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Abstract

This paper compares, on simulated data, the performances of GARCH-
type models with the one of the RiskMetric approach in the compu-
tation of Value-at-Risk measures. The comparison among the fitted
models is based on a set of measures: the tests of Unconditional and
Conditional Coverage of Kupiec and Christoffersen and Lopez; the
quantiles of the various VaR measures; the moments; the correlation
among VaR bounds and the sequencies of exceptions. We show that,
even if a long-memory GARCH is the true generator, the RiskMetric
model provides a good approximation. It represents the simplest and
easier-to-implement solution, the best efficiency at the lower level of
complexity.
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1 Introduction

Value-at-Risk has become a well known tool for measuring market risk since
the implementation of the Basel accord on Capital Requirements (1996).
Within this document, banks and financial institutions are required to im-
mobilize resources in an amount adequate to cover their market exposure.
The level of needed resources is based on the Value-at-Risk (VaR) and on a
set of corrections, increments and exclusions. Many alternative models are
available to compute the VaR levels; among them we cite the RiskMetrics (JP
Morgan, 1996) and the GARCH-type models. The main difference between
these two alternative approaches is on the model structure, very simplistic
the first, flexible and with much more complex extensions the second.
Given Basel accord, many subjects face therefore a choice and a trade-off

between the complexity of the model and its efficiency. However, no com-
parative studies have considered this point, which will be the object of this
paper. In detail, we compare the fitting of Value-at-Risk measures computed
by the RiskMetric model and an alternative set of GARCH-type models on a
simulation based study. Moreover, we focus on a particular data generating
process, assuming that the market or instrument we are considering shows
long-memory behaviour. The analysis includes a comparison among the mo-
ments of simulated series, the quantiles of the various VaR models, a group
of tests and a correlation study among the VaR bounds and the sequences of
exceptions. Our final purpose is to verify if simple and misspecified models
(we work on simulated series assuming the data generating process is known)
can provide Value-at-Risk bounds that can be considered reliable in the sense
they satisfy Basel Accord requirements. This work is structured as follow:
next section introduces the various models we consider for the computation
of Value-at-Risk; section 3 describes the simulation study while section 4
collects our results; section 5 will conclude.

2 GARCH-type models for Value-at-Risk

Value-at-Risk is defined as the maximum amount of loss a portfolio can incur
in with a given level of confidence and in a fixed interval of time. Formally
it can be represented as a quantileZ V aRm,t(α,k)

−∞
fm,t+k (x) = α (1)
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where α indicates the confidence level of the quantile, m indicates the model,
k refers to the horizon of the possible losses, t is the time to which the Value-
at-Risk refers. All these informations are also summarized with the notation
V aRm,t (α, k). The horizon is restricted to two cases only, k = 1 and k = 10,
the two levels considered by Basel accord. Various alternative models are
available for the evaluation of VaR bounds. Within this paper we focus
on a particular class, the GARCH-type models. Within this framework,
the conditional volatilities play an essential role in the computation of VaR
levels. In fact, the VaR can be represented as a combination of volatilities
and residual distribution functions. In particular, assuming also that the
standardised residuals (given any GARCHmodel, these are equal to the mean
residuals divided by the conditional volatilities) are normally distributed the
VaR can be represented as

V aRm,t (α, k) = Φ−1 (α) σ̂t+k,m (2)

where Φ−1 (α) is the quantile of a standardised normal variable and σ̂t+k,m
represents the forecast of the conditional variance obtained by model m at
time t with an horizon k. The differences among the models we consider are
included in the term σ̂t+k,m.
In the following we briefly describe the various models included in this

study.
GARCH models were introduced by the seminal works of Engle (1982)

and Bollerslev (1986). These models tried to explain several empirical find-
ings of financial market series. The main innovation was in the modelisation
of the conditional variances that were structured with a time-dependent re-
lation. The model can be represented with a set of equations. The first and
second define the model mean and standardised residual behaviour

yt = µ
¡
It−1

¢
+ ztσt

E
£
zt|It−1

¤
= 0 E

£
z2t |It−1

¤
= 1 (3)

in this case the standardised residual are coherent with a standardised normal
distribution, however other assumptions can be made, including the Student
distribution and the GED (Generalised Error Distribution). For the sake of
exposition we will assume that the mean is identically equal to zero µ (It−1) =
0. Finally, the conditional variances are defined:

σ2t = ω +

pX
i=1

αiz
2
t−iσ

2
t−i +

qX
j=1

βjσ
2
t−j (4)
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The representation considered is the GARCH(p,q) while in the following we
will use the GARCH(1,1) specification. Alternative parameterizations have
been suggested in the past years including asymmetric behavior, fat-tailes,
heterogeneous behavior and other aspects found in financial market series,
however these will not be considered.
The second model we use to evaluate VaR levels is the Integrated GARCH

(IGARCH) which adds a unit root to the GARCH model. This parameter-
isation was suggested by Bollerslev (1996) starting from the ARMA repre-
sentation of the GARCH model

[1− α (L)− β (L)] ε2t = [1− β (L)] υt (5)

where α (L) =
Pp

i=1 αi, β (L) =
Pq

j=1 βj, ε
2
t = z2t σ

2
t and υt = ε2t − σ2t .

Then, the IGARCH is defined introducing a unit root in the autoregressive
polinomial

(1− L)φ (L) ε2t = [1− β (L)] υt (6)

The last GARCH-type model is the Fractionally Integrated GARCH (FI-
GARCH) that represents an extension to the IGARCH case allowing the
integration exponent to assume values between 0 and 1. In this case the con-
ditional variances will show a long-memory pattern, a long term correlation.
The model was introduced by Baillie, Bollerslev and Mikkelsen (1996) and
can be represented as follows

(1− L)d φ (L) ε2t = [1− β (L)] υt (7)

These ”pure” GARCH type models are compared with the RiskMetric
model, an exponentially weighted moving average of past squared mean-
residuals, defined as

σ2t = (1− λ)
t−1X
j=1

λj−1ε2t−j (8)

The smoothing parameter is normally fixed between 0.94 and 0.97.
Actually, the EWMA is a particular IGARCH model, in fact it can be

written in a recursive way as

σ2t = λσ2t−1 + (1− λ) ε2t−1 (9)

EWMA represents a good approximation of an IGARCH model for an
additional reason: in empirical estimations the constant in variance, ω, is
likely to be very small, approaching zero, and slightly significant.
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In thi study, we do not consider the statistical properties and the problems
connected to the parameter estimation. A review of the literature on these
topics can be found in Bollerslev, Engle and Nelson (1994). The cited refer-
ence provides also an extensive analysis of alternative GARCH-type models.

3 The simulation study

The comparison among the set of alternative models previously described is
based on a group of tests and measures of efficiency. At first, we precise that
all the simulated series have a FIGARCH structure; this choice is motivated
by the numerous findings of long-memory in financial series. These patterns
can be misspecified with IGARCH models or by GARCH structures with
parameter combination close to the IGARCH case. In these situations the
EWMA will necessarily be close to the true GARCH model (many estimated
GARCH models on financial series provide a value of the β parameter above
0.9, close to the λ value of EWMA) and we believe that whenever two models
behave in a very similar way and whose performances are almost identical
our choice must go to the one with the simplest structure. Therefore, when
comparing EWMA with IGARCH or GARCH (close to the IGARCH) mod-
els, we will always choose the EWMA. In these cases the discrepancies among
the various models will be small and combining this point with the availabil-
ity of GARCH tools in many statistical software make the use of GARCH
type models for VaR computation really simple. The trade-off between com-
plexity and efficiency is restricted to the second property, complexity being
smoothed by the software packages. Finally, we evidence that the chosen
FIGARCH specifications, all FIGARCH(1,d,0), nest the IGARCH model,
that can be obtained imposing the equivalence d = 1. In such a case the
FIGARCH(1,d,0) collapses on an IGARCH, as indicated in the following
scheme

σ2t = ω + βσ2t−1 +
h
1− βL− (1− L)d

i
ε2t

⇓
d = 1
⇓

σ2t = ω + βσ2t−1 + (1− β) ε2t−1

(10)

All the considered experiments are based on a set of 1000 replication
with two different data generating processes, both FIGARCH(1,d,0) with
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the following parameter combinations: ω = 0.0001, β = 0.5 and d = 0.8;
ω = 0.0001, β = 0.2 and d = 0.4. On the FIGARCH simulated series a group
of models is fitted: the true generator, a GARCH(1,1), an IGARCH(1,1) and
the EWMA.
For the sake of exposition, we assume that simulated data are daily ob-

servations and VaR is computed for 1 and 10 day-ahead. The computation
of VaR bounds requires the evaluation of 1 and 10-day-ahead variance fore-
casts. The derivation of GARCH and IGARCH forecast can be found in
Baillie and Bollerslev (1992), while for FIGARCH in Caporin (2002). The
computation of 10-day ahead forecasts nests another problem, we should
evaluate if the best forecast will be obtained by the square root rule (a 10-
day ahead variance forecast is obtained as σ̂2t+10 =

√
10σ̂2t+1) or by the sum

of a sequence of 1-day ahead forecasts (in this case σ̂2t+10 =
P10

j=1 σ̂
2
t+j and

σ̂2t+j = f
³
{ε2i }ti=1 ,

©
σ̂2t+l

ªj−1
l=1

´
), see Caporin (2002).

A second point concerns the length of the series used to compute the VaR
levels. Two different sample lengths are considered, 250 and 500 days. The
choice is related to the window normally used in the practice that does not
exceed two years length. These relative small samples can cause problems in
the estimation of FIGARCH parameters. In fact, all long memory models
including the ARFIMA of Granger and Joyeux (1980) and the long-memory
stochastic volatility of Breidt, Crato and De Lima (1998) share a common
characteristic: they depend on the infinite past and long time series are
needed to obtain a consistent and robust estimate of the memory parameter.
There are no studies that analyse the performances of quasi maximum like-
lihood estimators in short samples. Something can be obtained in Caporin
(2002) limited to samples of length 500, while no other papers consider the
length 250. This work will also shed some light in this direction.
The methodology used in the computation of VaR levels requires an ad-

ditional comment. In the simulation study VaR bounds are computed re-
estimating the model with a rolling window on the simulated series. The
window amplitude is 250 and 500 days, as specified above. This procedure is
used to mimic the extension of the information set that operative subject nor-
mally face, every day a new value is provided and the model is re-estimated
and/or updated. The Montecarlo covers one year of simulated observations
that is assumed to cover 250 days. The choice is motivated by the require-
ments of the Basel accord that refers to a backtesting period of 250 days.
The comparison is firstly based on the exceptions and on a group of
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tests. Exceptions are fundamental for fulfilling Basel accord requirements,
while the tests of Kupiec (1995) and Lopez and Chistoffersen (1998) mea-
sure the unpredictability of the exceptions. The test of Kupiec verifies the
null hypothesis of correct unconditional coverage: if the Value-at-Risk model
provides accurate risk measures the exceptions (labelled with an e) could be
modelled with a binomial distribution with a probability of occurrence equal
to the VaR coverage level α. The test compares the theoretical α value with
its empiric correspondent α = e/T with a likelihood-ratio-type test

LRUC = 2
£
ln
¡bαe

¡
1− bαT−e¢¢− ln ¡αe

¡
1− αT−e¢¢¤ (11)

In this case the null hypothesis is α = bα and the test has an asymptotic
χ2 (1) distribution (under the null). The LRuc test can be considered as the
statistical transposition of the Basel Accord requirements.
Christoffersen and Lopez (1998) provide a Conditional Coverage test that

improve the previous statistic adding robustness to conditional heteroskedas-
ticity. The test is composed by the sum of the LRuc statistic and of a measure
of independence among expections 2 [ln (LM)− ln (LI)]. This last test veri-
fies the null hypothesis of independence against a null of a first order Markov
process. The independence test is again a likelihoo-ratio test where the null
hypothesis (independence) is represented by

LI = (1− π)T0,0+T1,0 πT0,1+T1,1

and the alternative with

LM = (1− π0,1)
T0,0 π

T0,1
0,1 (1− π1,1)

T1,0 π
T1,1
1,1

With Ti,j we identify the number of observations in the sample T in state
j after having been in state i, where i and j can assume the values 0 or 1
(=exception). Moreover, π0,1 = T0,1/ (T0,0 + T0,1), π1,1 = T1,1/ (T1,0 + T1,1)
and π = (T0,1 + T1,1) /T . Finally, under the null hypothesis the test has an
asymptotic χ2 (2) distribution.
Beside the tests, a descriptive comparison among the various VaR models

is considered. We focus on the levels itself and on the sequence of exceptions.
A first analysis compares the theoretical VaR quantiles with the exceptions
realised with the alternative models. In this case, VaR bounds are computed
with the fitted models at the 1-day and 10-day horizon for a range of coverage
levels, from 1% up to the 30%. The exception series are then derived and
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averaged among the 1000 simulation trials. The resulting average exception
series provide a VaR model comparison that do not focus only on the queue
of the distribution but consider instead a finer distributional comparison.
A second analysis focuses on the moments of the simulated series. In A

GARCH-type framework, the VaR bounds are derived using the first and
second moment, no attention is given to higher order moments. Our idea
is to verify if the estimated models (even if misspecified) adequately explain
the distribution properties through higher order moments. Therefore, we
simulate series using the estimated conditional volatilities and innovations
extracted from a standardised normal distribution (as in the DGP). Alter-
natively, the innovations are extracted from the standardised residuals of
estimated models. In this analysis we proceed in this way: for any simu-
lated FIGARCH(1,d,0) series the various models are estimated and the cor-
responding conditional variances are saved; we extract the innovation from
a standard normal distribution and use it as it is; alternatively, we compute
the mean and standard deviation of the standardised residuals of the various
fitted models and we apply these values to the casual extractions. This last
analysis is used to verify if the misspecification of the model can be in some
sense corrected by the lower order moments of the standardised residuals.
Finally, we consider the correlation among the Value-at-Risk bounds and

among the corresponding exception sequences. In this case, we can expect
a high correlation between two models that adequately and closely explain
the behaviour of a series, while different models will show a lower correlation.
Similar results can be expected from the correlation among exceptions, where
we concentrate the analysis only on the extreme events.
The results of our simulation study are organised in a set of tables. In this

paper we report the full set for one experiment, the other are available form
the author upon request. The following section highlights the conclusion
driven from our simulation study.

4 Simple does not mean bad

A first general remark must evidence that the results we obtained are com-
mon over the two parameterisations we considered (d=0.8 and β=0.5, d=0.4
and β=0.2) and the two sample lengths (250 and 500). In all simulations
the constant in variance was set equal to 0.0001, to get average volatilities
close to the reality. The main point is already contained in the title of this
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sections: the RiskMetric model, even if simpler than the alternative GARCH
and FIGARCH specifications fitted to simulated FIGARCH series provides
accurate (in a Basel accord sense) Value-at-Risk estimates. This conclusion
derives from the combined analysis of the different tests and efficiency mea-
sures we considered. Let us analyse in detail the various behaviour we found
in the Montecarlo study.
A starting comment pertains to parameter estimation. Table 1 reports

the various Montecarlo averages for the estimated parameters of FIGARCH,
GARCH and IGARCHmodels. The DGP is a FIGARCH(1,d,0) with ω=0.0001,
d=0.8 and β=0.5. It is interesting to observe how FIGARCH parameters are
close to the true value even with a small sample (estimation is based on 500
observations); however the Montecarlo standard deviation is quite elevate.
This is in some sense an expected result; a long memory model requires a
long sample to get an unbiased and consistent estimate of the parameters.
Whenever this is not the case, the parameter distribution will be much more
disperse even if with the correct average. Differently GARCH and IGARCH
models provide parameter estimates with smaller standard errors, however
the β parameter is far from the EWMA smoothing coefficient. This behaviour
could create differences in the VaR bounds obtained by the two models.

[INSERT HERE TABLE 1]

The parameter combination of table 1 is estimated on sample of 500 obser-
vations; the same pattern is evidenced with a sample of 250 points but with
larger Montecarlo standard deviations. Some differences arise when we con-
sider the second parameter combination we used to simulate returns: the FI-
GARCH(1,d,0) with ω=0.0001, d=0.4 and β=0.2. In this case the parameter
estimates of the fitted FIGARCH model provide disperse and biased values:
the Montecarlo average is around 0.6 for d, while at 0.4 for β. We believe this
depends on the different memory power of the two FIGARCH models that
affect the estimates: in fact with a less persistent memory (d=0.8) a short
sample is sufficient to get an unbiased estimate while for more persistent
memory (d=0.4) a longer sample is needed to get accurate estimates. Even
in this second FIGARCH GDP, the GARCH and IGARCH models provide
parameter combinations far from the EWMA smoothing parameter.
We turn now to the analysis of the VaR bounds; we start from the average

exception number. Recall that our Montecarlo includes 1000 replications, for
each one, 250 1 and 10-step-ahead forecasts are computed based on models
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estimated on 250 or 500 observation with a rolling approach. This produces
1000 sequences of VaR bounds for each of the fitted models. The VaR bounds
are compared with the simulated series and the number of exceptions is com-
puted and averaged. A sample result is included in tables 2 and 3, 1-day VaR
and 10-day VaR respectively. What emerges is that the GARCH, IGARCH
and FIGARCH models are too conservative; they lead to the computation
of larger bounds. In fact, the average exception is really small compared to
the VaR confidence level, for the case reported in table 1 we obtain very few
exceptions for the 1-day VaR (the percentage average is below 0.01% for a
1% VaR and below 0.5% for a 5% VaR). Differently, the RiskMetric model,
even if it represents a completely misspecified model, provides an average
percentage of exception of 0.64% and 4.4% respectively. All models clearly
satisfy the requirements of Basel accord, however, it must be evidenced that
a model which provides larger VaR bound, and by a consequence generate
fewer exceptions, cannot be positively considered by financial institutions
(unless regulators...). In fact, such models will generate larger capital re-
quirements and will create a bigger opportunity cost for these institutions.
It is worth noting that similar results are obtained with a 10-day VaR. In
this case the various models provide closer results at both 1% and 5% VaR
levels. Clearly, a final conclusion cannot be made on the basis of a single
measure, even if some robustness is given by the two sample lengths and the
two parameterisations considered.

[INSERT HERE TABLES 2 AND 3]

A subsequent analysis can be seen as a generalisation of the study of av-
erage exceptions; it considers a set of VaR quantiles from 1% up to 30% and
computes for each the average number of exceptions. An interesting pattern
that is evidenced in this case is that the differences among the various model
disappear increasing the quantile dimension. This highlights that the various
parameterisations generate a different behaviour in the tails while approach-
ing the centre of the distribution they behave in a very similar way. Moreover,
while for the 1-day VaR there is a discrepancy among the GARCH-type mod-
els and the RiskMetrics, which is closer to the "true" exception number, the
difference reduces at the 10-day horizon. It seems that with a shorter hori-
zon the approximation induced by the RiskMetric provides a better measure,
while increasing the horizon the GARCH structure become more and more
important, influencing the performances of the variance forecasts. These
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effects can be observed in tables 4 and 5.

[INSERT HERE TABLES 4 AND 5]

Besides the analysis of the exceptions a further measure of model effi-
ciency for VaR models is represented by the correlation among VaR bounds
and among the exception series generated by the different fitted models.
These correlations are included in tables 6 and 7 which report the Montecarlo
average correlation and the corresponding standard errors. The correlations
are based on 1% and 5% VaR and we reported the correlation among VaR
bounds (the coverage level does not influence the VaR) and the correlation
among exceptions at the 1% and 5% level (5% only for 1-day VaR because
at the 1% many series reported zero exceptions and correlation could not be
computed).
Focus at first on the 1-day VaR. It can be noted that the correlations

among FIGARCH, GARCH and IGARCH are close to 1, both for the VaR
bounds and the sequences of exceptions. Differently, the correlations of the
previous models with the EWMA are smaller, around 80%. This is an ex-
pected result, given the behaviour and the patterns evidenced by the models
in the average exceptions and in the comparison among VaR quantiles.
Turning to a 10-day horizon creates additional interesting patterns in the

correlations. At first the relation among the various models is almost identical
to the 1-day horizon if we consider the VaR bounds. If we focus on the
sequences of exceptions we note a decrease in the correlations, the minimum
being in the cases involving EWMA. The decrease in the correlations is a
puzzling fact. It can be explained with two considerations: at first, increasing
the horizon in some sense takes into account the long memory pattern of the
series, therefore, the FIGARCH provides a better fitting; second, as we noted
for the average exception number, at the 10 day level the exceptions increase,
this augment the number of points at which correlations are computed and
allow for a decrease in these statistics. Let us clarify this point with a simple
example. Consider the sequence of exceptions realised by two different models
at 1-day and 10-day horizons. For simplicity we focus only on 10 observations.

[INSERT HERE TABLE 8]

While at the 1-day horizon the correlation is around 76% at the 10-day
level it decreases to 22%. The correlation analysis evidences that GARCH-
type models, indifferently from their memory, determine similar VaR bounds
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and by a consequence they produce a closer set of exceptions, but only at the
1-day horizon. Turning to the 10-day horizon, the long-memory behaviour of
the series become relevant and produces some differences among the GARCH-
type models. Moreover, at the 1-day horizon, the correlation among GARCH-
type models and the EWMA are significantly different, an expected result
determined by the different way the two types of models fit at the lower
quantiles: GARCH models provide a poor explanation; they are too much
conservative while the EWMA is closer to the theoretical exceptions. At the
10-day level the smaller discrepancies are due both to the long memory of
the series, which come into action, and to the model type.

[INSERT HERE TABLES 6 AND 7]

We considered also a different problem. Given the various sequences of
conditional variances (used to determine the VaR bounds), we are interested
in analysing if these sequences can be used to compare the distribution of the
simulated original FIGARCH series with a set of reconstructed returns. To
perform this analysis we simulated 1000 return series whose conditional vari-
ance was set equal to one of the estimated one. The standardised residuals
have been extracted from a standardised normal variable in a case. In a sec-
ond exercise we computed mean and standard deviation of the standardised
residuals of the estimated models and we used these in the simulations. The
results are included in table 9. It is evident that in both cases the estimated
models are not able to mimic the higher order moments of the simulated
returns. The only evident behaviour is the one of GARCH-type models, one
close to the other. Moreover, as in the previous analysis, the behaviour of
the EWMA is clearly different from the GARCH models.

[INSERT HERE TABLE 9]

A final set of remarks refers to the coverage tests, reported in tables from
10 to 15. It is well known that these tests cannot be used to identify the
correct model specification (Lopez 1998, Caporin 2002); therefore we use
them only to compare the fitting of various models. The results confirm
previous findings: at the 1-day horizon the GARCH-type models behave
differently from the EWMA which in turn is the preferred solution; at the 10-
day level the long memory of the simulated return turns out to be relevant in
variance forecasting and the performances of the FIGARCHmodels increases.
It must be evidenced that since the tests are based on the exceptions they
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are influenced by their number which gives the number of point on which test
statistics are computed. This can explain the clear distinctions between the
results on 1-day and 10-day horizon. Summarising, the following set of tables
simply indirectly confirm the main result of this work: the EWMA is a closer
approximation to the simulated FIGARCH series at the 1-day horizon, while
at the 10-day the discrepancy between an exponential smoothing approach
and a GARCH-type model become smaller with a preference for long-memory
GARCH.

[INSERT HERE TABLES FROM 10 TO 15]

5 Conclusions

In this paper we compared the Value-at-Risk bounds obtained through the
estimation of GARCH-type models and the application of the RiskMetrics
model (a EWMA). The analysis is developed through a Montecarlo study
where the simulated series are generated by a long memory GARCH model.
This choice was done in order to mimic the various finding of long term cor-
relation in financial markets. Moreover, the sample length of simulated series
was fixed at 250 or 500 observation, the normal ranges used by practitioner,
and the VaR bounds were compared on a standard backtesting sample of
250 points. The comparison considered a set of tests and descriptive analysis
concentrated both on the VaR measures and on the exceptions realised by
the various models.
As a result, we evidence that the EWMA represents the best choice for a

financial institution that is interested in satisfying the Basel accord on cap-
ital requirements. In fact, even if it represents a misspecified model (this
is the case in our simulation study), it provides narrower VaR bounds with
an exception number in line with Basel requirements, while GARCH-type
models provide too conservative VaR estimates. From a statistical point of
view the choice of the EWMA is clearly incorrect while the conclusion is
reversed if we focus on the monetary advantages implied by the implementa-
tion of the "true" model: narrower VaR measures imply a reduced amount of
capital required to cover the market exposure, leaving additional resources
that could be used for new investments. This result is evidenced both by
the comparison of the quantiles of the various models and by the implied
exceptions. Finally, we confirm the results of previous studies (Lopez, 1998)
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observing that the tests of conditional coverage (Kupiec, 1995) and uncon-
ditional coverage (Christoffersen, 1998) cannot be used to identify the best
model for Value-at-Risk measurement.
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Table 1: Estimated parameters (standard errors) 
 FIGARCH(1,d,0) GARCH(1,1) IGARCH(1,1) 

5.45E-05 4.47E-05 5.06E-05 
µ (0.00234) (0.00235) (0.00235) 

0.82292   d (0.15342)   
0.00029 0.00034 0.00031 

ω (0.00104) (0.00107) (0.00100) 
 0.29824 0.32959 

α  (0.05836) (0.08317) 
0.51247 0.66877  

β (0.16009) (0.07820)  
DGP FIGARCH(1,d,0) with ω =0.0001, α=0.5 and d=0.8 - parameter estimates are Montecarlo 
averages while standard errors are Montecarlo s.e. - Montecarlo is based on 1000 replications with 
series of 500 observations - the Montecarlo compute VaR levels with a rolling window of amplitude 
500 and every step it moves the window by one day re-estimating the model; the process cover one 
year, 250 observations and the previous table is derived from the estimations of the last step 



Table 2: Average Exceptions, standard errors and average percentage of exceptions - 1-day VaR 
 VaR FIGARCH(1,d,0) GARCH(1,1) IGARCH(1,1) EWMA(0.97)

0.00300 0.00500 0.00100 1.60500 Average exception number 
(Montecarlo s.e.) (0.05472) (0.08356) (0.03162) (1.25481) 

Average exception percent 
1% 

0.00120 0.00200 0.00040 0.64200 
0.63300 0.67400 0.35200 11.01000 Average exception number 

(Montecarlo s.e.) (1.31531) (1.25192) (0.89939) (3.12373) 
Average exception percent 

5% 
0.25320 0.26960 0.14080 4.40400 

The table reports, for two VaR confidence levels, the average number of exceptions, their standard 
error and the corresponding average percentage of exceptions. Results are based on the DGP of 
Table 1. The exceptions are computed for all simulations and for every estimation, that is in one of 
the 1000 simulations there are 250 records of expections. The Montecarlo averages among all of 
them. 



Table 10: Test of Kupiec - frequency of accepting the null hypothesis - 1-day VaR 
Test VaR FIGARCH(1,d,0) GARCH(1,1) IGARCH(1,1) EWMA(0.97) 
1% 1000 1000 1000 999 
5% 1% 3 4 1 802 
1% 25 22 8 737 
5% 

5% 
8 5 2 571 

The table reports the frequencies of accepting the null hypothesis (correct unconditional coverage) 
of the test of Kupiec. Two VaR coverage levels are considered as well as two test significance 
levels. The table is based on 1000 replications. The test is computed on the sequence of exceptions. 
 



Table 12: Test of Independance - frequency of accepting the null hypothesis - 1-day VaR 
Test VaR FIGARCH(1,d,0) GARCH(1,1) IGARCH(1,1) EWMA(0.97) 
1% 997 997 999 238 
5% 1% 997 996 999 148 
1% 839 821 888 78 
5% 

5% 
736 705 822 36 

The table reports the frequencies of accepting the null hypothesis (independence) of the test of 
independence. Two VaR coverage levels are considered as well as two test significance levels. The 
table is based on 1000 replications. The test is computed on the sequence of exceptions. 



Table 14: Test of Conditional Coverage - frequency of accepting the null hypothesis - 1-day VaR 
Test VaR FIGARCH(1,d,0) GARCH(1,1) IGARCH(1,1) EWMA(0.97) 
1% 1000 1000 1000 321 
5% 1% 997 997 999 235 
1% 23 19 7 18 
5% 

5% 
7 5 2 3 

The table reports the frequencies of accepting the null hypothesis (correct conditional coverage) of 
the test of Lopez-Christoffersen. Two VaR coverage levels are considered as well as two test 
significance levels. The table is based on 1000 replications. The test is computed on the sequence of 
exceptions. 



Table 8: exceptions of two different models on the 1-day and 10-day horizons 
Horizon 1-day 10-day 
Model a b a B 

t1 0 0 0 0 
t2 1 1 1 1 
t3 0 0 0 0 
t4 0 1 0 1 
t5 0 0 0 1 
t6 1 1 1 1 
t7 0 0 1 0 
t8 0 0 0 0 
t9 0 0 0 0 
t10 0 0 0 1 

 



Table 4: Quantile comparison - 1-day VaR 
VaR Quantile Theoretic Exc. FIGARCH(1,d,0) GARCH(1,1) IGARCH(1,1) EWMA 

0.700 75.000 79.600 79.364 79.045 73.896 
0.710 72.500 77.098 76.838 76.466 71.354 
0.720 70.000 74.448 74.231 73.721 68.836 
0.730 67.500 71.802 71.651 71.083 66.264 
0.740 65.000 69.106 68.938 68.376 63.688 
0.750 62.500 66.294 66.149 65.520 61.108 
0.760 60.000 63.437 63.321 62.651 58.556 
0.770 57.500 60.601 60.439 59.683 55.999 
0.780 55.000 57.697 57.622 56.759 53.462 
0.790 52.500 54.633 54.540 53.524 50.909 
0.800 50.000 51.372 51.363 50.350 48.495 
0.810 47.500 48.181 48.090 46.973 46.049 
0.820 45.000 44.792 44.810 43.521 43.504 
0.830 42.500 41.246 41.381 40.026 40.974 
0.840 40.000 37.663 37.839 36.341 38.422 
0.850 37.500 34.045 34.315 32.643 35.907 
0.860 35.000 30.176 30.599 28.839 33.350 
0.870 32.500 26.267 26.750 24.902 30.899 
0.880 30.000 22.212 22.819 20.869 28.379 
0.890 27.500 18.205 18.842 16.892 25.851 
0.900 25.000 14.069 14.847 12.839 23.409 
0.910 22.500 10.122 10.908 9.024 20.966 
0.920 20.000 6.545 7.231 5.534 18.456 
0.930 17.500 3.665 4.104 2.865 15.902 
0.940 15.000 1.694 1.938 1.176 13.454 
0.950 12.500 0.633 0.674 0.352 11.010 
0.960 10.000 0.176 0.155 0.072 8.477 
0.970 7.500 0.035 0.034 0.014 6.120 
0.980 5.000 0.012 0.013 0.005 3.766 
0.990 2.500 0.003 0.005 0.000 1.605 

The table reports the quantiles of VaR levels in terms of exceptions. We reported the quantile and 
the theoretical exception value on the common backtesting range (250 onservations) together with 
the Montecarlo average over the 1000 replications with the four estimated models. The table is 
based on 1000 replications. 
 



Table 9: moment comparison - 1-day VaR 

Order FIGARCH(1,d,0)
simulated FIGARCH(1,d,0) GARCH(1,1) IGARCH(1,1) EWMA 

Residual innovations 
1 -0.00020 -0.00062 -0.00061 -0.00060 -0.00026 
2 0.02689 0.11235 0.11218 0.11272 0.24897 
3 -0.03651 -0.02204 -0.02278 -0.01541 0.34960 
4 1.69892 15.26392 14.73160 14.46808 167.96191 
5 -32.66025 4.24275 4.09414 13.37229 818.89366 
6 1203.53170 15917.02600 15031.34300 14213.79300 481652.36000 

Standardised innovations 
1 -0.00020 1.0E-06 5.4E-06 -1.1E-06 -3.9E-06 
2 0.02689 0.02180 0.02185 0.02208 0.02082 
3 -0.03651 -0.00034 0.00016 -0.00007 -0.00038 
4 1.69892 0.57521 0.60473 0.57605 0.28182 
5 -32.66025 -0.26397 0.17059 -0.26734 -0.09492 
6 1203.53170 153.95414 169.78073 144.36624 30.37034 

The table reports the moments up to order 6 of the simulated series and of the estimated models. 
The first panel reports the moment obtained using as innovations extractions from a normal variable 
obtained with the mean and standard deviation of standardised residuals after the model estimation; 
the second panel is based on standardised normal innovations. The table is based on 1000 
replications. 



Table 6: Correlation among 1-day VaR and their Exceptions 
Models Var Exceptions 1% Exceptions 5% 

0.99366 0.99970 0.95813 FIGARCH(1,d,0)-GARCH(1,1) (0.03086) (0.00930) (0.12722) 
0.99384 1 0.96985 FIGARCH(1,d,0)-IGARCH(1,1) (0.01713) -- (0.10959) 
0.99282 0.99970 0.97778 GARCH(1,1)-IGARCH(1,1) (0.03754) (0.00930) (0.08768) 
0.80034 0.99885 0.81313 FIGARCH(1,d,0)-EWMA (0.06783) (0.02114) (0.29479) 
0.78661 0.99795 0.78871 IGARCH(1,1)-EWMA (0.07786) (0.03797) (0.30855) 
0.78820 0.99957 0.87539 GARCH(1,1)-EWMA (0.07345) (0.01344) (0.26101) 

The table reports the Montecarlo average correlation among the fitted VaR models and the sequence 
of exceptions. The table is based on 1000 replications. Percentage coverage of VaR is not indicated 
since it does not influence the correlation 
 



Table 7: Correlation among 10-day VaR and their exceptions 
Models VaR Exceptions 1% Exceptions 5% 

0.99603 0.88252 0.87818 F(1,d,0) sum - F(1,d,0) root (0.00580) (0.14602) (0.11429) 
0.89725 0.79345 0.76167 G(1,1) sum - F(1,d,0) sum (0.05691) (0.24537) (0.17474) 
0.89660 0.74527 0.70022 G(1,1) sum - F(1,d,0) root (0.06077) (0.26284) (0.19418) 
0.90194 0.77483 0.78261 G(1,1) root - F(1,d,0) sum (0.05370) (0.24011) (0.15022) 
0.90449 0.74157 0.76078 G(1,1) root - F(1,d,0) root (0.05489) (0.24626) (0.15377) 
0.99601 0.88323 0.84682 G(1,1) root - G(1,1) sum (0.00688) (0.15122) (0.13603) 
0.89015 0.78663 0.74057 IG(1,1) sum - F(1,d,0) sum (0.07928) (0.25917) (0.18230) 
0.89039 0.74544 0.68532 IG(1,1) sum - F(1,d,0) root (0.08253) (0.27067) (0.19768) 
0.97643 0.94936 0.93071 IG(1,1) sum - G(1,1) sum (0.08043) (0.10814) (0.10628) 
0.97856 0.85871 0.80765 IG(1,1) sum - G(1,1) root (0.07934) (0.16674) (0.14991) 
0.90290 0.76392 0.77612 IG(1,1) root - F(1,d,0) sum (0.04691) (0.25527) (0.15270) 
0.90573 0.73572 0.75799 IG(1,1) root - F(1,d,0) root (0.04884) (0.25505) (0.15605) 
0.98624 0.86734 0.83202 IG(1,1) root - G(1,1) sum (0.04108) (0.17232) (0.14080) 
0.99282 0.96575 0.96383 IG(1,1) root - G(1,1) root (0.03754) (0.07639) (0.06475) 
0.99009 0.86926 0.82094 IG(1,1) root - IG(1,1) sum (0.03088) (0.16171) (0.14736) 
0.80702 0.75232 0.71339 EWMA - F(1,d,0) sum (0.07076) (0.24984) (0.18260) 
0.78416 0.70459 0.67854 EWMA - F(1,d,0) root (0.07320) (0.27221) (0.18961) 
0.78502 0.76850 0.69965 EWMA - G(1,1) sum (0.08106) (0.25708) (0.20432) 
0.78661 0.72815 0.70113 EWMA - G(1,1) root (0.07786) (0.26673) (0.18627) 
0.77726 0.76613 0.67328 EWMA - IG(1,1) sum (0.09480) (0.26040) (0.20682) 
0.78820 0.72171 0.69089 EWMA - IG(1,1) root (0.07345) (0.26786) (0.18949) 

The table reports the Montecarlo average correlation among the sequencies of exceptions. 
Montecarlo standard errors are reported in parenthesis. The table is based on 1000 replications.



Table 5: Quantile comparison - 10-day VaR 
VaR 

Quantile 
Theoretic 

Exc. 
FIGARCH(1,d,0) 

sum 
FIGARCH(1,d,0) 

root 
GARCH(1,1) 

sum 
GARCH(1,1) 

root 
IGARCH(1,1) 

sum 
IGARCH(1,1) 

root EWMA 

0.700 75.000 70.315 73.717 66.549 71.188 64.321 70.608 69.321 
0.710 72.500 67.732 71.276 63.804 68.699 61.534 68.140 66.853 
0.720 70.000 65.066 68.758 61.153 66.212 58.882 65.598 64.362 
0.730 67.500 62.483 66.248 58.563 63.679 56.247 63.014 61.882 
0.740 65.000 60.013 63.807 56.005 61.138 53.687 60.491 59.393 
0.750 62.500 57.523 61.418 53.446 58.732 51.111 58.093 57.003 
0.760 60.000 55.049 58.962 51.013 56.294 48.583 55.677 54.555 
0.770 57.500 52.568 56.553 48.616 53.887 46.130 53.186 52.129 
0.780 55.000 50.084 54.161 46.081 51.500 43.641 50.790 49.830 
0.790 52.500 47.615 51.784 43.664 49.121 41.273 48.376 47.542 
0.800 50.000 45.226 49.398 41.244 46.746 38.886 46.129 45.293 
0.810 47.500 42.800 47.055 38.918 44.412 36.604 43.794 43.090 
0.820 45.000 40.393 44.627 36.665 42.153 34.436 41.508 40.875 
0.830 42.500 38.027 42.281 34.407 39.852 32.207 39.312 38.680 
0.840 40.000 35.751 39.947 32.280 37.526 30.076 37.016 36.471 
0.850 37.500 33.490 37.550 30.240 35.392 27.993 34.861 34.281 
0.860 35.000 31.238 35.329 28.102 33.217 25.950 32.658 32.143 
0.870 32.500 29.002 32.986 26.026 31.032 23.976 30.469 30.006 
0.880 30.000 26.890 30.763 24.068 28.888 22.048 28.297 28.001 
0.890 27.500 24.698 28.526 22.124 26.754 20.176 26.236 26.047 
0.900 25.000 22.586 26.241 20.194 24.579 18.348 24.061 24.065 
0.910 22.500 20.552 24.098 18.345 22.479 16.577 21.995 22.066 
0.920 20.000 18.486 21.868 16.497 20.443 14.851 19.984 20.128 
0.930 17.500 16.450 19.641 14.733 18.341 13.177 17.897 18.117 
0.940 15.000 14.458 17.376 12.938 16.309 11.505 15.916 16.113 
0.950 12.500 12.494 15.155 11.168 14.242 9.882 13.887 14.134 
0.960 10.000 10.555 13.000 9.372 12.166 8.285 11.911 12.183 
0.970 7.500 8.541 10.605 7.664 10.096 6.673 9.853 10.101 
0.980 5.000 6.471 8.256 5.824 7.884 5.028 7.657 7.860 
0.990 2.500 4.172 5.575 3.854 5.306 3.261 5.137 5.463 



Table 3: Average Exceptions, standard errors and average percentage of exceptions - 10-day VaR 

 VaR FIGARCH(1,d,0)
sum 

FIGARCH(1,d,0)
root 

GARCH(1,1) 
sum 

GARCH(1,1)
root 

IGARCH(1,1)
sum 

IGARCH(1,1)
root EWMA 

4.17200 5.57500 3.85400 5.30600 3.26100 5.13700 5.46300 Average exception 
number 

(Montecarlo s.e.) 4.18401 4.71281 4.35289 4.91330 3.90052 4.74539 5.26995 

Average exception 
percent 

1% 

1.66880 2.23000 1.54160 2.12240 1.30440 2.05480 2.18520 

12.49400 15.15500 11.16800 14.24200 9.88200 13.88700 14.13400 Average exception 
number 

(Montecarlo s.e.) 7.74467 8.13776 7.85171 8.27127 7.22885 8.02313 8.71826 

Average exception 
percent 

5% 

4.99760 6.06200 4.46720 5.69680 3.95280 5.55480 5.65360 

See table 2. 



Table 11: Test of Kupiec - frequency of accepting the null hypothesis - 10-day VaR 

Test VaR FIGARCH(1,d,0) 
sum 

FIGARCH(1,d,0)
root 

GARCH(1,1)
sum 

GARCH(1,1) 
root 

IGARCH(1,1)
sum 

IGARCH(1,1)
root EWMA 

1% 813 698 820 720 860 742 698 
5% 1% 509 493 476 485 479 502 446 
1% 737 740 686 726 679 742 703 
5% 

5% 
571 575 535 569 535 582 528 

See table 4. 



Table 13: Test of Independance - frequency of accepting the null hypothesis - 10-day VaR 

Test VaR FIGARCH(1,d,0) 
sum 

FIGARCH(1,d,0)
root 

GARCH(1,1)
sum 

GARCH(1,1) 
root 

IGARCH(1,1)
sum 

IGARCH(1,1)
root EWMA 

1% 299 238 367 252 407 260 271 
5% 1% 235 148 307 178 344 183 210 
1% 78 36 92 45 118 41 50 
5% 

5% 
36 10 57 20 67 15 26 

See table 6 



Table 15: Test of Conditional Coverage - frequency of accepting the null hypothesis - 10-day VaR 

Test VaR FIGARCH(1,d,0) 
sum 

FIGARCH(1,d,0)
root 

GARCH(1,1)
sum 

GARCH(1,1) 
root 

IGARCH(1,1)
sum 

IGARCH(1,1)
root EWMA 

1% 424 321 471 353 522 357 363 
5% 1% 297 235 367 251 407 260 269 
1% 18 11 7 7 7 4 8 
5% 

5% 
3 3 1 1 1 1 0 

See table 8. 
 




