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Abstract
This paper introduces a generalisation of the dynamic conditional

correlation (DCC) multivariate GARCH model proposed by Engle
(2002). In the multivariate GARCH literature one of the most rel-
evant problems is represented by the elevate number of parameters.
In order to solve this difficulty Bollerslev (1990) suggested to keep
constant the correlations (he suggested the Constant Conditional Cor-
relation model, CCC). Engle added to the CCC a limited dynamic in
the correlations, introducing a GARCH-type structure. However, the
dynamic is constrained to be equal for all the correlations. In our view,
this is an unnecessary restriction. In fact, we cannot impose that the
correlations of, say, European sectorial stock indexes are identical to
the correspondent US ones. We extend the DCC model introducing
a block-diagonal structure that solves this problem. The dynamic is
constrained to be equal only among groups of variables. Some possible
applications are presented.

Keywords: Multivariate GARCH, Dynamic Correlation, Volatility, Asset
Allocation, Risk Management.

1 Introduction

In today’s global and highly volatile markets the efficient measurement and
management of market risk has become a critical factor for the competitive-
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ness and even survival of financial institutions. One of the inputs required by
risk managers, seeking to hold efficient portfolios, is the correlation between
the securities to be included in the portfolio. Until recently, correlation was
assumed to be constant and stable over time. However, all empirical studies
that attempted to verify this finding, have failed to confirm the validity of
this assumption. In fact, most experienced practitioners would attest that
correlations increase in periods of high volatility and that both the magnitude
and persistence of correlation is affected by volatility.
The asset allocation decision entails, inter alia, an assessment of the risks

and returns of the various assets in the opportunity set. Optimal portfolio
choice requires a forecast of the covariance matrix of the returns. Similarly,
the calculation of the standard deviation of today’s portfolio requires a co-
variance matrix of all the assets in the portfolio. For actual portfolios, with
thousands of derivative and synthetic instruments, these functions require
estimation and forecasting of very large covariance matrices.
Over the past 20 years, a tremendous literature has been developed where

the dynamics of the covariance of assets has been explored, although the
primarily focus has been on univariate volatilities and not on correlations
(or covariances). In fact, in the multivariate GARCH literature one of the
most relevant problems is represented by the elevate number of parameters.
In order to solve this difficulty Bollerslev (1990) suggested to keep constant
the correlations and suggested the Constant Conditional Correlation model
(CCC). Only recently Engle (2002) proposes a new class of estimators that
both preserves the ease of estimation of the Bollerslev’s constant correlation
model but allows the correlations to change over time. Engle adds to the CCC
a limited dynamic in the correlations, introducing a GARCH-type structure.
However, the dynamic is constrained to be equal for all the correlations. In
our view, this is an unnecessary restriction. In fact, we cannot impose that
the correlations of, say, European sectorial stock indexes are identical to the
correspondent US ones. We thus extend the DCC model introducing a block-
diagonal structure that solves this problem. The dynamic is constrained to
be equal only among groups of variables.
This block dynamic representation will also be useful in other fields, for

example to investigate wether the formation of the EMU in Europe has in-
creased the correlation among national assets and in more general terms to
analyse the interdependence and contagion issues.
The outline of the paper is as follows. We start by surveying the multi-

variate GARCH models in Section 2. In Section 3 we discuss estimation and
testing of the Block Dynamic Conditional Correlation Multivariate GARCH
model. In Section 4 we describe an asset allocation problem, in which we
analyse sectorial stock indexes. Section 5 concludes.
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2 Multivariate GARCH models

We consider a n-dimensional process Xt, define by It (X) the information set
of X at time t and assume that:

Xt|It−1 (X) ˜iid D (µt, Ht) (1)

where D (µt, Ht) is a non-specified multivariate distribution with time de-
pendent mean µt and time dependent variance covariance matrix Ht. This
formulation nests all multivariate GARCH representations that will be intro-
duced in few steps, and allows also the specification of a multivariate ARMA
process for the mean, as well as in-mean effects of the variances.
In the following, vector variables and matrices are denoted by bold or

uppercase letters, while scalar are denoted by lowercase letters. The V ech(·)
matrix operator will also be used: it stacks the lower triangular portion of a
matrix. In addition, the residuals are defined as Et = Xt − µt.
In a general framework, a multivariate GARCH process can be repre-

sented as

Ht = ω + C (L)Ht +D (L) [EtE
0
t] (2)

C (L) =

pX
i=1

CiL
i D (L) =

qX
i=1

DiL
i (3)

Given the symmetry of the variance covariance matrix and of the cross prod-
uct of the mean residuals, this relation, even if useful for theoretical purposes,
turns out to contain redundant relations. This observation, together with the
need of a formulation that couples flexibility, limited number of parameters
and easiness to be handled with software packages (consider the restrictions
to be impose: positivity of conditional variances; invertibility of the variance-
covariance matrix; stationarity of the process) leaded to specifications of dif-
ferent multivariate GARCH models. The next section presents some of the
most known specifications: the Vech and BEKK multivariate GARCH of
Engle and Kroner (1995), the CCC and DCC representations of Bollerslev
(1990) and Engle and Sheppard (2001), together with a new extension of the
DCC representation that modifies the dynamic of the correlations.

2.1 The Vech representations

These formulations derive from the work of Engle and Kroner (1995). The
multivariate GARCH is represented as

V ech (Ht) = V ech (ω) + C (L)V ech (Ht−1) +D (L)V ech (EtE
0
t) (4)
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where ω is a positive definite matrix of dimension n×n, C (L) =
Pp

i=1CiL
i,

D (L) =
Pq

i=1DiL
i, Ci and Di, are square matrices of dimension r × r and

r = n(n + 1)/2. The parameters in this formulation are r × [1 + r (p+ q)]
this is the main constraint on the estimation and application of this model.
For example let we consider the bivariate model: the parameters will be 21.
However, in this case Engle and Kroner (1995) show that the Vech-GARCH
is stationary if and only if all the eigenvalues of C (1) +D (1) are less than
one in modulus.
A restricted case of the Vech-GARCH is its diagonal representation, the

D-Vech-GARCH: it is defined diagonal as it assumes that all parameter ma-
trices are diagonal. This boils down to a model that parameterizes all condi-
tional variances and covariances as univariate GARCH(p,q) processes. The
total number of parameters reduces to 3r, for the bivariate case 9.
A much greater problem, that is not solved by restricting to the diagonal

version, is the positive definiteness of the Ht matrix, which is very difficult
to check and imposes controls in the optimization routines.

2.2 The BEKK representation

This formulation was suggested by Baba, Engle, Kraft and Kroner in a pre-
liminary version of Engle and Kroner (1995). The main feature is that it
does not need any restriction on parameters to get positive definiteness of the
Ht matrix, given its quadratic structure. The fundamental BEKK-GARCH
model is

Ht = ω +

pX
i=1

CiHt−iC 0
i +

qX
j=1

DjEt−jE0
t−jD

0
j (5)

where Ci and Dj are n × n matrices and ω is a symmetric positive definite
n × x matrix. In a general formulation the number of parameters are here
r + n × n × (p+ q), for the bivariate case the number drops to only 11.
Positive definiteness of the variance covariance matrix is controlled by the
constant matrix ω, whose positive definiteness is often obtained assuming
the factorization ω = ΓΓ0, where Γ is a lower triangular matrix. The BEKK
formulation and the Vech are strictly related as shown in Engle and Kroner
(1995), in particular the stationarity condition of the BEKK model is very
similar to the one of the Vech representation (for further details refer to the
cited paper).

4



2.3 The Constant Conditional Correlation GARCH

This form was introduced by Bollerslev (1990) who tried to reduce the num-
ber of parameters of the Vech representations. He suggested the following
structure:

Ht =


σ21,t σ12,t · · · σ1n,t
σ12,t σ22,t σ2n,t
...

. . .
...

σ1n,t σ2n,t · · · σ2n,t

 (6)

σ2i,t = ωi +

pX
j=1

βi,jσ
2
i,t−j +

qX
j=1

αi,jε
2
i,t−j i = 1...n

σij,t = ρijσi,tσj,t i, j = 1...n , i 6= j

The main difference between this formulation and the previous one is in
the assumption of constant correlation among variables. The total number
of parameters is now (p + q + 1)n + n(n + 1)/2, i.e. 7 in the bivariate
case. Positive definiteness of the variance covariance matrix is now controlled
by the correlation matrix (for the conditional variances the usual GARCH
constraints for positivity are required), since we can rewrite

Ht = diag (σ1,tσ2,t...σn,t)


1 ρ1,2 · · · ρ1,n

ρ1,2 1
...

...
. . . ρ1,n−1

ρ1,n · · · ρ1,n−1 1

 diag (σ1,tσ2,t...σn,t)
(7)

where diag (σ1,tσ2,t...σn,t) represents a diagonal matrix with the given
elements. Moreover, the correlation matrix can be factorized similarly to the
constant of the BEKK-GARCH to impose its positive definiteness and to
ensure that it is a correlation matrix. It can be factorized as follows:

R = diag(
√
γ1,1,
√
γ2,2...

√
γn,n)ΓΓ

0diag(√γ1,1,√γ2,2...√γn,n)
where the internal matrices ensure positive definiteness, while the external
ones ensure the boundness of correlations and the unit value of the main
diagonal of R.

2.4 The Dynamic Conditional Correlation formulations

This alternative representation try to add some limited dynamics to the CCC-
GARCH and has been introduced in recent papers by Engle and Sheppard
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(2001) and Engle (2002). The idea behind this GARCH model derive from
the CCC representation. The following factorization of the Ht matrix is
assumed:

Ht = diag (σ1,tσ2,t...σn,t)Rtdiag (σ1,tσ2,t...σn,t) (8)

where the conditional variances are parameterized as in the CCC-GARCH
and Rt is a dynamic correlation matrix satisfying

Rt = (Q∗t )
−1Qt (Q

∗
t )
−1 (9)

Qt = [1− α (1)− β (1)] Q̄+ α (L) εt−1ε0t−1 + β (L)Qt−1 (10)

εt = E0
tdiag (σ1,tσ2,t...σn,t)

Q̄ = T−1
TX
i=1

εtε
0
t (11)

α (L) =

qX
i=1

αiL
i β (L) =

pX
i=1

βiL
i

Q∗t = diag(
√
q11,t,

√
q22,t, ...

√
qnn,t)

that is just a particular kind of multivariate GARCH on the correlations. The
Q∗t diagonal matrix is introduced to ensure that Rt is a correlation matrix,
while εt represents the vectors of standardised residuals of the univariate
GARCH models. Positive definiteness of the DCC-GARCH is controlled by
the correlation function and depends on a set of restrictions, namely the
same positivity restriction of the univariate GARCH(p,q), α (1) + β (1) < 1.
A final word on the matrix Q̄: in Engle and Sheppard (2001) this matrix is
defined as the unconditional covariance matrix of the standardized residuals,
a definition in line with standard univariate GARCH result. In fact, it is well
known that in a GARCH(p,q) the constant can be factorized as follows:

ω = [1− α (1)− β (1)]σ2

i.e. the product of the characteristic polynome and of the unconditional vari-
ance. It should be therefore noted that the dynamic structure can be thought
as a dynamic structure on the covariances of the standardized residuals. A
deeper analysis of this point can be found in Engle (2002).
In this model the number of parameters is (p+ q + 1)× n+ (p+ q), and

in the bivariate case they are 8 if p = q = 1 (the simplification introduced
by the model are useful with larger scale models).
Sheppard (2002) provides a direct extension of this model by introduc-

ing asymmetry in the correlation dynamics and modifying the correlation
equation in the following one:
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Qt =
¡
Q̄−A0Q̄A−B0Q̄B −G0N̄G

¢
+A0εtε0tA+B0Qt−1B +G0ηt−1η

0
t−1G

where ηt = I (εt < 0) ◦ εt, ◦ being the Hadamar product (element by
element), A, B, G are diagonal parameter matrices, Q̄ is again the sample
covariance matrix of the standardized residuals and N̄ is the sample covari-
ance matrix of ηt. This model adds flexibility to the previous one, however
the number of parameters greatly increases.

2.5 Block-Dynamic Conditional Correlation

An additional and natural extension to this model is to allow for a block
structure on the GARCH dynamic of the correlations, in fact the structure
proposed by Engle and Sheppard (2001) presumes that all the correlations
follow the same dynamics. This may not be the case: consider for example
a stock market, with the assets grouped in homogeneous categories (energy,
food, chemistry...) or think to a model for geographical areas, we may assume
different patterns of correlation inside the groups and between the groups.
Such consideration is on the basis of this extension of the DCC-GARCH.

We therefore introduce the Block-DCC-GARCH by reformulating the dy-
namic correlation equation in the following way:

Qt = [1− α (L)− β (L)]¯ Q̄+ α (L)¯ εtε
0
t + β (L)¯Qt

α (L) =

qX
i=1

αiL
i β (L) =

pX
i=1

βiL
i

where αi, βi are square full matrices and ¯ indicates the Hadamar product.
All matrices are of dimension n×n with the following structure: if we group
the n variables in w sets of dimension m1,m2...mw and we indicate with i (y)
a column vector of ones if dimension y, then

αi =


αi,11i (m1) i (m1)

0 αi,12i (m1) i (m2)
0 · · · αi,w1i (m1) i (mw)

0

αi,12i (m2) i (m1)
0 αi,22i (m2) i (m2)

0 αi,w2i (m2) i (mw)
0

...
. . .

...
αi,w1i (mw) i (m1)

0 αi,w2i (mw) i (m2)
0 · · · αi,wwi (mw) i (mw)

0


(12)

and in a similar way for βi. It is worth noting that the number of sets w
and their dimensions m1,m2...mw must be constant between the αi, and βi.
Clearly, to be competitive this representation requires a small number of
groups. In this new model the number of parameters are (p + q + 1) × n +
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(p+ q) × w (w − 1) /2, and it is evidently not useful in the bivariate case.
The Block-DCC model provides also a positive definite variance-covariance
matrixHt, since the Proposition 2 of Engle and Sheppard (2001) is still valid.

3 Estimation and testing

The estimation of the dynamic correlation models can be carried out by
Quasi-Maximum Likelihood, following the approach suggested by Engle and
Sheppard (2001). Let define by θ1 the parameters of the univariate GARCH
models and with θ2 the parameters of the dynamic correlation structure. The
likelihood of the model can be written as follows:

LogL (θ1, θ2|Xt) = −1
2

TX
t=1

£
k log (2π) + log (|Ht|) +XtH

−1
t X

0
t

¤
or, exploiting the factorization of the variance-covariance matrix and defining
Dt = |diag (σ1,tσ2,t...σn,t)|, as

LogL (θ1, θ2|Xt) = −1
2

TX
t=1

£
k log (2π) + log (Rt) + 2 log (|Dt|) +X0

tD
−1
t R−1t D−1

t Xt

¤
Engle and Sheppard suggest a first estimation stage where the correlation
matrix is replaced by an identity matrix

LogL (θ1|Xt) = −1
2

TX
t=1

£
k log (2π) + log (In) + 2 log (|Dt|) +X0

tD
−1
t I−1n D−1

t Xt

¤
which is equivalent to univariate estimation of GARCH models, and a second
step conditional on the parameters estimated in the first one

LogL
³
θ2|θ̂1,Xt

´
= −1

2

TX
t=1

£
k log (2π) + log (Rt) + 2 log (|Dt|) + ε0tR−1t εt

¤
where εt = D−1

t Xt are the first stage standardized residuals. Under a set
regularity conditions Engle and Sheppard (2001) provide proofs for the con-
sistency and for asymptotic normality of the two-stage estimator. The proof
extends directly to the Block-DCC model.
It is worth noting that such a procedure can be used also for the CCC-

GARCH model, the constant correlation being estimated in the second step
by simply ε0tεt/T , which is exactly equal to Q̄. This observation suggests a
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possible likelihood ratio test for constant correlation. Engle and Sheppard
(2001) provide a testing framework for constant correlation, with an alter-
native hypothesis of a dynamic autoregressive structure for the correlation,
moreover they evidence that standard likelihood ratio tests in a multiple step
estimated model have an asymptotic distribution equal to a weighted sum of
r χ2, r being the number of restrictions. It has to be noted that the weights
are not constant and are complicate functions of the parameters.
We suggest an alternative approach. We are interested in testing the null

hypothesis of constant correlation against the alternative of a given dynamic
structure, namely the DCC(1,1), for the sake of exposition. We focus on
the standardized residuals obtained with the first estimation stage. These
variables clearly depend on the estimated parameters and an estimate of
correlations or dynamic correlations on these data provide an estimate whose
variance-covariance depends on the first stage estimates. However, the bias
will equally affect both the constant and the dynamic specifications, we can
thus think the standardized residuals as our new variables, and the aim is the
estimation of the correlation structure of these data. A standard likelihood
ratio test should not be used, unless we compute the asymptotic distribution
shown in Engle and Sheppard (2001) and mentioned above. We follow an
alternative approach: recalling that the standardised residuals are defined by
εt = E0

tdiag (σ1,tσ2,t...σn,t), their Log-Likelihood can be represented by

LogL (θ2|εt)= −
1

2

TX
t=1

£
k log (2π) + log (Rt) + ε0tR

−1
t εt

¤
We propose therefore to consider two different specifications of Rt the

previous dynamic DCC structure Rt = (Q∗t )
−1Qt (Q

∗
t )
−1 and a CCC-type

structure whereRt = R =
¡
Q̄∗
¢−1

Q̄
¡
Q̄∗
¢−1
. In this last equality the external

square matrices are Q̄∗ = diag(
√
q̄11,
√
q̄22, ...

√
q̄nn). This last representation

is motivated by two main reasons: at first, we are working with standardised
residuals whose variance-covariance matrix should be equal to their corre-
lation matrix, however, this is a theoretical equality and on a sample basis
normally will not be satisfied, the quadratic structure ensure we obtain a
correlation matrix. Second, the CCC-type representation is equivalent to
the DCC when its parameters are equal to zero. Therefore, a combined
significativity test of the parameters od the dynamic structure can be used
to compare the CCC and the DCC models. Its distribution is a standard
chi-square with two degrees of freedom, given the normal asymptotic distri-
bution of the quasi maximum likelihood estimators. By the same reasoning
such an approach can be used to compare constant correlation hypothesis to
an alternative of block diagonal DCC model. In such a model the combined
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significativity test will have (p+ q) × w (w + 1) /2 degrees of freedom. Dif-
ferently, we can compare standard DCC models with our Block-DCC model
with a set of parameter restrictions. In this case the asymptotic distribution
has (p+ q)× w (w + 1) /2− (p+ q) degrees of freedom.

4 An empirical application: sectorial alloca-
tion

To illustrate the model and to develop the examples we work with weekly
data of Italian Stock market indices and analise the subdivision by sector
of activity. There are three major sectors that compose the Italian Mibtel
general index: Industrials, Services, Finance. Each of this three sub index is
further divided in a several sub-sectors. The composition is summarised in
Table 1.

INSERT TABLE 1

All the time series are provided by DataStream, are expressed in Euro and
run from from January 1990 to April 2003, yielding 693 weekly observations.
The problem of asynchronous data encountered by some authors (Corsetti
G. et, ) is not present, since the closing prices are determined at the same
hour in the same market (Italian Stock market). The returns are calculated
as usual through log difference transformation. In Table 2 we summarize the
main statistics of each series.

INSERT TABLE 2

The average return of the general Mibtel index is positive (3.38% annu-
ally), but there are significant differences among the considered sector in-
dexes. For example, the major Industrial sector return is negative (-0.83%)
while the return of the major Service sector is greatly positive (13,16%),
this is mainly due to the Public Utility Services sector. The sector analysis
evidence great differences even for the annualised standard deviations, that
vary between the 21,3 of the Real Estate sector and the 40,9 of the Finance
Miscellaneous sector. The data presents also a skewness different from zero
and a relevant excess kurtosis. The skewness is both positive (10 cases) and
negative (10 cases) but with a prevalence, at the aggregate level (Mibtel gen-
eral index), to be negative (-0,039). Finally, the excess kurtosis is always
positive, evidencing the presence of fat tails in the empirical distributions.
The Jarque-Bera test clearly rejects the null hypothesis of normality for all
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the series (not reported in Table 2). The main object of our analysis is to
the study of the correlations behaviour between these series. In Table 3 the
major sector indexes and the Mibtel general index are considered and there
is a high positive correlation for all the indexes. The unconditional empiri-
cal correlations between sector indexes are summarised in Table 4 and vary
between 0,17 for Industrial misc and Finance misc and 0,82 for Banks and
Insurance. The average correlation among the major Industrial sectors is
0,51060, while are 0.48167 and 0.54499 for major Services and Finance sec-
tors, respectively. It is also interesting to observe that within these three
groups, there are sector indexes more correlated to each other.

INSERT TABLE 3 AND 4

If we consider a dynamic analysis of the time series of the sector indexes,
the volatility is clearly far from being constant. The GARCH specifications
can be useful to capture these features. Given the characteristics of the series
an asymmetric GARCH specification is considered, in order to capture both
excess kurtosis and asymmetric effects. A parsimonious specification of the
EGARCH model proposed by Nelson (1991) is considered. The results are
summarised in Table 5. The parameters are, with the exception of a few
cases, significant at the 5% confidence level.

INSERT TABLE 5

The analysis of the residuals 1 evidences that the GARCH specifications
are not able to explain a significant part of the non normality of the series,
with the only exception of the Minerals Metals series.
It is also interesting to analyse the behaviour of the correlations over

the time, evaluating if their values are stable or not. Considering rolling
empirical correlations (with 52 weekly data) it is interesting to observe that
almost all the correlations vary through time and also that they present
different patterns. For sake of simplicity, the analysis is initially restricted
to the three major sectors (Industrial, Service, Finance) compared to the
Mibtel general index. Figure 1 evidences the dynamic correlation between
the general index and each major sectors, while Figure 2 shows the dynamic
correlation between the major sectors. In particular, Figure 1 points out
that the correlation are positive and generally high during the sample period
for all the major sector indexes while their dynamics is very different. Let
us consider for example the first part of 2000: the Finance index correlation
exhibits a sharp fall, the Service index correlation remains nearly constant

1Not presented but available from the authors.
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and the Industrial index correlation increases. Even the correlations between
the major sector indexes present very dissimilar patterns.

INSERT FIGURE 1 AND 2

Extending the analysis of the correlation dynamics to the sub-sectors,
other considerations are possible. In general the correlation patterns are
similar for series of the same major sector and different for series of different
major sectors. For example, the dynamics of the correlation between the
Food and Paper sector indexes is the same that the correlation between
the Cars and Minerals Metals sector indexes while differ from that between
Chemicals and Finance Holding sector indexes.

INSERT FIGURE 3

To describe these dynamics three models are estimated. The results for
the CCC MV-GARCH proposed by Bollerslev (1990) and the DCC MV-
GARCH proposed by Engle (2002) are summarized in Tables 6 and 7.

INSERT TABLES 6 and 7

Moreover, the estimates of the Block DCC MV-GARCH are proposed
considering a different volatility and correlation behaviour for each block.
The results are summarised in Table 8.

INSERT TABLE 8

The parameters slightly differ in the blocks and in the correlations be-
tween blocks. Likelihood ratio tests are used to verify the combined parame-
ter significativity for DCC and Block-DCC models. Both parameterisations
result highly significant. Moreover, a combined parameter restriction test is
used to directly compare the two DCC models. The test statistic has a value
of 143.697 and strongly reject the null hypothesis of parameter restriction
(the test has a χ2 distribution with 10 degrees of freedom). These differences
are significative, then we measure the impact of such different specifications
of the correlation matrix by considering some financial applications. In par-
ticular, we analyse the Value at Risk computation and an optimal portfolio
composition. To perform these analysis the one step ahead forecast of the
univariate GARCH and the forecast of the different estimates of the correla-
tion matrix are considered. Table 9 reports the Value at Risk for an equally
weighted portfolio composed by the 20 sector indexes. For each of the three
considered confidence levels (0.1, 0.05, 0.01), the VaR obtained is different
along with the chosen correlation model.
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INSERT TABLE 9

To further assess the importance of the different specification of the
variance-covariance matrix, the portfolio allocation problem is considered.
In particular, the mean variance approach of Markovitz suggests that the
optimal weights of a portfolio is function of the expected return vector and
of the variance-covariance matrix. The expected return vector is estimated
considering the historical mean for each sector. For a given level of the port-
folio return, the optimal weight vector is calculated for the three different
hypothesis about the variance matrix in both the cases of presence of the
constraint on short selling (no negative weights) and possibility of short sell-
ing. In both cases the portfolio optimal composition is very different depend-
ing on the considered multivariate GARCH specification. These differences
reflect in a different portfolio variance and point out that a better variance
specification allow a more efficient portfolio composition. The last row of
Table 10 contains the variances of the optimal portfolios and, both in the
constrained and non constrained problem, the specification of the correlation
matrix that allows lower variance given a level of expected return is the Block
DCC MV-GARCH, followed by the DCC and the CCC specifications.

INSERT TABLE 10

5 Conclusions

We propose an extension of the new class of models recently proposed by
Engle (2002), that both preserves the ease of estimation of the Bollerslev’s
constant correlation model but allows the correlations to change over time.
Engle indeed added to the CCC a limited dynamic in the correlations, in-
troducing a GARCH-type structure. However, the dynamic is constraint to
be equal for all the correlations. However, this is an unnecessary restriction,
thus we extend the DCC model introducing a block-diagonal structure that
solves this problem. The dynamic is constrained to be equal only among
groups of variables. In fact, we cannot impose that the correlations of, for
example European sectorial stock indexes are equal to the correspondent US
ones. Keeping the ease of estimation of the Engle’s model, the extension we
propose allows richer dynamics of the correlations.
After discussing the estimation and testing issues, we consider an em-

pirical application of the three models (CCC, DCC and Block DCC). The
variables object of analysis are sectorial stock indexes representing the ma-
jor disaggregation of the Italian general stock index. The estimates of the
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three models confirm, for the period of analysis, the presence of dynamics in
the correlations, as well as for the volatility, but also evidence the presence
of dissimilarities in these dynamics. Even if more rigorous investigation are
needed, these preliminary results are very promising.
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FOOD 
CARS 
PAPER 
CHEMICALS 
CONSTRUCTION 
ELECRONICS 
PLANTS MACHINE 
INDUSTRIALS MISC 
MINERALS METALS 

INDUSTRIAL 

TEXTILE CLOTHING 
DISTRIBUTION 
MEDIA 
PUBLIC UTILITY SERVICES SERVICE 
TRANSPORT TOURISM 
INSURANCE 
BANKS 
FINANCE HOLDINGS 
FINANCE MISC 
REAL ESTATE 

MIBTEL (General) 

FINANCE 

FINANCE SERVICES 
Table 1: Italian indexes composition. 
 
 
 Mean Standard deviation Asymmetry Excess Kurtosis 
MIBTEL 3,38 22,4 -0,039 2,17 
INDUSTRIAL -0,83 21,9 -0,285 1,61 
FOOD 1,79 26,5 -0,063 1,79 
CARS -11,26 31,7 -0,269 3,07 
PAPER -11,34 30,2 1,278 13,83 
CHEMICALS -2,20 25,0 -0,368 1,67 
CONSTRUCTION -1,11 26,5 0,174 1,96 
ELECRONICS -4,25 29,3 0,009 2,22 
PLANTS & MACHINE 5,10 24,9 -0,357 5,04 
INDUSTRIALS MISC -1,53 28,3 -0,227 6,83 
MINERALS METALS 0,45 26,0 -0,029 0,66 
TEXILE CLOTHING 3,97 23,4 -0,455 3,47 
SERVICE 13,16 25,0 0,235 0,91 
DISTRIBUTION 2,44 25,2 0,245 4,89 
MEDIA 0,83 29,5 0,651 6,56 
PUB. UTIL. SERV. 15,21 27,3 0,260 0,81 
TRANS & TOURISM 7,65 23,1 0,094 3,20 
FINANCE 1,14 24,2 -0,187 3,76 
INSURANCE 2,44 25,7 -0,048 3,27 
BANKS 2,14 26,0 -0,161 4,11 
FINANCE HOLDINGS -6,68 27,0 0,190 1,03 
FINANCE MISC. -2,82 40,9 0,937 6,12 
REAL ESTATE -0,86 21,3 0,700 4,46 
FINANCE SERVICES 2,17 29,3 -0,335 5,88 
Table 2: Summary statistics. 
 
 
 GENERAL INDUSTRIALS SERVICES FINANCE 
GENERAL 1 0.925802 0.908596 0.948754 
INDUSTRIALS 0.925802 1 0.783265 0.850153 
SERVICES 0.908596 0.783265 1 0.768069 
FINANCE 0.948754 0.850153 0.768069 1 
Table 3: Empirical correlations. 
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 ω  α γ β 
FOOD 0.007667 

0.044489 
0.17429 

0.041231 
-0.042721 

0.016308 
0.945534 

0.019298 
CARS -0.018458 

0.033559 
0.181820 

0.025871 
-0.049772 

0.014939 
0.960047 

0.012635 
PAPER 0.133547 

0.080686 
0.190099 

0.027615 
-0.115743 

0.021219 
0.903522 

0.031548 
CHEMICALS 0.06875 

0.052705 
0.210777 

0.048487 
-0.042927 

0.01917 
0.905615 

0.028169 
CONSTRUCTION -0.017683 

0.040712 
0.206656 

0.035078 
-0.038557 

0.015415 
0.945024 

0.013988 
ELECRONICS -0.105743 

0.047497 
0.273387 

0.043656 
-0.037565 

0.018623 
0.960144 

0.016466 
PLANTS & 
MACHINE 

-0.001862 
0.052135 

0.257848 
0.038020 

-0.135494 
0.018234 

0.9174 
0.022963 

INDUSTRIALS 
MISC 

0.043335 
0.049291 

0.200922 
0.031524 

-0.033979 
0.015484 

0.931596 
0.021698 

MINERALS 
METALS 

0.136145 
0.112448 

0.254659 
0.051434 

-0.06675 
0.025988 

0.867494 
0.048532 

TEXILE 
CLOTHING 

-0.006179 
0.067197 

0.304888 
0.055493 

-0.103177 
0.021758 

0.896652 
0.023522 

DISTRIBUTION 0.126355 
0.080918 

0.356644 
0.056348 

-0.104257 
0.021247 

0.840823 
0.041691 

MEDIA -0.091437 
0.039332 

0.371298 
0.039381 

-0.004515 
0.018767 

0.924889 
0.017853 

PUB. UTIL. 
SERV. 

0.056750 
0.088477 

0.164620 
0.045733 

-0.022391 
0.018623 

0.929796 
0.038658 

TRANS & 
TOURISM 

0.034109 
0.086364 

0.341412 
0.041971 

-0.018215 
0.021881 

0.871284 
0.037845 

INSURANCE 0.145923 
0.110749 

0.267765 
0.041751 

-0.062281 
0.021792 

0.857678 
0.049524 

BANKS -0.004814 
0.080188 

0.339686 
0.046219 

-0.046271 
0.026547 

0.892956 
0.036466 

FINANCE 
HOLDINGS 

0.003824 
0.054225 

0.247872 
0.045694 

-0.025745 
0.020524 

0.923353 
0.025147 

FINANCE MISC. -0.009788 
0.034614 

0.443871 
0.034797 

-0.086374 
0.023577 

0.906579 
0.014537 

REAL ESTATE -0.067388 
0.035504 

0.312774 
0.026917 

0.014675 
0.016420 

0.923310 
0.016421 

FINANCE 
SERVICES 

0.125354 
0.075030 

0.334182 
0.043659 

-0.055903 
0.023690 

0.859555 
0.036751 

Table 5: Univariate GARCH specifications and parameter estimates (standard deviation in italic). 
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Parameter Estimate Standard deviation z-statistics 

α 0,84223 0,0132 63,78584 
β 0,03422 0,01483 2,30771 

 Log Likelihood: -2926,59033  
Table 7: DCC MV-GARCH estimates. 
 
 
 

 Industrial Service Finance 

Industrial 
0,83536 

0,01781 
0,05045 

0,02029  

0,76976 
0,02779 

0,18203 
0,02984  

0,80562 
0,02474 

0,12071 
0,02649  

Service - 
0,76213 

0,03203 
0,15305 

0,03715  

0,74346 
0,03330 

0,20796 
0,03623  

Finance - - 
0,79144 

0,02777 
0,10341 

0,03120  
Table 8: Block DCC MV-GARCH: α and β parameters for each block (standard deviations in italic). 
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Industrial/General
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Service/General
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0.8

0.9

1.0 Finance/General

 
Figure 1: Correlation between Mibtel general index and major sectors indexes. 
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1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

0.6

0.7

0.8

0.9 Industrial/Service

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

0.7

0.8

0.9

1.0 Industrial/Finance

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

0.6

0.8

1.0 Service/Finance

 
Figure 2: Correlation between major sector indexes. 
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Figure 3: Correlation dynamics. 
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Figure 4: Correlation between Public Utility Service sector and Banks sector for the three models 
estimated. 
 
 
 
 
 
 

Value at Risk CCC DCC BDCC 
0.1 3,58 3,23 3,72 
0.05 4,59 4,15 4,77 
0.01 6,47 5,81 6,72 

Table 9: Value at Risk measures at different confidence level for the three models. 
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CCC DCC BDCC  CCC DCC BDCC 

- - - FOOD -0,06 -0,03 -0,06 
- - - CARS -0,08 -0,08 -0,12 
- - - PAPER -0,01 -0,02 -0,01 
- 0,02 - CHEMICALS 0,14 0,15 0,22 
- - - CONSTRUCTION -0,05 0,00 0,02 
- - - ELECRONICS -0,07 -0,02 -0,08 
- - - PLANTS MACHINE 0,03 0,05 0,05 

0,22 0,19 0,33 INDUSTRIALS MISC 0,20 0,18 0,33 
- - - MINERALS METALS 0,01 0,02 -0,02 
- - - TEXTILE CLOTHING -0,05 -0,02 -0,04 

0,21 0,22 - DISTRIBUTION 0,25 0,22 -0,03 
0,01 - 0,06 MEDIA 0,05 0,01 0,10 

- - 0,04 PUBLIC UTILITY SERVICES -0,02 -0,05 0,05 
0,46 0,46 0,47 TRANSPORT TOURISM 0,54 0,46 0,41 

- - - INSURANCE -0,05 -0,01 -0,01 
- - - BANKS -0,09 -0,06 -0,14 
- - - FINANCE HOLDINGS 0,14 0,03 0,09 

0,03 0,02 0,03 FINANCE MISC 0,03 0,03 0,04 
0,06 0,09 0,07 REAL ESTATE 0,11 0,13 0,16 

- - - FINANCE SERVICES -0,02 0,01 0,04 
4,25 2,91 2,31 Optimal Portfolio Variances 3,40 2,25 2,03 

Table 10: Portfolio allocation in the Markovitz approach considering an annual return level of 0.03 
in a constrained and a non constrained problem. 




