477 0.394 0.260 0.305 0.400 
VaR(5%) 

1% 0.738 0.348 0.992 0.748 0.992 0.988 
5% 0.741 0.348 0.993 0.754 0.995 0.992 Test is significant 

10% 0.744 0.349 0.995 0.757 0.995 0.994 
1% 0.348 0.540 0.637 0.678 0.727 0.635 
5% 0.350 0.540 0.637 0.675 0.726 0.634 Prefer 1st model 

10% 0.349 0.542 0.637 0.674 0.726 0.634 
1% 0.652 0.460 0.363 0.322 0.273 0.365 
5% 0.650 0.460 0.363 0.325 0.274 0.366 Prefer 2nd model 

10% 0.651 0.458 0.363 0.326 0.274 0.366 
VaR(10%) 

1% 0.813 0.368 0.995 0.812 0.991 0.993 
5% 0.821 0.376 0.995 0.817 0.994 0.993 Test is significant 

10% 0.825 0.378 0.995 0.821 0.994 0.993 
1% 0.391 0.563 0.701 0.632 0.744 0.677 
5% 0.391 0.561 0.701 0.630 0.743 0.677 Prefer 1st model 

10% 0.390 0.558 0.701 0.631 0.743 0.677 
1% 0.609 0.438 0.299 0.368 0.256 0.323 
5% 0.609 0.439 0.299 0.370 0.257 0.323 Prefer 2nd model 

10% 0.610 0.442 0.299 0.369 0.257 0.323 
VaR(25%) 

1% 0.794 0.378 0.997 0.797 0.995 0.997 
5% 0.798 0.382 0.999 0.800 0.998 0.998 Test is significant 

10% 0.805 0.384 0.999 0.804 0.998 0.998 
1% 0.458 0.540 0.703 0.548 0.720 0.686 
5% 0.461 0.542 0.702 0.546 0.719 0.685 Prefer 1st model 

10% 0.461 0.542 0.702 0.546 0.719 0.685 
1% 0.542 0.460 0.297 0.452 0.280 0.314 
5% 0.539 0.458 0.298 0.454 0.281 0.315 Prefer 2nd model 

10% 0.539 0.458 0.298 0.454 0.281 0.315 
 

Model reference:1 - Figarch(.d.); 2 - Garch(1,1); 3 - Igarch(1,1); 4 - EWMA(0.97) 
 
 
 
 
 
 
 



 
 
 
 
 
 

63 - Test of VaR model specification (null: VaR(p) is correctly specified) 
Frequency of accepting H0 – 1000 replications – 250 forecasts 

Fitted models VaR 
p-value 

Test 
α-value Figarch(0,d,0) Garch(1,1) Igarch(1,1) EWMA(0.97) 

1% 0.052 0.092 0.049 0.029 
5% 0.041 0.073 0.039 0.025 1% 

10% 0.034 0.065 0.033 0.022 
1% 0.350 0.450 0.335 0.213 
5% 0.266 0.359 0.243 0.150 5% 

10% 0.213 0.303 0.207 0.114 
1% 0.531 0.578 0.517 0.300 
5% 0.395 0.464 0.383 0.198 10% 

10% 0.317 0.384 0.306 0.143 
1% 0.707 0.726 0.698 0.502 
5% 0.554 0.570 0.546 0.342 25% 

10% 0.446 0.473 0.449 0.257 
 
 
 

  



8.2 Tables and Graphs on Estimation and Identification
of aggregated data

We report here the tables of parameter estimates and model identification based
on information criteria for the aggregated data series. We also present the kernel
density estimates of the parameters.
For each of the five data generating processes, indicated at the bottom of

the page, tables 64, 66, 68, 70 and 72 include the Quasi Maximum Likelohood
estimates of the five estimated models listed in the first rows. For each parameter
we report the Montecarlo average, the standard deviation and the Root Mean
Squared Error.
Tables 65, 67, 69, 71 and 73 report the frequency of model selection based on

the information critria of Akaike, Hannan-Quinn, Schwarz and Shibata, together
with the log-likelihoo and the four information criteria in the meantime.
The graphs are also grouped by DGP and report the Kernel density estimates

of the different parameters.
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DGP FIGARCH(1,d,1) – d=0.8 β=0.5 φ=0.05 – estimates only on aggregated data 
 

64 - QML estimates – 2000 aggregated data – 1000 replications – Mean (s.d.) [RMSE] 
Fitted models  Figarch(1,d,1) Figarch(1,d,0) Figarch(0,d,0) Garch(1,1) Igarch(1,1) 

0.00010 0.00016 -0.00031 -0.00008 -0.00010 
0.03203 0.03214 0.03471 0.03175 0.03215 µ 
0.03201 0.03212 0.03469 0.03173 0.03213 
0.25777 0.28008 0.36281 0.23645 0.22373 
0.09034 0.09812 0.11246 0.09283 0.09106 ω 
0.26371 0.28733 0.37029   
0.77591 0.77020 0.56290   
0.12076 0.14085 0.09158   d 
0.12308 0.14390 0.25415   
0.05871   0.40185 0.56070 
0.06050   0.10245 0.10502 φ - α 
0.06109     
0.36289 0.30630  0.56186  
0.14277 0.16989  0.10380  β 
0.19789 0.25759    

 
65 - Frequency of model selection – 2000 aggregated observations – 1000 replications 

Fitted models Criteria Figarch(1,d,1) Figarch(1,d,0) Figarch(0,d,0) Garch(1,1) Igarch(1,1) 
Akaike 0.190 0.498 0.084 0.166 0.062 

Hannan-Quinn 0.071 0.497 0.134 0.147 0.151 
Schwarz 0.389 0.399 0.030 0.168 0.014 
Shibata 0.190 0.498 0.084 0.167 0.061 

LL 0.662 0.173 0.000 0.164 0.001 
4 IC 0.190 0.498 0.084 0.166 0.062 

 



 
 
 
 
 
 

DGP FIGARCH(1,d,1) – d=0.8 β=0.5 φ=0.3 – estimates only on aggregated data 
 

66 - QML estimates – 2000 aggregated data – 1000 replications – Mean (s.d.) [RMSE] 
Fitted models  Figarch(1,d,1) Figarch(1,d,0) Figarch(0,d,0) Garch(1,1) Igarch(1,1) 

0.00100 0.00120 0.00153 0.00171 0.00150 
0.03962 0.03994 0.04140 0.03891 0.04026 µ 
0.03962 0.03994 0.04141 0.03893 0.04026 
0.25804 0.33523 0.42857 0.31402 0.29518 
0.13560 0.17301 0.17444 0.17180 0.17163 ω 
0.28265 0.36835 0.45343   
0.79462 0.81233 0.63521   
0.26084 0.16972 0.14274   d 
0.26076 0.17008 0.21797   
0.20869   0.46606 0.45021 
0.18782   0.15529 0.16284 φ - α 
0.20876     
0.43239 0.25356  0.45422  
0.19726 0.22189  0.15912  β 
0.20843 0.33154    

 
67 - Frequency of model selection – 2000 aggregated observations – 1000 replications 

Fitted models Criteria Figarch(1,d,1) Figarch(1,d,0) Figarch(0,d,0) Garch(1,1) Igarch(1,1) 
Akaike 0.378 0.225 0.102 0.222 0.073 

Hannan-Quinn 0.256 0.182 0.202 0.211 0.149 
Schwarz 0.536 0.184 0.032 0.218 0.030 
Shibata 0.378 0.225 0.102 0.222 0.073 

LL 0.676 0.095 0.003 0.223 0.003 
4 IC 0.378 0.225 0.102 0.222 0.073 

 



 
 
 
 
 
 

DGP FIGARCH(1,d,1) – d=0.8 β=0.5 φ=0 – estimates only on aggregated data 
 

68 - QML estimates – 2000 aggregated data – 1000 replications – Mean (s.d.) [RMSE] 
Fitted models  Figarch(1,d,1) Figarch(1,d,0) Figarch(0,d,0) Garch(1,1) Igarch(1,1) 

0.00165 0.00163 0.00188 0.00137 0.00153 
0.03302 0.03330 0.03449 0.03254 0.03310 µ 
0.03305 0.03332 0.03452 0.03256 0.03312 
0.22918 0.27255 0.36017 0.23088 0.21694 
0.08860 0.09532 0.11183 0.09084 0.08614 ω 
0.23640 0.27930 0.36757   
0.79122 0.77549 0.56146   
0.14726 0.14049 0.09312   d 
0.14745 0.14255 0.25606   
0.11348   0.38744 0.57265 
0.12680   0.09584 0.10501 φ - α 
0.17011     
0.43189 0.31831  0.57354  
0.16916 0.18316  0.10390  β 
0.18228 0.25792    

 
69 - Frequency of model selection – 2000 aggregated observations – 1000 replications 

Fitted models Criteria Figarch(1,d,1) Figarch(1,d,0) Figarch(0,d,0) Garch(1,1) Igarch(1,1) 
Akaike 0.283 0.444 0.071 0.150 0.053 

Hannan-Quinn 0.163 0.470 0.120 0.138 0.110 
Schwarz 0.458 0.348 0.025 0.154 0.016 
Shibata 0.285 0.443 0.070 0.150 0.053 

LL 0.700 0.149 0.000 0.152 0.000 
4 IC 0.283 0.444 0.071 0.150 0.053 

 



 
 
 
 
 
 

DGP FIGARCH(1,d,1) – d=0.4 β=0.3 φ=0.2 – estimates only on aggregated data 
 

70 - QML estimates – 2000 aggregated data – 1000 replications – Mean (s.d.) [RMSE] 
Fitted models  Figarch(1,d,1) Figarch(1,d,0) Figarch(0,d,0) Garch(1,1) Igarch(1,1) 

0.00097 0.00098 0.00104 0.00104 0.00105 
0.03327 0.03336 0.03340 0.03334 0.03404 µ 
0.03327 0.03336 0.03340 0.03334 0.03404 
0.20273 0.31184 0.43336 0.13105 0.05639 
0.10371 0.11526 0.12932 0.09154 0.04883 ω 
0.21884 0.32307 0.44265   
0.32851 0.29031 0.22327   
0.10450 0.09729 0.04623   d 
0.12657 0.14659 0.18267   
0.22204   0.11977 0.86859 
0.12536   0.04315 0.05674 φ - α 
0.12722     
0.38664 0.12814  0.82572  
0.15867 0.10463  0.07622  β 
0.18072 0.20118    

 
71 - Frequency of model selection – 2000 aggregated observations – 1000 replications 

Fitted models Criteria Figarch(1,d,1) Figarch(1,d,0) Figarch(0,d,0) Garch(1,1) Igarch(1,1) 
Akaike 0.341 0.314 0.197 0.139 0.009 

Hannan-Quinn 0.173 0.324 0.339 0.148 0.016 
Schwarz 0.584 0.213 0.079 0.120 0.004 
Shibata 0.341 0.314 0.197 0.139 0.009 

LL 0.818 0.060 0.000 0.120 0.002 
4 IC 0.341 0.314 0.197 0.139 0.009 

 



 
 
 
 
 
 

DGP FIGARCH(1,d,1) – d=0.4 β=0.3 φ=0 – estimates only on aggregated data 
 

72 - QML estimates – 2000 aggregated data – 1000 replications – Mean (s.d.) [RMSE] 
Fitted models  Figarch(1,d,1) Figarch(1,d,0) Figarch(0,d,0) Garch(1,1) Igarch(1,1) 

-0.00099 -0.00091 -0.00071 -0.00089 -0.00088 
0.02985 0.02998 0.03008 0.02988 0.03029 µ 
0.02985 0.02998 0.03007 0.02987 0.03029 
0.18721 0.32086 0.46797 0.10599 0.02968 
0.09307 0.10479 0.11640 0.07272 0.02271 ω 
0.20014 0.32803 0.47251   
0.29960 0.25335 0.19294   
0.08482 0.06894 0.03795   d 
0.13141 0.16203 0.21050   
0.24367   0.09594 0.90282 
0.12175   0.03142 0.03998 φ - α 
0.27237     
0.41204 0.12287  0.85146  
0.15374 0.07730  0.06428  β 
0.19018 0.19325    

 
73 - Frequency of model selection – 2000 aggregated observations – 1000 replications 

Fitted models Criteria Figarch(1,d,1) Figarch(1,d,0) Figarch(0,d,0) Garch(1,1) Igarch(1,1) 
Akaike 0.367 0.279 0.155 0.193 0.006 

Hannan-Quinn 0.167 0.308 0.298 0.206 0.021 
Schwarz 0.590 0.188 0.051 0.171 0.000 
Shibata 0.367 0.280 0.154 0.193 0.006 

LL 0.782 0.062 0.000 0.156 0.000 
4 IC 0.367 0.279 0.155 0.193 0.006 

 
 



DGP - FIGARCH(0.3,0.4,0.2)

Graph : long memory parameter estimates

Graph : estimates of the FIGARCH short memory parameters

Graph : parameters of GARCH and IGARCH
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DGP - FIGARCH(0.3,0.4,0)

Graph : long memory parameter estimates

Graph : estimates of the FIGARCH short memory parameters

Graph : parameters of GARCH and IGARCH
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Graph : constant in variance
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DGP - FIGARCH(0.5,0.8,0.3)

Graph : long memory parameter estimates

Graph : estimates of the FIGARCH short memory parameters

Graph : parameters of GARCH and IGARCH
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Graph : in mean constant

Graph : constant in variance
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DGP - FIGARCH(0.5,0.8,0.05)

Graph : long memory parameter estimates

Graph : estimates of the FIGARCH short memory parameters

Graph : parameters of GARCH and IGARCH
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Graph : in mean constant

Graph : constant in variance

-2

0

2

4

6

8

10

12

14

-0.15 -0.12 -0.09 -0.06 -0.03 0.00 0.03 0.06 0.09 0.12 0.15

(1,d,1)
(1,d,0)
(0,d,0)
Garch
Igarch

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

(1,d,1)
(1,d,0)
(0,d,0)
Garch
Igarch



DGP - FIGARCH(0.5,0.8,0)

Graph : long memory parameter estimates

Graph : estimates of the FIGARCH short memory parameters

Graph : parameters of GARCH and IGARCH

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

d - (1,d,1)
d - (1,d,0)
d - (0,d,0)

-1

0

1

2

3

4

5

6

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

beta - (1,d,1)
beta - (1,d,0)
psi - (1,d,1)

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

alfa - Garch
beta - Igarch
beta - Garch



Graph : in mean constant

Graph : constant in variance
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8.3 Tables on Value-at-Risk comparison of aggregated data

In the following pages you will find the tables for the Montecarlo described in
section 5. The tables are grouped by DGP, listed in the first row at the beginnig
of each group. In the next rows we just describe table contents:

• Tables 74, 81, 88, 95, 102, 109, 116, 123, 130, 137: the tables list for
each of the six model considered and two level of Value-at-Risk coverage
(1% and 5%) the average number of exceptions, its standard deviation
and the average percentage of exceptions for an experiment conducted on
1000 replications and for a sample of 250 1-day-ahead forecasts, using the
backtesting approach.

• Tables 75, 82, 89, 96, 103, 110, 117, 124, 131, 138: in this case for the
models and VaR coverage levels we report frequency of model selction
based on counting axceptions, a model is preferred to the others when
its number of exceptions is lower. Given that the exceptions are integer
numbers the frequencies sum may be higher than 1.

• Tables 76, 83, 90, 97, 104, 111, 118, 125, 132, 139: these tables report the
frequencies of accepting the null hypothesis of the tests of unconditional
coverage of Kupiec (1995 - null is correct coverage), the test of indepen-
dence of Christoffersen-Lopez (1998 - null is independence) and the test of
conditional coverage of Christoffersen-Lopez (1998 - null is again correct
coverage).

• Tables 77, 84, 91, 98, 105, 112, 119, 126, 133, 140: these are the first tables
on the loss funcions results, they report the frequency of model selection
based on the application of the loss function suggested by Lopez (1999)
that focus only on exceptions. Given that the parameters of GARCH(1,1)
and IGARCH(1,1) are often very close this cause an identical loss func-
tion for the two models, same exceptions and same forecast, therefore the
frequencies sum may be higher than 1.

• Tables 78, 85, 92, 99, 106, 113, 120, 127, 134, 141: in these tables we report
the frequencies of selection based on our alternative loss functions, that
focus on exceptions (rows labelled with an E) and on the whole backtesting
sample, 250 observations (rows labelled with a T). Again the closeness
of GARCH and IGARCH may cause a sum of frequencies over 1. The
results are grouped by loss functions and combination of loss functions as
described in the italics rows. Models are identified by a number, the leged
is at the bottom of the table.

• Tables 79, 86, 93, 100, 107, 114, 121, 128, 135, 142: in these tables and in
the next group we deal with the test of Christoffersen et al. (2001). These
tables report the result of the test of model comparison and consider four
different Value-at-Risk coverage. For each one of these levels of confidence
the tables report the test results for a pairwise comparison between models,
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using the legend at the bottom of the table. For each level and comparison
we reported the frequence of accepting the test (null hypothesis is the
the two models do not equally match the efficiency moment condition of
Christoffersen et al. 2001, this is implied by a significat test statistic)
and then usign the sign of the test statistic we report the percentage of
preference of the first or of the second model. The percentage is computed
using only the cases when the test null hypothesis is accepted. In all
cases we considered three level of confidence for the test statistics, the
percentage indicated with test α-value. Models are identified by a number,
the leged is at the bottom of the previuos tables.

• Tables 80, 87, 94, 101, 108, 115, 122, 129, 136, 143: in these last group of
tables we report the second test suggested by Christoffersen et al. (2001)
the test on Value-at-Risk specification. In these tables we report for the
different model considered at the four level of VaR confidence used in the
previuos tables the frequency of accepting the null hypothesis of the test
(null is that the VaR is correctly specified). As in the previuos case we
report three level of confidence for the test statistic. Models are identified
by a number, the leged is at the bottom of the previuos tables.

• After the last table of each group we report the preference ordering among
the different models (if it exist) derived from the result of the model com-
parison test.
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AGGREGATED ESTIMATES NON-AGGREGATED COMPARISON 
 

DGP FIGARCH(1,d,0) d=0.4 β=0.3  - % represent VaR p-level unless differently specified 
 

74 - Average number of exceptions (standard deviation) mean percentage 
1000 replications – 250 daily forecast 

Fitted models  1 2 3 4 5 6 
3.521 2.387 3.376 3.751 5.154 3.309 

(1.954) (1.379) (1.868) (1.947) (2.689) (1.995) 1% VaR 
1.408 0.955 1.350 1.500 2.062 1.324 

11.372 11.461 12.333 13.202 16.268 12.342 
(3.647) (2.967) (3.469) (3.554) (4.872) (4.020) 5% VaR 
4.549 4.584 4.933 5.281 6.507 4.937 

 
75 - Frequency of less exceptions - 1000 replications – 250 daily forecast 

Fitted models  1 2 3 4 5 6 
1% VaR 0.248 0.690 0.280 0.201 0.069 0.364 
5% VaR 0.362 0.579 0.239 0.133 0.064 0.203 

 
76 - TESTS – frequencies of accepting the null hypothesis - 1000 replications – 250 daily forecast 

Fitted models  α 1 2 3 4 5 6 
Test of unconditional coverage: Null 

1% 0.964 0.999 0.978 0.967 0.824 0.968 1% VaR 5% 0.898 0.929 0.911 0.892 0.712 0.882 
1% 0.971 0.992 0.992 0.987 0.896 0.974 5% VaR 5% 0.900 0.958 0.939 0.930 0.742 0.880 

Test of independence: Null 
1% 0.846 0.739 0.998 0.997 0.996 0.996 1% VaR 5% 0.831 0.730 0.981 0.987 0.982 0.981 
1% 0.958 0.938 0.994 0.995 0.994 0.997 5% VaR 5% 0.888 0.842 0.975 0.979 0.956 0.979 

Test of conditional coverage: Null 
1% 0.937 0.954 0.989 0.979 0.879 0.980 1% VaR 5% 0.776 0.730 0.971 0.958 0.802 0.962 
1% 0.943 0.957 0.989 0.990 0.917 0.979 5% VaR 5% 0.831 0.845 0.951 0.945 0.797 0.923 

 
77 - Lopez loss function – frequency of model selection - 1000 replications – 250 daily forecasts 

Fitted models  1 2 3 4 5 6 
1% VaR 0.031 0.258 0.226 0.106 0.010 0.465 
5% VaR 0.031 0.240 0.213 0.083 0.002 0.431 

 
Model reference:1 - Figarch(1,d,0); 2- EWMA(0.97); 3 - HF Figarch(1,d,0) square root; 4 - HF Figarch(1,d,0) sum; 5 - 

HF Garch(1,1) square root; 6 - HF Garch(1,1) sum 



 
 
 
 
 
 

78 - LOSS FUNCTIONS – frequency of model selection (best is lower loss function) 
1000 replications – 250 daily forecasts 

Fitted models  1 2 3 4 5 6 
Loss Function 1: absolute value of return VaR measure ratio 

E 0.076 0.637 0.098 0.062 0.010 0.213 1% VaR T 0.444 0.335 0.105 0.000 0.000 0.116 
E 0.240 0.445 0.088 0.019 0.000 0.208 5% VaR T 0.444 0.335 0.105 0.000 0.000 0.116 

Loss Function 2: square return-VaR normalized by absolute VaR measure 
E 0.052 0.721 0.081 0.054 0.010 0.178 1% VaR T 0.006 0.119 0.000 0.012 0.863 0.000 
E 0.044 0.679 0.049 0.020 0.000 0.208 5% VaR T 0.002 0.160 0.000 0.005 0.833 0.000 

Loss Function 3: absolute of return-VaR 
E 0.050 0.704 0.076 0.055 0.010 0.201 1% VaR T 0.011 0.108 0.000 0.013 0.868 0.000 
E 0.105 0.556 0.062 0.020 0.000 0.257 5% VaR T 0.009 0.114 0.000 0.012 0.865 0.000 

Loss function 1+2 
E 0.068 0.663 0.088 0.060 0.010 0.207 1% VaR T 0.007 0.131 0.000 0.010 0.852 0.000 
E 0.158 0.558 0.071 0.014 0.000 0.199 5% VaR T 0.003 0.256 0.000 0.002 0.738 0.001 

Loss function 1+3 
E 0.066 0.659 0.090 0.061 0.010 0.210 1% VaR T 0.012 0.114 0.000 0.012 0.862 0.000 
E 0.178 0.499 0.076 0.022 0.000 0.225 5% VaR T 0.007 0.145 0.000 0.008 0.840 0.000 

Loss function 2+3 
E 0.049 0.712 0.079 0.053 0.010 0.193 1% VaR T 0.009 0.113 0.000 0.013 0.865 0.000 
E 0.070 0.628 0.053 0.024 0.000 0.225 5% VaR T 0.006 0.126 0.000 0.010 0.858 0.000 

Loss function 1+2+3 
E 0.062 0.674 0.081 0.057 0.010 0.212 1% VaR T 0.007 0.116 0.000 0.012 0.865 0.000 
E 0.144 0.562 0.070 0.018 0.000 0.206 5% VaR T 0.005 0.151 0.000 0.007 0.837 0.000 

 
Model reference:1 - Figarch(1,d,0); 2- EWMA(0.97); 3 - HF Figarch(1,d,0) square root; 4 - HF Figarch(1,d,0) sum; 5 - 

HF Garch(1,1) square root; 6 - HF Garch(1,1) sum 
 



 
 
 
 
 
 

79 - Test of VaR model specification (null: VaR(p) is correctly specified) 
Frequency of accepting H0 – 1000 replications – 250 daily forecasts 

Fitted models VaR 
p-value 

Test 
α-value 1 2 3 4 5 6 

1% 0.023 0.002 0.013 0.017 0.029 0.009 
5% 0.012 0.000 0.007 0.008 0.014 0.005 1% 

10% 0.007 0.000 0.006 0.006 0.008 0.003 
1% 0.144 0.085 0.199 0.195 0.215 0.192 
5% 0.068 0.037 0.118 0.110 0.099 0.093 5% 

10% 0.039 0.023 0.078 0.066 0.058 0.058 
 
 
 

Preference relation among the models as inferred from table 80 
 

4,512,3,6 + 3,4,5,62 + 4,5,63 +546 + 56  541632 
 

that is 
 

HF Garch(1,1) square root  HF Figarch(1,d,0) sum  Figarch(1,d,0)  HF Garch(1,1) sum  HF Figarch(1,d,0) square 
root  EWMA(0.97) 



 
 
 

80 - Test of VaR model comparison - 1000 replications – 250 daily forecasts 
Model comparison Freq. of Test 

(α) 1-2 1-3 1-4 1-5 1-6 2-3 2-4 2-5 2-6 3-4 3-5 3-6 4-5 4-6 5-6 
VaR 1% 

1% 0.796 0.914 0.949 0.957 0.945 0.912 0.949 0.967 0.945 0.557 0.551 0.858 0.860 0.794 0.827 
5% 0.799 0.915 0.951 0.957 0.946 0.912 0.951 0.967 0.946 0.565 0.554 0.859 0.863 0.798 0.829 Test is 

signif. 10% 0.802 0.916 0.952 0.957 0.947 0.913 0.951 0.967 0.946 0.572 0.558 0.859 0.866 0.800 0.833 
1% 0.665 0.493 0.459 0.294 0.520 0.261 0.241 0.130 0.293 0.218 0.216 0.206 0.276 0.492 0.673 
5% 0.666 0.494 0.461 0.294 0.521 0.261 0.241 0.130 0.294 0.221 0.219 0.207 0.278 0.496 0.673 Prefer 1st 

model 10% 0.667 0.494 0.461 0.294 0.522 0.261 0.241 0.130 0.294 0.222 0.219 0.207 0.280 0.498 0.675 
1% 0.131 0.421 0.490 0.663 0.425 0.651 0.708 0.837 0.652 0.339 0.335 0.652 0.584 0.302 0.154 
5% 0.133 0.421 0.490 0.663 0.425 0.651 0.710 0.837 0.652 0.344 0.335 0.652 0.585 0.302 0.156 Prefer 2nd 

model 10% 0.135 0.422 0.491 0.663 0.425 0.652 0.710 0.837 0.652 0.350 0.339 0.652 0.586 0.302 0.158 
VaR 5% 

1% 0.933 0.976 0.984 0.990 0.979 0.989 0.990 0.993 0.988 0.803 0.804 0.966 0.958 0.932 0.953 
5% 0.937 0.978 0.986 0.992 0.986 0.994 0.992 0.994 0.989 0.803 0.807 0.970 0.960 0.938 0.956 Test is 

signif. 10% 0.940 0.981 0.986 0.993 0.989 0.995 0.993 0.994 0.990 0.806 0.809 0.971 0.962 0.941 0.957 
1% 0.555 0.396 0.409 0.356 0.453 0.331 0.334 0.291 0.384 0.429 0.429 0.409 0.431 0.508 0.553 
5% 0.556 0.396 0.409 0.356 0.455 0.332 0.334 0.292 0.385 0.429 0.431 0.411 0.433 0.512 0.555 Prefer 1st 

model 10% 0.558 0.396 0.409 0.356 0.457 0.333 0.334 0.292 0.386 0.431 0.432 0.411 0.435 0.514 0.556 
1% 0.378 0.580 0.575 0.634 0.526 0.658 0.656 0.702 0.604 0.374 0.375 0.557 0.527 0.424 0.400 
5% 0.381 0.582 0.577 0.636 0.531 0.662 0.658 0.702 0.604 0.374 0.376 0.559 0.527 0.426 0.401 Prefer 2nd 

model 10% 0.382 0.585 0.577 0.637 0.532 0.662 0.659 0.702 0.604 0.375 0.377 0.560 0.527 0.427 0.401 



 
 
 
 

DGP FIGARCH(1,d,0) d=0.8 β=0.5 φ=0 - % represent VaR p-level unless differently specified 
 

81 - Average number of exceptions (standard deviation) [mean percentage] 
1000 replications – 250 daily forecast 

Fitted models  1 2 3 4 5 6 
3.883 3.678 4.918 6.345 6.465 5.575 

(1.971) (1.747) (2.207) (2.479) (2.785) (2.480) 1% VaR 
1.553 1.471 1.967 2.538 2.586 2.230 
9.572 10.789 13.358 16.044 16.312 14.605 

(3.183) (2.915) (3.626) (3.839) (4.443) (3.962) 5% VaR 
3.829 4.316 5.343 6.418 6.525 5.842 

 
82 - Frequency of less exceptions - 1000 replications – 250 daily forecast 

Fitted models  1 2 3 4 5 6 
1% VaR 0.484 0.553 0.270 0.057 0.066 0.151 
5% VaR 0.560 0.442 0.192 0.033 0.029 0.071 

 
83 - TESTS – frequencies of accepting the null hypothesis - 1000 replications – 250 daily forecast 

Fitted models  α 1 2 3 4 5 6 
Test of unconditional coverage: Null 

1% 0.964 0.974 0.875 0.691 0.682 0.795 1% VaR 5% 0.869 0.920 0.762 0.544 0.540 0.685 
1% 0.958 0.990 0.989 0.951 0.901 0.965 5% VaR 5% 0.836 0.938 0.929 0.813 0.782 0.873 

Test of independence: Null 
1% 0.874 0.756 0.997 0.997 0.997 0.997 1% VaR 5% 0.538 0.384 0.987 0.987 0.989 0.988 
1% 0.965 0.844 0.997 0.997 0.996 0.997 5% VaR 5% 0.887 0.692 0.975 0.974 0.968 0.981 

Test of conditional coverage: Null 
1% 0.937 0.813 0.940 0.801 0.777 0.871 1% VaR 5% 0.764 0.704 0.859 0.677 0.666 0.784 
1% 0.934 0.875 0.989 0.967 0.930 0.979 5% VaR 5% 0.771 0.705 0.945 0.864 0.828 0.914 

 
84 - Lopez loss function – frequency of model selection - 1000 replications – 250 daily forecasts 

Fitted models  1 2 3 4 5 6 
1% VaR 0.063 0.256 0.416 0.036 0.009 0.240 
5% VaR 0.063 0.251 0.415 0.032 0.004 0.235 

 
Model reference:1 - Figarch(1,d,0); 2- EWMA(0.97); 3 - HF Figarch(1,d,0) square root; 4 - HF Figarch(1,d,0) sum; 5 - 

HF Garch(1,1) square root; 6 - HF Garch(1,1) sum 



 
 
 
 
 
 

85 - LOSS FUNCTIONS – frequency of model selection (best is lower loss function) 
1000 replications – 250 daily forecasts 

Fitted models  1 2 3 4 5 6 
Loss Function 1: absolute value of return VaR measure ratio 

E 0.252 0.546 0.161 0.007 0.007 0.047 1% VaR T 0.553 0.444 0.002 0.000 0.000 0.001 
E 0.467 0.442 0.071 0.001 0.000 0.019 5% VaR T 0.553 0.444 0.002 0.000 0.000 0.001 

Loss Function 2: square return-VaR normalized by absolute VaR measure 
E 0.133 0.604 0.184 0.016 0.006 0.077 1% VaR T 0.001 0.051 0.000 0.146 0.802 0.000 
E 0.162 0.537 0.212 0.004 0.001 0.084 5% VaR T 0.001 0.062 0.000 0.117 0.820 0.000 

Loss Function 3: absolute of return-VaR 
E 0.156 0.503 0.247 0.012 0.006 0.096 1% VaR T 0.003 0.044 0.000 0.162 0.791 0.000 
E 0.280 0.350 0.272 0.004 0.000 0.094 5% VaR T 0.003 0.044 0.000 0.160 0.793 0.000 

Loss function 1+2 
E 0.188 0.612 0.151 0.011 0.006 0.052 1% VaR T 0.001 0.080 0.000 0.072 0.847 0.000 
E 0.308 0.539 0.125 0.000 0.000 0.028 5% VaR T 0.002 0.196 0.008 0.012 0.780 0.002 

Loss function 1+3 
E 0.197 0.544 0.196 0.012 0.006 0.065 1% VaR T 0.002 0.071 0.000 0.096 0.831 0.000 
E 0.405 0.417 0.147 0.000 0.000 0.031 5% VaR T 0.002 0.100 0.000 0.035 0.863 0.000 

Loss function 2+3 
E 0.140 0.558 0.221 0.010 0.006 0.085 1% VaR T 0.001 0.048 0.000 0.155 0.796 0.000 
E 0.201 0.479 0.231 0.005 0.000 0.084 5% VaR T 0.000 0.051 0.000 0.138 0.811 0.000 

Loss function 1+2+3 
E 0.176 0.586 0.179 0.012 0.006 0.061 1% VaR T 0.001 0.057 0.000 0.120 0.822 0.000 
E 0.312 0.496 0.159 0.000 0.000 0.033 5% VaR T 0.001 0.085 0.000 0.065 0.849 0.000 

 
Model reference:1 - Figarch(1,d,0); 2- EWMA(0.97); 3 - HF Figarch(1,d,0) square root; 4 - HF Figarch(1,d,0) sum; 5 - 

HF Garch(1,1) square root; 6 - HF Garch(1,1) sum 
 



 
 
 
 
 
 

86 - Test of VaR model specification (null: VaR(p) is correctly specified) 
Frequency of accepting H0 – 1000 replications – 250 daily forecasts 

Fitted models VaR 
p-value 

Test 
α-value 1 2 3 4 5 6 

1% 0.021 0.011 0.025 0.015 0.023 0.020 
5% 0.005 0.006 0.008 0.005 0.012 0.007 1% 

10% 0.004 0.005 0.006 0.004 0.008 0.006 
1% 0.060 0.062 0.115 0.107 0.146 0.132 
5% 0.038 0.044 0.059 0.055 0.076 0.067 5% 

10% 0.034 0.034 0.037 0.031 0.046 0.039 
 
 
 
 

Preference relation among the models as inferred from table 87 
 

3,4,5,612 + 3,4,5,62 + 4,5,63 +5,64 + 56  564312 
 

that is 
 

HF Garch(1,1) square root  HF Garch(1,1) sum  HF Figarch(1,d,0) sum  HF Figarch(1,d,0) square root  
Figarch(1,d,0)  EWMA(0.97) 



 
 
 

87 - Test of VaR model comparison - 1000 replications – 250 daily forecasts 
Model comparison Freq. of Test 

(α) 1-2 1-3 1-4 1-5 1-6 2-3 2-4 2-5 2-6 3-4 3-5 3-6 4-5 4-6 5-6 
VaR 1% 

1% 0.896 0.981 0.992 0.992 0.988 0.980 0.993 0.984 0.983 0.809 0.807 0.780 0.823 0.778 0.671 
5% 0.897 0.982 0.994 0.993 0.989 0.983 0.996 0.986 0.986 0.813 0.809 0.785 0.832 0.784 0.678 Test is 

signif. 10% 0.899 0.982 0.994 0.993 0.989 0.985 0.996 0.988 0.987 0.816 0.815 0.786 0.832 0.785 0.683 
1% 0.590 0.413 0.321 0.278 0.341 0.340 0.263 0.231 0.274 0.366 0.366 0.285 0.399 0.479 0.633 
5% 0.590 0.412 0.321 0.278 0.341 0.339 0.262 0.230 0.273 0.367 0.366 0.287 0.399 0.480 0.633 Prefer 1st 

model 10% 0.590 0.412 0.321 0.278 0.341 0.340 0.262 0.232 0.274 0.368 0.368 0.288 0.399 0.479 0.631 
1% 0.410 0.587 0.679 0.722 0.659 0.660 0.737 0.769 0.726 0.634 0.634 0.715 0.601 0.521 0.367 
5% 0.410 0.588 0.679 0.722 0.659 0.661 0.738 0.770 0.727 0.633 0.634 0.713 0.601 0.520 0.367 Prefer 2nd 

model 10% 0.410 0.588 0.679 0.722 0.659 0.660 0.738 0.768 0.726 0.632 0.632 0.712 0.601 0.521 0.369 
VaR 5% 

1% 0.973 0.994 0.997 0.995 0.995 0.989 0.993 0.992 0.994 0.922 0.923 0.909 0.922 0.888 0.795 
5% 0.974 0.994 0.997 0.995 0.995 0.991 0.994 0.993 0.996 0.926 0.925 0.909 0.923 0.889 0.800 Test is 

signif. 10% 0.978 0.995 0.997 0.995 0.996 0.992 0.994 0.993 0.996 0.927 0.925 0.910 0.924 0.892 0.803 
1% 0.506 0.359 0.316 0.264 0.315 0.350 0.310 0.267 0.305 0.531 0.533 0.366 0.333 0.341 0.509 
5% 0.506 0.359 0.316 0.264 0.315 0.350 0.310 0.267 0.304 0.532 0.533 0.366 0.333 0.342 0.510 Prefer 1st 

model 10% 0.507 0.360 0.316 0.264 0.315 0.351 0.310 0.267 0.304 0.532 0.533 0.366 0.333 0.341 0.512 
1% 0.494 0.641 0.684 0.736 0.685 0.650 0.690 0.733 0.695 0.469 0.467 0.634 0.667 0.659 0.491 
5% 0.494 0.641 0.684 0.736 0.685 0.650 0.690 0.733 0.696 0.468 0.467 0.634 0.667 0.658 0.490 Prefer 2nd 

model 10% 0.493 0.640 0.684 0.736 0.685 0.649 0.690 0.733 0.696 0.468 0.467 0.634 0.667 0.659 0.488 



 
 
 
 

DGP FIGARCH(1,d,0) d=0.8 b=0.5 f=0.3 - % represent VaR p-level unless differently specified 
 

88 - Average number of exceptions (standard deviation) mean percentage 
1000 replications – 250 daily forecast 

Fitted models  1 2 3 4 5 6 
3.978 3.824 5.317 8.682 7.465 7.245 

(2.203) (1.667) (2.337) (2.949) (2.986) (2.831) 1% VaR 
1.591 1.530 2.127 3.473 2.986 2.898 
9.034 10.382 12.886 18.828 16.750 16.406 

(3.261) (2.856) (3.710) (4.030) (4.544) (4.091) 5% VaR 
3.614 4.153 5.154 7.531 6.700 6.562 

 
89 - Frequency of less exceptions - 1000 replications – 250 daily forecast 

Fitted models  1 2 3 4 5 6 
1% VaR 0.523 0.552 0.235 0.012 0.040 0.046 
5% VaR 0.585 0.421 0.165 0.005 0.019 0.015 

 
90 - TESTS – frequencies of accepting the null hypothesis - 1000 replications – 250 daily forecast 

Fitted models  α 1 2 3 4 5 6 
Test of unconditional coverage: Null 

1% 0.933 0.978 0.835 0.349 0.556 0.570 1% VaR 5% 0.845 0.926 0.707 0.229 0.391 0.419 
1% 0.933 0.990 0.985 0.829 0.891 0.925 5% VaR 5% 0.789 0.924 0.928 0.563 0.738 0.777 

Test of independence: Null 
1% 0.876 0.769 0.999 0.998 0.999 0.999 1% VaR 5% 0.534 0.376 0.988 0.994 0.993 0.992 
1% 0.967 0.840 0.997 0.998 0.997 1.000 5% VaR 5% 0.880 0.684 0.983 0.929 0.962 0.965 

Test of conditional coverage: Null 
1% 0.920 0.797 0.898 0.500 0.672 0.691 1% VaR 5% 0.751 0.706 0.821 0.337 0.535 0.556 
1% 0.910 0.881 0.991 0.874 0.916 0.953 5% VaR 5% 0.725 0.687 0.949 0.660 0.793 0.828 

 
91 - Lopez loss function – frequency of model selection - 1000 replications – 250 daily forecasts 

Fitted models  1 2 3 4 5 6 
1% VaR 0.111 0.455 0.333 0.030 0.014 0.068 
5% VaR 0.111 0.454 0.329 0.029 0.011 0.066 

 
Model reference:1 - Figarch(1,d,0); 2- EWMA(0.97); 3 - HF Figarch(1,d,0) square root; 4 - HF Figarch(1,d,0) sum; 5 - 

HF Garch(1,1) square root; 6 - HF Garch(1,1) sum 



 
 
 
 
 
 

92 - LOSS FUNCTIONS – frequency of model selection (best is lower loss function) 
1000 replications – 250 daily forecasts 

Fitted models  1 2 3 4 5 6 
Loss Function 1: absolute value of return VaR measure ratio 

E 0.269 0.600 0.128 0.002 0.004 0.008 1% VaR T 0.574 0.420 0.006 0.000 0.000 0.000 
E 0.468 0.460 0.070 0.000 0.001 0.001 5% VaR T 0.574 0.420 0.006 0.000 0.000 0.000 

Loss Function 2: square return-VaR normalized by absolute VaR measure 
E 0.133 0.692 0.148 0.005 0.010 0.023 1% VaR T 0.003 0.038 0.000 0.400 0.559 0.000 
E 0.173 0.613 0.194 0.000 0.004 0.016 5% VaR T 0.003 0.111 0.006 0.295 0.585 0.000 

Loss Function 3: absolute of return-VaR 
E 0.169 0.586 0.214 0.003 0.008 0.031 1% VaR T 0.005 0.026 0.000 0.449 0.520 0.000 
E 0.300 0.409 0.264 0.000 0.003 0.024 5% VaR T 0.005 0.027 0.000 0.435 0.533 0.000 

Loss function 1+2 
E 0.186 0.688 0.122 0.001 0.007 0.007 1% VaR T 0.004 0.069 0.002 0.303 0.622 0.000 
E 0.273 0.591 0.132 0.000 0.002 0.002 5% VaR T 0.003 0.267 0.046 0.063 0.618 0.003 

Loss function 1+3 
E 0.205 0.611 0.175 0.002 0.007 0.011 1% VaR T 0.007 0.041 0.000 0.381 0.571 0.000 
E 0.407 0.437 0.151 0.000 0.001 0.004 5% VaR T 0.007 0.071 0.000 0.250 0.672 0.000 

Loss function 2+3 
E 0.148 0.645 0.182 0.003 0.009 0.024 1% VaR T 0.004 0.032 0.000 0.426 0.538 0.000 
E 0.213 0.546 0.224 0.000 0.001 0.016 5% VaR T 0.002 0.050 0.002 0.377 0.569 0.000 

Loss function 1+2+3 
E 0.179 0.648 0.167 0.001 0.006 0.010 1% VaR T 0.005 0.036 0.000 0.387 0.572 0.000 
E 0.275 0.550 0.168 0.000 0.001 0.006 5% VaR T 0.003 0.085 0.002 0.261 0.649 0.000 

 
Model reference:1 - Figarch(1,d,0); 2- EWMA(0.97); 3 - HF Figarch(1,d,0) square root; 4 - HF Figarch(1,d,0) sum; 5 - 

HF Garch(1,1) square root; 6 - HF Garch(1,1) sum 
 



 
 
 
 
 
 

93 - Test of VaR model specification (null: VaR(p) is correctly specified) 
Frequency of accepting H0 – 1000 replications – 250 daily forecasts 

Fitted models VaR 
p-value 

Test 
α-value 1 2 3 4 5 6 

1% 0.020 0.015 0.015 0.012 0.036 0.027 
5% 0.011 0.013 0.010 0.007 0.018 0.012 1% 

10% 0.011 0.012 0.007 0.005 0.011 0.008 
1% 0.044 0.049 0.069 0.053 0.115 0.109 
5% 0.023 0.034 0.035 0.022 0.056 0.051 5% 

10% 0.017 0.027 0.019 0.015 0.039 0.036 
 
 
 

Preference relation among the models as inferred from table 94 
 

3,4,5,612 + 3,4,5,62 + 4,5,63 +5,64 + 56  564312 
 

that is 
 

HF Garch(1,1) square root  HF Garch(1,1) sum  HF Figarch(1,d,1) sum  HF Figarch(1,d,1) square root  
Figarch(1,d,1)  EWMA(0.97) 



 
 
 

94 - Test of VaR model comparison - 1000 replications – 250 daily forecasts 
Model comparison Freq. of Test 

(α) 1-2 1-3 1-4 1-5 1-6 2-3 2-4 2-5 2-6 3-4 3-5 3-6 4-5 4-6 5-6 
VaR 1% 

1% 0.907 0.969 0.994 0.988 0.988 0.985 0.996 0.992 0.992 0.970 0.967 0.862 0.938 0.908 0.607 
5% 0.910 0.972 0.994 0.989 0.989 0.987 0.997 0.994 0.992 0.972 0.968 0.863 0.941 0.909 0.608 Test is 

signif. 10% 0.911 0.973 0.994 0.989 0.989 0.987 0.997 0.994 0.992 0.972 0.969 0.864 0.941 0.912 0.613 
1% 0.557 0.426 0.269 0.238 0.259 0.342 0.194 0.181 0.198 0.291 0.292 0.208 0.354 0.365 0.562 
5% 0.556 0.425 0.269 0.238 0.259 0.342 0.195 0.182 0.198 0.291 0.291 0.207 0.355 0.365 0.561 Prefer 1st 

model 10% 0.555 0.425 0.269 0.238 0.259 0.342 0.195 0.182 0.198 0.291 0.292 0.207 0.355 0.366 0.561 
1% 0.443 0.574 0.731 0.762 0.741 0.658 0.806 0.819 0.802 0.709 0.708 0.792 0.646 0.635 0.438 
5% 0.444 0.575 0.731 0.762 0.741 0.658 0.805 0.818 0.802 0.709 0.709 0.793 0.645 0.635 0.439 Prefer 2nd 

model 10% 0.445 0.575 0.731 0.762 0.741 0.658 0.805 0.818 0.802 0.709 0.708 0.793 0.645 0.634 0.439 
VaR 5% 

1% 0.974 0.986 0.983 0.987 0.987 0.987 0.985 0.987 0.987 0.989 0.985 0.950 0.985 0.961 0.767 
5% 0.976 0.989 0.986 0.987 0.989 0.988 0.988 0.987 0.989 0.991 0.988 0.950 0.986 0.964 0.773 Test is 

signif. 10% 0.977 0.990 0.988 0.988 0.989 0.989 0.989 0.987 0.989 0.991 0.988 0.951 0.986 0.964 0.776 
1% 0.488 0.379 0.307 0.241 0.261 0.360 0.293 0.238 0.248 0.437 0.437 0.303 0.284 0.282 0.546 
5% 0.489 0.379 0.309 0.241 0.263 0.360 0.293 0.238 0.248 0.438 0.438 0.303 0.285 0.282 0.547 Prefer 1st 

model 10% 0.488 0.380 0.310 0.241 0.263 0.361 0.293 0.238 0.248 0.438 0.438 0.303 0.285 0.282 0.548 
1% 0.512 0.621 0.693 0.759 0.739 0.640 0.707 0.762 0.752 0.563 0.563 0.697 0.716 0.718 0.454 
5% 0.511 0.621 0.691 0.759 0.737 0.640 0.707 0.762 0.752 0.562 0.562 0.697 0.715 0.718 0.453 Prefer 2nd 

model 10% 0.512 0.620 0.690 0.759 0.737 0.639 0.707 0.762 0.752 0.562 0.562 0.697 0.715 0.718 0.452 



 
 
 
 

DGP FIGARCH(1,d,1) d=0.8 β=0.5 φ=0.05 - % represent VaR p-level unless differently specified 
 

95 - Average number of exceptions (standard deviation) mean percentage 
1000 replications – 250 daily forecast 

Fitted models  1 2 3 4 5 6 
3.990 3.729 4.997 6.600 6.215 5.380 

(2.110) (1.715) (2.186) (2.470) (2.758) (2.426) 1% VaR 
1.596 1.492 1.999 2.640 2.486 2.152 
9.627 10.766 13.355 16.374 15.790 14.215 

(3.266) (2.981) (3.609) (3.891) (4.373) (3.976) 5% VaR 
3.851 4.306 5.342 6.550 6.316 5.686 

 
96 - Frequency of less exceptions - 1000 replications – 250 daily forecast 

Fitted models  1 2 3 4 5 6 
1% VaR 0.472 0.541 0.236 0.050 0.093 0.187 
5% VaR 0.533 0.419 0.175 0.020 0.060 0.093 

 
97 - TESTS – frequencies of accepting the null hypothesis - 1000 replications – 250 daily forecast 

Fitted models  α 1 2 3 4 5 6 
Test of unconditional coverage: Null 

1% 0.943 0.982 0.872 0.658 0.693 0.825 1% VaR 5% 0.865 0.924 0.754 0.507 0.574 0.704 
1% 0.953 0.988 0.990 0.934 0.936 0.972 5% VaR 5% 0.826 0.922 0.942 0.794 0.785 0.891 

Test of independence: Null 
1% 0.876 0.753 1.000 0.999 1.000 1.000 1% VaR 5% 0.558 0.375 0.991 0.993 0.995 0.994 
1% 0.966 0.840 0.994 0.993 0.996 0.996 5% VaR 5% 0.887 0.695 0.977 0.960 0.970 0.978 

Test of conditional coverage: Null 
1% 0.928 0.798 0.934 0.784 0.812 0.894 1% VaR 5% 0.770 0.707 0.861 0.640 0.673 0.811 
1% 0.928 0.870 0.990 0.953 0.954 0.982 5% VaR 5% 0.766 0.690 0.954 0.851 0.844 0.926 

 
98 - Lopez loss function – frequency of model selection - 1000 replications – 250 daily forecasts 

Fitted models  1 2 3 4 5 6 
1% VaR 0.094 0.348 0.273 0.033 0.009 0.253 
5% VaR 0.094 0.341 0.272 0.033 0.009 0.251 

 
Model reference:1 - Figarch(1,d,0); 2- EWMA(0.97); 3 - HF Figarch(1,d,0) square root; 4 - HF Figarch(1,d,0) sum; 5 - 

HF Garch(1,1) square root; 6 - HF Garch(1,1) sum 



 
 
 
 
 
 

99 - LOSS FUNCTIONS – frequency of model selection (best is lower loss function) 
1000 replications – 250 daily forecasts 

Fitted models  1 2 3 4 5 6 
Loss Function 1: absolute value of return VaR measure ratio 

E 0.240 0.542 0.123 0.002 0.002 0.101 1% VaR T 0.563 0.436 0.001 0.000 0.000 0.000 
E 0.454 0.445 0.065 0.000 0.002 0.034 5% VaR T 0.563 0.436 0.001 0.000 0.000 0.000 

Loss Function 2: square return-VaR normalized by absolute VaR measure 
E 0.118 0.606 0.140 0.014 0.006 0.126 1% VaR T 0.002 0.042 0.000 0.181 0.775 0.000 
E 0.163 0.497 0.177 0.007 0.000 0.156 5% VaR T 0.001 0.057 0.000 0.139 0.803 0.000 

Loss Function 3: absolute of return-VaR 
E 0.145 0.487 0.188 0.015 0.003 0.172 1% VaR T 0.003 0.042 0.000 0.224 0.731 0.000 
E 0.283 0.302 0.238 0.004 0.001 0.172 5% VaR T 0.003 0.041 0.000 0.205 0.751 0.000 

Loss function 1+2 
E 0.181 0.590 0.127 0.005 0.003 0.104 1% VaR T 0.002 0.058 0.000 0.131 0.809 0.000 
E 0.296 0.485 0.146 0.001 0.001 0.071 5% VaR T 0.001 0.118 0.003 0.042 0.835 0.001 

Loss function 1+3 
E 0.194 0.514 0.163 0.007 0.003 0.129 1% VaR T 0.004 0.054 0.000 0.174 0.768 0.000 
E 0.397 0.353 0.164 0.000 0.001 0.085 5% VaR T 0.003 0.066 0.000 0.100 0.831 0.000 

Loss function 2+3 
E 0.128 0.554 0.155 0.011 0.005 0.157 1% VaR T 0.002 0.043 0.000 0.203 0.752 0.000 
E 0.211 0.426 0.193 0.007 0.000 0.163 5% VaR T 0.002 0.047 0.000 0.170 0.781 0.000 

Loss function 1+2+3 
E 0.161 0.563 0.147 0.007 0.004 0.128 1% VaR T 0.002 0.047 0.000 0.180 0.771 0.000 
E 0.284 0.431 0.177 0.001 0.000 0.107 5% VaR T 0.002 0.066 0.000 0.118 0.814 0.000 

 
Model reference:1 - Figarch(1,d,0); 2- EWMA(0.97); 3 - HF Figarch(1,d,0) square root; 4 - HF Figarch(1,d,0) sum; 5 - 

HF Garch(1,1) square root; 6 - HF Garch(1,1) sum 
 



 
 
 
 
 
 

100 - Test of VaR model specification (null: VaR(p) is correctly specified) 
Frequency of accepting H0 – 1000 replications – 250 daily forecasts 

Fitted models VaR 
p-value 

Test 
α-value 1 2 3 4 5 6 

1% 0.029 0.021 0.019 0.022 0.024 0.023 
5% 0.018 0.017 0.012 0.013 0.012 0.012 1% 

10% 0.014 0.016 0.009 0.010 0.010 0.008 
1% 0.078 0.062 0.083 0.073 0.109 0.106 
5% 0.046 0.042 0.040 0.035 0.055 0.047 5% 

10% 0.036 0.033 0.028 0.027 0.037 0.033 
 
 
 
 

Preference relation among the models as inferred from table 101 
 

3,4,5,612 + 3,4,5,62 + 4,5,63 +5,64 + 56  564312 
 

that is 
 

HF Garch(1,1) square root  HF Garch(1,1) sum  HF Figarch(1,d,1) sum  HF Figarch(1,d,1) square root  
Figarch(1,d,1)  EWMA(0.97) 



 
 
 

101 - Test of VaR model comparison - 1000 replications – 250 daily forecasts 
Model comparison Freq. of Test 

(α) 1-2 1-3 1-4 1-5 1-6 2-3 2-4 2-5 2-6 3-4 3-5 3-6 4-5 4-6 5-6 
VaR 1% 

1% 0.905 0.988 0.995 0.994 0.989 0.989 0.997 0.995 0.995 0.834 0.830 0.845 0.883 0.847 0.612 
5% 0.910 0.989 0.995 0.995 0.991 0.990 0.997 0.996 0.996 0.837 0.833 0.847 0.884 0.849 0.616 Test is 

signif. 10% 0.912 0.989 0.995 0.995 0.991 0.990 0.997 0.996 0.996 0.839 0.835 0.847 0.884 0.851 0.618 
1% 0.591 0.418 0.329 0.312 0.373 0.348 0.263 0.249 0.302 0.372 0.371 0.299 0.414 0.536 0.655 
5% 0.589 0.418 0.329 0.312 0.372 0.347 0.263 0.249 0.301 0.373 0.371 0.301 0.414 0.536 0.651 Prefer 1st 

model 10% 0.588 0.418 0.329 0.312 0.372 0.347 0.263 0.249 0.301 0.372 0.371 0.301 0.414 0.536 0.650 
1% 0.409 0.582 0.671 0.688 0.627 0.652 0.737 0.751 0.698 0.628 0.629 0.701 0.586 0.464 0.345 
5% 0.411 0.582 0.671 0.688 0.628 0.653 0.737 0.751 0.699 0.627 0.629 0.699 0.586 0.464 0.349 Prefer 2nd 

model 10% 0.412 0.582 0.671 0.688 0.628 0.653 0.737 0.751 0.699 0.628 0.629 0.699 0.586 0.464 0.350 
VaR 5% 

1% 0.980 0.986 0.987 0.991 0.992 0.992 0.989 0.991 0.988 0.935 0.935 0.916 0.952 0.933 0.782 
5% 0.985 0.989 0.988 0.995 0.994 0.992 0.989 0.991 0.989 0.935 0.936 0.921 0.953 0.937 0.782 Test is 

signif. 10% 0.986 0.990 0.988 0.995 0.994 0.992 0.989 0.992 0.989 0.941 0.941 0.923 0.957 0.940 0.785 
1% 0.536 0.392 0.360 0.308 0.352 0.393 0.356 0.306 0.344 0.545 0.542 0.332 0.321 0.388 0.561 
5% 0.536 0.393 0.359 0.310 0.353 0.393 0.356 0.306 0.345 0.545 0.543 0.331 0.321 0.388 0.561 Prefer 1st 

model 10% 0.537 0.393 0.359 0.310 0.353 0.393 0.356 0.306 0.345 0.545 0.543 0.332 0.323 0.389 0.561 
1% 0.464 0.608 0.640 0.692 0.648 0.607 0.644 0.694 0.656 0.455 0.458 0.668 0.679 0.612 0.439 
5% 0.464 0.607 0.641 0.690 0.647 0.607 0.644 0.694 0.655 0.455 0.457 0.669 0.679 0.612 0.439 Prefer 2nd 

model 10% 0.463 0.607 0.641 0.690 0.647 0.607 0.644 0.694 0.655 0.455 0.457 0.668 0.677 0.611 0.439 



 
 
 
 

DGP FIGARCH(1,d,1) d=0.4 β=0.3 φ=0.2 - % represent VaR p-level unless differently specified 
 

102 - Average number of exceptions (standard deviation) mean percentage 
1000 replications – 250 daily forecast 

Fitted models  1 2 3 4 5 6 
3.714 2.734 3.610 4.638 6.055 4.269 

(1.952) (1.498) (1.892) (2.120) (3.167) (2.450) 1% VaR 
1.486 1.094 1.444 1.855 2.422 1.708 

10.894 11.151 11.688 13.848 16.725 12.988 
(3.377) (2.845) (3.352) (3.514) (5.472) (4.339) 5% VaR 
4.358 4.460 4.675 5.539 6.690 5.195 

 
103 - Frequency of less exceptions - 1000 replications – 250 daily forecast 

Fitted models  1 2 3 4 5 6 
1% VaR 0.272 0.660 0.342 0.131 0.060 0.264 
5% VaR 0.395 0.555 0.251 0.109 0.056 0.166 

 
104 - TESTS – frequencies of accepting the null hypothesis - 1000 replications – 250 daily forecast 

Fitted models  α 1 2 3 4 5 6 
Test of unconditional coverage: Null 

1% 0.963 0.998 0.969 0.895 0.712 0.900 1% VaR 5% 0.889 0.931 0.900 0.811 0.586 0.792 
1% 0.983 0.995 0.992 0.989 0.853 0.968 5% VaR 5% 0.898 0.956 0.941 0.930 0.707 0.881 

Test of independence: Null 
1% 0.875 0.788 0.998 1.000 1.000 1.000 1% VaR 5% 0.516 0.296 0.986 0.990 0.992 0.991 
1% 0.960 0.933 0.998 0.998 0.998 0.999 5% VaR 5% 0.893 0.806 0.985 0.984 0.964 0.987 

Test of conditional coverage: Null 
1% 0.936 0.936 0.985 0.958 0.796 0.941 1% VaR 5% 0.805 0.767 0.961 0.889 0.691 0.888 
1% 0.964 0.958 0.994 0.993 0.883 0.974 5% VaR 5% 0.836 0.825 0.964 0.954 0.771 0.903 

 
105 - Lopez loss function – frequency of model selection - 1000 replications – 250 daily forecasts 

Fitted models  1 2 3 4 5 6 
1% VaR 0.050 0.418 0.235 0.066 0.010 0.287 
5% VaR 0.050 0.396 0.223 0.060 0.003 0.268 

 
Model reference:1 - Figarch(1,d,0); 2- EWMA(0.97); 3 - HF Figarch(1,d,0) square root; 4 - HF Figarch(1,d,0) sum; 5 - 

HF Garch(1,1) square root; 6 - HF Garch(1,1) sum 



 
 
 
 
 
 

106 - LOSS FUNCTIONS – frequency of model selection (best is lower loss function) 
1000 replications – 250 daily forecasts 

Fitted models  1 2 3 4 5 6 
Loss Function 1: absolute value of return VaR measure ratio 

E 0.101 0.616 0.153 0.033 0.010 0.153 1% VaR T 0.447 0.365 0.112 0.000 0.000 0.076 
E 0.238 0.449 0.175 0.009 0.000 0.129 5% VaR T 0.447 0.365 0.112 0.000 0.000 0.076 

Loss Function 2: square return-VaR normalized by absolute VaR measure 
E 0.074 0.701 0.097 0.030 0.010 0.154 1% VaR T 0.001 0.115 0.000 0.051 0.833 0.000 
E 0.067 0.656 0.089 0.020 0.001 0.167 5% VaR T 0.001 0.172 0.000 0.036 0.791 0.000 

Loss Function 3: absolute of return-VaR 
E 0.074 0.674 0.107 0.038 0.010 0.163 1% VaR T 0.002 0.095 0.000 0.063 0.840 0.000 
E 0.117 0.535 0.133 0.015 0.000 0.200 5% VaR T 0.002 0.111 0.000 0.055 0.832 0.000 

Loss function 1+2 
E 0.085 0.691 0.116 0.030 0.010 0.134 1% VaR T 0.002 0.129 0.000 0.040 0.829 0.000 
E 0.143 0.575 0.128 0.009 0.001 0.144 5% VaR T 0.001 0.265 0.000 0.021 0.711 0.002 

Loss function 1+3 
E 0.090 0.660 0.125 0.033 0.010 0.148 1% VaR T 0.002 0.111 0.000 0.052 0.835 0.000 
E 0.185 0.495 0.141 0.011 0.000 0.168 5% VaR T 0.002 0.139 0.000 0.041 0.818 0.000 

Loss function 2+3 
E 0.074 0.691 0.096 0.034 0.010 0.161 1% VaR T 0.002 0.104 0.000 0.058 0.836 0.000 
E 0.087 0.614 0.109 0.020 0.001 0.169 5% VaR T 0.001 0.127 0.000 0.044 0.828 0.000 

Loss function 1+2+3 
E 0.083 0.683 0.116 0.032 0.010 0.142 1% VaR T 0.002 0.110 0.000 0.053 0.835 0.000 
E 0.134 0.568 0.127 0.011 0.001 0.159 5% VaR T 0.001 0.151 0.000 0.036 0.812 0.000 

 
Model reference:1 - Figarch(1,d,0); 2- EWMA(0.97); 3 - HF Figarch(1,d,0) square root; 4 - HF Figarch(1,d,0) sum; 5 - 

HF Garch(1,1) square root; 6 - HF Garch(1,1) sum 
 



 
 
 
 
 
 

107 - Test of VaR model specification (null: VaR(p) is correctly specified) 
Frequency of accepting H0 – 1000 replications – 250 daily forecasts 

Fitted models VaR 
p-value 

Test 
α-value 1 2 3 4 5 6 

1% 0.019 0.001 0.015 0.029 0.030 0.024 
5% 0.010 0.001 0.009 0.012 0.013 0.012 1% 

10% 0.007 0.001 0.006 0.007 0.006 0.007 
1% 0.100 0.082 0.135 0.140 0.156 0.136 
5% 0.037 0.030 0.049 0.059 0.059 0.056 5% 

10% 0.014 0.015 0.023 0.027 0.027 0.030 
 
 
 
 
 

Preference relation among the models as inferred from table 108 
 

4,5,612,3 + 3,4,5,62 + 4,5,63 +546 + 56  546132 
 

that is 
 

HF Garch(1,1) square root  HF Figarch(1,d,1) sum  HF Garch(1,1) sum  Figarch(1,d,1)  HF Figarch(1,d,1) square 
root  EWMA(0.97)



 
 
 

108 - Test of VaR model comparison - 1000 replications – 250 daily forecasts 
Model comparison Freq. of Test 

(α) 1-2 1-3 1-4 1-5 1-6 2-3 2-4 2-5 2-6 3-4 3-5 3-6 4-5 4-6 5-6 
VaR 1% 

1% 0.789 0.915 0.972 0.976 0.968 0.902 0.972 0.974 0.960 0.767 0.764 0.919 0.920 0.841 0.799 
5% 0.791 0.917 0.973 0.976 0.968 0.903 0.972 0.974 0.961 0.770 0.765 0.919 0.920 0.842 0.801 Test is 

signif. 10% 0.793 0.918 0.974 0.976 0.968 0.903 0.973 0.974 0.961 0.771 0.766 0.919 0.920 0.843 0.802 
1% 0.776 0.519 0.390 0.280 0.439 0.288 0.208 0.143 0.254 0.297 0.296 0.221 0.357 0.561 0.741 
5% 0.774 0.520 0.390 0.280 0.439 0.288 0.208 0.143 0.255 0.299 0.297 0.221 0.357 0.561 0.740 Prefer 1st 

model 10% 0.774 0.521 0.390 0.280 0.439 0.288 0.208 0.143 0.255 0.300 0.296 0.221 0.357 0.560 0.739 
1% 0.224 0.481 0.610 0.720 0.561 0.712 0.792 0.857 0.746 0.703 0.704 0.779 0.643 0.439 0.259 
5% 0.226 0.480 0.610 0.720 0.561 0.712 0.792 0.857 0.745 0.701 0.703 0.779 0.643 0.439 0.260 Prefer 2nd 

model 10% 0.226 0.479 0.610 0.720 0.561 0.712 0.792 0.857 0.745 0.700 0.704 0.779 0.643 0.440 0.261 
VaR 5% 

1% 0.919 0.982 0.989 0.990 0.991 0.985 0.990 0.997 0.986 0.933 0.936 0.970 0.978 0.945 0.932 
5% 0.927 0.984 0.993 0.995 0.994 0.989 0.992 0.998 0.989 0.939 0.940 0.972 0.979 0.948 0.933 Test is 

signif. 10% 0.929 0.985 0.993 0.995 0.994 0.990 0.993 0.998 0.991 0.941 0.941 0.973 0.980 0.949 0.935 
1% 0.589 0.441 0.387 0.333 0.411 0.411 0.335 0.288 0.356 0.445 0.443 0.353 0.436 0.510 0.550 
5% 0.588 0.440 0.390 0.334 0.410 0.411 0.337 0.288 0.357 0.445 0.444 0.353 0.435 0.511 0.551 Prefer 1st 

model 10% 0.588 0.440 0.390 0.334 0.410 0.411 0.336 0.288 0.357 0.444 0.444 0.354 0.436 0.511 0.551 
1% 0.411 0.559 0.613 0.667 0.589 0.589 0.665 0.712 0.644 0.555 0.557 0.647 0.564 0.490 0.450 
5% 0.412 0.560 0.610 0.666 0.590 0.589 0.663 0.712 0.643 0.555 0.556 0.647 0.565 0.489 0.449 Prefer 2nd 

model 10% 0.412 0.560 0.610 0.666 0.590 0.589 0.664 0.712 0.643 0.556 0.556 0.646 0.564 0.489 0.449 



 
 
 
 

AGGREGATED ESTIMATES AGGREGATED COMPARISON 
 

DGP FIGARCH(1,d,1) d=0.4 b=0.3  f=0.2 - % represent VaR p-level unless differently specified 
 

109 - Average number of exceptions (standard deviation) [mean percentage] 
1000 replications – 250 daily forecast 

Fitted models  1 2 3 4 5 6 
3.671 3.995 3.556 2.670 3.596 4.638 

(1.958) (2.293) (1.841) (1.472) (1.888) (2.137) 1% VaR 
1.468 1.598 1.422 1.068 1.438 1.855 

10.730 11.406 10.473 11.099 11.656 13.849 
(3.484) (4.164) (3.142) (2.858) (3.463) (3.698) 5% VaR 
4.292 4.562 4.189 4.440 4.662 5.540 

 
110 - Frequency of less exceptions - 1000 replications – 250 daily forecast 

Fitted models  1 2 3 4 5 6 
1% VaR 253 259 273 682 348 154 
5% VaR 409 262 306 488 259 91 

 
111 - TESTS – frequencies of accepting the null hypothesis - 1000 replications – 250 daily forecast 

Fitted models  α 1 2 3 4 5 6 
Test of unconditional coverage: Null 

1% 965 927 979 999 971 898 1% VaR 5% 888 826 911 939 903 809 
1% 969 954 975 995 987 987 5% VaR 5% 879 853 903 947 932 916 

Test of independence: Null 
1% 865 845 833 770 998 1000 1% VaR 5% 483 514 444 275 981 992 
1% 967 962 957 933 995 999 5% VaR 5% 899 863 860 828 978 988 

Test of conditional coverage: Null 
1% 928 886 918 934 985 953 1% VaR 5% 780 708 773 758 961 891 
1% 951 937 942 953 990 993 5% VaR 5% 825 782 819 835 947 944 

 
112 - Lopez loss function – frequency of model selection - 1000 replications – 250 daily forecasts 

Fitted models  1 2 3 4 5 6 
1% VaR 0.033 0.039 0.038 0.388 0.463 0.139 
5% VaR 0.033 0.014 0.015 0.364 0.448 0.126 

 
Model reference:1 - Figarch(1,d,1); 2 - Garch(1,1); 3 - Igarch(1,1); 4 - EWMA(0.97); 5 - HF Figarch(1,d,1) square root; 

6 - HF Figarch(1,d,1) sum 



 
 
 
 
 
 

113 - LOSS FUNCTIONS – frequency of model selection (best is lower loss function) 
1000 replications – 250 daily forecasts 

Fitted models  1 2 3 4 5 6 
Loss Function 1: absolute value of return VaR measure ratio 

E 0.066 0.090 0.061 0.651 0.186 0.046 1% VaR T 0.147 0.188 0.333 0.221 0.111 0.000 
E 0.124 0.160 0.121 0.382 0.201 0.012 5% VaR T 0.147 0.188 0.333 0.221 0.111 0.000 

Loss Function 2: square return-VaR normalized by absolute VaR measure 
E 0.041 0.058 0.042 0.761 0.138 0.060 1% VaR T 0.004 0.133 0.000 0.325 0.003 0.535 
E 0.024 0.053 0.030 0.710 0.146 0.037 5% VaR T 0.002 0.067 0.000 0.471 0.015 0.445 

Loss Function 3: absolute of return-VaR 
E 0.042 0.061 0.043 0.741 0.148 0.065 1% VaR T 0.010 0.164 0.000 0.270 0.002 0.554 
E 0.046 0.106 0.064 0.528 0.221 0.035 5% VaR T 0.008 0.149 0.000 0.286 0.002 0.555 

Loss function 1+2 
E 0.058 0.076 0.055 0.709 0.160 0.042 1% VaR T 0.005 0.125 0.000 0.389 0.007 0.474 
E 0.072 0.131 0.074 0.521 0.192 0.010 5% VaR T 0.004 0.043 0.000 0.642 0.044 0.267 

Loss function 1+3 
E 0.056 0.072 0.056 0.692 0.172 0.052 1% VaR T 0.009 0.159 0.000 0.307 0.004 0.521 
E 0.088 0.144 0.097 0.441 0.215 0.015 5% VaR T 0.007 0.135 0.000 0.416 0.018 0.424 

Loss function 2+3 
E 0.042 0.057 0.044 0.754 0.143 0.060 1% VaR T 0.006 0.146 0.000 0.297 0.002 0.549 
E 0.037 0.087 0.037 0.631 0.175 0.033 5% VaR T 0.003 0.115 0.000 0.372 0.006 0.504 

Loss function 1+2+3 
E 0.052 0.070 0.050 0.718 0.160 0.050 1% VaR T 0.006 0.146 0.000 0.319 0.004 0.525 
E 0.068 0.123 0.067 0.530 0.198 0.014 5% VaR T 0.003 0.110 0.000 0.438 0.012 0.437 

 
Model reference:1 - Figarch(1,d,1); 2 - Garch(1,1); 3 - Igarch(1,1); 4 - EWMA(0.97); 5 - HF Figarch(1,d,1) square root; 

6 - HF Figarch(1,d,1) sum 
 



 
 
 
 
 
 

114 - Test of VaR model specification (null: VaR(p) is correctly specified) 
Frequency of accepting H0 – 1000 replications – 250 daily forecasts 

Fitted models VaR 
p-value 

Test 
α-value 1 2 3 4 5 6 

1% 0.005 0.006 0.003 0.001 0.007 0.015 
5% 0.001 0.001 0.002 0.001 0.004 0.006 1% 

10% 0.001 0.001 0.001 0.001 0.002 0.003 
1% 0.089 0.083 0.051 0.055 0.143 0.162 
5% 0.042 0.044 0.022 0.031 0.092 0.099 5% 

10% 0.029 0.028 0.014 0.014 0.061 0.059 
 
 
 

Preference relation among the models as inferred from table 115 
 

2,5,613,4 + 623,4,5 + 634,5 +5,64 + 65  no order 
 
 



 
 
 

115 - Test of VaR model comparison - 1000 replications – 250 daily forecasts 
Model comparison Freq. of Test 

(α) 1-2 1-3 1-4 1-5 1-6 2-3 2-4 2-5 2-6 3-4 3-5 3-6 4-5 4-6 5-6 
VaR 1% 

1% 0.542 0.616 0.798 0.895 0.967 0.559 0.810 0.913 0.968 0.730 0.718 0.910 0.927 0.969 0.739 
5% 0.545 0.616 0.799 0.895 0.967 0.562 0.811 0.913 0.969 0.733 0.718 0.911 0.927 0.969 0.739 Test is 

signif. 10% 0.547 0.618 0.800 0.895 0.967 0.563 0.813 0.913 0.969 0.733 0.718 0.911 0.927 0.969 0.739 
1% 0.450 0.597 0.786 0.498 0.331 0.640 0.810 0.516 0.356 0.779 0.783 0.431 0.268 0.181 0.286 
5% 0.453 0.597 0.785 0.498 0.331 0.639 0.809 0.516 0.356 0.776 0.783 0.430 0.268 0.181 0.286 Prefer 1st 

model 10% 0.455 0.599 0.784 0.498 0.331 0.638 0.808 0.516 0.356 0.776 0.783 0.430 0.268 0.181 0.286 
1% 0.550 0.403 0.214 0.502 0.669 0.360 0.190 0.484 0.644 0.221 0.217 0.569 0.732 0.819 0.714 
5% 0.547 0.403 0.215 0.502 0.669 0.361 0.191 0.484 0.644 0.224 0.217 0.570 0.732 0.819 0.714 Prefer 2nd 

model 10% 0.545 0.401 0.216 0.502 0.669 0.362 0.192 0.484 0.644 0.224 0.217 0.570 0.732 0.819 0.714 
VaR 5% 

1% 0.739 0.837 0.944 0.983 0.995 0.700 0.921 0.985 0.997 0.856 0.862 0.991 0.986 0.995 0.935 
5% 0.744 0.842 0.948 0.986 0.998 0.707 0.928 0.987 0.999 0.865 0.868 0.993 0.986 0.996 0.940 Test is 

signif. 10% 0.746 0.844 0.950 0.986 0.998 0.708 0.931 0.988 0.999 0.870 0.871 0.995 0.989 0.997 0.942 
1% 0.532 0.695 0.612 0.413 0.327 0.699 0.613 0.421 0.329 0.464 0.464 0.322 0.350 0.269 0.425 
5% 0.530 0.694 0.611 0.415 0.327 0.694 0.612 0.422 0.330 0.462 0.462 0.322 0.350 0.270 0.424 Prefer 1st 

model 10% 0.529 0.693 0.611 0.415 0.327 0.694 0.613 0.423 0.330 0.462 0.462 0.323 0.350 0.270 0.425 
1% 0.468 0.305 0.388 0.587 0.673 0.301 0.387 0.579 0.671 0.536 0.536 0.678 0.650 0.731 0.575 
5% 0.470 0.306 0.389 0.585 0.673 0.306 0.388 0.578 0.670 0.538 0.538 0.678 0.650 0.730 0.576 Prefer 2nd 

model 10% 0.471 0.307 0.389 0.585 0.673 0.306 0.387 0.577 0.670 0.538 0.538 0.677 0.650 0.730 0.575 



 
 
 
 
 
 

DGP FIGARCH(1,d,0) d=0.8 b=0.5  - % represent VaR p-level unless differently specified 
 

116 - Average number of exceptions (standard deviation) mean percentage 
1000 replications – 250 daily forecast 

Fitted models  1 2 3 4 5 6 
3.985 4.144 4.007 3.738 4.923 6.332 

(2.021) (2.247) (2.131) (1.726) (2.197) (2.427) 1% VaR 
1.594 1.657 1.602 1.495 1.969 2.532 
9.767 9.979 9.697 10.766 13.213 15.917 

(3.248) (3.726) (3.494) (2.996) (3.577) (3.730) 5% VaR 
3.906 3.991 3.879 4.306 5.285 6.366 

 
117 - Frequency of less exceptions - 1000 replications – 250 daily forecast 

Fitted models  1 2 3 4 5 6 
1% VaR 0.425 0.422 0.457 0.528 0.274 0.058 
5% VaR 0.531 0.353 0.370 0.391 0.197 0.034 

 
118 - TESTS – frequencies of accepting the null hypothesis - 1000 replications – 250 daily forecast 

Fitted models  α 1 2 3 4 5 6 
Test of unconditional coverage: Null 

1% 0.949 0.927 0.941 0.976 0.869 0.708 1% VaR 5% 0.870 0.842 0.862 0.923 0.769 0.558 
1% 0.966 0.942 0.943 0.987 0.991 0.955 5% VaR 5% 0.832 0.812 0.803 0.923 0.933 0.824 

Test of independence: Null 
1% 0.893 0.867 0.866 0.749 0.998 0.999 1% VaR 5% 0.531 0.534 0.521 0.347 0.980 0.992 
1% 0.963 0.951 0.953 0.817 0.996 1.000 5% VaR 5% 0.882 0.868 0.872 0.670 0.989 0.976 

Test of conditional coverage: Null 
1% 0.922 0.892 0.907 0.786 0.928 0.817 1% VaR 5% 0.781 0.729 0.745 0.694 0.852 0.685 
1% 0.935 0.912 0.911 0.869 0.991 0.970 5% VaR 5% 0.767 0.739 0.735 0.669 0.962 0.887 

 
119 - Lopez loss function – frequency of model selection - 1000 replications – 250 daily forecasts 

Fitted models  1 2 3 4 5 6 
1% VaR 0.036 0.034 0.040 0.255 0.600 0.076 
5% VaR 0.036 0.017 0.023 0.253 0.597 0.074 

 
Model reference:1 - Figarch(1,d,0); 2 - Garch(1,1); 3 - Igarch(1,1); 4 - EWMA(0.97); 5 - HF Figarch(1,d,0) square root; 

6 - HF Figarch(1,d,0) sum 



 
 
 
 
 
 

120 - LOSS FUNCTIONS – frequency of model selection (best is lower loss function) 
1000 replications – 250 daily forecasts 

Fitted models  1 2 3 4 5 6 
Loss Function 1: absolute value of return VaR measure ratio 

E 0.081 0.091 0.160 0.522 0.180 0.007 1% VaR T 0.070 0.119 0.403 0.404 0.004 0.000 
E 0.103 0.144 0.255 0.395 0.102 0.001 5% VaR T 0.070 0.119 0.403 0.404 0.004 0.000 

Loss Function 2: square return-VaR normalized by absolute VaR measure 
E 0.045 0.071 0.086 0.593 0.225 0.021 1% VaR T 0.001 0.017 0.001 0.081 0.000 0.900 
E 0.039 0.059 0.105 0.503 0.287 0.007 5% VaR T 0.001 0.009 0.000 0.110 0.000 0.880 

Loss Function 3: absolute of return-VaR 
E 0.059 0.064 0.100 0.504 0.292 0.022 1% VaR T 0.001 0.032 0.003 0.066 0.000 0.898 
E 0.051 0.086 0.214 0.310 0.335 0.004 5% VaR T 0.001 0.030 0.003 0.070 0.000 0.896 

Loss function 1+2 
E 0.062 0.078 0.124 0.582 0.186 0.009 1% VaR T 0.001 0.017 0.001 0.137 0.000 0.844 
E 0.060 0.106 0.180 0.486 0.166 0.002 5% VaR T 0.001 0.011 0.000 0.270 0.307 0.411 

Loss function 1+3 
E 0.070 0.080 0.134 0.520 0.225 0.012 1% VaR T 0.001 0.035 0.004 0.119 0.000 0.841 
E 0.082 0.126 0.237 0.374 0.180 0.001 5% VaR T 0.001 0.033 0.003 0.184 0.000 0.779 

Loss function 2+3 
E 0.051 0.067 0.095 0.534 0.277 0.017 1% VaR T 0.001 0.024 0.001 0.074 0.000 0.900 
E 0.046 0.073 0.143 0.428 0.304 0.006 5% VaR T 0.001 0.016 0.001 0.086 0.000 0.896 

Loss function 1+2+3 
E 0.059 0.077 0.120 0.564 0.210 0.011 1% VaR T 0.001 0.024 0.001 0.097 0.000 0.877 
E 0.053 0.106 0.187 0.441 0.211 0.002 5% VaR T 0.001 0.017 0.001 0.143 0.000 0.838 

 
Model reference:1 - Figarch(1,d,0); 2 - Garch(1,1); 3 - Igarch(1,1); 4 - EWMA(0.97); 5 - HF Figarch(1,d,0) square root; 

6 - HF Figarch(1,d,0) sum 
 



 
 
 
 
 
 

121 - Test of VaR model specification (null: VaR(p) is correctly specified) 
Frequency of accepting H0 – 1000 replications – 250 daily forecasts 

Fitted models VaR 
p-value 

Test 
α-value 1 2 3 4 5 6 

1% 0.018 0.010 0.010 0.011 0.014 0.013 
5% 0.010 0.008 0.008 0.007 0.008 0.007 1% 

10% 0.005 0.006 0.006 0.007 0.006 0.004 
1% 0.054 0.051 0.041 0.063 0.093 0.090 
5% 0.032 0.033 0.025 0.038 0.049 0.047 5% 

10% 0.023 0.026 0.021 0.030 0.032 0.029 
 
 
 
 

Preference relation among the models as inferred from table 115 
 

2,5,613,4 + 623,4,5 + 634,5 +5,64 + 65  no order 
 



 
 
 

122 - Test of VaR model comparison - 1000 replications – 250 daily forecasts 
Model comparison Freq. of Test 

(α) 1-2 1-3 1-4 1-5 1-6 2-3 2-4 2-5 2-6 3-4 3-5 3-6 4-5 4-6 5-6 
VaR 1% 

1% 0.500 0.464 0.905 0.967 0.979 0.262 0.909 0.967 0.981 0.904 0.902 0.968 0.968 0.975 0.784 
5% 0.503 0.467 0.906 0.967 0.979 0.265 0.910 0.967 0.981 0.907 0.902 0.968 0.969 0.978 0.786 Test is 

signif. 10% 0.504 0.473 0.908 0.968 0.979 0.269 0.911 0.968 0.982 0.910 0.904 0.968 0.969 0.978 0.787 
1% 0.480 0.545 0.592 0.429 0.323 0.653 0.607 0.444 0.333 0.582 0.574 0.419 0.349 0.259 0.388 
5% 0.481 0.546 0.592 0.429 0.323 0.645 0.607 0.444 0.333 0.580 0.574 0.419 0.350 0.262 0.389 Prefer 1st 

model 10% 0.482 0.543 0.593 0.429 0.323 0.647 0.607 0.443 0.334 0.581 0.574 0.419 0.350 0.262 0.389 
1% 0.520 0.455 0.408 0.571 0.677 0.347 0.393 0.556 0.667 0.418 0.426 0.581 0.651 0.741 0.612 
5% 0.519 0.454 0.408 0.571 0.677 0.355 0.393 0.556 0.667 0.420 0.426 0.581 0.650 0.738 0.611 Prefer 2nd 

model 10% 0.518 0.457 0.407 0.571 0.677 0.353 0.393 0.557 0.666 0.419 0.426 0.581 0.650 0.738 0.611 
VaR 5% 

1% 0.587 0.559 0.924 0.939 0.945 0.272 0.934 0.941 0.943 0.928 0.942 0.942 0.947 0.946 0.877 
5% 0.594 0.566 0.931 0.946 0.949 0.278 0.936 0.944 0.945 0.933 0.943 0.945 0.947 0.949 0.879 Test is 

signif. 10% 0.599 0.569 0.933 0.946 0.949 0.281 0.939 0.946 0.945 0.937 0.945 0.947 0.948 0.949 0.884 
1% 0.518 0.617 0.545 0.358 0.325 0.658 0.539 0.358 0.329 0.498 0.496 0.322 0.327 0.307 0.520 
5% 0.517 0.615 0.545 0.359 0.326 0.658 0.538 0.359 0.328 0.497 0.495 0.322 0.327 0.308 0.521 Prefer 1st 

model 10% 0.519 0.617 0.544 0.359 0.326 0.658 0.538 0.359 0.328 0.496 0.495 0.322 0.328 0.308 0.523 
1% 0.482 0.383 0.455 0.642 0.675 0.342 0.461 0.642 0.671 0.502 0.504 0.678 0.673 0.693 0.480 
5% 0.483 0.385 0.455 0.641 0.674 0.342 0.462 0.641 0.672 0.503 0.505 0.678 0.673 0.692 0.479 Prefer 2nd 

model 10% 0.481 0.383 0.456 0.641 0.674 0.342 0.462 0.641 0.672 0.504 0.505 0.678 0.672 0.692 0.477 



 
 
 
 
 
 

DGP FIGARCH(1,d,0) d=0.4 b=0.3  - % represent VaR p-level unless differently specified 
 

123 - Average number of exceptions (standard deviation) mean percentage 
1000 replications – 250 daily forecast] 

Fitted models  1 2 3 4 5 6 
3.719 3.780 3.401 2.314 3.365 3.786 

(2.028) (2.227) (1.730) (1.369) (1.856) (1.957) 1% VaR 
1.488 1.512 1.360 0.926 1.346 1.514 

11.866 11.828 10.870 11.273 12.011 12.822 
(3.683) (4.099) (2.959) (2.778) (3.453) (3.502) 5% VaR 
4.746 4.731 4.348 4.509 4.804 5.129 

 
124 - Frequency of less exceptions – 1000 replications – 250 daily forecasts 

Fitted models  1 2 3 4 5 6 
1% VaR 0.215 0.254 0.244 0.756 0.327 0.219 
5% VaR 0.347 0.265 0.327 0.534 0.245 0.159 

 
125 - TESTS – frequencies of accepting the null hypothesis – 1000 replications – 250 daily forecasts 

Fitted models  α 1 2 3 4 5 6 
Test of unconditional coverage: Null 

1% 0.954 0.937 0.988 1.000 0.976 0.955 1% VaR 5% 0.880 0.857 0.927 0.914 0.895 0.885 
1% 0.991 0.973 0.994 1.000 0.993 0.995 5% VaR 5% 0.913 0.881 0.944 0.969 0.938 0.943 

Test of independence: Null 
1% 0.870 0.843 0.834 0.756 1.000 1.000 1% VaR 5% 0.513 0.501 0.439 0.252 0.982 0.988 
1% 0.979 0.966 0.959 0.960 0.998 0.999 5% VaR 5% 0.927 0.897 0.882 0.867 0.993 0.988 

Test of conditional coverage: Null 
1% 0.937 0.909 0.935 0.962 0.990 0.977 1% VaR 5% 0.777 0.735 0.790 0.748 0.968 0.946 
1% 0.978 0.953 0.977 0.980 0.994 0.994 5% VaR 5% 0.884 0.829 0.861 0.879 0.958 0.962 

 
126 - Lopez loss function – frequency of model selection – 1000 replications – 250 daily forecasts 

Fitted models  1 2 3 4 5 6 
1% VaR 0.029 0.039 0.030 0.356 0.462 0.205 
5% VaR 0.029 0.017 0.009 0.317 0.445 0.183 

 
Model reference:1 - Figarch(1,d,0); 2 - Garch(1,1); 3 - Igarch(1,1); 4 - EWMA(0.97); 5 - HF Figarch(1,d,0) square root; 

6 - HF Figarch(1,d,0) sum 



 
 
 
 
 
 

127 - LOSS FUNCTIONS – frequency of model selection (best is lower loss function) 
1000 replications – 250 daily forecasts 

Fitted models  1 2 3 4 5 6 
Loss Function 1: absolute value of return VaR measure ratio 

E 0.048 0.087 0.037 0.714 0.157 0.078 1% VaR T 0.083 0.236 0.393 0.172 0.115 0.001 
E 0.076 0.185 0.104 0.432 0.165 0.038 5% VaR T 0.083 0.236 0.393 0.172 0.115 0.001 

Loss Function 2: square return-VaR normalized by absolute VaR measure 
E 0.031 0.051 0.034 0.812 0.112 0.081 1% VaR T 0.045 0.144 0.000 0.401 0.031 0.379 
E 0.012 0.058 0.007 0.782 0.098 0.043 5% VaR T 0.024 0.086 0.000 0.523 0.029 0.338 

Loss Function 3: absolute of return-VaR 
E 0.031 0.057 0.032 0.811 0.113 0.077 1% VaR T 0.055 0.176 0.000 0.349 0.026 0.394 
E 0.034 0.110 0.023 0.637 0.145 0.051 5% VaR T 0.052 0.160 0.000 0.378 0.035 0.375 

Loss function 1+2 
E 0.042 0.079 0.036 0.755 0.137 0.072 1% VaR T 0.038 0.138 0.000 0.444 0.045 0.335 
E 0.047 0.156 0.047 0.578 0.142 0.030 5% VaR T 0.010 0.034 0.000 0.700 0.063 0.193 

Loss function 1+3 
E 0.042 0.078 0.036 0.752 0.136 0.077 1% VaR T 0.053 0.168 0.000 0.381 0.041 0.357 
E 0.055 0.167 0.061 0.529 0.152 0.036 5% VaR T 0.040 0.138 0.000 0.471 0.057 0.294 

Loss function 2+3 
E 0.030 0.054 0.032 0.817 0.113 0.075 1% VaR T 0.054 0.160 0.000 0.372 0.028 0.386 
E 0.022 0.087 0.010 0.727 0.118 0.036 5% VaR T 0.035 0.128 0.000 0.444 0.031 0.362 

Loss function 1+2+3 
E 0.035 0.071 0.036 0.775 0.129 0.075 1% VaR T 0.051 0.157 0.000 0.387 0.035 0.370 
E 0.044 0.147 0.035 0.595 0.147 0.032 5% VaR T 0.035 0.114 0.000 0.490 0.046 0.315 

 
Model reference:1 - Figarch(1,d,0); 2 - Garch(1,1); 3 - Igarch(1,1); 4 - EWMA(0.97); 5 - HF Figarch(1,d,0) square root; 

6 - HF Figarch(1,d,0) sum 
 
 



 
 
 
 
 
 

128 - Test of VaR model specification (null: VaR(p) is correctly specified) 
Frequency of accepting H0 – 1000 replications – 250 forecasts 

Fitted models VaR 
p-value 

Test 
α-value 1 2 3 4 5 6 

1% 0.003 0.004 0.000 0.000 0.011 0.009 
5% 0.002 0.002 0.000 0.000 0.003 0.005 1% 

10% 0.001 0.001 0.000 0.000 0.003 0.004 
1% 0.121 0.100 0.067 0.079 0.159 0.179 
5% 0.061 0.053 0.038 0.040 0.095 0.097 5% 

10% 0.039 0.032 0.026 0.028 0.065 0.062 
 
 
 
 

Preference relation among the models as inferred from table 115 
 

612,3,4,5 + 623,4,5 + 634,5 +5,64 + 65  612345 
 

that is 
 

HF Figarch(1,d,0) sum  Figarch(1,d,0)  Garch(1,1)  Igarch(1,1)  EWMA(0.97)  HF Figarch(1,d,0) square root 



 
 
 

129 - Test of VaR model comparison - 1000 replications – 250 daily forecasts 
Model comparison Freq. of Test 

(α) 1-2 1-3 1-4 1-5 1-6 2-3 2-4 2-5 2-6 3-4 3-5 3-6 4-5 4-6 5-6 
VaR 1% 

1% 0.578 0.696 0.813 0.899 0.939 0.572 0.785 0.907 0.949 0.718 0.699 0.910 0.911 0.955 0.578 
5% 0.581 0.697 0.813 0.899 0.939 0.573 0.787 0.907 0.949 0.719 0.703 0.910 0.911 0.955 0.580 Test is 

signif. 10% 0.582 0.698 0.814 0.899 0.939 0.574 0.789 0.908 0.949 0.719 0.706 0.911 0.912 0.955 0.581 
1% 0.517 0.649 0.866 0.543 0.460 0.631 0.842 0.514 0.453 0.845 0.854 0.447 0.239 0.203 0.343 
5% 0.518 0.650 0.866 0.543 0.460 0.630 0.841 0.514 0.453 0.844 0.852 0.447 0.239 0.203 0.345 Prefer 1st 

model 10% 0.517 0.649 0.865 0.543 0.460 0.631 0.840 0.514 0.453 0.844 0.848 0.447 0.240 0.203 0.344 
1% 0.483 0.351 0.134 0.457 0.540 0.369 0.158 0.486 0.547 0.155 0.146 0.553 0.761 0.797 0.657 
5% 0.482 0.350 0.134 0.457 0.540 0.370 0.159 0.486 0.547 0.156 0.148 0.553 0.761 0.797 0.655 Prefer 2nd 

model 10% 0.483 0.351 0.135 0.457 0.540 0.369 0.160 0.486 0.547 0.156 0.152 0.553 0.760 0.797 0.656 
VaR 5% 

1% 0.790 0.891 0.943 0.979 0.986 0.773 0.904 0.975 0.989 0.761 0.765 0.977 0.978 0.988 0.793 
5% 0.794 0.895 0.949 0.983 0.991 0.776 0.906 0.982 0.992 0.767 0.768 0.979 0.983 0.989 0.799 Test is 

signif. 10% 0.797 0.898 0.949 0.985 0.993 0.781 0.908 0.982 0.992 0.773 0.769 0.982 0.984 0.990 0.800 
1% 0.567 0.676 0.657 0.440 0.399 0.651 0.616 0.392 0.364 0.511 0.512 0.308 0.317 0.295 0.463 
5% 0.565 0.675 0.655 0.442 0.400 0.649 0.616 0.393 0.364 0.510 0.513 0.308 0.318 0.294 0.461 Prefer 1st 

model 10% 0.565 0.674 0.655 0.442 0.400 0.649 0.616 0.393 0.364 0.512 0.512 0.309 0.319 0.294 0.461 
1% 0.433 0.324 0.343 0.560 0.601 0.349 0.384 0.608 0.636 0.489 0.488 0.692 0.683 0.705 0.537 
5% 0.435 0.325 0.345 0.558 0.600 0.351 0.384 0.607 0.636 0.490 0.487 0.692 0.682 0.706 0.539 Prefer 2nd 

model 10% 0.435 0.326 0.345 0.558 0.600 0.351 0.384 0.607 0.636 0.488 0.488 0.691 0.681 0.706 0.539 



DGP FIGARCH(1,d,0) d=0.8 b=0.5 f=0.3 - % represent VaR p-level unless differently specified 
 

130 - Average number of exceptions (standard deviation) mean percentage 
1000 replications – 250 daily forecast] 

Fitted models  1 2 3 4 5 6 
3.883 4.038 3.880 3.875 5.249 8.664 

(2.058) (2.253) (2.142) (1.740) (2.405) (2.886) 1% VaR 
1.553 1.615 1.552 1.550 2.100 3.466 
8.682 8.896 8.693 10.291 12.871 18.719 

(3.176) (3.418) (3.276) (2.960) (3.700) (4.166) 5% VaR 
3.473 3.558 3.477 4.116 5.148 7.488 

 
131 - Frequency of less exceptions – 1000 replications – 250 daily forecasts 

Fitted models  1 2 3 4 5 6 
1% VaR 0.482 0.454 0.507 0.502 0.219 0.008 
5% VaR 0.598 0.390 0.422 0.332 0.163 0.007 

 
132 - TESTS – frequencies of accepting the null hypothesis – 1000 replications – 250 daily forecasts 

Fitted models  α 1 2 3 4 5 6 
Test of unconditional coverage: Null 

1% 0.938 0.916 0.932 0.978 0.824 0.368 1% VaR 5% 0.867 0.839 0.857 0.923 0.717 0.231 
1% 0.916 0.915 0.912 0.982 0.981 0.817 5% VaR 5% 0.760 0.753 0.745 0.905 0.930 0.582 

Test of independence: Null 
1% 0.883 0.871 0.869 0.733 0.999 0.999 1% VaR 5% 0.512 0.504 0.491 0.390 0.986 0.992 
1% 0.960 0.940 0.945 0.820 0.998 0.997 5% VaR 5% 0.848 0.824 0.844 0.650 0.984 0.944 

Test of conditional coverage: Null 
1% 0.922 0.895 0.911 0.774 0.884 0.502 1% VaR 5% 0.775 0.737 0.754 0.681 0.813 0.348 
1% 0.884 0.869 0.869 0.853 0.994 0.871 5% VaR 5% 0.682 0.665 0.670 0.625 0.947 0.661 

 
133 - Lopez loss function – frequency of model selection – 1000 replications – 250 daily forecasts 

Fitted models  1 2 3 4 5 6 
1% VaR 0.056 0.047 0.063 0.312 0.538 0.039 
5% VaR 0.056 0.028 0.039 0.306 0.537 0.038 

 
Model reference:1 - Figarch(1,d,1); 2 - Garch(1,1); 3 - Igarch(1,1); 4 - EWMA(0.97); 5 - HF Figarch(1,d,1) square root; 

6 - HF Figarch(1,d,1) sum 



 
 
 
 
 
 

134 - LOSS FUNCTIONS – frequency of model selection (best is lower loss function) 
1000 replications – 250 daily forecasts 

Fitted models  1 2 3 4 5 6 
Loss Function 1: absolute value of return VaR measure ratio 

E 0.116 0.121 0.164 0.519 0.134 0.001 1% VaR T 0.107 0.118 0.423 0.352 0.000 0.000 
E 0.184 0.154 0.242 0.367 0.057 0.000 5% VaR T 0.107 0.118 0.423 0.352 0.000 0.000 

Loss Function 2: square return-VaR normalized by absolute VaR measure 
E 0.071 0.074 0.077 0.637 0.186 0.010 1% VaR T 0.001 0.009 0.001 0.064 0.001 0.924 
E 0.061 0.063 0.111 0.557 0.204 0.008 5% VaR T 0.001 0.004 0.000 0.143 0.022 0.830 

Loss Function 3: absolute of return-VaR 
E 0.079 0.086 0.113 0.521 0.244 0.012 1% VaR T 0.001 0.015 0.002 0.034 0.000 0.948 
E 0.129 0.082 0.193 0.336 0.259 0.005 5% VaR T 0.001 0.014 0.003 0.041 0.000 0.941 

Loss function 1+2 
E 0.091 0.097 0.128 0.594 0.144 0.001 1% VaR T 0.001 0.011 0.002 0.145 0.005 0.836 
E 0.116 0.109 0.176 0.478 0.125 0.000 5% VaR T 0.002 0.003 0.001 0.447 0.402 0.145 

Loss function 1+3 
E 0.105 0.099 0.154 0.513 0.182 0.002 1% VaR T 0.001 0.018 0.003 0.090 0.000 0.888 
E 0.166 0.126 0.238 0.354 0.119 0.001 5% VaR T 0.001 0.023 0.004 0.230 0.018 0.724 

Loss function 2+3 
E 0.074 0.081 0.094 0.590 0.206 0.010 1% VaR T 0.001 0.010 0.002 0.045 0.000 0.942 
E 0.086 0.071 0.136 0.482 0.224 0.005 5% VaR T 0.001 0.008 0.001 0.075 0.001 0.914 

Loss function 1+2+3 
E 0.086 0.090 0.132 0.571 0.174 0.002 1% VaR T 0.001 0.011 0.002 0.073 0.000 0.913 
E 0.122 0.109 0.172 0.451 0.149 0.001 5% VaR T 0.001 0.009 0.002 0.174 0.014 0.800 

 
Model reference:1 - Figarch(1,d,1); 2 - Garch(1,1); 3 - Igarch(1,1); 4 - EWMA(0.97); 5 - HF Figarch(1,d,1) square root; 

6 - HF Figarch(1,d,1) sum 
 
 



 
 
 
 
 
 

135 - Test of VaR model specification (null: VaR(p) is correctly specified) 
Frequency of accepting H0 – 1000 replications – 250 forecasts 

Fitted models VaR 
p-value 

Test 
α-value 1 2 3 4 5 6 

1% 0.013 0.010 0.010 0.011 0.012 0.011 
5% 0.006 0.004 0.004 0.008 0.005 0.003 1% 

10% 0.006 0.004 0.004 0.006 0.004 0.003 
1% 0.053 0.054 0.039 0.055 0.086 0.084 
5% 0.035 0.036 0.022 0.032 0.053 0.042 5% 

10% 0.025 0.027 0.020 0.023 0.034 0.025 
 
 
 
 
 

Preference relation among the models as inferred from table 115 
 

2,5,613,4 + 623,4,5 + 634,5 +5,64 + 65  no order 
 



 
 
 

136 - Test of VaR model comparison - 1000 replications – 250 daily forecasts 
Model comparison Freq. of Test 

(α) 1-2 1-3 1-4 1-5 1-6 2-3 2-4 2-5 2-6 3-4 3-5 3-6 4-5 4-6 5-6 
VaR 1% 

1% 0.501 0.470 0.896 0.977 0.996 0.324 0.904 0.981 0.994 0.901 0.893 0.984 0.991 0.998 0.966 
5% 0.502 0.474 0.896 0.977 0.996 0.326 0.904 0.981 0.994 0.901 0.893 0.984 0.991 0.998 0.967 Test is 

signif. 10% 0.503 0.477 0.898 0.978 0.996 0.328 0.904 0.982 0.994 0.901 0.894 0.984 0.992 0.999 0.968 
1% 0.240 0.273 0.501 0.405 0.229 0.216 0.503 0.418 0.246 0.472 0.468 0.371 0.356 0.195 0.254 
5% 0.240 0.273 0.501 0.405 0.229 0.216 0.503 0.418 0.246 0.472 0.468 0.371 0.356 0.195 0.254 Prefer 1st 

model 10% 0.241 0.274 0.502 0.406 0.229 0.217 0.503 0.419 0.246 0.472 0.468 0.371 0.357 0.195 0.254 
1% 0.261 0.197 0.395 0.572 0.767 0.108 0.401 0.563 0.748 0.429 0.425 0.613 0.635 0.803 0.712 
5% 0.262 0.201 0.395 0.572 0.767 0.110 0.401 0.563 0.748 0.429 0.425 0.613 0.635 0.803 0.713 Prefer 2nd 

model 10% 0.262 0.203 0.396 0.572 0.767 0.111 0.401 0.563 0.748 0.429 0.426 0.613 0.635 0.804 0.714 
VaR 5% 

1% 0.583 0.566 0.970 0.993 0.996 0.350 0.973 0.992 0.997 0.976 0.981 0.992 0.993 0.993 0.985 
5% 0.588 0.569 0.973 0.995 0.996 0.354 0.976 0.992 0.997 0.978 0.986 0.994 0.995 0.995 0.987 Test is 

signif. 10% 0.591 0.569 0.976 0.996 0.996 0.354 0.978 0.993 0.997 0.981 0.988 0.994 0.997 0.995 0.988 
1% 0.309 0.355 0.501 0.340 0.292 0.239 0.494 0.343 0.288 0.457 0.461 0.291 0.328 0.250 0.441 
5% 0.311 0.357 0.502 0.341 0.292 0.241 0.496 0.343 0.288 0.458 0.464 0.293 0.329 0.251 0.442 Prefer 1st 

model 10% 0.313 0.357 0.504 0.342 0.292 0.241 0.498 0.344 0.288 0.461 0.466 0.293 0.331 0.251 0.442 
1% 0.274 0.211 0.469 0.653 0.704 0.111 0.479 0.649 0.709 0.519 0.520 0.701 0.665 0.743 0.544 
5% 0.277 0.212 0.471 0.654 0.704 0.113 0.480 0.649 0.709 0.520 0.522 0.701 0.666 0.744 0.545 Prefer 2nd 

model 10% 0.278 0.212 0.472 0.654 0.704 0.113 0.480 0.649 0.709 0.520 0.522 0.701 0.666 0.744 0.546 



 
 
 
 
 
 

DGP FIGARCH(1,d,1) d=0.8 b=0.5  f=0.05 - % represent VaR p-level unless differently specified 
 

137 - Average number of exceptions (standard deviation) mean percentage 
1000 replications – 250 daily forecast 

Fitted models  1 2 3 4 5 6 
4.086 4.142 4.021 3.745 4.864 6.277 

(1.992) (2.253) (2.176) (1.768) (2.128) (2.378) 1% VaR 
1.634 1.657 1.608 1.498 1.946 2.511 
9.692 9.838 9.631 10.692 13.047 15.659 

(3.171) (3.594) (3.413) (3.001) (3.590) (3.772) 5% VaR 
3.877 3.935 3.852 4.277 5.219 6.264 

 
138 - Frequency of less exceptions - 1000 replications – 250 daily forecast 

Fitted models  1 2 3 4 5 6 
1% VaR 0.367 0.431 0.470 0.537 0.279 0.069 
5% VaR 0.500 0.380 0.386 0.401 0.187 0.033 

 
139 - TESTS – frequencies of accepting the null hypothesis - 1000 replications – 250 daily forecast 

Fitted models  α 1 2 3 4 5 6 
Test of unconditional coverage: Null 

1% 0.941 0.907 0.921 0.975 0.893 0.719 1% VaR 5% 0.868 0.839 0.854 0.908 0.779 0.581 
1% 0.959 0.943 0.943 0.984 0.983 0.954 5% VaR 5% 0.849 0.818 0.824 0.919 0.937 0.840 

Test of independence: Null 
1% 0.902 0.884 0.876 0.768 0.995 0.998 1% VaR 5% 0.544 0.516 0.511 0.386 0.985 0.992 
1% 0.973 0.968 0.968 0.853 0.996 0.994 5% VaR 5% 0.885 0.871 0.880 0.683 0.974 0.976 

Test of conditional coverage: Null 
1% 0.919 0.887 0.898 0.803 0.943 0.816 1% VaR 5% 0.783 0.735 0.744 0.702 0.875 0.707 
1% 0.943 0.922 0.923 0.883 0.980 0.960 5% VaR 5% 0.777 0.745 0.759 0.694 0.947 0.872 

 
140 - Lopez loss function – frequency of model selection - 1000 replications – 250 daily forecasts 

Fitted models  1 2 3 4 5 6 
1% VaR 0.025 0.032 0.045 0.286 0.598 0.055 
5% VaR 0.025 0.018 0.028 0.281 0.595 0.053 

 
Model reference:1 - Figarch(1,d,1); 2 - Garch(1,1); 3 - Igarch(1,1); 4 - EWMA(0.97); 5 - HF Figarch(1,d,1) square root; 

6 - HF Figarch(1,d,1) sum 



 
 
 
 
 
 

141 - LOSS FUNCTIONS – frequency of model selection (best is lower loss function) 
1000 replications – 250 daily forecasts 

Fitted models  1 2 3 4 5 6 
Loss Function 1: absolute value of return VaR measure ratio 

E 0.064 0.113 0.153 0.536 0.169 0.007 1% VaR T 0.055 0.147 0.389 0.407 0.002 0.000 
E 0.095 0.162 0.247 0.418 0.077 0.001 5% VaR T 0.055 0.147 0.389 0.407 0.002 0.000 

Loss Function 2: square return-VaR normalized by absolute VaR measure 
E 0.038 0.055 0.075 0.621 0.236 0.016 1% VaR T 0.000 0.012 0.002 0.094 0.000 0.892 
E 0.022 0.065 0.097 0.518 0.287 0.011 5% VaR T 0.001 0.007 0.001 0.124 0.006 0.861 

Loss Function 3: absolute of return-VaR 
E 0.047 0.067 0.094 0.517 0.298 0.018 1% VaR T 0.001 0.025 0.003 0.085 0.000 0.886 
E 0.051 0.106 0.167 0.312 0.356 0.009 5% VaR T 0.002 0.022 0.001 0.084 0.000 0.891 

Loss function 1+2 
E 0.041 0.087 0.122 0.602 0.181 0.008 1% VaR T 0.000 0.014 0.002 0.136 0.001 0.846 
E 0.055 0.125 0.165 0.484 0.170 0.002 5% VaR T 0.001 0.008 0.001 0.289 0.356 0.345 

Loss function 1+3 
E 0.052 0.092 0.131 0.522 0.237 0.007 1% VaR T 0.001 0.030 0.003 0.117 0.000 0.848 
E 0.082 0.143 0.218 0.383 0.173 0.001 5% VaR T 0.001 0.033 0.002 0.183 0.007 0.774 

Loss function 2+3 
E 0.041 0.060 0.084 0.563 0.276 0.018 1% VaR T 0.000 0.013 0.002 0.090 0.000 0.895 
E 0.033 0.082 0.125 0.424 0.329 0.006 5% VaR T 0.001 0.010 0.001 0.095 0.000 0.893 

Loss function 1+2+3 
E 0.043 0.082 0.113 0.570 0.226 0.007 1% VaR T 0.000 0.014 0.002 0.109 0.000 0.875 
E 0.051 0.123 0.167 0.439 0.217 0.003 5% VaR T 0.001 0.011 0.001 0.142 0.004 0.840 

 
Model reference:1 - Figarch(1,d,1); 2 - Garch(1,1); 3 - Igarch(1,1); 4 - EWMA(0.97); 5 - HF Figarch(1,d,1) square root; 

6 - HF Figarch(1,d,1) sum 
 



 
 
 
 
 
 

142 - Test of VaR model specification (null: VaR(p) is correctly specified) 
Frequency of accepting H0 – 1000 replications – 250 daily forecasts 

Fitted models VaR 
p-value 

Test 
α-value 1 2 3 4 5 6 

1% 0.013 0.015 0.012 0.012 0.011 0.019 
5% 0.006 0.007 0.007 0.007 0.006 0.009 1% 

10% 0.005 0.005 0.005 0.007 0.005 0.005 
1% 0.051 0.041 0.036 0.048 0.086 0.089 
5% 0.035 0.025 0.024 0.029 0.051 0.055 5% 

10% 0.024 0.019 0.019 0.027 0.040 0.039 
 
 
 
 
 

Preference relation among the models as inferred from table 115 
 

2,5,613,4 + 623,4,5 + 634,5 +5,64 + 65  no order 
 



 
 
 

143 - Test of VaR model comparison - 1000 replications – 250 daily forecasts 
Model comparison Freq. of Test 

(α) 1-2 1-3 1-4 1-5 1-6 2-3 2-4 2-5 2-6 3-4 3-5 3-6 4-5 4-6 5-6 
VaR 1% 

1% 0.506 0.478 0.910 0.983 0.993 0.230 0.914 0.982 0.993 0.914 0.912 0.981 0.988 0.994 0.796 
5% 0.511 0.482 0.912 0.983 0.993 0.235 0.914 0.983 0.993 0.914 0.912 0.981 0.989 0.995 0.798 Test is 

signif. 10% 0.515 0.486 0.912 0.983 0.993 0.237 0.914 0.983 0.994 0.914 0.912 0.982 0.989 0.995 0.798 
1% 0.477 0.545 0.618 0.439 0.354 0.671 0.627 0.440 0.364 0.591 0.590 0.414 0.369 0.276 0.350 
5% 0.478 0.545 0.618 0.439 0.354 0.665 0.627 0.440 0.364 0.591 0.590 0.414 0.370 0.277 0.351 Prefer 1st 

model 10% 0.478 0.545 0.618 0.439 0.354 0.664 0.627 0.440 0.364 0.591 0.590 0.414 0.370 0.277 0.351 
1% 0.523 0.455 0.382 0.561 0.646 0.329 0.373 0.560 0.636 0.409 0.410 0.586 0.631 0.724 0.650 
5% 0.522 0.455 0.382 0.561 0.646 0.335 0.373 0.560 0.636 0.409 0.410 0.586 0.630 0.723 0.649 Prefer 2nd 

model 10% 0.522 0.455 0.382 0.561 0.646 0.336 0.373 0.560 0.636 0.409 0.410 0.586 0.630 0.723 0.649 
VaR 5% 

1% 0.615 0.553 0.985 0.987 0.988 0.247 0.984 0.988 0.991 0.983 0.991 0.989 0.998 0.997 0.927 
5% 0.620 0.557 0.988 0.992 0.992 0.254 0.990 0.992 0.993 0.990 0.993 0.993 0.998 0.997 0.929 Test is 

signif. 10% 0.623 0.561 0.989 0.994 0.994 0.257 0.990 0.992 0.995 0.992 0.994 0.994 0.999 0.997 0.931 
1% 0.535 0.594 0.533 0.365 0.325 0.608 0.532 0.367 0.321 0.506 0.505 0.335 0.327 0.294 0.528 
5% 0.536 0.592 0.533 0.367 0.326 0.602 0.530 0.368 0.320 0.503 0.504 0.336 0.327 0.294 0.529 Prefer 1st 

model 10% 0.535 0.589 0.533 0.368 0.327 0.594 0.530 0.368 0.321 0.502 0.503 0.335 0.327 0.294 0.530 
1% 0.465 0.406 0.467 0.635 0.675 0.392 0.468 0.633 0.679 0.494 0.495 0.665 0.673 0.706 0.472 
5% 0.464 0.408 0.467 0.633 0.674 0.398 0.470 0.632 0.680 0.497 0.496 0.664 0.673 0.706 0.471 Prefer 2nd 

model 10% 0.465 0.411 0.467 0.632 0.673 0.406 0.470 0.632 0.679 0.498 0.497 0.665 0.673 0.706 0.470 




