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Abstract: In this paper I introduce a bivariate GARCH model with a struc-

ture that allows the estimation of a causality relation among variances and that

solves some drawback of the existing methods. In particular the causality co-

efficients of the suggested formulation can be negative leading to detection of

both the causality existence and direction. The stationarity restrictions are also

provided. The causality is implemented using a multiplicative time dependent

factor, while the conditional correlations are assumed to be constant. An appli-

cation is also considered: it analyses the causality between the Nikkey225 and

the SP100 stock market indexes.

Keywords: volatility, causality, multivariate GARCH

1 Introduction

In the last years there has been a growing interest in the study of the relation

between variances and among prices and volumes, both from a theoretical point

of view (as an example Blume, Easley and O’Hara, 1994) and from the empirical

approach (see among others Karpoff, 1987). Most of the current empirical

analysis considers different linear and non-linear specifications in order to verify

and test the causal relations between the mentioned variables. However, most

of them focus only the mean, restricting their attention on Granger’s causality

definition or to the study of a simultaneous relation.

In the last decades, with the emerging ARCH literature, different specifica-

tions of conditional heteroskedasticity have been taken into considerations and

all of them allow for a deeper analysis on the causality topic. These efforts allow

an adequate modelization of the relation between assets and market indices as

well as among returns and volumes. These extensions can be thought both on

one single asset case that in a much more general multivariate framework. The

interest on multivariate heteroskedastic models maybe coupled with the neces-

sity of an extension of the causality concept, which must considers the spillover
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effect among variances, and the in-mean GARCH effects. This will be the object

of the present work.

After a brief review of the definitions of causality in mean and in variance

(Engle and Granger (1986), then reviewed by Comte and Lieberman (2000)),

this paper analyses in detail the different approaches that have been used up to

this moment to identify the presence of causality among variances. There exist

two different families of models: the first tries to explain the causality among

variances through the correction of univariate models, it is worth mentioning

the approach of Cheung and Ng (1996) who modify the univariate models ob-

serving the cross-correlations among the residuals and squared residuals; the

second group of models is represented by the various multivariate GARCH for-

mulations. All the up-to-date works in this field share a common problem: they

can infer about the presence of causality but not on its direction, that is, given

two assets A and B, assuming that there exist a causal relation among their

variances, current model detect this relations but cannot tell us if an increase

in the variance of A will imply an increase or a decrease in the variance of B.

An interesting approach in this area is given by Hafner (2001), who provides a

measure for causality in a multivariate GARCH framework. However, its study

does not directly include the causal relation into a model. In this paper we will

try to solve this problem in a multivariate framework, considering an extension

of multivariate GARCH models that could be used to test both the existence of

causality among variances and its direction. The suggested formulation will be

then tested on an empirical basis, studying the relation between the Standard

& Poor’s 100 and the Nikkei 225 stock market indices.

The plan of the paper is as follow: in section 1 we review the current theoret-

ical framework on causality both for the mean and the variance while section 2

focuses on different alternative models to verify second order causality. Section

3 is devoted to the case study, section 4 will concludes.
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2 Causality in mean and in variance

We start introducing some notation and recalling well known concepts.

Define Xt as the n-dimensional set of variables of interest at time t, this

set can be partitioned into Xt = {X1,t , X2,t}, that have dimension n1 and n2,

respectively. Moreover, denote by I (Xt) = It (X) = I (X) the information set (a

sigma algebra generated by the variable of interest or in general a Hilbert space)

for the whole variables and with I (X1,t) = It (X1) = I (X1) the information set

given by the first partition (similarly for X2).

Proposition 1 Granger (1980): X2 does not cause X1 in Granger sense, if and

only if Et [X1,t|It−1 (X)] = Et [X1,t|It−1 (X1)].

This is denoted by X2
G9 X1

The violation of the previous condition is normally referred as causality in the

mean (usually defined also as Granger causality). However, a contemporaneous

bi-directional relation is not included in the Granger definition, in this case Sims

(1972) stated:

Proposition 2 Sims (1972): there is no bidirectional causality between X1 and

X2 if and only if Cov [X1,t −Et [X1,t|It−1 (X)] , X2,t −Et [X2,t|It−1 (X)]] = 0.
This is denoted by X2 = X1

However, an extension to these concepts is needed in dealing with time

varying conditional variances and causal relation among these quantities. This

topic has been analysed by Engle, Granger and Robins (1986) who provided the

following proposition:

Proposition 3 Engle, Granger and Robins (1986): X2 does not second order

cause X1 in Granger sense, if and only if Et

h
(X1,t − Et [X1,t|It−1 (X)])2 |It−1 (X)

i
=

Et

h
(X1,t −Et [X1,t|It−1 (X)])2 |It−1 (X1)

i
.

This is denoted by X2
G2

9 X1
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The definition of second order non-causality does not presume any causal

relation in the mean, however, this is not precisely a non-causality relation

among variances. Note that the rigth hand expected value is not a conditional

variance, the conditioning being different between the first and second order

moments. Starting from this observation Comte and Lieberman (2000) gave a

different definition:

Proposition 4 Comte and Lieberman (2000): X2 does not cause X1 in vari-

ance, if and only if

Vt [X1,t|It−1 (X)] = Vt [X1,t|It−1 (X1)].

This is denoted by X2
GV9 X1

Note that the difference between second order non-causality and variance

non-causality is only in the conditioning information sets. The two authors

gave also the following relation:

Remark 5 : X2
G9 X1 +X2

G2

9 X1 ⇐⇒ X2
GV9 X1

Proof. By substitution and with a direct application of the law of iterated

expectation.

This last remark allows to note that non-causality in the variance exist if and

only if there exist non-causality in the mean, moreover first and second order

non-causality may combine in all possible pairs. A sequential testing scheme

is therefore possible, check at first causality in the mean, then if there is no

relation, we can test for second order non causality. If and only if both tests

lead to a no-relation result we can conclude that there is non-causality among

variances.

Researchers are also interested in verifying the previous relations from an

empirical point of view. This is possible analysing the restrictions implied by

first and second order non-causality in a very general framework, using as a

reference model the VARMA-GARCH.
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The benchmark model can be represented as follow: given the variables of

interest Xt consider the following VARMA(p,q)-GARCH(p,q) model

Xt = A (L)Xt +B (L)Et Et˜iid (0,Ht) (1)

Ht = ω + C (L)Ht +D (L) [EtE
0
t]

where A (L) =
Pp

i=1AiL
i, B (L) =

Pq
i=1BiL

i, C (L) =
Pp

i=1CiL
i, D (L) =Pq

i=1DiL
i, and ω, Ai, Bi, Ci, Di, are all square matrices of dimension n, while

p, q, p and q are intereger numbers. Assume also that the model is stationary

and invertible. A similar approach was also used by Comte and Lieberman

(2000) and Boudjellaba, Dufour and Roy (1992 and 1994) in giving a set of

parametric restrictions and tests for causality, we recall in the following their

results. For the purpose of testing first order noncausality it is convenient to

transform the VARMA(p,q) into its VAR(∞) representation (given the invert-
ibility assumption)

[B (L)]
−1
[1−A (L)]Xt = W (L)Xt = Et (2)

where W (L) =
∞X
i=0

WiL
i

then X2
G9 X1 if and only if [Wi]12 = 0 for all lags i, that is the coefficients

that link the variables included in the two partitions on X, are identically equal

to zero (Boudjellaba et al. 1992). As noted by Comte and Lieberman (2000)

there will always be second order noncausality dropping the GARCH part of

the model and considering a simple VARMA process with constant variance-

covariance matrix. For the GARCH part, similarly to the VARMA case, in a

first step the model is converted into its ARCH(∞) representation:

Ht = [1− C (L)]
−1
ω − [1− C (L)]

−1
D (L) [EtE

0
t] = ω + U (L) [EtE

0
t] (3)

where U (L) =
∞X
i=0

UiL
i

A causality restriction similar to the one of VARMA models holds here: X2
G2

9

X1if and only if [Ui]12 = 0 for all lags i. In this framework noncausality of
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the first and of the second order can independently exist, however, variance

noncausality is associated with their contemporaneous existence. An example

of a VARMA(1,1)-GARCH(1,1) case is included in the paper of Comte and

Lieberman (2000). None of the previous cited papers deal with the case of a

VARMA-GARCH-M model, where an additional source of causality is added:

the one of conditional variances on the mean of the process. In this case how

are modified the conditions for first and second order noncausality? or more

precisely, are the implications of remark (5) still valid or do they need an update?

Consider the following extension of equation (1):

Xt = A (L)Xt +B (L)Et +GV ech (Ht) Et˜iid (0,Ht) (4)

Ht = ω + C (L)Ht +D (L) [EtE
0
t]

where the operator V ech stacks the lower triangular element of Ht, therefore

the vector V ech (Ht) is of dimension r = n(n + 1)/2 and G of dimension n ×
r. Consider, at first, second order noncausality: given the previous definition,

that does not presume any causal or noncausality relation on the mean, the

restrictions are the same as in the previous case, that is, rewriting the model

in its ARCH(∞) representation, again X2
G2

9 X1 if and only if [Ui]12 = 0. The

difference is in the first order noncausality: there is now dependence of returns

from variance-covariance matrix, in principle two cases are identified, depending

on the existence of second order noncausality.

Remark 6 In a stationary and invertible VARMA-GARCH-M model, with
¯̄̄
[G]i,j

¯̄̄
≥

0 i = 1, ...n1 j = 1, ...r, and at least one coefficient for which strict inequality

hold, if there is second order causality there is also first order causality.

Proof. Consider the condition for noncausality in the mean: Et [X1,t|It−1 (X)] =
Et [X1,t|It−1 (X1)], substituting X1,t with its expression from (4)

Et

h
[A (L)Xt +B (L)Et +GV ech (Ht)]1,1 |It−1 (X)

i
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the first two components maybe measurable with respect to the information set

restricted to the past of X1 but this is not true for H1 where, given the presence

of second order noncausality, H1 is measurable only on the whole information

set. This is true if at least one of the coefficients linking the variables in X1 with

the variance-covariance matrix is different from zero, in the opposite case we

could write a restricted VARMA model for X1 without the in-mean component,

returning to a situation similar to the VARMA-GARCH approach.

Assume now that there is second order noncausality, in this case:

Remark 7 Consider a stationary and invertible VARMA-GARCH-M model,

where, for the sake of exposition, the in-mean component is reparameterized as

follows

V ech (Ht)→ V ech
³
[Ht]

T2
´

and [·]T2 represent a transpose with respect to the secondary diagonal of a matrix.
In this model, X2

G9 X1 if the following conditions are satisfied: i) [Wi]12 = 0

for all lags i; ii) [Zl]i,j = 0, i = 1, ...n1, j = 1, ...(r − n1(n1 + 1)/2), for all

lags l. Where W (L) is defined as in (2) and Z (L) is defined as [B (L)]−1G =P∞
i=0 ZiL

i = Z (L), is a sequence of matrices of dimension n× r

Proof. Again referring to the measurability with respect to the information

sets, violating one of the previous condition will imply non-measurability with

respect to the restricted information set of X1, i) concern with dependance from

the variables included in X2 while ii) is devoted to the dependance of X1 only

from its own variance covariance matrix. The reordering allow us to concentrate

the element of the variance covariance matrix of X1 at the end of the vector of

in-mean effects.

We can now summarize our findings extending remark (5) in the following

way:

Remark 8 In a stationary and invertible VARMA-GARCH-M the following

relations hold
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i) X2
G9 X1 +X2

G2

9 X1 ⇐⇒ X2
GV9 X1

ii) X2
G2→ X1 =⇒ X2

G→ X1 if
¯̄̄
[G]i,j

¯̄̄
≥ 0 i = 1, ...n1 j = 1, ...r with¯̄̄

[G]i,j

¯̄̄
> 0 for at least one (i, j)

iii) X2
G→ X1 < X2

G2→ X1

iv) X2
G2

9 X1 ; X2
G9 X1

This remark provides a general set of resctictions and relations for the exis-

tence of mean and variance causality in a general VARMA-GARCH-M model.

3 Multivariate analysis and causality

Different works introduced methods for the detection of second order causal-

ity without including it directly into a multivariate model; among the oth-

ers we mention the approach of Cheung and Ng (1996), which considers the

cross-correlation among univariate model residuals and the measures of vari-

ance causality of Hafner (2001). A second part of the literature focused on the

GARCH-type models, a direct and intuitive structure within testing variance

causality restrictions. In the previous section no assumption was posed on the

GARCH structure, even if in the literature there are different parameterisa-

tions, which includes the BEKK and Vech of Engle and Kroner (1995), and the

Conditional Correlation of Bollerslev (1990) two of the most used and known.

3.1 Traditional models: BEKK, Vech and their drawbacks

Most empirical works dealing with second order causality considered multivari-

ate GARCH in the BEKK and Vech representations. Engle and Kroner (1995)

showed that the two formulations can be derived one from the other with an

adequate reparameterization. For the moment we assume that the specification

chosen is the BEKK, represented as:

Ht = ω +

pX
i=1

CiHt−iC 0i +
qX

j=1

DjEt−jE0t−jD
0
j
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where Ci and Dj are n×n matrices and ω is a symmetric positive definite n×x

matrix. The existence of any causal relation among the variances and covari-

ances included in Ht imply that (at least some of) the off-diagonal coefficients

of Ci and Dj are different from zero. If all the parameter matrices are diago-

nal the model collapses into a particular case in which all conditional variances

and covariances follow a GARCH(p,q) process. The most important feature of

the BEKK model is that it can explain causality relation among both variances

and covariances. Moreover, various nonlinear relations can be imposed with a

limited number of parameters which are also free of any constraints since are

implemented in a quadratic form. However, the number of parameters greatly

increases with the number of variables, creating a series of problems on conver-

gence of the estimation algorithm, reliability of the estimates and last but not

least CPU time.

Within this framework the causality relation among variances can be tested

with a set of zero restrictions on parameters. In this case, an additional remark

is also needed: the model postulate that causality among variances (excluding

covariances for the moment) act only in one direction, that is the positive one.

Consider as an example a shock to a bivariate system (xt,yt), that will affect only

the second variable yt, causing an increase in its variance σ2y,t. As a consequence,

it will necessarily cause an increase in the variance of the first variable σ2x,t. The

possibility that the first variance σ2x,t decreases is in principle not contemplated.

This particular situation might be very difficult to realize in financial markets,

but we cannot a priori exclude it.

The quadratic parameter structure implies also another problem: only com-

binations of parameters are responsible for the non-linear relations between

variables, we cannot therefore directly interpret the estimates of a BEKK for-

mulation. In addition, significativity tests run on the BEKK parameter are no

more valid in testing the significance in the single equation GARCH.
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The Vech formulation can be represented as

V ech (Ht) = ω +

pX
i=1

CiV ech (Ht−1) +
qX

j=1

DjV ech
¡
Et−1E0t−1

¢
(5)

where the V ech (M) operators stacks the columns of the lower triangular matrix

M and all parameter matrices are of dimension n(n+1)/2. This representation

allows, as the BEKK, a shock transmission among variances and covariances,

but the parameters increase with respect to the BEKK formulation. Moreover,

we face an additional problem, parameters must be bounded in such a way

that they are all positive and guarantee the positive definiteness of the variance

covariance matrix.

3.2 The CCC and DCC GARCH

Another commonly used multivariate GARCH model is the Constant Condi-

tional Correlation (CCC). This parameterization can be represented as:

Ht = QtRQ
0
t

R =


1 · · · ρi1 · · · ρn1
...

. . .
...

...
ρi1 · · · 1 · · · ρin
...

...
. . .

...
ρn1 · · · ρin · · · 1


Q = [σ1,t σ2,t...σn,t]

0

σ2j,t˜GARCH(p, q)

The CCC-GARCH can be easily generalised to allow for variance causality. We

can therefore model the pure variance process in the following way σ21,t
...

σ2n,t

 =

 ω1
...
ωn

+
 α1,1 · · · α1,n

...
. . .

...
αn,1 · · · αn,n


 ε21,t−1

...
ε2n,t−1

 (6)

+

 β1,1 · · · β1,n
...

. . .
...

βn,1 · · · βn,n


 σ21,t−1

...
σ2n,t−1

 (7)
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where parameters will have to be bounded above zero to ensure positivity of

variances. Stationarity of the process is then affected by this structure, and

we need to impose additional restrictions. The model con be reformulated in a

companion VARMA representation: define νi,t = ε2i,t−1− σ2i,t for i = 1, 2...n we

can write  ε21,t
...

ε2n,t

 =
 ω1

...
ωn

+

 α1,1 · · · α1,n

...
. . .

...
αn,1 · · · αn,n

 (8)

+

 β1,1 · · · β1,n
...

. . .
...

βn,1 · · · βn,n



 ε21,t−1

...
ε2n,t−1

+

−

 β1,1 · · · β1,n
...

. . .
...

βn,1 · · · βn,n


 ν1,t−1

...
νn,t−1

+
 ν1,t

...
νn,t


and recalling that νi,t is a martingale difference sequence we can state that the

stationarity conditions for (6) are exactly the same of a VARMA(1,1) model,

we need that all the eigenvalues of the matrices be outside the unit circle.

The CCC model, as the BEKK or the Vech, detects only positive causality

and implies an elevate number of parameters.

A recent extension of the CCC model is due to Engle and Sheppard (2001):

they suggest to introduce a limited dynamic structure in the correlations (then

the name Dynamic Conditional Correlations or DCC). This approach faces the

same problems as the previous one and, in addition, the assumption of a common

dynamic on all correlations seems questionable. It clearly provides an interesting

framework adding a limited number of parameters but, if we model, for example,

the variances of a group of stocks and a group of exchange rate products, we

can presume a different dynamics among the correlations of these two groups of

intruments.
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3.3 A new approach: the EC-GARCH

A common drawback of traditional GARCH models applied to second order

causality testing is the elevate number of parameters, which is also normally

coupled with the necessity of constraints ensuring positivity of conditional vari-

ances. These points lead to complex numerical evaluations in the estimation

of parameters that transfer in increasing and often unrealistic CPU time. This

influence the researchers in the choice of simple models that do not consider

causality among variances, think of the traditional CCC-GARCH models ap-

plied in finance, an area where timeliness is fundamental. In this paper we

suggest an alternative methodology that can be used in testing for the presence

of second order causality. We try to solve the problem imposed by the constraint

on parameters via a multiplicative effect between variances. This extension has

been suggested by a group of papers dealing with switching GARCH and thresh-

old models; among these it is worth mentioning Hamilton (1994) and McAleer

(2001). The model is mainly derived from the ideas of the first author that pro-

posed a switching structure for ARCH models in a simple way, pre-multiplying

the ARCH equation by a state dependant factor. In its framework the state

variable was unobserved and driven by a Markov chain.

Differently, our approach focuses on an observable factor influencing the

causality relation: assume that there exist a causal relation among variances

and that the correlations are modelled with a CCC structure. The suggested

bivariate GARCH can be represented as:·
X1,t

X2,t

¸
=

·
µ1,t

¡
It−1

¢
µ2,t

¡
It−1

¢ ¸+ · ε1,t
ε2,t

¸
(9)·

ε1,t
ε2,t

¸
˜iid

µ·
0
0

¸
,

·
σ21,t ρσ1,tσ2,t

ρσ1,tσ2,t σ22,t

¸¶
where the mean dynamic is not specified and time dependence is based on the

information set up to time t− 1, ¡It−1¢, therefore we do not rule out GARCH-
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in-mean effects. The variances are represented as

σ21,t = exp
£
f1
¡
It−1

¢¤ω1 + pX
j=1

β1,jσ
2
1,t−j +

qX
j=1

α1,jε
2
1,t−j

 (10)

σ22,t = exp
£
f2
¡
It−1

¢¤ω2 + pX
j=1

β2,jσ
2
2,t−j +

qX
j=1

α2,jε
2
2,t−j

 (11)

where a modified standard GARCH structure is included (in brackets) but there

are no constraints to consider any possible GARCH formulation such as FI-

GARCH, the leverage GARCH of Glosten, Jagannathan and Runkle (1993) or

the asymmetric power ARCH of Ding, Granger and Engle (1993) as well as

the structure of the two variances is not constrained to be identical. The causal

relation is modeled by the functions f1
¡
It−1

¢
and f2

¡
It−1

¢
which depend on

the information sets up to time t− 1. We suggest the following specification

fi
¡
It−1

¢
= γiz

2
j,t−1 i, j = 1, 2 i 6= j (12)

Where the squared standardised residuals are used as an indicator of causality

between the two variables. In fact, the squared residuals can be thought as the

”true” variance shocks or innovations. In this setup the multiplicative effect,

driven by the parameters γi, allow for positive and negative causality, in the

sense that an increase in the variance of the second series imply an increase in

the variance of the first series only if the function fi (·) is greater than 1 (the
parameter greater than zero), otherwise the variance decreases. Non causality

is then associated with a zero parameter. Moreover, parameters need not to

be constrained given the exponential formulation. Therefore, a significativity

test on the parameters γi will indicate the existence or not of a causal relation

between the variances of the two series, while its sign can be interpreted as the

causality direction. The model is labelled Exponential Causality GARCH (EC-

GARCH) by the structure of the causal relation among variances. Moreover,

the stationarity of the model can also be verified. The following theorem holds:
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Theorem 9 The model represented by equations (9)-(12) is stationary if ω > 0,

αi,j , βi,l > 0 j = 1...p, l = 1...q

γi < 1/2 and (1− 2γi)1/2 −
pX

j=1

αi,j −
qX
l=1

βi,l > 0 i = 1, 2 (13)

under the assumption of conditional normality of the standardised residuals

zi,t−1, i = 1, 2

Proof. The stationarity of this model will be proofed serching the con-

straints which bound the unconditional variance. The fundamental point is the

computation of the unconditional variance itself

E
¡
σ21,t

¢
= E

£
exp

¡
γ1z

2
2,t−1

¢ ¡
ω1 + β1σ

2
1,t−1 + α1ε

2
1,t−1

¢¤
(14a)

where a simple GARCH(1,1) has been considered but in general any GARCH

structure can be, in principle, employed. A similar equation, not necessarily with

the same GARCH structure, can be written for the second variable of interest.

The analysis is now concentrated only on one variable. First of all, it is worth

recalling that z22,t−1 is independent both from σ21,t−1 and ε21,t−1 (and any other

past values of these two quantities) since σ21,t−1 depends on the information set

up to time t− 2 while ε21,t−1 depends on z21,t−1 and on the past values of z22 up

to time t− 2. Given these relations the following equality can be obtained

E
¡
σ21,t

¢
= E

£
exp

¡
γ1z

2
2,t−1

¢¤
E
£
ω1 + β1σ

2
1,t−1 + α1ε

2
1,t−1

¤
(15)

and recognizing in the first expected value the moment generating function

of the variable z22,t−1 we are almost done. One additional assumption is only

needed, it concerns the distribution of z22,t−1, for the simplicity of the exposition

a normal standardized residual distribution is considered. Therefore, recalling

that the squared standardized residuals are distributed as a χ2 with one degree

of freedom, and that the moment generating function of the χ2 (k) distribution

is

mgf (t) =

·
1

1− 2t
¸k/2

t < 1/2
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the equation (15) can be rewritten as

E
¡
σ21,t

¢
=

"
1

(1− 2γ1)1/2
# ¡

ω1 + β1E
£
σ21,t−1

¤
+ α1E

£
σ21,t−1

¤¢
γ1 < 1/2

(16)

Where the independence between σ21,t−1 and z
2
1,t−1, was also considered. There-

fore

E
¡
σ21,t

¢
=

ω1

(1− 2γ1)1/2
+

α1 + β1

(1− 2γ1)1/2
E
£
σ21,t−1

¤
(17)

E
¡
σ21,t

¢
=

ω1

(1− 2γ1)1/2 − α1 − β1

and the stationarity conditions are These are similar to the one of the GARCH(1,1),

however, much more narrower, at least when γ1 is positive and close to its limit.

The derivation of the stationarity restrictions for a GARCH(p,q) is straightfor-

ward, leading to the following inequality

γ1 < 1/2 and (1− 2γ1)1/2 −
pX

j=1

αj −
qX

i=1

βi > 0

Remark 10 When γ1 = 0 the model collapse on a GARCH(1,1) with its well

know stationarity restriction.

Remark 11 The stationarity can be easily verified also for the IGARCH(1,1)

case, and results to be γ1 < 0, therefore the interpretation of the sign of the

coefficient is no more possible. Therefore, the IGARCH(1,1) parameterization

should be avoided in this framework since it allows only a detection of the causal-

ity existence.

One may object that the squared residuals ε2i,t−1 or the conditional variances

σ2i,t should be used instead of the squared standardised residuals. We discarded

the first solution because a problem of stationarity arises: while the conditional

variances are bounded the same in not true for unconditional variances who can

easily diverge to infinity. We consider then the contemporaneous conditional
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variance since it is measurable with respect to the information set up to time

t − 1, while the lagged conditional variances are measurable up to time t −
2. In addition, the contemporaneous and direct causality among conditional

variances create a different problem: the system cannot be transformed in a

simple reduced form causing a drawback in the implementation of the model: a

numerical evaluation algorithm is needed to calculate each of the two conditional

variances for any time value t. A simple solution could have been the use of

lagged conditional variances, however, we stress that, in this last hypothesis,

the conditioning will not be on the information set up to t−1 while up to t− 2,
and therefore it has not been pursued.

A final note: while the mean residuals of equation (9) have the conditional

variance-covariance matrix represented in brackets, the equations (10) and (11)

do not represent conditional variances of the mean residuals, given the depen-

dance of each equation from an additional source of noise.

The model can be simply extended to a dimension higher than 2, allowing

a CCC structure across all covariances and extending (12) to

fi
¡
It−1

¢
=

nX
j=1
j 6=i

γi,jz
2
j,t−1 (18)

We must note that the causality test is now on an elevate number of parameters.

Therefore, this structure should be implemented on small systems, such as the

volume-volatility study considered in the following application, or to the causal

relation existent across financial markets such as Europe, New York and Tokyo,

in the setup suggested by Pojarlev and Polasek (2000). Additional possible

bivariate (and then multivariate) extensions can be obtaining modifying the

17



causality function as follows

f1
¡
It−1

¢
= γ1z2,t−1

f1
¡
It−1

¢
= γ1,1z2,t−1 + γ1,2

¡¯̄
z2,t−1

¯̄−E
¯̄
z2,t−1

¯̄¢
f1
¡
It−1

¢
= γ1,1z2,t−1 + γ1,2Iz2,t−1<0z2,t−1

...

where only some of the possible formulae are reported, mirroring the EGARCH

and the GJR-GARCH. However, the stationarity conditions should be recalcu-

lated for all these specifications, and it is not sure that a close formula exist.

A deeper analysis of stationarity of the model under different specifications of

the causality function and with different assumptions on the distribution of

standardized residuals will be the object of future researches.

Finally, another extension regards possible alternative functions fi (·), we re-
stricted the attention to the exponential specification, however, a logistic func-

tion can be easily introduced. In that case, the stationarity conditions should

be evaluated numerically.

4 Variance causality between SP100 andNikkey225

This section focus on an application of the EC-GARCH model to the Standard

& Poor’s and the Nikkey indices. These two variables have been chosen because

they do not averlap and we can in principle expect a causality relation from

Standard & Poor’s to the Nikkey, at least in the mean. Our purpose is to verify

and measure the causality relation among the conditional variances of these two

stock market indices.

The period covered starts in 1988 up to mid-february of 2003, data have been

obtained from Datastream and are collected at a daily frequency. The original

data are at first filtered from holydays and closed market days. Since these

events are not common in the two markets we simply deleted the corresponding
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days in both series as normal practice in the contagion analysis. The obtained

series are graphed in the following figures, both for their level and logarithmic

differences.

Figure 1: Nikkey225 Figure 2: SP100
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Figure 3: Nikkey225 log-returns Figure 4: SP100 log-returns

-0.10

-0.05

0.00

0.05

0.10

0.15

-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

The log-returns of both inidices evidence the well known volatility clustering

effect. Beside the purpose of testing the causality relation among variances we

are also interested in comparing our model with an alternative specification,

the Constant Conditional Correlation GARCH, where the univariate models
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include both long and short memory parameterizations. In order to cover this

additional point the analysis has been structured as follow: at first we filter out

the mean effect with a VAR(1) model; then we turn to the estimation of the

volatility structure. We chose to work on a two stage model in order to reduce

the parameter vector dimension and the time requested by the estimation of the

various models. The estimation result of the VAR(1) model is reported in the

following table:

Table 1: VAR(1) estimation output
 NIK_DL SP_DL 

NIK_DL(-1) -0.018499 -0.018187 
  (0.01599)  (0.01105) 
 (-1.15726) (-1.64601) 
   

SP_DL(-1)  0.328790 -0.011267 
  (0.02370)  (0.01638) 
  (13.8704) (-0.68763) 
   

C -0.000370  0.000328 
  (0.00026)  (0.00018) 
 (-1.42517)  (1.82729) 

 R-squared  0.048776  0.000908 
 Adj. R-squared  0.048269  0.000375 

 

The table reports the estimation of a VAR(1) model with the log-returns of the

Nikkey225 and the SP100 indices, together with a constant. Parameter estiamtion,

standard errors and t-statistics are reported. Moreover, the R2 and adjusted R2 are

included.

As it could be expected, the lagged Standard & Poor’s index has a relevant

impact on the Nikkey, while the other coefficients result to be non-significant.

Moreover, the following graphs report the autocorrelation funtions of both

VAR(1) residuals series (for log-returns, lower line, and absolute log-returns,

upper line) and evidence that a long term correlation exist in both series. This

behavior is particularly evident in the Standard & Poor index where the auto-
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correlation oscillate around a value of 0.1, far above the significativity confidence

bounds. One may object that such a behavior may be caused by the deletion

of holidays and closed market day, however we replicate that the correlation in

the original series is closer to the one here reported. This lon-memory behavior

will be modelled, where possible, by Fractionally Integrated GARCH models.

Figure 5: ACF Nikkey225 residuals Figure 6: ACF SP100 residuals
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For the variance part of our model we considered the following alternative

specifications: a conditional constant correlation model where the univariate

GARCH can be specified as GARCH(1,1), IGARCH(1,1), FIGARCH(1,d,0) and

FIGARCH(1,d,1);the EC-GARCH(1,1). Other alternative specifications have

been in principle considered, the BEKK-GARCH and the Vech-GARCH. How-

ever, the software packages we used for the estimation provided unsatisfactory

results due to problems of convergence, constraint definitions and unexpected

errors. We report in the following the variance-covariance structure of the two

fitted models:
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Constant Conditional Correlation - CCC-GARCH

Ht =

·
σ2NK,t σNK−SP,t
σNK−SP,t σ2SP,t

¸
=

·
σ2NK,t ρσNK,tσSP,t
ρσNK,tσSP,t σ2SP,t

¸

σ2j,t =


ωj + αjε

2
j,t−1 + βjσ

2
j,t−1 GARCH(1, 1)

ωj +
¡
1− βj

¢
ε2j,t−1 + βjσ

2
j,t−1 IGARCH(1, 1)

ωj + βjσ
2
j,t−1 +

h
1− βjL− (1− L)

dj
i
ε2j,t FIGARCH(1, d, 0)

ωj + βjσ
2
j,t−1 +

h
1− βjL−

¡
1− ψjL

¢
(1− L)

dj
i
ε2j,t FIGARCH(1, d, 1)

j = SP,NK

Exponential Causality - EC-GARCH

Ht =

·
σ2NK,t ρσNK,tσSP,t
ρσNK,tσSP,t σ2SP,t

¸
σ2j,t = exp

¡
γjz

2
i,t−1

¢ ¡
ωj + βjσ

2
j,t−1 + αjε

2
j,t−1

¢
j = SP,NK i = SP,NK i 6= j

The results of model estimation are reported in table 2, where we included

also the value of the log-likelihood, a set of information criteria and the Box-

Pierce statistics for residual correlation. We compare the EC-GARCH with

constant correlation models. As we previously specified, we consider a set of

possible alternative specifications for the univariate volatilitied in the CCC mod-

els. All possible combinations have been estimated and compared on the basis

of information criteria. The preferred CCC model turned out to be the CCC-

FIGARCH with a long-memory model on both series. The CCC-GARCH is

included since it represents the EC-GARCH with a zero restriction on causality

parameters.

Comparing the information criteria of all the included models we note that

all similarly explain the long term correlation, the worst result is provided by the

CCC-GARCH, an expected results. What is interesting is the estimation of EC-

GARCH where the causality parameter measuring the Standard & Poor’s inno-
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vation effect on Nikkey index volatility is significant. Moreover, there is not ev-

idence of the reverse cusal relation, from Nikkey to the Standard & Poor’s. The

EC-GARCH model provide in any case an improvement on the CCC-GARCH

without any specific long-memory modelisation. Moreover, the conditional vari-

ances produced by both models (EC-GARCH and CCC-FIGARCH) are really

close. The final conditional variances are reported in Figures 7 and 8.

Table 2: multivariate GARCH estimation

NK-log-res SP-log-res NK-log-res SP-log-res NK-log-res SP-log-res
0.000318 0.000205 0.000350 0.000219 0.000356 0.000218
0.000086 0.000085 0.000227 0.000099 0.000301 0.000119
0.000005 0.000001 0.000006 0.000003 0.000005 0.000001
0.000001 0.000000 0.000003 0.000003 0.000002 0.000000

0.662207 0.478713
0.129988 0.176724

0.107002 0.056281 0.110707 0.056967
0.006633 0.004829 0.015104 0.013410
0.869680 0.933569 0.687489 0.586735 0.873308 0.936911
0.006048 0.004836 0.126131 0.236068 0.016974 0.014650

0.130172 0.176683
0.056146 0.097912

0.007365 0.003408
0.003089 0.002864

LogL
Akaike

Hannan-Quinn
Schwarz
Shibata

Q(5) 2.817 7.061 3.093 8.555 2.802 7.201
Q(10) 17.161 11.939 17.435 13.991 17.580 12.101
Q(20) 23.396 26.674 23.571 29.780 23.755 26.954
Q(50) 58.678 50.651 59.822 56.057 58.727 51.103
Q(100) 109.432 104.583 109.669 107.341 109.051 104.651
Q²(5) 3.462 2.225 2.551 4.698 3.642 2.215
Q²(10) 7.250 2.438 7.615 5.369 7.268 2.443
Q²(20) 13.527 8.090 13.787 11.499 13.860 8.163
Q²(50) 46.417 37.566 46.930 43.702 47.809 37.294
Q²(100) 100.984 75.124 99.247 82.816 102.979 74.907

6.374
6.380
6.369
6.3746.378

EC-GARCH CCC-FIGARCH

6.378
6.385
6.374

0.080937
0.019995

-11955.731-11963.924

µ

ω

α

β

d

φ

0.080412
0.019190

γ

ρ
0.079757
0.009044

6.378
6.374

-11965.359
6.378
6.383

CCC-GARCH
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Quasi Maximum Likelihood estimation of the EC-GARCH and of the bench-

mark models CCC-FIGARCH and CCC-GARCH. The Table reports the esti-

mated parameters with the corresponding standard errors. The last lines con-

tain in the order: the value of the Log-Likelihood, the information criteria of

Akaike, Hannan-Quinn, Schwarz and Shibata, the Lijung-Box Q test performed

on standardised and squared standardised residuals. The degrees of freedom of

this last test are reported in parenthesis and are equal to the maximum corre-

lation used in the test. It is well known that the test asymptotic distribution is

χ2 a whose critical 5% values are: χ2 (5) = 11.1, χ2 (10) = 18.3, χ2 (20) = 31.4,

χ2 (50) = 67.5, χ2 (100) = 124, while at 1%: χ2 (5) = 15.1, χ2 (10) = 23.2,

χ2 (20) = 37.6, χ2 (50) = 76.2, χ2 (100) = 136.

Figure 7: Nikkey225 estimated variances Figure 8: SP100 estimated

variances variances

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

5 Conclusions

In this paper we introduce a new kind of bivariate GARCH model which can be

used for the detection of a causality relation among conditional variances. The

causality is added to the model via an exponential factor which multiplies the

traditional GARCH equation. By this approach both causality existence and

direction can be detected. This models solves some cdrawback of currently used
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specifications including the non-interpretability of parameters or the necessity

of imposing positivity restrictions on the causality relation. The specification

we propose allow for extensions both on the structure of the causal relation and

in the system dimension. The model is also applied on an empirical excercise

analysing the relation between the Standard & Poor 100 and the Nikkey225.

The estimations performed evidence the existence of a causal relation among the

variances and that this relation explain very well a clear long memory pattern

evidenced by the series. The possible extension of the model and its relation with

the long memory behavior represent an interesting area for future researches.
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