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Abstract: In this work we focus on the effects of aggregation on param-

eters estimation and Value-at-Risk computation if the data generator follow

a FIGARCH model. We present a Montecarlo experiment which shows that

the memory structure is affected. In a second simulation study we compare

Value-at-Risk estimates obtained by high frequency and aggregated data.

We verify that aggregated data have a better performance on a loss function

approach while on a statistical based test analysis high frequency data are

preferred.
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In a previous work, Caporin (2002b), we analyzed the performances of

Value-at-Risk measures obtained by different models on data generated by a

FIGARCH process. The analysis was motivated by the findings of long mem-

ory on the variances of financial instrument prices coupled with the practice

of using GARCH-based models to compute variance forecasts. Moreover

we were interested in comparing our results with the one of Beltratti and

Morana (1998), that dealt with this problem but on an applied framework.

We were therefore trying to assess if a misspecified model could be used in

forecasting variances and we showed that this were not allowed on the ba-

sis of an extensive Montecarlo study, involving a comparison of the different

Value-at-Risk measures. We employed in the analysis the loss-function ap-

proach of Lopez (1998) and the statistical based testing approach of Kupiec

(1995), Christoffersen (1998), Lopez (1998) and Christoffersen, Hahn and In-

oue (2001). In this paper we extend our previous study analyzing the effects

of aggregation on the memory structure of the series, on the parameter es-

timates of different models and on Value-at-Risk computation. We are now

interested in verifying if high frequency data can improve the 1-day ahead

forecast of the variance and we analyze if the memory structure is affected by

the aggregation process. We will show that the long memory behavior is in

general robust to the aggregation process and that aggregated data produce

better volatility forecast but only on a loss function comparison approach.

In the following section we briefly recall the model and the tools used in the

VaR comparison analysis. Section 2 deal with the effects on aggregation on

parameter estimates and VaR measures, presenting the Montecarlo results.
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Section 3 will conclude.

1 FIGARCHmodels, estimation and VaR com-
parison

The long memory GARCH model has been introduced by Baillie, Bollerslev

and Mikkelsen (1996) as a generalization of the IGARCH process. Assume

that the mean process has the following representation

yt = µt + εt (1)

where for simplicity µt = 0, It−1 represent the information set up to time

t− 1 and εt|It−1 ∼ iid (0,σ2t ), the error term has a time-dependent variance

called FIGARCH(p,d,m) with the following parameterization:

σ2t = ω +
n
1− [1− β (L)]−1 (1− L)d φ (L)

o
ε2t

where β (L) =
Pp

i=1 βiL
i, φ (L) =

Pm−1
i=1 φiL

i, d ∈ [0, 1] and (1− L)d =P∞
i=0

¡Q
0≤k≤i

k−1−d
k

¢
Li. To ensure the positivity of conditional variances

the parameters have to satisfy a set of restrictions, for the FIGARCH(1,d,1)

case these are

β − d ≤ φ ≤ 2− d
3

(2)

d

µ
φ− 1− d

2

¶
≤ β (d− β + φ)

The strict stationarity has been verified in Caporin (2002a) on the assumption

of normality of the standardized residuals zt = εt/σt. The estimation of the

model is carried out by a quasi-maximum likelihood approach, however the
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consistency of parameter estimates has not yet been proven, for this point

we rely on the Montecarlo simulation reported on Baillie et al. (1996) and

Caporin (2002a). We report here the equation of the variance forecaster,

its derivation together with a discussion on the estimation and stationarity

issues can be found in Caporin (2002a-b-c).

E
£
σ2t+s|It−1

¤
= θsω +

∞X
i=0

ψi+1ε
2
t−i (3)

ψk =
sX
i=1

φiλk+s−i φ1 = 1 φi =
i−1X
j=1

λjφi−j θs =
sX
i=1

φi

λ (L) = 1− [1− β (L)]−1 (1− L)d φ (L) =
∞X
i=0

λiL
i

The Value-at-Risk is defined as the maximum amount of loss we can face

from t to t + h using a given model m and at a confidence level α. To

evaluate and compare Value-at-Risk measures we focused on two different

approaches, a loss function one, introduced by Lopez (1998), and a statisti-

cal based one, which refer to a group of tests, due to Kupiec (1995), Lopez

(1998), Christoffersen (1998), and Christoffersen, Hahn and Inoue (2001).

All the approaches focus on the exceptions of Value-at-Risk measures, that

is when the VaR level is violated by market performances. The test of Kupiec

focus on the Unconditional coverage, and under the null of correct uncondi-

tional coverage is distributed as a χ2 (1). Lopez (1998) introduced two tests

based on the work of Christoffersen (1998), the test on Independence, again

a χ2 (1) under the null of independence across VaR exceptions, and the test

of Conditional Coverage, (the sum of the previous two test), distributed as

a χ2 (2) under the null of correct coverage. Finally the tests of model spec-
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ification and model comparison introduced by Christoffersen et al. (2000):

the first detect if the model is correctly specified, while the latter compute a

pairwise comparison among different models, both tests have an asymptotic

normal distribution under the null hypothesis of correct specification. For

a deeper discussion on the tests please refer to the cited papers. The loss

function approach of Lopez (1998) is again based on the exceptions of VaR

models, while our approach, introduced in Caporin (2002a-b) deal with the

whole VaR forecasts. In both cases the best model is the one that minimize

the loss. Again refer to the paper for a detailed presentation of the meth-

ods. The Value-at-Risk is used by regulators as one of the possible measures

of capital requirement that banks must fulfill. This measure and the asso-

ciated model are tested in a backtesting approach, that is observing their

performances on a time window of 250 days (approximately one year). The

results depend on the exceptions, between 0 and 4 the model is accepted

without correction on the capital requirements, between 5 and 9, the model

is accepted but capital margins are increased, with more than 9 exceptions

regulators suggest a revision of the model.

2 VaR, FIGARCH and aggregation

Apoint raised up by the Beltratti andMorana (2000) paper was the following:

using high frequency data could we get better estimates of our 1-day VaR?

Their conclusion was that the simple GARCH(1,1), on high frequency data,

will do the task even if there is an evident long memory in the data. We
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examine this relation in detail with a limited Montecarlo study dealing with

a group of problems. We generate data as they were hourly returns and then

aggregate them in order to obtain daily returns, assuming that a normal

open market day last for eight hours. The data are generated with normal

distributed standardized residuals. On the aggregated data we are at first

interested in assessing if there are changes in parameter estimates, specially

on the memory behavior, therefore we examine this point computing a group

of information criteria on different models, a GARCH(1,1), an IGARCH(1,1)

and three FIGARCH(p,d,m) with p = m = 0, p = 1 and m = 0 and

p = m = 1. By this methods, given the results of Caporin (2002c), we will

asses if the aggregation process change the structure of the series into an

integrated GARCH, a short memory model or if the long memory behavior

is robust against the aggregation.

All experiments consist of 1000 replications with series of 18000 non ag-

gregated observations. We simulated log-returns series. We considered five

different DGP with the following parameters combinations: d = 0.8, β = 0.5,

ψ = 0; d = 0.8, β = 0.5, ψ = 0.05; d = 0.8, β = 0.5, ψ = 0.3; d = 0.4,

β = 0.3, ψ = 0; d = 0.4, β = 0.3, ψ = 0.2. The identification analysis is lim-

ited to the first 2000 aggregated data (16000 non aggregated points) leaving

the last 250 (2000 non aggregated) for a VaR backtesting evaluation. We con-

sider this as a limited Montecarlo since we do not take into consideration the

consistence of model selection based on information criteria and we restrict

our attention to a limited range of models and parameter combinations. This

choice strictly depend on CPU time needed to run a full experiment: to sim-
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ulate 18000 observations (plus 2000 points to avoid dependance from initial

values), run the identification tests and then the VaR evaluation, we need

between 6 and 15 days, depending on DGP and ”external” events (blackouts,

computer failures, etc.). In all cases, on aggregated data, we estimated the

following models: FIGARCH(1,d,1), FIGARCH(1,d,0), FIGARCH(0,d,0),

GARCH(1,1) and IGARCH(1,1). We included a limited group of tables and

graphs in this paper (the detailed results can be found in Caporin(2002a)),

where we report the frequency of model selection based on the information

criteria of Akaike (AIC), Hannan-Quinn (HQ), Schwarz (BIC) and Shibata

(SH), together with the estimated parameters and standard errors. Finally

we added a kernel density of the distribution of the quasi maximum likelihood

estimator. We can summarize our results as follows:

• A first consideration on the memory parameter estimates: in general
we can observe that the aggregation does not change the Montecarlo

average of the long memory coefficient, d. This result is much stronger

for the experiments conducted with d set equal to 0.8, rather than in

the case where it assume the value 0.4. Compare table 1 with table 3,

the discrepance between the non-aggregated true value and the Mon-

tecarlo average is less than 0.01 in the first while it is close to 0.1 in

the second. Even with this evidence we are not sure that this can be

interpreted as a true effect of aggregation. The picture can be clari-

fied analyzing also the Montecarlo standard deviation, and comparing

it with the one obtained on non-aggregated estimates: we can observe
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that it heavily increase for d=0.8 while the change for 0.4 is less evident.

This may be much more evident comparing the kernel density estimates

of aggregated data with the ones of pure FIGARCH processes (for the

first see Caporin (2002a), while for the second refer also to Baillie et

al. (1996)). From these observation we extrapolate the following pic-

ture: we believe that the effect of aggregation depends on the memory

parameter level, we can distinguish between series with high memory

(d=0.4) and intermediate memory (d=0.8), in the first case aggregation

matter, memory properties increase (the distribution of the estimator

has a stable variance across aggregated and non aggregated data), in

the second case the aggregation does not affect the memory structure

but lead to an increase in variation among parameter estimates.

• Consider now the estimates of the other FIGARCH parameters: these
are much more affected from the aggregation process, as if this will

change the short-memory structure of the underlying process. Here we

must note that kernel densities evidence a problem in the consistence

and in the biasedness of the QML estimator for the FIGARCH(1,d,1).

This might be coupled with the algorithm convergence problem evi-

denced in Caporin (2002a-2002c), and can be interpreted as an effect

of the aggregation, valid for all the cases considered even if in the series

with intermediate memory this is much more evident. We believe that

in these processes the aggregation scheme push the model to the critic

region for the optimization process, therefore small variations can be
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sufficient to obtain different otptima from similar non-aggregated series.

• As we can expect the aggregation process highly affect the constant in
the variance that highly increase, while the constant in the mean is not

affected. This last effect is due to the fact that it was fixed to zero,

with a different value the aggregation will affect it.

• Finally observe the parameters of the GARCH and IGARCH: in the
case of high memory the two models appear to be different, the sum of

the GARCH parameter, at least in average, is different from one, while

in the models with d=0.8, GARCH and IGARCH are very close, as if

the aggregation push the model to a new process with d=1.

• Take a look now at the identification: the memory property of the

simulated series is identified by the information criteria with an error

percentage of 20%, near the value recorded for non aggregated series.

Again we can note that the identification is affect by the structure of

the process and by parameter values. Moreover none of the criteria

appear to prevail on the others.

We will now turn to our main point, the evaluation of 1-day-Value-at-Risk

both with aggregated and non aggregated data. Given the structure of tests

for Value-at-Risk comparison and the time requested to run a Montecarlo ex-

periment on simulated high frequency data we decided to split this analysis in

two branches, and on the first we compare the VaR computed on aggregated

data with: the correct DGP, a GARCH(1,1) an IGARCH(1,1), the EWMA
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with smoothing parameter set to 0.97 and finally with the VaR computed on

hourly data with the true DGP. In a second group of simulations we com-

pare the VaR performances with the following models: again on aggregated

data the true DGP and the EWMA(0.97) and on high frequency data with

the true DGP and a GARCH(1,1). In all cases we estimate the different

models and we compare the 1-day ahead VaR. A point arise, on daily data

the computation of 1-day-ahead prediction intervals is a standard procedure,

as in the previous Montecarlo, while on hourly data we use two different

approaches: normal practice in this field to obtain a T-step-ahead forecast

of the volatility (T=8 in our case) is to multiply the 1-step-ahead forecast

by
√
T , a solution based on the independence and identically distribution

hypothesis of the residuals, however in the GARCH type modelling this can

be differently interpreted, the T-step-ahead forecast may be computed as the

sum of 1 to T step forecasts. The T step return may be expressed as the sum

of single step returns, postulating independence its expected value will be

the sum of expected values and with a GARCH generator this will be zero:

rT =
TX
j=1

rt+j (4)

Et [rT ] =
TX
j=1

Et [rT ] = 0

The variance computed conditionally at time t, will be therefore

V art [rT ] = V art

"
TX
j=1

rt+j

#
(5)

the law of iterated expectations allow us to set covariances between time
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dependent returns to zero obtaining

V art [rT ] =
TX
j=1

V art [rT ] (6)

that is the sum of the predictions from 1 to T step ahead variance made in

time T. This will be the second VaR computation technique used with hourly

data. In the following we will refer to the forecast obtained with the first

methods as ”square root forecasts”, while the second will be labelled ”sum

forecasts”. On these VaR measures we will compute all the tests and the loss

functions as in the previous Montecarlo.

These two sets of Montecarlo experiments are run on the same generators

used for aggregated data model identification analysis. The Value-at-Risk

analysis is performed again on a backtesting approach using 250 observations

to assess number of exceptions, compute tests and loss functions. The com-

plete set of tables of these Montecarlo experiments can be found in Caporin

(2002a), here we present the results of one single DGP. As in the previous

analysis we summarize the tables with the following observations:

Average exceptions and MRA. Consider at first the comparison among

the aggregated FIGARCH, the RiskMetrics and the high frequency

FIGARCH and GARCH. In these cases aggregated models give the

smaller percentage of exceptions for the 1-day VaR, while, among the

high frequency models, the FIGARCH with square root forecasts pro-

duce the better results. This behavior indicate that even if the true

generator is an high frequency process with long memory, in comput-

ing 1-day VaR better results are obtained by aggregated data. This
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result is confirmed in the second Montecarlo where we compare dif-

ferent aggregated specifications with the true high frequency genera-

tor. We restrict now our attention on the aggregated models, among

these specifications two clearly dominates the other, the long memory

GARCH and the RiskMetrics, with a prevalence of the latter at the

1% VaR while the FIGARCH is preferred at the 5% VaR level. A final

comments on the MRA: here the models differently satisfy the require-

ments, leading to different zones, in most cases the green zone is reached

by the long memory GARCH on aggregated data and by the RiskMet-

rics, while the other specifications switch between the green and the

yellow zone. Again this indicate that aggregated data are preferred to

high frequency specifications.

Tests of Conditional and Unconditional Coverage. Test results again

cannot help in the choice of the best specification, however we must

note that variation among different models is wider than in the pre-

vious analysis allowing to exclude, in some cases, one of the models

employed. As an example we can consider the FIGARCH(0.5,0.8,0.3)

case, the CC test allow to exclude at least on of the high frequency

FIGARCH specifications, or again consider the FIGARCH(0.3,0.4,0),

the Independence test at 5% allow to exclude all daily models. Unfor-

tunately in all these cases we cannot reduce our choices to one model,

leading to a small power of these test in discerning among the alterna-

tive models.
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Loss functions. Now the situation change, while considering only the

exeptions aggregated data are always preferred, turning to a loss func-

tion approach high frequency data are in some cases the best choice.

Consider the Lopez loss function: the preferred models are the Risk-

Metrics and the high frequency FIGARCH with square root forecasts,

the choice switch between this two models. However focusing on the

extended loss functions analysis results are different, here the choice

switch between the RiskMetrics and the high frequency GARCH with

square root forecasts in the first Montecarlo while in the second the

preferred models are again the RiskMetrics together with the high fre-

quency FIGARCH with sum forecasts.

Model comparison test. If we consider the first Montecarlo, which in-

clude high frequency GARCH and FIGARCH specifications, this test

allow the derivation of a preference ordering among the different mod-

els. This test compute a pairwise comparison among the models and

report a frequency of preference of the first or of the second model. If we

state that, given the test comparison of two models, one is preferred to

the other when the frequency of preference is above 50%, we have a set

of reference relations that may allow to construct an ordering. In the

first Montecarlo this is possible with the full set of generators and all

the ordering have a common point: the high frequency GARCH specifi-

cation with square root forecast is always the preferred. The ordering of

the remaining models change across the generators. This result allow to
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conjecture that in computing 1-day Value-at-Risk with high frequency

data, even if in presence of long memory, a short memory model give

a finer matching to the efficient moment condition. A similar result

was obtained by Beltratti and Morana (1999) in an applied framework.

Their conclusion was mainly driven by the closeness of forecasts ob-

tained by the FIGARCH and GARCH specifications, while in this case

we obtain this conclusion via a Montecarlo approach. Turn now the

attention to the second Montecarlo, that report the comparison across

daily specifications and the high frequency true generator. In this case

the preference relation among the specifications do not exist, in most

of the cases the relation is not transitive, however the high frequency

FIGARCH specification with sum forecasts is the candidate to be the

preferred solution. The preference ordering are reported in the Caporin

(2002a) paper, whenever they exists. A couple of additional remarks

is needed: first of all we stress on the fact that high frequency spec-

ifications are most of the times preferred to the daily ones, showing

that, even if with a misspecified model, high frequency data matter;

moreover the RiskMetrics model is most of the time the worst solution

in the model comparison tests, this is due, to our advise, to the struc-

ture of the model, in the sense that any GARCH specification, even an

highly misspecified one, long or short memory, has a greater flexibility

that allow to adequately match the (simulated) data; finally, note that

this result is not influenced by the true data generating process.
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Model specification test. The results obtained by this last instruments

are similar across the Montecarlo experiments and the different models,

showing that the Value-at-Risks is not correctly specified. We conjec-

ture that this is due to the limited number of points used in our analysis,

250 observations, that might influence test power.

3 Conclusions

In this paper and in a companion one, Caporin (2002b), we analyzed with a

Montecarlo approach, the performances of misspecified models in the compu-

tation of Value-at-Risk. This work analyze in details the effects of aggregation

of high frequency data on the memory structure of the series, showing that

the memory behavior is affected, leading to an increase of memory, if the

series has intermediate memory (d parameter around 0.8), while the memory

structure remain unchanged with high memory series (d around 0.4). We

also compare the performances of different models for the 1-day ahead vari-

ance forecast, on a backtesting Value-at-Risk approach, using a different set

of tests and loss functions. We show that none of the methods used, loss

functions or tests, allow to choose one model as the preferred. Focusing only

on exceptions the best choice will be the RiskMetrics model, therefore on ag-

gregated data, similar result is obtained with the various loss functions. The

tests based on the correct coverage are no informative on this comparison,

while the tests of Christoffersen et al. (2001) shows that high frequency data

are preferred, however most of the times a misspecified GARCH(1,1) is the

16



best solution.
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1 - QML estimates – 2000 aggregated data – 1000 replications – Mean (s.d.) [RMSE] 
Fitted models  Figarch(1,d,1) Figarch(1,d,0) Figarch(0,d,0) Garch(1,1) Igarch(1,1) 

0.00165 0.00163 0.00188 0.00137 0.00153 
0.03302 0.03330 0.03449 0.03254 0.03310 µ 
0.03305 0.03332 0.03452 0.03256 0.03312 
0.22918 0.27255 0.36017 0.23088 0.21694 
0.08860 0.09532 0.11183 0.09084 0.08614 ω 
0.23640 0.27930 0.36757   
0.79122 0.77549 0.56146   
0.14726 0.14049 0.09312   d 
0.14745 0.14255 0.25606   
0.11348   0.38744 0.57265 
0.12680   0.09584 0.10501 φ - α 
0.17011     
0.43189 0.31831  0.57354  
0.16916 0.18316  0.10390  β 
0.18228 0.25792    

 

For each parameter the table reports in the order: Montecarlo average,

Montecarlo standard deviation and Root Mean Squared Error. The DGP is a

FIGARCH(1,d,1) - d=0.8 β=0.5 -models were estimated only on aggregated

data.
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2 - Frequency of model selection – 2000 aggregated observations – 1000 replications 
Fitted models Criteria Figarch(1,d,1) Figarch(1,d,0) Figarch(0,d,0) Garch(1,1) Igarch(1,1) 

Akaike 0.283 0.444 0.071 0.150 0.053 
Hannan-Quinn 0.163 0.470 0.120 0.138 0.110 

Schwarz 0.458 0.348 0.025 0.154 0.016 
Shibata 0.285 0.443 0.070 0.150 0.053 

LL 0.700 0.149 0.000 0.152 0.000 
4 IC 0.283 0.444 0.071 0.150 0.053 

 

The table reports the frequency of model selection with each of the dif-

ferent fitted models. The DGP is a FIGARCH(1,d,1) - d=0.8 β=0.5 -models

were estimated only on aggregated data.
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Figure 1: kernel density of the estimated long-memory parameter, in

parenthesis the FIGARCH specification. The DGP is a FIGARCH(1,d,1) -

d=0.8 β=0.5 -models were estimated only on aggregated data.
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3 - QML estimates – 2000 aggregated data – 1000 replications – Mean (s.d.) [RMSE] 
Fitted models  Figarch(1,d,1) Figarch(1,d,0) Figarch(0,d,0) Garch(1,1) Igarch(1,1) 

-0.00099 -0.00091 -0.00071 -0.00089 -0.00088 
0.02985 0.02998 0.03008 0.02988 0.03029 µ 
0.02985 0.02998 0.03007 0.02987 0.03029 
0.18721 0.32086 0.46797 0.10599 0.02968 
0.09307 0.10479 0.11640 0.07272 0.02271 ω 
0.20014 0.32803 0.47251   
0.29960 0.25335 0.19294   
0.08482 0.06894 0.03795   d 
0.13141 0.16203 0.21050   
0.24367   0.09594 0.90282 
0.12175   0.03142 0.03998 φ - α 
0.27237     
0.41204 0.12287  0.85146  
0.15374 0.07730  0.06428  β 
0.19018 0.19325    

 

For each parameter the table reports in the order: Montecarlo average,

Montecarlo standard deviation and Root Mean Squared Error. The DGP is a

FIGARCH(1,d,1) - d=0.4 β=0.3 - models were estimated only on aggregated

data
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4 - Frequency of model selection – 2000 aggregated observations – 1000 replications 
Fitted models Criteria Figarch(1,d,1) Figarch(1,d,0) Figarch(0,d,0) Garch(1,1) Igarch(1,1) 

Akaike 0.367 0.279 0.155 0.193 0.006 
Hannan-Quinn 0.167 0.308 0.298 0.206 0.021 

Schwarz 0.590 0.188 0.051 0.171 0.000 
Shibata 0.367 0.280 0.154 0.193 0.006 

LL 0.782 0.062 0.000 0.156 0.000 
4 IC 0.367 0.279 0.155 0.193 0.006 

 

The table reports the frequency of model selection with each of the dif-

ferent fitted models. The DGP is a FIGARCH(1,d,1) - d=0.4 β=0.3 -models

were estimated only on aggregated data.
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Figure 2: kernel density of the estimated long-memory parameter, in

parenthesis the FIGARCH specification. The DGP is a FIGARCH(1,d,1)

- d=0.4 β=0.3 -models were estimated only on aggregated data.
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5 - Average number of exceptions (standard deviation) mean percentage 
1000 replications – 250 daily forecast 

Fitted models  1 2 3 4 5 6 
3.521 2.387 3.376 3.751 5.154 3.309 

(1.954) (1.379) (1.868) (1.947) (2.689) (1.995) 1% VaR 
1.408 0.955 1.350 1.500 2.062 1.324 
11.372 11.461 12.333 13.202 16.268 12.342 
(3.647) (2.967) (3.469) (3.554) (4.872) (4.020) 5% VaR 
4.549 4.584 4.933 5.281 6.507 4.937 

 

The DGP is a FIGARCH(1,d,0) d=0.4 b=0.3 - % represent VaR p-level

unless differently specified

Model reference:1 - Aggregated, FIGARCH(1,d,0); 2- Aggregated, EWMA(0.97);

3 - High Frequency (HF), FIGARCH(1,d,0) square root; 4 - HF, FIGARCH(1,d,0)

sum; 5 - HF, GARCH(1,1) square root; 6 - HF, GARCH(1,1) sum
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6 - Frequency of less exceptions - 1000 replications – 250 daily forecast 
Fitted models  1 2 3 4 5 6 

1% VaR 0.248 0.690 0.280 0.201 0.069 0.364 
5% VaR 0.362 0.579 0.239 0.133 0.064 0.203 

 

The DGP is a FIGARCH(1,d,0) d=0.4 b=0.3 - % represent VaR p-level

unless differently specified

Model reference:1 - Aggregated, FIGARCH(1,d,0); 2- Aggregated, EWMA(0.97);

3 - High Frequency (HF), FIGARCH(1,d,0) square root; 4 - HF, FIGARCH(1,d,0)

sum; 5 - HF, GARCH(1,1) square root; 6 - HF, GARCH(1,1) sum

26



7 - TESTS – frequencies of accepting the null hypothesis - 1000 replications – 250 daily forecast 
Fitted models  α 1 2 3 4 5 6 

Test of unconditional coverage: Null 
1% 0.964 0.999 0.978 0.967 0.824 0.968 1% VaR 5% 0.898 0.929 0.911 0.892 0.712 0.882 
1% 0.971 0.992 0.992 0.987 0.896 0.974 5% VaR 5% 0.900 0.958 0.939 0.930 0.742 0.880 

Test of independence: Null 
1% 0.846 0.739 0.998 0.997 0.996 0.996 1% VaR 5% 0.831 0.730 0.981 0.987 0.982 0.981 
1% 0.958 0.938 0.994 0.995 0.994 0.997 5% VaR 5% 0.888 0.842 0.975 0.979 0.956 0.979 

Test of conditional coverage: Null 
1% 0.937 0.954 0.989 0.979 0.879 0.980 1% VaR 5% 0.776 0.730 0.971 0.958 0.802 0.962 
1% 0.943 0.957 0.989 0.990 0.917 0.979 5% VaR 5% 0.831 0.845 0.951 0.945 0.797 0.923 

 

The DGP is a FIGARCH(1,d,0) d=0.4 b=0.3 - % represent VaR p-level

unless differently specified, α is the test confidence level.

Model reference:1 - Aggregated, FIGARCH(1,d,0); 2- Aggregated, EWMA(0.97);

3 - High Frequency (HF), FIGARCH(1,d,0) square root; 4 - HF, FIGARCH(1,d,0)

sum; 5 - HF, GARCH(1,1) square root; 6 - HF, GARCH(1,1) sum
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8 - Lopez loss function – frequency of model selection - 1000 replications – 250 daily forecasts 
Fitted models  1 2 3 4 5 6 

1% VaR 0.031 0.258 0.226 0.106 0.010 0.465 
5% VaR 0.031 0.240 0.213 0.083 0.002 0.431 

 

The DGP is a FIGARCH(1,d,0) d=0.4 b=0.3 - % represent VaR p-level

unless differently specified

Model reference:1 - Aggregated, FIGARCH(1,d,0); 2- Aggregated, EWMA(0.97);

3 - High Frequency (HF), FIGARCH(1,d,0) square root; 4 - HF, FIGARCH(1,d,0)

sum; 5 - HF, GARCH(1,1) square root; 6 - HF, GARCH(1,1) sum
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9 - LOSS FUNCTIONS – frequency of model selection (best is lower loss function) 
1000 replications – 250 daily forecasts 

Fitted models  1 2 3 4 5 6 
Loss Function 1: absolute value of return VaR measure ratio 

E 0.076 0.637 0.098 0.062 0.010 0.213 1% VaR T 0.444 0.335 0.105 0.000 0.000 0.116 
E 0.240 0.445 0.088 0.019 0.000 0.208 5% VaR T 0.444 0.335 0.105 0.000 0.000 0.116 

Loss Function 2: square return-VaR normalized by absolute VaR measure 
E 0.052 0.721 0.081 0.054 0.010 0.178 1% VaR T 0.006 0.119 0.000 0.012 0.863 0.000 
E 0.044 0.679 0.049 0.020 0.000 0.208 5% VaR T 0.002 0.160 0.000 0.005 0.833 0.000 

Loss Function 3: absolute of return-VaR 
E 0.050 0.704 0.076 0.055 0.010 0.201 1% VaR T 0.011 0.108 0.000 0.013 0.868 0.000 
E 0.105 0.556 0.062 0.020 0.000 0.257 5% VaR T 0.009 0.114 0.000 0.012 0.865 0.000 

Loss function 1+2 
E 0.068 0.663 0.088 0.060 0.010 0.207 1% VaR T 0.007 0.131 0.000 0.010 0.852 0.000 
E 0.158 0.558 0.071 0.014 0.000 0.199 5% VaR T 0.003 0.256 0.000 0.002 0.738 0.001 

Loss function 1+3 
E 0.066 0.659 0.090 0.061 0.010 0.210 1% VaR T 0.012 0.114 0.000 0.012 0.862 0.000 
E 0.178 0.499 0.076 0.022 0.000 0.225 5% VaR T 0.007 0.145 0.000 0.008 0.840 0.000 

Loss function 2+3 
E 0.049 0.712 0.079 0.053 0.010 0.193 1% VaR T 0.009 0.113 0.000 0.013 0.865 0.000 
E 0.070 0.628 0.053 0.024 0.000 0.225 5% VaR T 0.006 0.126 0.000 0.010 0.858 0.000 

Loss function 1+2+3 
E 0.062 0.674 0.081 0.057 0.010 0.212 1% VaR T 0.007 0.116 0.000 0.012 0.865 0.000 
E 0.144 0.562 0.070 0.018 0.000 0.206 5% VaR T 0.005 0.151 0.000 0.007 0.837 0.000 

 

The DGP is a FIGARCH(1,d,0) d=0.4 b=0.3 - % represent VaR p-level

unless differently specified. E stands for exceptions only, while T for total

sample
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Model reference:1 - Aggregated, FIGARCH(1,d,0); 2- Aggregated, EWMA(0.97);

3 - High Frequency (HF), FIGARCH(1,d,0) square root; 4 - HF, FIGARCH(1,d,0)

sum; 5 - HF, GARCH(1,1) square root; 6 - HF, GARCH(1,1) sum

10 - Test of VaR model specification (null: VaR(p) is correctly specified) 
Frequency of accepting H0 – 1000 replications – 250 daily forecasts 

Fitted models VaR 
p-value 

Test 
α-value 1 2 3 4 5 6 

1% 0.023 0.002 0.013 0.017 0.029 0.009 
5% 0.012 0.000 0.007 0.008 0.014 0.005 1% 
10% 0.007 0.000 0.006 0.006 0.008 0.003 
1% 0.144 0.085 0.199 0.195 0.215 0.192 
5% 0.068 0.037 0.118 0.110 0.099 0.093 5% 
10% 0.039 0.023 0.078 0.066 0.058 0.058 

 

The DGP is a FIGARCH(1,d,0) d=0.4 b=0.3 - % represent VaR p-level

unless differently specified

Model reference:1 - Aggregated, FIGARCH(1,d,0); 2- Aggregated, EWMA(0.97);

3 - High Frequency (HF), FIGARCH(1,d,0) square root; 4 - HF, FIGARCH(1,d,0)

sum; 5 - HF, GARCH(1,1) square root; 6 - HF, GARCH(1,1) sum
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