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Abstract: this work reviews the current literature on the stationarity and

on the memory properties of FIGARCH processes showing that a theorem of

Zaffaroni (2000) can be applied to prove strict stationarity. Moreover it verifies

that consistency of quasi-maximum likelihood estimators cannot be obtained by

the Lee and Hansen (1994) approach as claimed by Baillie et al. (1996).

Keywords: FIGARCH, long memory, stationarity, parameter estimation.

This work analyses the basic issues of stationarity and estimator consistency

for the long memory GARCH models. After the introduction of the FIGARCH

models, in section 1, section 2 recalls the current definitions of memory and

stationarity of FIGARCH models, showing that a recent theorem of Zaffaroni

(2000) can be used in proving stationarity. In section 3 the focus is on the

estimation problem and shows that the consistency result expected by Baillie,

Bollerslev and Mikkelsen (1996) cannot be obtained following Lee and Hansen

(1994). A Montecarlo approach is therefore suggested to verify the asymptotic

properties of the Quasi-Maximum Likelihood estimator. This last section is con-

cluded with a note on a problem found in the estimation procedure, due to the

parameter constraints and that can be solved with an appropriate optimisation

algorithm.

1 Long memory GARCH models

Assume, unless differently specified, that the following representation holds for

the mean process: yt = µt + εt, where, for simplicity, µt is set equal to zero,

It−1 represents the information set up to time t − 1 and εt|It−1 ∼ iid
¡
0, σ2t

¢
,

that is the residuals, conditionally to the information set up to time t− 1, are
identically distributed with zero mean and time-dependent variances.

Following Engle (1982) and Bollerslev (1986) a GARCH(p,q) model for the

variance is specified as: εt = ztσt, with E
£
zt|It−1

¤
= 0, V ar

£
zt|It−1

¤
= 1 and
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σt is defined by

σ2t = ω + α (L) ε2t + β (L)σ2t (1)

where L is the lag operator, α (L) =
Pq

i=1 αiL
i, β (L) =

Pp
j=1 βjL

j . The

stationarity of this process is achieved when the following restriction is satisfied:

α (1) + β (1) < 1. Defining υt = ε2t − σ2t this process may be conveniently

rewritten as an ARMA(m,p) process

[1− α (L)− β (L)] ε2t = ω + [1− β (L)] υt (2)

with m = max {p, q}. Starting from this formulation and allowing for the pres-

ence of a unit root in [1− α (L)− β (L)], Engle and Bollerslev (1986) defined

the IGARCH(p,q) process:

(1− L)φ (L) ε2t = ω + [1− β (L)] υt (3)

where φ (L) =
Pm−1

i=1 φiL
i and it is of order m − 1. For a comprehensive sur-

vey on GARCH processes, refer to Bollerslev, Engle and Nelson (1994). Even

if flexible, and with numerous extensions to include particular characteristics

found in the markets, such as asymmetric behavior, switching regime and news

impact, the GARCH model is not able to adequately explain the various find-

ing of persistence (or long memory) in the volatility of financial instrument

returns. Using a parallel with ARMA and ARFIMA processes Baillie et al.

(1996) extended the IGARCH process allowing the integration coefficient (here

previously restricted to the usual dichotomy {0, 1}) to vary in the range [0, 1].
The FIGARCH(p,d,m) process is then defined as follow:

(1− L)d φ (L) ε2t = ω + [1− β (L)]υt (4)

where φ (L) =
Pm−1

i=1 φiL
i is of order m− 1. Baillie et al. (1996) claimed that,

extending the arguments of Nelson (1990), the FIGARCH(p,d,m) process, even

if not weakly stationary was ergodic and strictly stationary. Unfortunately, this

is not so easy to verify, this problem will be analysed in a following section. The
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major feature of the FIGARCH model is connected with the impulse response

analysis, which have in this case an hyperbolic decay, typical of long memory

models. This mean that the impact of the innovations lies between the expo-

nential decaying, typical of any GARCH, and the infinite persistence, typical

of any IGARCH. Davidson (2001) gave some insight on the memory properties

of the FIGARCH, pointing out that the degree of persistence of the FIGARCH

model operates in the opposite direction of the ARFIMA one: as the d pa-

rameter gets closer to zero, the memory of the process increases. This is due

to the inverse relation between the integration coefficient and the conditional

variance: the memory parameter acts directly on the squared errors, not on

the σ2t , this particular behavior may also influence the stationarity properties

of the process, again Davidson (2001). These observations are strictly related

to the impulse response analysis on the effects of a shock on a system driven by

a FIGARCH process. In such a system, a shock in time t (υt), should be inter-

preted as the difference between the squared mean-residuals in time t (ε2t ) and

the one-step-ahead forecast of the variance of time t (σ2t ), made in time t − 1,
υt = ε2t −σ2t . This shock is exactly the innovation in the ARMA representation

of the FIGARCH process

ε2t = ω + [1− β (L)]
h
(1− L)

d
φ (L)

i−1
υt (5)

The shock may be also interpreted as an unexpected volatility variation, or,

as the forecast error of the variance (remember that the squared residuals are

a proxy for the variance and that the time t variance depends on time t − 1
information set and may be viewed as a one-step-ahead forecast). Rearranging

the FIGARCH equation as in Baillie et al. (1996), expanding then the polyno-

mial in the lag operator, it is easy to see that the coefficients of this polynomial

converge to zero at a rate O
¡
j−d−1

¢
: this mean that the memory of the process

increases ad d gets closer to 1 (Baillie et al. (1996) obtained the opposite sign

claiming the same memory property valid for the ARFIMA).
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Analyzing in detail ARFIMA and FIGARCH processes Chung (2001) noted

that the claimed parallel between the two was not complete: in the ARFIMA

case the long memory operator is applied to the constant but this is not true

in the FIGARCH model, moreover in ARFIMA processes d ∈ ¡−12 , 12¢, while in
FIGARCH d ∈ [0, 1]. In his work Chung suggested an alternative parameteriza-
tion: starting from (2) we can rewrite the GARCH(p,q) using the value of the

unconditional variance σ2 = ω/ (1− α (1)− β (1)) as:

[1− α (L)− β (L)]
¡
ε2t − σ2

¢
= [1− β (L)] υt

and from this equation the alternative formulation is straightforward:

(1− L)d φ (L)
¡
ε2t − σ2

¢
= [1− β (L)] υt (6)

In this formulation, however, the interpretation of the parameter σ2 is not

clear: does it represent the unconditional variance as claimed by Chung, or is it

simply a constant for the squared observations? This work will not pursues this

point, the motivation will become clear in the next section. In the remainder

(4) will be referred as FIGARCH I or simply FIGARCH and (6) as FIGARCH

II. Exploiting the relation υt = ε2t − σ2t the two processes can be conveniently

rewritten, respectively as:

σ2t = ω/ [1− β (1)] +
n
1− [1− β (L)]−1 (1− L)d φ (L)

o
ε2t (7)

σ2t = σ2 +
n
1− [1− β (L)]

−1
(1− L)

d
φ (L)

o¡
ε2t − σ2

¢
(8)

sometimes these equations are referred to as the ARCH(∞) representation. In
both FIGARCH I and II, parameters have to fulfill some restrictions to ensure

positivity of conditional variances. Two different sets of sufficient conditions,

valid for the FIGARCH(1,d,1), are available, the first was suggested by Baillie

et al. (1996), the second by Chung (2001). As noted by by the last author, both

sets are admissible for FIGARCH I and II, however they are not equivalent and
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there may exist a set of parameters value that satisfy one set of conditions and

not the other. Baillie et al. (1996) derived a group of two sets of inequalities

β − d ≤ φ ≤ 2− d

3
(9)

d

µ
φ− 1− d

2

¶
≤ β (d− β + φ)

while Chung (2001) express the restriction with a unique set

0 ≤ φ ≤ β ≤ d ≤ 1 (10)

Restrictions for lower order models can be derived directly from the previously

presented while for higher order models parameters restrictions cannot be so

easily represented and are not included in this work.

2 Stationarity of FIGARCH I and II

Baillie et al. (1996) were quoting Nelson (1990) for proving the stationarity of

the FIGARCH model they proposed, but only limited to the case where p = 1

and m = 0. They claimed that stationarity could be verified with a dominance

type argument between the sequence of coefficients of the ARCH(∞) represen-
tations of the FIGARCH(1,d,0) and of an appropriately chosen IGARCH(1,1).

However it has been noted, independently from Mikosch and Starica (2001),

that this ”proof” is questionable: how can we bound an hyperbolically decay-

ing sequence of coefficients with an exponential one? This way seems therefore

inapplicable. Some insight on the stationarity of this model is due to Davidson

(2001) who pointed out that some of the particular relations that hold for FI-

GARCH may be due to the inverse memory relation. Again referring to Mikosch

and Starica (2001) an ambiguous point in the Baillie et al. (1996) work should

be stressed: they were defining the FIGARCH model using the ARMA for-

mulation of a general GARCH and then imposing a long memory integration

operator (1− L)
d. However, this methodology is not completely correct since in

this derivation the innovation process υt depends on the process we are trying
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to define, therefore we are building a noise sequence that depends on a process

defined using that noise sequence! Moreover, the ARMA formulation of a FI-

GARCH process can be derived once a stationary solution is given. The best

way to define a FIGARCH model goes therefore through the use of a much more

general approach such as the ARCH(∞) model, as defined by Robinson (1991):

σ2t = τ +
∞X
k=1

ψkε
2
t−k (11)

τ > 0 ψk ≥ 0

The FIGARCH structure can be imposed with an adequate formulation of the

coefficients in the infinite ARCH expansion. Given this representation, the

stationarity of the FIGARCH process can be proved recalling the stationarity

conditions needed by a generic ARCH(∞) process and trying to figure out if
the coefficient structure of the FIGARCH can meet these requirements via its

ARCH(∞) formulation. The main works in this area are the one of Giraitis,
Kokoszka and Leipus (2000), Kazakevicius and Leipus (1999 and 2001), and

Zaffaroni (2000).

The first paper, Giraitis et al. (2000) presents a condition for the existence

of a stationary solution of an ARCH(∞) process, giving the following theorem:

Theorem 2.1 (rearranged from Giraitis et al. (2000), page 6, theorem 2.1):

given εt = ztσt and (11), a stationary solution with finite first moment E (εt)

exist if E
¡
z2t
¢
<∞ and E

¡
z2t
¢P∞

k=1 ψk < 1.

If the constant τ = 0 unique stationary solution is εt = 0.

If E
¡
z4t
¢
< ∞ and

£
E
¡
z4t
¢¤1/2P∞

k=1 ψk < 1 the stationary solution is

unique.

(See the cited paper for the proof).

The stationary solution proposed follow a Volterra series expansion of the

form

ε2t = τz2t

∞X
l=0

∞X
h1<h2<.....<hl<l

ψl−h1ψh1−h2 .....ψhl−1−hlz
2
l z
2
h1 .....z

2
hl (12)
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This formulation imposes a moment condition on the square of the observa-

tions and rules out long memory a priori, in fact for any value of d, we have:

(1− L)
d
=
P∞

j=0 πj (d) = 1 +
P∞

j=1 πj (d) = 0. Therefore, this result is in-

applicable in the FIGARCH case. An extension of this methodology is due to

Kazakevicius and Leipus (1999 and 2001), who reformulate the existence and

stationarity conditions for an ARCH(∞) in a form similar to the one given by

Bougerol and Picard (1992) for the GARCH(p,q) model, that is using a top

Lyapunov exponent γ, which is defined as follows:

γ = lim
n→∞n−1 log kA1A2.....Ank (13)

where the matrices Aj depend on the parameters and on the structure of the

process (see the cited papers for an example). The main result of Kazakevicius

and Leipus (1999) is summarized in the following theorem:

Theorem 2.2 (adapted and rearranged from Kazakevicius and Leipus (1999)):

given εt = ztσt and (11), if E
¡
log z2t

¢
is well defined γ ≤ 0 is a necessary

condition and γ < 0 is a sufficient condition for the existence of an ARCH(∞)
process.

If for any strictly stationary sequence (hi, i ≥ 1) of non-negative random
variables such that

P∞
i=1 ψihi <∞ we have

lim
n→∞

∞X
i=1

ψi+nhi = 0 a.s.

and the top Lyapunov exponent γ is negative then (12) is the unique strictly

stationary solution.

If γ = 0 there is no solution at all.

(See the cited paper for the proof).

In this theorem there are no moment conditions on the standardized errors

but there is an integrability condition and a limit condition on the coefficients

of the ARCH(∞) expansion. This result was then used by Kazakevicius and
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Leipus (2000) to assess the existence and stationarity of the FIGARCH model.

The main point is in the following theorem:

Theorem 2.3 (adapted and rearranged from Kazakevicius and Leipus (2001)):

If a) E
¯̄
log z2t

¯̄
< ∞ and b) for some k > 1 we have

P∞
i=1 ψik

i < ∞ then the

top Lyapunov exponent γ is strictly negative, therefore the ARCH(∞) exist as
well as a stationary solution.

If assumption b) is not satisfied the Lyapunov exponent is identically equal

to zero.

Assumption b) simply require that the coefficients of the ARCH(∞) decay
at an exponential rate, when this is not the case, as in FIGARCH, the existence

of the ARCH(∞) as well as of a stationary solution become questionable. At
the end of this excursus among this first group of papers a point is stressed: the

condition for the existence of a stationary solution, imposed through a Lyapunov

exponent is a necessary one, therefore a possible less restrictive condition, a

sufficient one, may exist. The results of the previous papers did not considered

a general approach but came to the FIGARCH analysis only indirectly, imposing

conditions that are not fulfilled by FIGARCH processes.

Focus now on the work of Zaffaroni (2000) in order to verify the strict sta-

tionarity and ergodicity of FIGARCH(p,d,m). The main result is a corollary to

the following theorem of Zaffaroni. Consider the following setup:

given the ARCH(∞) formulation (11), then assuming that γ = E
¡
ln z2t

¢
is

well defined (even unbounded) and setting

λ =

½ γ
2 γ < 0
3(γ+δ)
2 γ ≥ 0

for any constant δ > 0 the following result holds

Theorem 2.4 (Zaffaroni 2000, Theorem 2, page 6) Let
P

M =
PM

k=1 ψk,PM
=
P∞

k=M+1 ψk, κ = E
¡
z2t
¢
. Assume that a) 0<τ<∞ and b) for at least
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one 0 < M <∞

max

·
eλ
X

M
+ κ

XM

, eλ
XM

+ κ
X

M

¸
< 1

then for the ARCH(∞) model, for any t, τ ≤ σ2t < ∞ a.s. and σ2t is strictly

stationary and ergodic, with a well-defined nondegenerate probability measure

on [τ,∞).
Sufficient conditions to satisfy assumption b) are

eλ
∞X
k=1

ψk < 1 , κ
∞X
k=1

ψk ≤ 1

and ψkψj > 0 for at least two k 6= j.

Proof. See Zaffaroni (2000).

The power of this theorem is that it does not require any moment condition,

apart the integrability condition on the squared residuals as in Kazakevicius

an Leipus (1999, 2000), moreover it does not require any strict condition on

coefficients allowing mild explosive behaviors as well as hyperbolic decaying.

Given this result the following corollary can be obtained:

Corollary 2.1 (adapted from Zaffaroni (2000) Remark 2.2) For 0<d≤1, q≥0,
p≥0 and with adequate restrictions on coefficients that ensure positivity of con-
ditional variances, the FIGARCH(p,d,q) I is strictly stationary and ergodic if

γ = E
¡
ln z2t

¢
< 0.

Proof. In the ARCH(∞) representation of the FIGARCH model (7) we use
the following polynomial to represent the coefficient structure

λ (L) = 1− [1− β (L)]
−1
(1− L)

d
φ (L) =

∞X
i=1

λkL
k

if the coefficients satisfy the restrictions that ensure positivity of conditional

variances λk ≥ 0 ∀k, and the inequality is strictly positive for at least one
k ≥ 0, we have 0 < ω/ [1− β (1)] < ∞ and 0 < σ2 < ∞ by the previous
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theorem. Then noting that

(1− L)
d
¯̄̄
L=1

=
∞X
i=0

πiL
i

¯̄̄̄
¯
L=1

=
∞X
i=0

πi = 0 (14)

since π0 = 1, πi < 0 ∀i > 0 and limk→∞
Pk

i=1 πi = −1 we can write

λ (1) =
∞X
i=1

λk = 1− [1− β (1)]
−1

φ (1)
∞X
i=0

πi = 1

Using then the fact that γ < 0 and plugging in the condition of Zaffaroni γ/2 < 0

we have

eγ/2
∞X
i=1

λk = eγ/2 < 1

QED.

It can be noted that the FIGARCH(p,d,m) is strictly stationary and ergodic

under the assumption of normality of the standardized residuals, this can be

easily verified given the strict concavity of the logarithm function and using

Jensen inequality. It has to be stressed another point: in GARCH processes

it is of common use the assumption that the standardized residuals follow a

Student T distribution, this to capture the fact that the tails of the empirical

distributions of financial market returns are thicker than in the normal case.

Under the assumption of a T-distribution for zt, in order to prove the strict

stationarity and ergodicity of the FIGARCH the condition E
¡
ln z2t

¢
< 0 has to

be checked. The square of a T distribution with n degrees of freedom follow

an F (1, n) distribution. The evaluation of the expected value was carried out

numerically, and the results show that increasing the degrees of freedom, the

expected value converge to zero but from above. From this it can be stated

that the FIGARCH(p,d,m) is not strictly stationary under the assumption of a

T-distribution for the standardized residuals.

Turning now to the analysis of the FIGARCH specification suggested by

Chung (2001): in this case, given the structure of the model it can be rewritten
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as

σ2t = [1− β (L)]−1 (1− L)d φ (L)σ2 +
n
1− [1− β (L)]−1 (1− L)d φ (L)

o
ε2t =

=
n
1− [1− β (L)]

−1
(1− L)

d
φ (L)

o
ε2t

given the relation (14). This violate one of the assumptions of the Zaffaroni’s

theorem, the presence of a positive constant and the result cannot be applied. In

this situation the previous work of Nelson (1990) shows that the only stationary

solution when the constant is null is that the conditional variance itself is null.

This result was also derived by Giraitis, Kokoszka and Leipus (2000). This was

not noted by Chung (2001), but probably could be observed in a well defined

Montecarlo experiment, simulating a long time series reducing in such a way the

effect of truncation in the ARCH(∞) expansion. Probably this depends on the
approximation induced by the truncation which induces a stationary solution

as in an ARCH(p) model with very high p.

Again referring to Zaffaroni (2000), a direct application of Theorem 3, page

9, shows, using previous results, that FIGARCH(p,d,m) is not covariance sta-

tionary as the IGARCH process.

3 On the consistency of FIGARCH QML esti-
mates

In the estimation of FIGARCH processes the mainly used technique is the Quasi

Maximum Likelihood, maximizing with respect to the parameters of interest the

following log-likelihood function:

Q (θ; {εt}t=1...T ) = −
1

2
log (2π)− 1

2

TX
t=1

£
log σ2t + ε2t/σ

2
t

¤
(15)

where T is the sample size, σ2t follow a FIGARCH (7), and θ represent the set of

parameters. As normal practice in this field εt/σt = zt are called the standard-

ized residuals. Baillie et al. (1996) claimed that the result of Lee and Hansen

(1994), which shows the consistence and asymptotic normality of the QMLE
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for IGARCH(1,1) processes, ”...extends directly to the FIGARCH(1,d,0) model

through a dominance-type argument...”, unfortunately this is not correct. The

cornerstone of Lee and Hansen’s proof is in the possibility of bounding the ra-

tio between the conditional volatility computed with the true parameters and

the one computed with the estimated parameters. This is established in their

Lemma 4.(4) and 4.(5) (Lee and Hansen, 1994, pag. ). This result is then re-

peatedly used to assess boundness of other ratios between conditional variances

and then of their expected value who enter in the proof of the boundness of

the likelihood function. The point is that Lemma 4.(4) is no more valid with a

FIGARCH(p,d,q) DGP, resulting in an unbounded ratio. In the following the

Lee and Hansen proof will be reconsidered to verify this claim, and in order to

avoid confusion we will maintain their notation

Lemma 3.1 (Lee and Hansen Lemma 4. page 34)

(4) If β ≤ β0, �σ
2
t

0σ2t
≤ Kl ≡ ωu

ω0
+ αu

α0
<∞ a.s.

(5) If β ≥ β0, �σ
2
t

0σ2t
≤ Hu ≡ ω0

ωl +
α0
αl <∞ a.s.

where �σ2t represents the conditional variance with the estimated parameters

and 0σ
2
t the true conditional variance, whose parameters are denoted by ω0 and

α0. For estimated parameters Lee and Hansen derived a bound that depends

on the upper (lower) limits of the compact parameter space ωu and αu (ωl and

αl). Moreover they also splitted the parameter space for the β deriving two

bounds depending on the relation between the estimated and the true value.

This result is then used in deriving the bounds needed in the verification of

the boundness of likelihood function and then for consistence and asymptotic

normality. This result is therefore necessary for all the proof, and will be now

reconsidered plugging in the FIGARCH(1,d,0) instead of the GARCH(1,1).

Proof. the proof can be obtained both using the standard FIGARCH repre-

sentation or with the ARCH(∞) formulation. Both formulation are equivalent,
here will be presented the first one, the other is available form the author upon

13



request. Start plugging FIGARCH in Lemma 4.(4)

�σ
2
t

0σ2t
=

ω + βσ2t−1 + (d− β) ε2t−1 +
P∞

i=2 (−πi) ε2t−i
ω0 + βσ2t−1 + (d0 − β0) ε2t−1 +

P∞
i=2 [−πi (d0)] ε2t−i

where it has been dropped for convenience the subscripts of the conditional

variance. Repeatedly substituting the conditional variance with its expression,

back to the past infinity, the following representation is obtaines

�σ
2
t

0σ2t
=

ω
1−β + (d− β)

P∞
i=0 β

iε2t−1−i +
P∞

j=0 β
jAj

ω0
1−β0 + (d0 − β0)

P∞
i=0 β

i
0ε
2
t−1−i +

P∞
j=0 β

j
0Âj

where Aj =
P∞

i=2 (−πi) ε2t−i−j and Âj =
P∞

i=2 [−πi (d0)] ε2t−i−j . Using the fact
that all quantities are positive it can be rewritten

�σ
2
t

0σ2t
≤ ω

1− β

1− β0
ω0

+
d− β

d0 − β0

∞X
i=0

µ
β

β0

¶i
+
∞X
j=0

µ
β

β0

¶j
Aj

Âj

focus now on the last term in the formula

Aj

Âj

=

P∞
i=2 (−πi) ε2t−i−jP∞

i=2 [−πi (d0)] ε2t−i−j
≤
∞X
i=2

πi
πi (d0)

using again the fact that all terms are positive. Noting that for large M the

Stirling approximation on the coefficients can be used, therefore

πk =
Γ (k − d)

Γ (−d)Γ (k + 1) ∼ k−d−1 for k > M

then from the last summation

∞X
i=2

πi
πi (d0)

≥
∞X

i=M

πi
πi (d0)

∼
∞X

i=M

i−d−1

i−d0−1
=
∞X

i=M

id0−d =∞

Last equality follow from the fact that for d0 > d we have a succession of term

greater than 1, diverging to infinity, while for d0 < d we have a generalized

harmonic succession again diverging to infinity. The approximation may be

taken as closed as required, but the important point is that this implies

Aj

Âj

=∞⇒ �σ
2
t

0σ2t
≤ ∞
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and the ratio cannot be so easily bounded as in Lee and Hansen (1994). This

does not ensure that the inequality is always strict nor that an upper bound exist

and could be found in this way. This result may be interpreted reasoning on the

asymptotic decaying of the coefficients. In the GARCH(1,1) case coefficients

decay exponentially to zero, while in the FIGARCH(1,d,0) the convergence is

hyperbolic, so a dominance type argument, such as in the claim of Baillie,

Bollerslev and Mikkelsen (1996) cannot be used, an hyperbolic decaying (to

zero) succession cannot be dominated by an exponentially decaying (again to

zero) one, since there always exists a point in which the exponential convergent

sequence crosses the hyperbolic convergent one and stays below in the infinity.

Given that Lemma 4.(4) of Lee and Hansen (1994) is not consistent with FI-

GARCH(1,d,0), then following their proof also Lemma 4.(5) and Lemma 6.(1)

give non-bounded relations. Therefore the parameter space cannot be split-

ted as in page 35 and Lemma (5), (7) and (8) are no more valid, breaking

down all the proof for the consistence. Moreover, also the proof of asymptotic

normality break down because is built on the bounds used to prove the consis-

tence. A similar result can be obtained also for the FIGARCH(1,d,1) with a

non-bounded solution for likelihood function ratios. Therefore consistence and

asymptotic normality of the Quasi maximum likelihood estimator should be ver-

ified with a Montecarlo experiment. A limited analysis can be found in Baillie

et al. (1996) and in Bollerslev and Mikkelsen (1996), even if their claim was not

completely correct, the reported Montecarlo experiment is still valid and shows

consistence and asymptotic normality of the QML estimators, but only for the

FIGARCH(1,d,0), the only parametrization they considerd. Caporin (2002)

showes that the QML estimator is consistent and converge to the normality

also for the FIGARCH(1,d,1) and the FIGARCH(0,d,0). At the moment a for-

mal proof of the asymptotic properties of the QMLE for long memory GARCH

model is not available. It is worth to mention that the results of Jeantheau
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(1998) could be used to assess consistency in a restricted parameter space, see

Caporin (2002), however this methodology verifies only a poitwise convergence

of the parameters estimates and not a uniform convergence.

This work is concluded with a note on optimization methods. As previously

noted, with the orders p and m greater or equal 1 a set of nonlinear constraint

is needed to impose positivity on conditional variances. The focus is on the

FIGARCH(1,d,1) case: in this model the nonlinear constraint in (9) may be

represented with the following graph, where attention is restricted on the pa-

rameters β, d and φ all bounded between 0 and 1.
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Figure 1: surface of non-linear constraints for FIGARCH(1,d,1)

Figure 1 reports the surface of the equality constraint, where x = β, y = d

and z = φ. This surface is transalted in a space considering the inequality,

precisely on the left on an ideal plane x = y (β = d) all points above the surface

while, on the right all points below the surface. Remenber that the admissible

region of parameter combination is also affected by the other linear constraints,

all taken into account drawing Figure 1. The main thing that appear from
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the graph is that it is not defined for β = d: in this case all values of φ are

admissible since the inequality is always satisfied. In principle the space of

admissible parameter combination can be divided in two subspaces, separated

by the plane β = d, and define them as L (d < β) and R (d > β). A particular

behavoiur of optimization algorithms was noted: they optimize with respect to

the parameter combinations that belong to only to one of these subspaces, and

are not able to switch between the two. Therefore it may happen that given a

simulated series with parameters (β = 0.5, d = 0.8 and φ = 0.3) ∈ R, and then
estimateing on that series the FIGARCH(1,d,1) it can be obtained as a result

a parameter combination taht belongs to L. This effect is evident even using

as starting values a parameter combination on the correct subspace, therefore

this behaviour of optimization algorithm must be solved with other methods.

Two solutions are proposed: optimize on the two distinc subspaces and then

choose the parameter combination that lead to the higher loglikelihood or use

an optimization algorithm that switch randomly in the parameter space.
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