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Abstract

This work analyze different approaches in the evaluation of Value-at-
Risk measures when returns show long memory patterns in conditional
variance. In a Montecarlo study we follow the approaches of Kupiec
(1995), Christoffersen (1998), Christoffersen, Hahn and Inoue (2001) and
Lopez (1998) using the suggested test and loss functions in choosing the
best model among a group of alternatives (GARCH, IGARCH, the true
FIGARCH DGP and the EWMA). Our Montecarlo analysis shows that
the test of Kupiec and the loss function approach lead to the choice of a
misspecified model, while the test of Christoffersen et al. (2001) correctly
identify long memory. We apply then all the previous tests and measures
in the comparison of different models for the Value-at-Risk of the returns
of the FIB30, the future on the italian stock market index.

Keywords: Value-at-Risk, long memory, FIGARCH.

1 Introduction

In the last few years there has been a huge increment in analysis concerning

Value-at-Risk (VaR), both from a theoretical point of view and from the em-

pirical approach, in particular dealing with: the best methods to compute the
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risk exposure needed to satisfy regulators requirements, the choice of the best

model for VaR computation, the evaluation of performances of different VaR

models. The literature is still growing and with this work we will add some ex-

tensions showing how VaR is affected by model misspecification when variance

follows a long memory conditional heteroskedastic process. This is related to

the numerous findings of persistence in financial markets, coupled with the use

of high frequency data for VaR computation, see among other Christoffersen

and Diebold (2000) and Beltratti and Morana (1999). In many VaR papers the

long memory behavior of the series has not been taken yet into account; even

if Beltratti and Morana introduced a first empirical analysis, some problems

arise, as pointed out by Christoffersen and Diebold (2000): what does really

mean having a long range forecast with high frequency data? or in other words

is it correct estimating 1-day VaR (or more) using intra-day observations? Bel-

tratti and Morana (2000) solved that problem using the traditional
√
T−rule

for computing s-step-ahead variance forecasts, but they concluded the analysis

with a choice of a GARCH process for their foreign exchange data even if the

observations showed a clear long memory behavior. They motivated the choice

by the closeness of the results obtained by the long and short memory models,

preferring then the simplest one, the GARCH. This is a particular effect, maybe

due to the used data and it is not yet proved in a general context. Independently

from these considerations the square root rule is not optimal as a scaling in a

GARCH framework as Diebold et al. (1996) showed. Within this work and in a

companion paper we will shed some light in this area considering the effects of

misspecification on Value-at-Risk measures when the underlying generator is a

long memory model and then we will compare Value-at-Risk estimates obtained

from data with different frequencies (high frequency agaisnt lower frequency

aggregated data). The first point will be the object of this study. In the next

section after focusing our attention on a specific case, we will assume that the ob-

served series we are analyzing follow a FIGARCH, we will present the forecasting
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equations for GARCH and FIGARCH specifications, precisely the forecasting

equations for the mean square error of the mean predictor, when the residuals

follow a conditional heteroskedastic model, extending in such a way the results

of Baillie and Bollerslev (1992). In this part we will focus on point forecasts,

not on density forecasts, for such an extension, which is straightforward, refers

again to Baillie and Bollerslev (1992). In section 3 we will present a survey on

the usual methods applied by banks and regulators to evaluate Value-at-Risk

performances on their models, introducing a new loss function approach and ap-

plying very recent tests which will show, in section 4, the discrepancy between

the best choice for the regulators and the best one for a bank, we will see that

the regulators may push to the choice of a misspecified model; these results are

obtained by a Montecarlo experiment with GARCH(1,1) and FIGARCH data

generating processes, estimating then, on both DGP, GARCH, IGARCH and

FIGARCH models. For all the considered models, even if incorrectly specified,

we will compute VaR for 1-day horizon comparing the different results, in a

backtesting framework, applying the evaluation techniques of section 3. Section

5 will conclude.

2 Prediction mean square errors with FIGARCH

In this section we will extend the approach of Baillie and Bollerslev (1992), who

were considering prediction with dynamic models and conditional heteroskedas-

ticity, to allow for long memory behavior. Assume that the series we are ana-

lyzing follow a generic process for the mean

yt = µt + εt

and that the residuals are such that εt|It−1 ∼ iid
¡
0,σ2t

¢
, where with It−1 we

identify the information set up to time t-1. Assuming that the mean term is

always zero, we are in the framework of a GARCH-type process, where the

forecast for the mean process is always zero and the Mean Square Error (MSE)
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depends on the s-step ahead prediction for the variance. The MSE will also de-

pends nontrivially on the information set, an extensive discussion and numerous

expressions can be found in the above cited paper. For the simple GARCH(1,1)

the s-step ahead predictor for the variance (the MSE of the s-step ahead pre-

dictor for the mean) is:

E
£
ε2t+s|It−1

¤
= E

£
σ2t+s|It−1

¤
= ω

s−1X
i=1

(α1 + β1)
i + (α1 + β1)

s−1 σ2t+1 (1)

The FIGARCH process has been introduced by Baillie, Bollerslev and Mikkelsen

(1996) as a generalization of the IGARCH, allowing for a non-integer integration

coefficient. The volatility structure induced by a FIGARCH can be defined as

follows (for details on the model properties and on the parameter estimation see

Baillie et al. (1996), Bollerslev and Mikkelsen (1996) and Caporin (2002)):

σ2t = ω + β (L)σ2t +
h
1− β (L)− Φ (L) (1− L)d

i
ε2t

where β (L) =
Pp
j=1 βjL

j , Φ (L) =
Pm

j=0 φjL
j and (1− L)d is the fractional

integration component. If the DGP is a FIGARCH process the predictor de-

pends nontrivially on all past values therefor an expression like (1) cannot be

obtained. In our analysis we will use the following representation, which is

derived after some tedious algebra:

E
£
σ2t+s|It−1

¤
= θsω +

∞X
i=0

ψi+1ε
2
t−i (2)

ψk =
sX
i=1

φiλk+s−i φ1 = 1 φi =
i−1X
j=1

λjφi−j θs =
sX
i=1

φi

One question on the worthiness of the previous formula arises: why not using

the following recursions formulas?

E
£
σ2t+s|It−1

¤
= θsω +

∞X
i=0

λi+1E
£
ε2t+s−i|It−1

¤
(3)

E
£
ε2t+i|It−1

¤
= ε2t+i if s ≤ 0

E
£
ε2t+i|It−1

¤
= E

£
σ2t+i|It−1

¤
if s > 0
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The main reasons is only based on computational advantages and rounding

error that arise implementing the procedures with any software: in every point

forecast of the conditional variance we use the past value of the observed series

or residuals, given the infinite past dependence of any conditional variances with

this simple recursion formula we induce a greater rounding error than the one

induced by aggregating coefficients. By our formula we just induce one rounding

error not the sum of s rounding errors.

3 Comparing Value-at-Risk estimates

The use of risk measures to determine the market risk implicit in any portfolio,

investment or financial instrument is a need for all banks, investors and any

firms that operate within financial markets. This need is particularly important

for banks acting on both sides of the money market, investing with their funds

and collecting savings, all banks have to fulfill requirements that are there to

prevent a default that will be particularly burdensome for the collectivity. In

this view most of the banks started in the last decades, given the increased

sophistication in the financial markets, to measure the risk of their positions

and balance sheets (the whole bank can be viewed as a portfolio of credits and

debts, including by this way direct investments and other credit positions) with

adequate and therefore complicated instruments. This leads to the diffusion of

many ”internal” models whose ultimate purpose was the same: monitoring the

risk and the losses of all positions. In this situation the Basle Committee on

Banking Supervision gave a regulated framework, with minimal requirements

in term of model choice, to measure and compare the ability of internal models

in meeting some very basilar qualifications, giving also an alternative valuation

method, the ”standardized approach”. These rules were included in the accord

of 1996, the well-known Amendment to the Capital accord to incorporate mar-

ket risk (MRA). With this document the Basle Committee stated the formal
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rules that an internal model for market risk should meet, how it should com-

pute the exposure to this kind of risk and how to define the minimal capital

requirements needed to cover market risk. The MRA requires that each bank

communicates daily the market exposure determined with any internal model

or the standardized approach to the national regulator, this exposure has to

be determined with a 99% one tail probability and with a holding period of 10

days. This measure of risk should represent the maximum loss with the 99%

probability in the holding period, which is just the definition of the Value-at-

Risk. Given these measures the regulator will verify if the internal model meets

a minimal requirement, specifically, in the past year did this model give a 1%

of failures or more? The verification is conducted with a technique described

in the MRA accord, the backtesting approach, where the regulators verify the

performances of the internal model in the last 250 days, and simply counts the

exceptions (how many times the internal model fails). Given the number of

exceptions the regulators classify the internal model with a grid 0-4, 5-9, more

than 9, matched with a color green, yellow and red. The classification allows the

regulators to impose some penalty, this because the MRA computes the correct

VaR as the maximum between today’s VaR and the average of last 60 VaR mea-

sures, multiplied by a scaling factor that depends on the previous classification.

This methodology however may be inefficient for the banks, as it may lead to

the application of a model that fulfills the requirements of the Basel accord but

translates into a bigger cost: the minimal capital requirement can be viewed

as an immobilization of resources, of liquidity, and given the operativity of the

banks this represents an opportunity cost of investing resources.

The exposure measured by the VaR depends crucially on the underlying

model employed for the return series of the financial instrument of interest. A

group of questions arises: how can we judge if the underlying model is correct?

how should the Value-at-Risk perform under different approaches? What are

the consequences of a misspecification? In this section we will try to give an
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answer to some of these questions in a particular case: we will assume the true

data generating process (DGP) follows a FIGARCH in the variance, and we

will compare via tests and other approaches the true DGP with a group of

misspecified models. The main works in this field are the ones of Kupiec (1995),

Christoffersen (1998) and Lopez (1998) who proposed, respectively, a statistical

based procedure and a loss function approach to test if the VaR estimates are

correct and consistent with the data.

The reliability of VaR measures depends on the correct specification of the

underlying models, this is necessary to provide an accurate measure of risk

exposure. Considering the computation of Value-at-Risk using instruments (or

portfolio) returns, indexing VaR estimates with time t, and model index m,

assuming that the return follows a possibly time-dependent distribution ft, the

Value-at-Risk computed conditional on the information set on time t, for k-

steps-ahead, is the α-quantile of the forecasted distribution f given for the

model m. VaRm,t (α, k) is the solution of the following equationZ V aRm,t(α,k)

−∞
fm,t+k (x) dx = α (4)

Two different approaches are actually available to evaluate the VaR esti-

mates: statistical based procedures, and loss functions approaches. The Propor-

tion Failure test (or Unconditional coverage test), the Time Until First Failure

test of Kupiec (1995) and the Conditional coverage test of Christoffersen (1998)

and Lopez (1998) belong to the first group belong, while the approach of Lopez

(1998) belong to the socond one. The main difference between the two is that

with statistical procedure, inference analysis is available. The tests of Kupiec

and Christoffersen are based on likelihood ratios, and on the assumption that

VaR should exhibit a conditional or unconditional coverage equal to α.

The Unconditional Coverage test (UC) of Kupiec is based precisely on the

first assumption: if VaR estimates are accurate, the exceptions x (the number

of times return underperform VaR measures) can be modeled with a binomial
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distribution with probability of occurrence equal to α. In this case, by comparing

the required unconditional coverage α (usually set to 0.05 or 0.01), with the

measured coverage bα = x/T , it is possible to derive a likelihood ratio test under
the null hypothesis α = bα

LRUC = 2
h
ln
³bαx ³1− bαT−x´´− ln ¡αx ¡1− αT−x

¢¢i
(5)

Under the null hypothesis LRuc is distributed as a χ2 (1). The UC test is also

the statistical transposition of the procedure used by the regulator authority in

judging if the internal model is accurate. As pointed out by Lopez (1998) this

method does not show any power in distinguishing among different, but close

alternatives.

This test, as pointed out by Christoffersen (1998), considers only exceptions

over the sample size, however in presence of conditional heteroskedasticity, also

the conditional coverage is important. Ignoring this issue, the volatility dynam-

ics, we could have forecasts (VaR estimates with a GARCH-type model, include

the forecast of the conditional variance as we will see) with correct uncondi-

tional coverage and incorrect conditional coverage, in this cases the UC test is

of limited accuracy. Lopez adapted the general approach of Christoffersen for-

mulating the following Conditional Coverage (CC) test. First a dummy variable

is set to identify exceptions

Dm,t+1 =

½
1 if εt+1 < V aRm,t+1
0 if εt+1 ≥ V aRm,t+1

Under the null hypothesis that the VaR presents correct conditional and

unconditional coverage, this indicator variable should be independent. Thus the

CC test is computed as the sum of the UC test and of a test of independence

on Dm,t+1, against a first-order Markov process. The independence test is

constructed as follows: with Ti,j we identify the number of observations in the

sample T in state j after having been in state i, under the Markov process the
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likelihood function is

LM = (1− π0,1)
T0,0 π

T0,1
0,1 (1− π1,1)

T1,0 π
T1,1
1,1 (6)

where π0,1 = T0,1/ (T0,0 + T0,1) and π1,1 = T1,1/ (T1,0 + T1,1). Under serial

independence the likelihood function is

LI = (1− π)T0,0+T1,0 πT0,1+T1,1 (7)

where π = (T0,1 + T1,1) /T . The test statistic is then

LRCC = LUC + 2 [ln (LM )− ln (LI)] (8)

and is distributed as a χ2 (2) under the null hypothesis of correct coverage

(under the null hypothesis of independence the dependence test is a likelihood

ratio test, whose limiting distribution is a χ2 (1)).

We will turn now to another approach, the one of loss functions. The main

work in this area is the one of Lopez, based on computing a loss function distin-

guishing between exception and not-exception. In the general form he proposes

the following formula

Cm,t+1 =

½
f (εt+1, V aRm,t+1) if εt+1 < V aRm,t+1
g (εt+1, V aRm,t+1) if εt+1 ≥ V aRm,t+1 (9)

where f (x, y) and g (x, y) are such that f (x, y) ≥ g (x, y). In this formulation
higher values of the functions are associated with exceptions, thus summing

Cm,t+1 over the backtesting sample used by regulators we obtain

Cm =
TX
i=1

Cm,t+i (10)

and the best model is the one that minimizes (10). The choice of the correct

model can be done referring to a benchmark, once the functions have been

specified. Lopez proposed different functions: one derived from the dummy

for exception, another using weight as for the regulator choices, and then the
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following one, that takes into account the exception and the discrepancy between

the realization and the VaR forecasted measure.

Cm,t+1 =

½
1 + (εt+1 − V aRm,t+1)2 if εt+1 < V aRm,t+1
0 if εt+1 ≥ V aRm,t+1 (11)

This function was suggested in order to take into account not only the risk

but also the amount of the possible default in the position. This function was

built mainly for regulatory purposes, helping the regulator in the evaluation of

bank internal models. But there is an open point, with this function we may

be tempted to reject a model only because, at parity of exceptions, it realizes

a higher loss function. In this case we may reject a correct model, a correctly

specified and identified model for the series of returns, choosing an incorrect

model. Up to some extent this may be observed in the work of Beltratti and

Morana (2000) on FX data, when they end up choosing a GARCH process for

computing VaR even if the data show a clear long memory property, because

the number of exceptions of the FIGARCH was lower, too conservative (this is

a loss function based on the dummy). This can be clarified with an example:

assume that two different models are fitted to a real series, a GARCH(1,1) and

an IGARCH(1,1); the forecast from both models differs only in the wideness

of 1-step-ahead prediction intervals for the mean, the one of the IGARCH is

bigger; moreover assume that both models present exactly the same number

of exceptions, then using the loss function suggested by Lopez we will choose

the IGARCH model because its bands are wider and therefore the loss function

is lower (the difference between VaR and the realization in the market is lower

given that bands are wider); this will be translated in a higher cost for the bank,

they will have to fulfill a higher capital margin to stick to the IGARCH bands,

even if the exceptions of the two models are the same. To solve this point we

suggest using different loss functions, dealing not only with the failure of the

VaR measures but also taking into account the distance between the different

forecasts and the past realizations. We suggest to check that the model fulfills
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the quantile requirement and that it also have to be stick to the realization of

the underlying process. We propose three different distance measures, adopting

the same terminology of Lopez:

1f (εt+1,V aRm,t+1) =

¯̄̄̄
1−

¯̄̄̄
εt

V aRm,t+1

¯̄̄̄¯̄̄̄
(12)

2f (εt+1,V aRm,t+1) =
(|εt|− |V aRm,t+1|)2

|V aRm,t+1|
3f (εt+1,V aRm,t+1) = |εt − V aRm,t+1|

In all three cases the best choice is the model that minimizes the loss function.

Taking these as they are we can incur in the same problems when using the loss

functions of Lopez: we may be not able to correctly choose the right model,

preferring a solution with narrower bands. For this reason we suggest also to

apply these loss functions not only to the exceptions but also to the whole

sample:

1f (εt+1,V aRm,t+1) =
1 g (εt+1,V aRm,t+1) (13)

2f (εt+1,V aRm,t+1) =
2 g (εt+1,V aRm,t+1)

3f (εt+1,V aRm,t+1) =
3 g (εt+1,V aRm,t+1)

The three functions suggested consider different approaches to testing the dis-

crepancy between the identified model and the realizations: the first one con-

siders the ratio between one step VaR and the realization, the second one is the

squared error realized with the VaR, divided by the VaR itself to be standard-

ized to the same quantity of the first function, this was done in order to be able

to build a fourth criteria adding the first two measures, it maybe thought as a

kind of first and second order loss; the third function takes into consideration

only the difference between VaR measure and the realization in order to be

summable with the Lopez loss function. The effect of such different approaches

will be presented in the following chapter with a limited Montecarlo experiment

(we deal with FIGARCH DGP, an extensive Montecarlo dealing with different

generators will be object of future researches).
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With these functions we can apply at a first stage the usual analysis of

Kupiec and Christoffersen and then use the loss function approach to compare

the cost of different admissible choices. Clearly from a regulatory point of view

this choice may not be worthwhile because regulator’s objective is to reduce

the risk of default in case of extreme events, position represented by the loss

function of Lopez, but the function we propose represents the best choice for

bank purposes, choosing a model that fulfills regulatory requirements (compare

with the Basel agreement...) and allows for a lower cost. Considering the system

in a whole these functions may help in choosing a model that is closer to the

data and in the meantime fulfills MRA requirements With this choice we ensure

both conditional and unconditional coverage, instead of choices of misspecified

models that may lead to incorrect conditional coverage.

A GMM-based testing approach Recently Christoffersen, Hahn and Inoue

(2001) introduced a new approach in the evaluation of Value-at-risk measures.

In a general approach we can define the VaR via a quantile regression:

V aRm,t (α,β) = β1,m (α) + β2,m (α)σt,m (14)

where the conditional volatility depends on the model we are using and pa-

rameters depend both on the model and on the significance level (coverage

probability). Then we can state the following

Definition 1 (CHI 2001 definition 1) The VaR is efficient with respect to the

information set Ψt−1 when

E
£
I (εt < V aRm,t (α))− p|Ψt−1

¤
= 0

where I(.) is the indicator function

Using then this efficient condition we can test if VaR measures satisfy it, but

also we can compare different VaR even if misspecified. The methodology of the
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analysis requires conditioning on some information set, and the choice among

different models. The first point is achieved considering as the information set

at time t, as the measure of volatility in time t-1 obtained with the different

models we are comparing and with a constant

E [(I (εt < V aRm,t (α,β))− p)× k (1,σt−1,m1,σt−1,m2,σt−1,m3...)] = 0 = E [f (εt,β)]
(15)

Specification testing is achieved using the test suggested by Kitamura and

Stutzer (1997), the information theoretic alternative to a general method of

moments (GMM) based test. Define the following quantity

MT (β, γ) =
1

T

TX
i=1

exp (γ0f (εt,β))

and maximizing over the two parameter sets

M̂T

³
β̂T , γ̂T

´
= max

β
min
γ

1

T

TX
i=1

exp (γ0f (εt,β))

then the Kitamura Stutzer test has the following equation

κT = −2T log
³
M̂T

´
→ χ2 (r − k) (16)

where r is the number of conditioning information variables (constant included)

and k is the dimension of the estimated parameters vector (β) in the quantile

regression. The null hypothesis of this test is that the VaR measures satisfy the

efficiency condition, therefore accepting the null will mean that the VaR model is

correctly specified. In this approach we have, however, a challenge: the function

f (εt,β) is non-differentiable due to the presence of the indicator function. This

problem will cause the traditional optimization techniques to burn down, requir-

ing simulation based methods to estimate parameters or to employ generalized

algorithm such as the simplex method or simulated annealing. This problem

can be easily avoided in our case: considering that we focus on GARCH-type

models, the VaR measure depends only on the evaluated conditional variance

13



and on the coverage probability

V aRm,t (α,β) = Φ
−1 (α)σt,m (17)

using the cumulative standard normal inverse and excluding the effect of a

constant. By this way we exclude the optimization over the parameters in

the quantile regression and the traditional optimization routines can be used

without problems.

Christoffersen et al. (2001) introduced another testing approach that allows

to compare directly two different VaR measures. This test is based on the dif-

ference between two KLIC distances. If we consider two different VaR measures

m1 and m2, and we define the KLIC respectively as

M̂T,m1

³
β̂T , γ̂T

´
and M̂T,m2

³
β̂T , γ̂T

´
Christoffersen et al. (2001) generalizing a result of Kitamura (1997) states the

following:

Theorem 2 (CHI theorem 1) Let

Mm1,T (β
∗
1, γ
∗
1) = max

β1
min
γ1
Mm1,T (β1, γ1)

Mm2,T (β
∗
2, γ
∗
2) = max

β2
min
γ2
Mm2,T (β2, γ2)

Under the null that Mm1 (β
∗
1, γ
∗
1) =Mm2 (β

∗
2, γ
∗
2) we have

√
T
³
M̂T,m1

³
β̂T , γ̂T

´
− M̂T,m2

³
β̂T , γ̂T

´´
→ N

¡
0,σ2∞

¢
where σ2∞ = limT→∞ V ar

³
1√
T

PT
t=1 (exp (γ

∗0
1 f (εt,β

∗
1))− exp (γ∗02 f (εt,β∗2)))

´
and the T subscript denote quantities computed with T observations instead of

the infinite past.

In this case the rejection of the null hypothesis will imply that the two

measures do not match equally well the efficiency condition in favor of the

model 2. When the null is accepted a positive measure implies the preference

of model 1, a negative result the preference of model 2.
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4 VaR and Long memory GARCH

We analyse the performances of tests and loss functions for the identification

and choice the best model for VaR computation. We run a Montecarlo experi-

ment dealing with a group of simulating DGP, eight FIGARCH with different

orders and parameter values and a GARCH(1,1) used as a comparative test for

evaluating the ability of tests and measures on Value-at-Risk when the DGP is

a short memory one. The DGPs are described in the following table.

DGP µ ω d β φ
FIGARCH(1,d,1) 0 0.01 0.8 0.5 0.3
FIGARCH(1,d,1) 0 0.01 0.8 0.5 0.05
FIGARCH(1,d,0) 0 0.01 0.8 0.5 0
FIGARCH(0,d,0) 0 0.01 0.8 0 0
FIGARCH(1,d,1) 0 0.01 0.1 0.4 0.5
FIGARCH(1,d,1) 0 0.01 0.4 0.3 0.2
FIGARCH(1,d,0) 0 0.01 0.4 0.3 0
FIGARCH(0,d,0) 0 0.01 0.4 0 0
GARCH(1,1) 0 0.01 0 0.65 0.3 (α)

In this experiment we act as the simulated series were daily series, simulating

2250 observations, using the first 2000 to estimate the model and the last 250

to assess the validity of Value at risk measures in a backtesting framework. In

order to simulate the 2250 observations needed the recursion formulas we used

generates an additional 2000 observations to avoid any dependence from initial

values. We estimate on all simulated series 4 different models: the true DGP (for

details on the simulation and estimation procedures and on the identification

problem see Caporin 2002), a GARCH(1,1), an IGARCH(1,1) and an exponen-

tially weighted moving average (EWMA, the well known RiskMetrics model),

with smoothing parameter set to 0.97. The different specifications (apart the

EWMA) are estimated with quasi maximum likelihood, moreover to induce a

faster convergence of the estimate of the memory parameter d, in the FIGARCH

specification, an additional presample of 2000 observations is used, this presam-

ple is set equal to the sample variance of the estimated series, following the
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approach of Teyssière (1996). Given the estimated parameters and conditional

variances we compute VaR and then we test the correctness of these risk mea-

sures. We use the tests and loss functions described in the previous section. For

all DGP we ran 1000 replications. The results are summarized in a large set of

tables, here we present only a single DGP, all other tables are available from the

author upon request. The tables are grouped with respect to the DGP and con-

tain in the order (inside each group): the average number of exceptions across

the 1000 replications, for each of the four fitted models, the standard deviation

and the average percentage of exceptions; the frequency of less exception, that

is, we count how many times each model is the one that gives a lower number of

exceptions, note that the cumulate frequency can be above one since different

models can lead to the same number of exceptions; the frequency of accepting

the null hypothesis for the test of Unconditional Coverage (UC), Independence

(I) and Conditional Coverage (CC); the frequency of model selection using Lopez

loss function, that is we count how many times each model minimizes the loss

function; the frequency of model selection with the alternative loss functions

previously suggested, and their combinations, computed only on exceptions (E)

or on the full sample (T); the results of the model comparison test of Christof-

fersen et al. (2000), we consider 4 different VaR p-levels (1%, 5%, 10% and

25% to compare results with the cited paper), and we report the frequencies of

having a significant test statistics and the frequency of choice of the first or of

the second model, all at confidence levels of 1%, 5% and 10%; finally the results

of the model specification test of Christoffersen et al. (2000), again computed

at the previous 4 VaR p-values and confidence levels. The tests developed by

Christoffersen et al. (2000) presume a comparison of non-nested models; as we

point out in Caporin (2002a) FIGARCH and GARCH (or IGARCH) most of

the time are non-nested models, this let us compute the tests and perform the

analysis. However GARCH, IGARCH and EWMA are nested models, therefore

we expect significant results comparing long and short memory models, while
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we will have to take with care results among short memory specification. The

following conclusions arise from the results:

Average exceptions and MRA. In most of the cases (excluding only the FI-

GARCH(0,d,0) with d=0.8) at 1% Value-at-Risk p-level, the RiskMetrics

model is too conservative, leading to an average number (and percent-

age) of exceptions strictly below 2.5 (correspondent to 1%). This effect is

present, even if with less evidence, also at 5% level and is influenced by

the memory property of the generator: with higher memory (lower d) the

RiskMetrics is much more conservative. This is probably due to the differ-

ent structure of the two processes: in the FIGARCH case a bigger weight

is given to past innovations, so there is a greater sensitivity to market

movements, this implies a variance forecast with abrupt changes without

signals of convergence of variances to an unconditional level, while in the

RiskMetrics, a particular IGARCH model, the parameter configuration

gives much more importance to shifts in the variances (the β parame-

ter is 0.97) leading to gradual movements and slower convergence to the

unconditional variance level. This effect remains also in GARCH and

IGARCH specifications, since no constraints are imposed (except the one

for positivity of variances) on the parameters, and this leads to an esti-

mated β much smaller than 0.9. Comparing then FIGARCH, GARCH and

IGARCH results we can see that they are very close showing that even a

misspecified model can be good enough to fulfill MRA requirements, how-

ever we must remark that the forecasts obtained with misspecified models

lead to incorrect conditional coverage. In all cases, on average, all models

strongly satisfy the requirements of the amendment to Basle accord for

market risks, leading to Green zone positioning (exceptions lower than 4).

Considering now the frequencies of model selection in particular just the

number of exceptions, the best choice is most of the time the EWMA, but
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this result is strictly related to the fact that this is the most conservative

of the models, and is therefore of limited significance.

Tests of Conditional and Unconditional Coverage. As in the previous

work of Lopez (1999), we find that these tests show no power in distin-

guishing among different models. All null hypothesis of correct uncondi-

tional or conditional coverage and of independence among exception are

accepted with a percentage ranging from 75% to 100% at the 1% level

of the test and for both 1% and 5% VaR. Results do not depend on pa-

rameter values. For the test at 5% significance level the null hypothesis

is rejected with higher probability, especially for the Independence test,

however this is true for all the 4 models, again we cannot infer on the best

solution for our purposes.

Loss functions. We can observe that the Lopez loss function, given its for-

mulation, depends crucially on the number of exceptions, this influences

its value and therefore the model selection frequencies based on it. In all

cases considered (again apart the FIGARCH(0,d,0) with d set to 0.8) the

Lopez approach leads to the choice of the RiskMetrics as the best model

for Value-at-Risk computation. This is in the sense that the best model

is the one that minimizes the cost of an exception, it is a choice based

on the risk of default, a choice driven by regulators objectives. However

this does not imply that the best model is the true generator or the one

that minimizes the cost for a private bank: as we can observe from figure

(4) and (8) the EWMA has a smaller number of exceptions, since its VaR

bands are much wider compared to the bands of the true generator, this

can be interpreted as a higher cost for the bank, in fact the VaR level rep-

resents a minimal capital requirement that banks must hold on to cover

market risks. Immobilizing this capital translates into an opportunity cost

of liquidity resources, and reduces the operativity for the bank. A VaR
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based on the true generator meets the Basle MRA requirements and gives

a correct conditional coverage for market risks, with narrower VaR bands.

In spite of that none of the loss functions lead to a correct choice of the

generator as the best model. All the functions considered, if applied only

on the exceptions, select most of the times the EWMA, with percentage

ranging fro 40% to 60%, second best choice switch between GARCH and

IGARCH, in none of the cases the FIGARCH is chosen. Considering the

whole sample the FIGARCH does not appear as the best model, even if

its frequencies of selections increase. In this case the best choice switches

between GARCH and EWMA, leading again a possible choice of a mis-

specified model. Now this solution can be considered from a different point

of view: should we prefer a model that minimizes the number of exceptions

but imposes a greater opportunity cost, or would it be better to choose a

model that is closer to the true generator, that satisfies in the meantime

regulators requirements and allows for narrower VaR bands? The answer

depends on the subject whom is posed: a regulator will surely prefer the

first solution, while private banks will chose the second one. A consider-

ation on the GARCH generator case: the model is correctly chosen with

our alternative loss functions, but only if we consider the whole sample,

not if IGARCH or EWMA is preferred.

Model comparison test. Now choices change. A first group of observation

on the tables: the test is labeled as ”not significant” when the two models

equally well match the efficient moment condition, therefore the label ”sig-

nificant” is given to the rejection of the null hypothesis; we can observe

that the null is accepted with high percentage when we compare very close

models, that is the case of GARCH and IGARCH, when the GARCH pa-

rameters are close to the constraint α+β < 1; the frequencies of selection

of the first or of the second model are computed as percentages on the
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”significant” tests, they always sum to one, moreover I can always choose

between the two models, provided I rejected the null, depending on the

sign of the test statistics. All tables show a similar behavior, the EWMA

model is never preferred to the DGP with a percentage greater than 40%,

and most of the time this is true also for GARCH and IGARCH. This can

be interpreted as a result of our observations on the correct conditional

coverage given by the true generator, a condition that is extracted form

the information set (here this is represented by the forecasts obtained with

the four models in the past) by the estimation procedure. Moreover the

true FIGARCH generator is preferred also to the GARCH and IGARCH

with frequencies always above 50% in all cases considered.

Model specification test. In this case the test shows dependence on the

VaR p-level, leading to very poor results, none of the models are correctly

specified for the simulated series, for the 1% case, while for the remaining

the percentage of accepting the null (the model is correctly specified) in-

creases with p, with a jump from 1% to 5%. This may be due to the very

limited number of exceptions in the 1% case, not sufficient to extract an

indication on the ability of the model in matching the efficient moment

condition. This result will probably change extending the backtesting pe-

riod, however we will not pursue this point since we focus on the selection

process of a model that should be analyzed by a regulator who uses 250

period for backtesting (see MRA).

We conclude this section with a word of advise on the results we obtained,

compared to the ones of Christoffersen et al. (2001): we developed this Monte-

carlo on a backtesting approach in order to verify the power of the VaR spec-

ification test and VaR comparison test in the framework used by regulators

following the MRA, that is on 250 observations. In this setup the number of

exception is very limited and the size and power of the two test is affected: the
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tests are built on an efficiency condition that depend on an indicator function

selecting exceptions, lower the number of exceptions lower will be the number of

significant points used in (15 )and in the tests. Moreover we want to stress that

once the number of exceptions are the same in two or more models, the VaR

specification test will lead to the very same result and the VaR comparison test

will show clustered results including one or more groups of zeros. We tried, in

a limited Montecarlo, to compute tests on the whole sample, results seem not

to differ from the ones here presented, however an additional analysis in this

direction will be necessary and left for future researches, but we stress that it

must be developed as a suggestion for an alternative framework that will allow

regulators to test the reliability of internal models, otherwise, with the current

MRA, the results of this work apply.

5 A case study

In this section we will apply the tests presented in this work to the variance of

a real series. Data were provided by the Italian Stock Exchange (Borsa Italiana

S.p.A.). We used a one-year database of transaction data on the FIB30 market

segment, ranging from 20 march 2000 to 15 march 2001. The FIB30 is the

Future on the stock market index, the MIB30, that collect the first 30 firms

for capitalization quoted in the Italian Stock Exchange. We extracted from the

provided database the series of 5-minute log-returns and filtered them from a

periodic daily component. A detailed discussion of the database and of the

extraction and filtration process of the 5-minute series can be directly requested

to the author. Here we focus our attention on a subset of filtered data, consisting

in 2200 observations, recorded across february and march 2001. In Figure 1 we

report a graph of the returns, while in Figure 2 the autocorrelations of returns

and absolute returns (proxy for the volatility) are represented.

[Insert here Graph 1 and Graph 2]
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As we can observe data clearly show a long memory behaviour in the vari-

ances, while in the mean there is limited evidence of an ARMA structure.

On this set of data we fitted four different models, a FIGARCH(1,d,1), a

GARCH(1,1) an IGARCH(1,1) and the EWMA with smoothing paramter 0.97.

Estimation results are reported in table 8. All the models are estimated on the

first 2000 observations, while the last 200 are used to compute the tests in a

backtesting approach. Tests result are reported in table 9, where we consider

Value-at-Risk at 1% and 5% coverage level. At first we consider the tests of

unconditional coverage and conditional coverage: in all cases the null hypoth-

esis of of correct coverage is accepted with the only exception (at 95%) of the

CC test for the GARCH model and with VaR covergae level at 5%. If we con-

sider the number of exceptions the EWMA seems to be the better choice, as

confirmed by most of the loss functions. Alternatively the IGARCH(1,1) rep-

resents a good model (note that the α parameter for the EWMA is set to 0.7,

very close to the estimated parameter for the IGARCH model). As noted in the

Montecarlo study loss functions may lead to the choice of a misspecified model,

clearly GARCH and IGARCH formulations do not take into account long mem-

ory. If we consider the VaR model specification and comparison tests results are

different: all models are rejected when VaR coverage is at 1% and are accepted

whit VaR coverage at 5%; when VaR p-level is 1% the model comparison test

is significant only if we consider FIGARCH compared to alternatives and the

preferred model is the long memory one in all cases; for the VaR at 5% coverage

the model comparison test is significant in most of the cases and the preference

is again for the FIGARCH.

6 Conclusions

In this paper we considered the computation of Value-at-Risk when the con-

ditional variance follows a FIGARCH process. After presenting the recursion
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formula to evaluate the mean square error with a FIGARCH in the variance

we reviewed the current techniques used to evaluate and compare Value-at-Risk

measures, extending the loss function approach of Lopez (1998) with new loss

functions and considering the whole sample and not only the exceptions. Our

Montecarlo experiment shows that the regulators scheme, the tests of Kupiec

and the loss function approach of Lopez (even with our extensions) lead to the

choice of a misspecified model, switching between the GARCH and the Risk-

Metrics. This indicate that a simpler model is chosen but we will have incor-

rect conditional coverage and wider Value-at-Risk bands, which imply higher

opportunity costs for banks. Different results are obtained with the tests of

Christoffersen et al. (2001): the test of model comparison correctly chooses the

long memory GARCH in all cases and interestingly the RiskMetrics is never

considered as the best model even if compared with GARCH and IGARCH.

Unfortunately the model specification test performs very poorly. Finally we

applied the test and loss function to a real case, analysing the returns on the

future of the italian stock market index, a series that show evident long memory

behaviour in the variance.
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Table 1: DGP FIGARCH(1,d,0) d = 0.4 β = 0.3
Average number of exceptions, standard deviation, 

 average percentage of exception - 1000 replications – 250 forecasts 
Fitted models  Figarch(1,d,0) Garch(1,1) Igarch(1,1) EWMA(0.97) 

2,606 2,704 2,270 1,152 
1,641 1,848 1,516 1,086 1% VaR 
1,042 1,082 0,908 0,461 
12,771 12,867 11,671 11,449 
3,548 4,191 3,221 2,967 5% VaR 
5,108 5,147 4,668 4,580 

 

The percentage beside VaR is the coverage rate.

Table 2: DGP FIGARCH(1,d,0) d = 0.4 β = 0.3
Frequency of less exceptions – 1000 replications – 250 forecasts 

Fitted models  Figarch(1,d,0) Garch(1,1) Igarch(1,1) EWMA(0.97) 
1% VaR 0,243 0,278 0,319 0,946 
5% VaR 0,352 0,229 0,274 0,634 
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The percentage beside VaR is the coverage rate. The table reports the

frequency of selection of the models based on the number of exceptions: the

sum by rows is greater than one since different models can lead to the same

number of exceptions.
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Table 3: DGP FIGARCH(1,d,0) d = 0.4 β = 0.3
Tests - Frequency of accepting H0 – 1000 replications – 250 forecasts 

Fitted models  α Figarch(1,d,0) Garch(1,1) Igarch(1,1) EWMA(0.97) 
Test of Unconditional Coverage of Kupiec 

1% 0,995 0,989 0,997 1,000 1% VaR 5% 0,900 0,869 0,892 0,684 
1% 0,987 0,968 0,990 0,994 5% VaR 5% 0,935 0,881 0,942 0,961 

Test of Independence of Christoffersen-Lopez 
1% 0,779 0,780 0,744 0,623 1% VaR 5% 0,313 0,370 0,286 0,336 
1% 0,973 0,976 0,981 0,951 5% VaR 5% 0,909 0,924 0,923 0,852 

Test of Conditional Coverage of Christoffersen-Lopez 
1% 0,964 0,968 0,980 0,987 1% VaR 5% 0,756 0,737 0,734 0,621 
1% 0,970 0,960 0,977 0,966 5% VaR 5% 0,895 0,859 0,897 0,857 

 

The percentage beside VaR is the coverage rate. The table reports the

frequency of acceptance of the null hypothesis of the different test considered.

Table 4: DGP FIGARCH(1,d,0) d = 0.4 β = 0.3
Lopez loss function – frequency of model selection 

1000 replications – 250 forecasts 
Fitted models  Figarch(1,d,0) Garch(1,1) Igarch(1,1) EWMA(0.97) 

1% VaR 0,094 0,123 0,115 0,923 
5% VaR 0,094 0,065 0,038 0,803 

 

The percentage beside VaR is the coverage rate. The table reports the

frequency of model selection based on the loss function suggested by Lopez. The

sum by rows is above one since GARCH, IGARCH and EWMA may lead to the

very same 1-step-ahead forecast of conditional variance, this happen when the

GARCH collapse on an IGARCH and/or when IGARCH α parameter is equal

to 0.7
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Table 5: DGP FIGARCH(1,d,0) d = 0.4 β = 0.3
Loss - Frequency of model selection – 1000 replications – 250 forecasts 

Fitted models  Figarch(1,d,0) Garch(1,1) Igarch(1,1) EWMA(0.97) 
Loss Function 1: absolute value of return VaR measure ratio 

E 0,092 0,125 0,115 0,923 1% VaR T 0,052 0,193 0,472 0,283 
E 0,043 0,170 0,189 0,598 5% VaR T 0,052 0,193 0,472 0,283 

Loss Function 2: square return-VaR normalized by absolute VaR measure 
E 0,090 0,118 0,118 0,929 1% VaR T 0,066 0,339 0,000 0,595 
E 0,009 0,081 0,021 0,889 5% VaR T 0,034 0,234 0,000 0,732 

Loss Function 3: absolute of return-VaR 
E 0,089 0,119 0,115 0,932 1% VaR T 0,094 0,375 0,000 0,531 
E 0,010 0,105 0,068 0,817 5% VaR T 0,073 0,331 0,000 0,596 

Loss Function 1 + Loss Function 2 
E 0,093 0,124 0,115 0,923 1% VaR T 0,031 0,208 0,000 0,761 
E 0,036 0,163 0,164 0,637 5% VaR T 0,004 0,036 0,000 0,960 

Loss Function 1 + Loss Function 3 
E 0,092 0,125 0,115 0,923 1% VaR T 0,059 0,307 0,000 0,634 
E 0,034 0,163 0,167 0,636 5% VaR T 0,021 0,096 0,000 0,883 

Loss Function 2 + Loss Function 3 
E 0,089 0,118 0,114 0,934 1% VaR T 0,082 0,361 0,000 0,557 
E 0,009 0,093 0,049 0,849 5% VaR T 0,051 0,302 0,000 0,647 

Loss Function 1 + Loss Function 2 + Loss Function 3 
E 0,091 0,124 0,115 0,925 1% VaR T 0,065 0,324 0,000 0,611 
E 0,030 0,154 0,141 0,675 5% VaR T 0,020 0,166 0,000 0,814 

 

See footnote to table 4
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Table 6: DGP FIGARCH(1,d,0) d = 0.4 β = 0.3
Test of model comparison – 1000 replications – 250 forecasts 

Model comparison Frequencies of α 1-2 1-3 1-4 2-3 2-4 3-4 
VaR(1%) 

1% 0,552 0,606 0,785 0,510 0,778 0,724 
5% 0,553 0,607 0,787 0,510 0,778 0,725 

Test is 
significant 10% 0,554 0,608 0,787 0,510 0,778 0,726 

1% 0,478 0,711 0,925 0,747 0,919 0,870 
5% 0,479 0,712 0,925 0,747 0,919 0,870 

Prefer 1st 
model 10% 0,478 0,712 0,925 0,747 0,919 0,869 

1% 0,522 0,289 0,075 0,253 0,081 0,130 
5% 0,521 0,288 0,075 0,253 0,081 0,130 

Prefer 2nd 
model 10% 0,522 0,288 0,075 0,253 0,081 0,131 

VaR(5%) 
1% 0,848 0,877 0,955 0,778 0,948 0,914 
5% 0,851 0,882 0,958 0,782 0,954 0,917 

Test is 
significant 10% 0,852 0,888 0,958 0,785 0,956 0,920 

1% 0,560 0,673 0,711 0,622 0,679 0,592 
5% 0,559 0,670 0,709 0,620 0,676 0,592 

Prefer 1st 
model 10% 0,560 0,668 0,709 0,619 0,677 0,591 

1% 0,440 0,327 0,289 0,378 0,321 0,408 
5% 0,441 0,330 0,291 0,380 0,324 0,408 

Prefer 2nd 
model 10% 0,440 0,332 0,291 0,381 0,323 0,409 

VaR(10%) 
1% 0,910 0,939 0,983 0,860 0,977 0,970 
5% 0,916 0,944 0,985 0,864 0,980 0,973 

Test is 
significant 10% 0,919 0,948 0,986 0,864 0,980 0,974 

1% 0,575 0,649 0,635 0,610 0,598 0,513 
5% 0,575 0,648 0,636 0,611 0,598 0,513 

Prefer 1st 
model 10% 0,575 0,649 0,636 0,611 0,598 0,513 

1% 0,425 0,351 0,365 0,390 0,402 0,487 
5% 0,425 0,352 0,364 0,389 0,402 0,487 

Prefer 2nd 
model 10% 0,425 0,351 0,364 0,389 0,402 0,487 

VaR(25%) 
1% 0,893 0,953 0,979 0,854 0,987 0,983 
5% 0,894 0,953 0,983 0,855 0,988 0,985 

Test is 
significant 10% 0,897 0,953 0,984 0,855 0,989 0,987 

1% 0,560 0,594 0,612 0,546 0,579 0,534 
5% 0,559 0,594 0,610 0,546 0,578 0,534 

Prefer 1st 
model 10% 0,561 0,594 0,610 0,546 0,577 0,534 

1% 0,440 0,406 0,388 0,454 0,421 0,466 
5% 0,441 0,406 0,390 0,454 0,422 0,466 

Prefer 2nd 
model 10% 0,439 0,406 0,390 0,454 0,423 0,466 
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The percentage beside VaR is the coverage rate. The table reports for each

Value-at-Risk level the frequency of having a significant test (the two compared

models differently satisfy the efficiency condition) and the frequency of prefer-

ring the first or the second model in percentage within the significant tests. The

α represents the test confidence level.
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Table 7: DGP FIGARCH(1,d,0) d = 0.4 β = 0.3
Test of VaR model specification (null: VaR(p) is correctly specified) 

Frequency of accepting H0 – 1000 replications – 250 forecasts 
Fitted models VaR 

p-value 
Test 

α-value Figarch(1,d,0) Garch(1,1) Igarch(1,1) EWMA(0.97) 
1% 0,030 0,035 0,015 0,002 
5% 0,022 0,018 0,009 0,001 1% 
10% 0,020 0,017 0,008 0,001 
1% 0,456 0,415 0,312 0,279 
5% 0,326 0,300 0,235 0,180 5% 
10% 0,268 0,227 0,184 0,137 
1% 0,588 0,565 0,487 0,490 
5% 0,446 0,410 0,340 0,331 10& 
10% 0,347 0,329 0,271 0,258 
1% 0,750 0,722 0,690 0,698 
5% 0,581 0,543 0,525 0,528 25% 
10% 0,463 0,440 0,423 0,412 

 

The table reports the frequency of accepting the null hypothesis.

Table 8: Fitted models on the FIB30 series
Model Parameter Estimate Standard error T-statistics 

µ -0.00255 0.00256 -0.99673 
ω 0.00062 0.00022 2.80426 
d 0.45070 0.08457 5.32932 
β 0.64779 0.06491 9.98031 

FIGARCH(1,d,1) 

ψ 0.22977 0.04930 4.66105 
µ -0.00246 0.00259 -0.94998 
ω 0.00039 0.00014 2.83954 
α 0.06482 0.01200 5.40055 GARCH(1,1) 

β 0.91323 0.01697 53.80210 
µ -0.00243 0.00257 -0.94412 
ω 0.00013 0.00005 2.86684 IGARCH(1,1) 
α 0.06954 0.01281 5.42835 
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Table 9: Tests and loss functions computed on VaR bounds
 FIGARCH(1,d,1) GARCH(1,1) IGARCH(1,1) EWMA(0.97) 

Exceptions 1% 5 4 4 4 
Exceptions 5% 13 18 12 11 

CC 1% 3.209 1.565 1.565 1.565 
CC 5% 0.869 5.502 0.397 0.102 
UC 1% 5.245 4.313 4.313 4.313 
UC 5% 4.227 8.093 4.529 5.125 

Lopez 1% 5.103 4.134 4.089 4.098 
Lopez 5% 13.367 18.417 12.311 11.333 
F1 1% E 6.381 5.696 5.195 5.314 
F1 1% T 66.210 71.602 63.930 64.825 
F1 5% E 18.257 24.340 16.307 15.591 
F1 5% T 84.410 84.985 81.458 83.608 
F2 1% E 0.247 0.349 0.210 0.235 
F2 1% T 122.272 117.557 126.890 125.554 
F2 5% E 1.189 1.443 0.997 1.080 
F2 5% T 99.882 97.274 102.556 101.775 
F3 1% E 0.584 0.658 0.504 0.552 
F3 1% T 102.836 97.015 108.407 106.819 
F3 5% E 1.688 1.924 1.404 1.478 
F3 5% T 73.722 69.790 77.434 76.351 

VaR sig. 1% 55.170 87.066 87.066 87.066 
VaR sig. 5% 6.658 10.410 6.681 9.557 

 

The percentage beside the descriptions indicates the VaR coverage level. CC

stands for conditional coverage test while UC stands for unconditional coverage

test. Lopez idicates the Lopez loss function, while with F1, F2 and F3 we

indicate the loss functions suggested in this work. E stands for the loss functions

computed only with the exceptions, while T stands for the whole sample. The

last two rows reports the test statistics for the VaR model specification test.

The χ2 distribution has the following 1% (5%) critical values: k=1 (degrees of

freedom) 6.635 (3.841); k=2 9.210 (5.991); k=5 15.086 (13.388).

Table 10: model comparison tests
Model comparison VaR 1% VaR 5% 
FIGARCH vs GARCH 5.733 507.639 
FIGARCH vs IGARCH 5.733 1.432 
FIGARCH vs EWMA 5.733 155.604 
GARCH vs IGARCH 0.000 -357.434 
GARCH vs EWMA 0.000 -63.761 
IGARCH vs EWMA 0.000 132.738 
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The table reports the test statistics for the VaR model comparison test. The

test is distributed as a standardized normal and the null hypothesis is that the

two model equally match the VaR efficiency condition. A positive sign indicatea

preference for the first model.

Graph 1: FIB30 filtered logreturns - 2200 data points
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Graph 2: Autocorrelations of the FIB30 filtered logreturns
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