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Abstract

In this paper I analyse the characteristics of the returns and of the
volume of the FIB30 market. I focus at first on the identification of sea-
sonal patterns, using the Flexible Fourier Regressions techique applied by
Andersen and Bollerslev. Then, on the filtered data, I verify the long
memory properties of the volume mean and of the volatilites of both the
log-returns and the volume series. Finally, I move to a multivariate set-
ting fitting a bivariate GARCH-type model in order to verify the causal
relations among the mean and the variances of the considered variables.
In this stage I fitted both traditional models and a new parameterisa-
tion, the EC-GARCH, I suggested in Caporin (2003). This new model is
clearly preferred by standard information criteria and provides evidence
of a causal relation among the variances of the volume on the log-returns.

In the last years there has been a growing interest in the study of the re-
lation among prices and volumes, both from a theoretical point of view (as
an example Blume, Easley and O’Hara, 1994) and from the empirical one, see
among others Karpoff (1987). Most of the current empirical analysis consid-
ers different linear and non-linear specifications in order to verify and test the
causal relations between prices (or returns) and volumes. However, most of
them consider only the mean, restricting their attention on Granger’s causality
definition, alternatively they foc on the study of a simultaneous relation. In the
last two decades, with the emerging ARCH literature, different specifications of
conditional heteroskedasticity have been taken into considerations; they allow
for a deeper analysis in applied studies on the causality topic, an effort that
allows to adequately model the relation between returns, volumes and their
volatility. These extensions can be thought both on a signle-asset case that
in a much more general multivariate framework. This interest on multivariate
heteroskedastic models maybe also coupled with the necessity of an extension of
the causality concept, which must consider the spillover effect among variances,
and the in-mean reaction of GARCH model components. A discussion on this
topic was the object of a previous work (see Caporin (2003a and 2003c)) where
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I considered the theoretical aspects of the second order causality and of the
variance causality together with their link with the well known concept of first
order causality, i.e. in Granger’s sense. In that studies I focus on the present
definitions and relations providing the theoretical conditions for non-causality
in mean and in variance in a general VARMA-GARCH-M model. Moreover,
I introduced a new GARCH-type model, the Exponential Causality GARCH
(EC-GARCH) which allows for the detection of variance causality without any
restriction on the parameters driving the causal relation between variables.
The aim of this work is twofold: on the one side, I analyse the seasonal

components which affect the returns and the volumes of the FIB30 market; on
the other side, I consider their memory and causality structure. Consequently,
this paper deals almost exclusively with empirical analysis using the available
techniques for the first part, while in the second it concentrates on long memory
models belonging to the ARFIMA and/or FIGARCH class, together with the
EC-GARCH to verify the causal relation among variances.
Given the empirical purposes of this work, a brief theoretical introduction

on the models used will be included in the appendix, while the definition on
the second order causality topic can be found in Caporin (2003c). The plan of
the paper is as follow: in section 1 I synthetically describe the FIB30 market
while in section 2 I analyse the dataset and I indetify and delete the outliers;
section 3 is devoted to the estimation of the cyclical patterns in both the returns
and volume; the following two sections, 4 and 5, consider the univariate and
multivariate estimation of returns and volume, section 5 deals also with the
variance causality; section 6 will conclude.

1 A (brief) description of the FIB30 market
In 1994 the Italian Stock Exchange moved to an automatic transaction system,
by the end of that year a new market segment was created, to allow trading on
derivatives and among these on the future on the stock market indices. In the
Italian Exchange there exist four indices: the MIBTEL built on all the traded
stocks, the MIB30 that consider only the thirty firms with higher capitalization
and trading, the MIBR that consider the twenty stocks with higher capitaliza-
tion among the ones excluded from the MIB30 and finally the NUMTEL the
Italian correspondent of the NASDAQ, which group information, technology
and communications firm recently entered into the market. In 1994 a future
contract on the MIB30 index was launched; the objective of this operation was
to obtain an increase in the transactions and in the efficiency of the stock mar-
ket, both objectives were reached. Contract characteristics are the followings
(valid up to the end of 2001): there are four contract maturities in March, June,
September and December; the contract clear the third Friday of the maturity
month at 9:30 AM or next day of open market if Friday is holiday; there are four
traded maturities all over the year; last day of negotiation is the maturity day;
the closing price is fixed by the Clearing House with respect to the MIB30 index
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at 9:30 AM (opening price); regulation of the contract by cash the first open
market day after maturity; contract nominal value is determined with respect
to the MIB30 index, each point of the index is worth 5 euros and the minimum
price movement is of 5 index points; transactions last from 9:15 AM up to 17:30
PM (this up to the end of 2001, from January 2002 the market closes at 17:40
PM). It is worth to note that the main market open at 9:30, this mean that
the future prices between 9:15 and 9:30 anticipate market movements since they
respond to the information released during closed market periods (weekend or
just the night), therefore we have could an increase in volumes and high vari-
ations in returns in this limited range. Alternatively, the operators could wait
the opening of the main market before trading in the future to observe how
the stocks react to information shocks. In both cases volume and prices (and
therefore returns) of the future may be biased and may present abnormal move-
ments. The selection of outliers and the filtration of the cyclical components
will be analyzed in the following sections.

2 Data description and outliers deletion
The database used in this study was provided by the Italian stock exchange
(Borsa Italiana S.p.A.). It contains approximately one year of transactions
concluded on the FIB30 contract, the future on the Italian stock exchange index
(MIB30), see previous section for details about the market and the index. The
supplied data ranges from the 13th march 2000 to the 20th march 2001 for a
total of 260 open market days. As specified in the previous section, contracts
are traded with four different fixed maturities (mid March, June, September and
December), with the possibility to trade on the next four maturity dates. This
mean that at any given time there are, possibly, four contracts traded. In this
analysis I concentrate the attention on the contract with the closest maturity,
that is also the most traded one. It covers about the 95% of the market, apart
in the last week of its life, when the trading in the next to maturity contract
increase. This fact represents a problem in dealing with such a database, I
have to check if it is necessary to exclude the last days of a contract life to
avoid noisy prices, that may be biased by the roll-over process. I will return on
this problem in a few steps. The data provided are ”transaction” data, that is
they record all contracts concluded, i.e.for each concluded contract the database
contains: the current date; an identifier of the contract and its ISIN code, that
are different for each maturity and instrument traded; the trading and clearing
time, that is when contract is entered in the system and when it is matched with
a counterpart; the contract number, price and finally the volume, the number
of futures exchanged (see figure 1 for a snapshot of the row data).
Even if the Italian stock exchange market is not one of the biggest european

ones (it represents only 2% of worldwide stock markets capitalization), this boils
down in an enormous amount of data, more than 20 millions of informations,
with peaks of more than 15000 contracts signed in a trading day, see table 2 for
a summary of descriptive statistics. However this dataset cannot be used for all
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market microstructure analysis since bid/ask spread, the sign of the contract
and the identifier of the subject that trades the contract are missing. Even with
this limitation the amount of information contained is still considerable, and
useful for the purposes of the present work. Given that I concentrate on the
prices of the closest maturity contract, I have to solve another problem: I must
specify how to treat the rollover days, where the most traded contract expires
and there is a change in the average price of the futures. It is well known
that a future price get closer to the price of the underlying as it get closer
to the maturity, while the price of the next-to-maturity contract include also
expectations about the underlying and the interest rates movements. Different
solutions for obtaining return series from future prices deal with this problem
and suggest alternative strategies, from shifting the prices series of the delta
between the two contract at the maturity date, or just adjusting return with
a factor. I will not follow any of these suggestions but I will statistically test
the relevance of the returns in the maturity date: I will add an impulse dummy
variable for each maturity date (four in the considered sample) and then test
its significativity. This additional variable will, eventually, exclude the return
across the maturity date without introducing a bias on the structure of the
underlying process.

 

M 
20010201   IT0002083829 MIB30C1   115245 115245   105106   44720.0000   4 
20010201   IT0002083829 MIB30C1   115245 115245   105107   44720.0000   1 
20010201   IT0002083829 MIB30C1   115245 115245   105108   44730.0000   1 
20010201   IT0002083829 MIB30C1   115252 115252   105113   44710.0000   1 
20010201   IT0002083829 MIB30C1   115254 115254   105114   44730.0000   1 
20010201   IT0002083829 MIB30C1   115254 115254   105115   44735.0000   1 
20010201   IT0002083829 MIB30C1   115254 115254   105116   44735.0000   3 
20010201   IT0002083829 MIB30C1   115254 115254   105117   44735.0000   3 
20010201   IT0002083829 MIB30C1   115254 115254   105118   44740.0000   1 
20010201   IT0002083829 MIB30C1   115254 115254   105119   44740.0000   2 
20010201   IT0002083829 MIB30C1   115255 115255   105120   44740.0000   1 
20010201   IT0002083829 MIB30C1   115255 115255   105122   44740.0000   1 
M 

Date yyyymmdd 

ISIN code and identifier of the contract 

Contract trading and clearing time 

Contract number 

Contract price 

Volume 

Figure 1: extract from the dataset provided by the Italian Exchange

The database records transaction series, for the analysis I need to transform
them into equally spaced non-overlapping series. I decided to run the analysis
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on the 5 minute interval, a smaller tick frequency may not show the causality
relation, while a longer one may destroy the microstructure and the correla-
tion and causality between volume, returns and their volatility, resulting in a
contemporaneous relation. Converting transaction data into five-minute obser-
vations is not a problem for the volume series: I have just to sum over the
contract traded every 5 minutes. For the prices this is not so simple, I could in
principle take the last price of all 5 minute intervals, take a weighted average
over the 5 minutes, take the median, the simple mean and other combinations
or means. However, the main problem is to avoid biases due to the averaging
therefore, I chose to consider the last price of the interval, since it will include
all the relevant information impacts, then I price all the volume traded in the
interval at this last observed price.

Day Motivation of exclusion 
26 April 2000 Market was open up to 18 PM due to technical problems during the day 
5 July 2000 Market was open up to 19 PM due to technical problems during the day 
14 August 2000 Abnormal movements due to very low trading 
28 August 2000 Market opened at 10 due to technical problems 
19 February 2001 Market opened at 12:30 due to technical problems 
 
Table 1: days removed from the sample and motivation

Another point concerns the first 15 minutes of open market, from 9:15 to
9:30: I decided to compare the inclusion and exclusion of the first 15 minutes
observing the estimated patterns and a set of descriptive statistics. This paper
presents some of the graphs and analysis. The full comparion among the two
periods is included in Caporin (2002a). The first 15 minutes, in particular
the range 9:15-9:20 concentrate abnormal volume and price movements due
to the impact of news released during closed market hours. In this view I
introduce another dummy variable that excludes the first return of each day
in order to test the close-to-open return nad volume relevance. A significant
value in this dummy is expected since most of announcements of the central
banks and of bigger firms are released when markets are closed. Moreover, it
will be significant for the relevance of the price movements in the range 9:15-
9:30. These announcements affect the underlying stock market index and the
term structure of interest rates, resulting therefore in movements also in the
future prices. A non-significant dummy will reveal that the news released do
not heavily affect market prices probably because they are discounted well in
advance by the whole market. In the following I will discuss some descriptive
statistics computed with or without the range 9:15-9:30.
A further problem is considered in the preliminar analisys of the dataset.

Some days in the sample are completely deleted because the market showed
anomalous trading or anomalous opening due to technical problems (for details
see table 1).
Particular attention has then been given to outlier detection and exclusion;

I presume that they are mainly due to operational errors. Part of them are
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identified observing clearing time, abnormal high price sell contracts and low
price buy contracts are generally not executed, this mean a clearing time of zero,
but the problem is with abnormal low price sell contracts and high price buy
contracts that may be automatically matched with counterparts once entered
into the system. In this last case the outliers are detected by a procedure that
tests the presence of an operation of opposite sign in the next few seconds, and
in that case delete both. However, the correction may not be the next opera-
tion, alternatively there cannot be a correction at all. Therefore, there remain
other outliers. Normally, these are identified and deleted by a procedure that
is run on a daily basis: at first the (daily) standard deviation of the log-returns
is computed, then outliers are defined as the returns outside two bounds de-
termined as three times the standard deviations (positive and negative), and
are then removed; the procedure should also check for jumps in the series, that
could be detected as outliers. Neverthless, I follow this alternative procedure:
assume that we have a presumed outlier pt, then we take the 10 precedent con-
tract prices and compute their mean µt−1,t−10 = (10)

−1Pi=10
i=1 pt−i; we remove

this mean from the 10 contracts and the suspect outlier price we are analyzing
and consider the absolute value of these differences dt−i =

¯̄
pt−i − µt−1,t−10

¯̄
i = 0, 1...10; we compare the presumed outlier difference dt with the biggest dif-
ference among the 10 precedent prices d10 = max (dt−i i = 1...10), the contract
is then deleted if dt > 3d10. The procedure controls also for jumps in the price
series that, following the previous methodology, may be detected as outliers in
the jumping contract price. This methodology is based on the prices preceding
any possible outlier, however to allow for an easier identification of jumps the
same reasoning can be based on the 10 successive prices. I compared these two
alternative methodologies in a limited sample and I get absolutely no difference
on the identified outliers, therefore, given the gains that could be attained in
the software implementation (these procedures are really time consuming in a
database consisting of millions of points), I preferred basing the algorithm on
the 10 successive prices.
The choice of this approach was motivated by the interest in preserving

extreme events, an example can be seen in Figure 2 where I report the observed
log-returns for one day in the sample, the 20 February 2001. In the graph
I report also the bounds computed as 3xstandard deviations. Differently, in
Figure 3, I report the prices with the outliers evidenced. Using the suggested
procedure, only four outliers (the first on the left is a group of two outliers)
are detected and deleted, while using the ”standard” methodology much more
point should have been deleted, incurring in the risk of eliminating extreme
events. The difference among the two procedure is, however, really minimal,
in the sense that I identified outliers in transaction data which in the following
step will be aggregated and averaged over a 5 minute interval, reducing therefore
the possible effects of maintaining in the dataset an outlier or of excluding an
extreme event.
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Figure 2: Log-returns and daily bounds for outlier detection
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Figure 3: Prices with the outlier evidenced by our procedure

Tables from 2 to 4 show a group of descriptive analysis that compares returns
and volume across the quarters. For the returns, I concentrate directly on the
5-minute series, derived from prices observed at the end of each of the 5-minute
intervals. Table 3 compares a set of moments and extreme values between
the return series that include or exclude the period 9:15-9:30. As we can see,
the main changes appear on the sample skewness and kurtosis because we are
including returns belonging to the queues of the distribution: deleting the first
15 minutes of open market the first return of each day will be computed with
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respect to the last price of the previous day, resulting most of the times in a
bigger value (in absolute terms) since the news released when markets were
already closed will affect market specially between 9:15 and 9:30.
In tables 2 and 4 I concentrated the attention on volume to justify the choice

of the contract with closest maturity as the reference contract. We can see that
the number of contracts traded in the future with next to closest maturity
is around 5-8% of the most traded future. Moreover this behavior is stable
during all the year considered. Table 2 allows to make a set of considerations
on the volume traded in this derivative market, more that 3,8 millions contract
were signed, with peaks of more than 37 thousand per day. The period with
lower activity is the one that range from 16/06/00 to 14/09/00, not a surprising
behavior. This pattern becomes much more clearly in figure 4, where the traded
volume of the two contracts of table 2 is shown. In this same table I compare
also the effect of the exclusion of the first 15 minutes and of the days listed in
table 1. Table 4 is the volume descriptive analysis in the five minute intervals,
showing the effects of removing the first 15 minutes of open market: as expected,
skewness and kurtosis goes in the direction of normality since we are deleting
values that are in the queues of the distributions.
The Figures 5 and 6 report the whole sample data after the outlier deletion.

.

 
Quarters 17/03-15/06/2000 16/06-14/09/2000 
Contract 15/06 15/06 adj. 14/09 14/09 14/09 adj. 14/12 
Number of days 62 60 62 64 61 64 
Mean volume 17362 16171 858 11321 10554 799 
Volume s.d. 3781 3594 2117 3161 2759 2548 
Minimum 6586 5662 15 2624 6354 10 
Maximum 27323 26016 12190 24801 21956 17631 
Volume 1059058 970249 52335 724551 643765 51133 
Quarters 15/09-14/12/2000 15/12/00-15/03/01 
Contract 14/12 14/12 adj. 15/03 15/03 15/03 adj. 14/06 
Number of days 65 65 65 62 61 62 
Mean volume 15728 14664 667 15902 14900 860 
Volume s.d. 3540 3433 2070 5706 5310 2349 
Minimum 6475 5777 5 4451 4088 8 
Maximum 24514 23362 11196 37168 34698 13526 
Volume 1022333 953163 43380 985907 908921 52455 
 
Table 2: descriptive statistics of the daily volume across the quarters com-

paring the two most traded contracts and the effects of data cleaning, i.e. iden-
tification and deletion of outliers and days wih abnormal movements (contracts
recorder between 9:15 and 9:30 are excluded)
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Quarters 17/03-15/06/2000 16/06-14/09/2000 
9:15-9:30 with without with without 
Mean -4,62E-06 -4,45E-06 9,20E-07 9,49E-07 
Standard dev. 0,00168 0,00173 0,00084 0,00086 
Kurtosis 40,11631 50,92920 12,97777 15,05628 
Skewness -1,95357 -2,14094 0,58585 0,78776 
Minimum -0,03441 -0,03713 -0,00621 -0,00621 
Maximum 0,01215 0,01828 0,01263 0,01263 
Quarters 15/09-14/12/2000 15/12/00-15/03/01 
9:15-9:30 with without with without 
Mean -1,13E-05 -1,16E-05 -2,61E-05 -2,69E-05 
Standard dev. 0,00118 0,00119 0,00134 0,00135 
Kurtosis 12,48523 14,27727 24,84416 24,67570 
Skewness 0,01205 -0,23917 0,30956 -0,07730 
Minimum -0,01465 -0,01532 -0,01387 -0,01733 
Maximum 0,01126 0,01256 0,02349 0,02095 
 
Table 3: descriptive statistics of the 5 minute returns series across quarters

comparing the effects of excluding or not the contracts concluded between 9:15
and 9:30

Quarters 17/03-15/06/2000 16/06-14/09/2000 
9:15-9:30 with without with without 
Mean 174,222 168,446 114,091 109,933 
Standard dev. 132,624 125,727 104,451 99,130 
Kurtosis 3,346 2,631 12,546 11,587 
Skewness 1,528 1,411 2,531 2,427 
Minimum 1 1 0 0 
Maximum 1073 948 1324 1324 
Sum 1034879 970249 688997 643765 
Quarters 15/09-14/12/2000 15/12/00-15/03/01 
9:15-9:30 with without with without 
Mean 157,460 152,750 160,315 155,212 
Standard dev. 130,888 126,293 141,693 135,341 
Kurtosis 5,204 4,243 13,808 14,023 
Skewness 1,776 1,702 2,386 2,306 
Minimum 1 1 1 1 
Maximum 1431 1147 2131 2131 
Sum 1013256 953163 968141 908921 
 
Table 4: descriptive statistics of the 5 minute volume series across the quar-

ters comparing the effects of excluding or not the contracts concluded between
9:15 and 9:30
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Figure 4: volume in the two most traded contracts
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Figure 5: 5 minute prices and volumes
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Figure 6: 5 minute returns

3 Filtering cyclical patterns
This section focuses on the identification of cyclical patterns in the mean and in
the volatility of both returns and volume, following the approach of Bollerslev
and Andersen (1997). I will study in detail at first the return series (contracts
recorder from 9:30 up to 17:30) and then the volume.

a)
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ACF(absolute raw return)

ACF(absolute filtered return)
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Figure 7: autocorrelation function of the 5 minute returns

Figure 7 shows the sample autocorrelations computed on 5-minute returns
(200 lags considered) and on their absolute value (1000 lags considered). As
expected, the mean dynamic can be explained by a small order ARMA model,
given the limited number of significant sample autocorrelations. The first panel
clearly evidence a cyclical pattern, that is responsible also for the peak in panel
b) at the 96th lag. The structure of the oscillation indicates a combination of
different cyclical components acting at different frequencies (note the peaks at
the top of the sinusoidal pattern). The very same observations can be derived for
the series that include the contracts concluded between 9:15 and 9:30, the only
difference is that the peaks are at the 99th lag and multiple. Following Andersen
and Bollerslev (1997) in figure 8 I verify the presence of this periodical behavior.
Note that the first 5-minute interval is not represented in both graphs given its
very high value; plotting it the cyclical patter will not have been so evident.
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Figure 8: cyclical pattern in the absolute returns 9:35 - 17:30

The graphs represents the average absolute return across the five minute
intervals in the sample: the open market day last for 8 hours (in figure 8), so
96 (let me defite it as the N index) ordered five minute intervals are considered;
for each of these intervals I computed the mean across the days in the sample
(247=T), and graphed them:

µ̂n =
1

T

TX
t=1

xt,n n = 1, ...N (1)

The graphs clearly show a cyclical pattern, the well known U effect, returns
are high when market opens and closes, they decrease during the day up to 2-3
PM and then increase. This effect is well documented for stock market returns
and volatility. Two additional effects are noted: there is a peak after lunch, due
to an increase in the trading after the break, that last for about an hour, than
the trading decreases as quickly as it increased, until the first signals come from
the American markets: in fact we can observe (note the timing in the graphs)
that returns and volume react half an hour before the opening of the New York
stock exchange. Graph 8 shows the pattern computed with (1), while the bold
line is the estimated pattern.
The seasonal component can be filtered by the Flexible Fourier Form regres-

sion, see the appendix for a brief description of this technique. Flexible Fourier
form is a deterministic filtration procedure, I do not consider any stochastic
cyclical specification since the behavior of this periodic patter is very evident
from data, moreover in a recent paper Beltratti and Morana (2000) compared
the two methodologies and their choice was in the direction of the FFF, given
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the very close results. As in the cited papers the returns filtration is based on
the following representation

rt,n = E [rt,n] +
σt(,n)st,nZt,n√

N
(2)

where the return rt,n at day t and interval (5 minute) n is the sum of its expected
value plus a term that depend on a daily (or intra-daily) volatility σt(,n) , on
an error term Zt,n and on a function st,n that explain the cyclical behavior.
After a transformation on the data a Fourier regression is run, considering the
harmonics reported in table 5.

Parameter Component correspondence Time correspondence 
α1, α2, α3 Quadratic component --- 

γ1 Dummy for opening --- 
γ2, γ3, γ4 Dummies for maturity --- 
δ1, φ1 Harmonic of period 1 8 hours (1 day - 96 5 minute intervals) 
δ2, φ2 Harmonic of period 2 4 hours (48 intervals) 
δ3, φ3 Harmonic of period 3 2 hours and 40 minutes (32 intervals) 
δ4, φ4 Harmonic of period 4 2 hours (24 intervals) 
δ6, φ6 Harmonic of period 6 1 hour and 20 minutes (16 intervals) 
δ8, φ8 Harmonic of period 8 1 hour (12 intervals) 
δ12, φ12 Harmonic of period 12 45 minutes (9 intervals) 
δ16, φ16 Harmonic of period 16 30 minutes (6 intervals) 

 
Table 5: harmonics and correspondence with time, 96 interval per day, 9:30-

17:30

The filtered returns are obtained by the following expression:

rft,n =
rt,n −E [rt,n]

st,n
(3)

Given the flexible representation of the FFF I added also a group of dummy
variables to take into account and test the effect due to the close-to-open move-
ments (the effects of the first 15 minutes of open market will also be included)
and to the maturity dates: I added 3 dummies to consider the three maturity
dates included in the sample (impulse dummy) and an additional one to con-
sider the daily opening effect, in this last case the dummy get a value 1 for the
first return of each day, a significant value of its associated coefficient implies
that the information flow during closed market period impacts on prices on the
first return of the day. The estimation results are summarized in table 6, where
the parameters, standard deviation and significativity tests are considered. A
graph of the estimated cyclical component is reported in figure 8, while a graph
of the autocorrelation function of filtered data in included in figure 7. The har-
monics listed in table 5 have been chosen with a general to particular selection
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procedure, starting form a FFF regression with harmonics up to a period of 24
and iteratively deleting the less significant harmonic. Using the whole sample
the harmonics change because there will be 99 intervals per day. However, the
cyclical patterns are not heavily influenced by this fact.

Parameter Estimate Std. Err. t-value Parameter Estimate Std. Err. t-value 
α1 -7,501 0,938 -7,994 δ3 -0,230 0,061 -3,774 
α2 -10,531 2,712 -3,884 φ3 -0,086 0,034 -2,526 
α3 3,478 0,903 3,851 δ4 -0,111 0,039 -2,871 
γ1 1,430 2,550 0,561 φ4 0,101 0,030 3,417 
γ2 2,267 2,550 0,889 δ6 0,069 0,027 2,575 
γ3 2,415 2,550 0,947 φ6 -0,128 0,026 -4,911 
γ4 2,462 0,234 10,533 δ8 -0,031 0,025 -1,282 
δ1 -1,309 0,530 -2,470 φ8 0,110 0,025 4,455 
φ1 -0,405 0,079 -5,134 δ12 -0,030 0,024 -1,241 
δ2 -0,569 0,132 -4,309 φ12 0,046 0,024 1,922 
φ2 -0,171 0,044 -3,882 δ16 0,014 0,024 0,576 

    φ16 0,067 0,024 2,826 
 
Table 6: estimation results for the return cycle, period considered 9:30-17:30

9:30-17:30 9:15-17:30 Statistics Raw Filtered Raw Filtered 
Mean -1,056e-5 -9,661e-4 -1,032e-5 -0,00081 

St. Dev. 0,00131 0,11353 0,00129 0,11756 
Kurtosis -1,223 -0,165 -0,938 -0,163 

Skewness 50,772 6,831 41,303 6,981 
Q(5) 29,342 25,178 10,372 24,325 
Q(10) 38,923 39,770 18,523 39,721 
Q(20) 46,335 44,511 25,837 45,740 
Q(50) 84,085 98,332 63,290 103,646 

Q(100) 219,632 176,500 152,049 178,770 
Q2(5) 57,562 2553,908 82,956 2624,742 

Q2 (10) 92,361 3848,511 154,235 3926,159 
Q2 (20) 152,718 5887,090 237,537 5872,836 
Q2 (50) 190,973 10751,499 302,345 10837,267 

Q2 (100) 1441,911 17024,438 1255,376 17018,321 
JB 2266576,7 14713,698 1501913 16367 

LM(2) 22,291 17,141 3,769 17,246 
LM(5) 30,194 25,759 10,538 24,731 
LM(10) 40,042 42,102 18,696 41,764 
LM(20) 47,754 46,477 26,272 47,294 
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Table 7: moments and test of 5 minute returns

Finally, in Table 7 I compare the moments and the tests for correlation
and ARCH effects computed on the raw and on the filtered return series (the
table shows considers also a filtration on the whole sample to compare the
results with the strategy I chose). After removing the periodic component,
a long memory effect appears in the volatility of the 5 minute returns: note
the smooth convergence toward zero of the autocorrelation of absolute returns,
they are significant for all the lags graphed in Figure 7. The Portmanteau test
computed on squared observations reacts to this emerging pattern while Engle
LM test is not influenced. The filtration of periodic components shifts also
the distribution of the returns toward normality, see Figure 10 which reports
a kernel density estimate of 5 minute returns distribution before and after the
filtration, compared with a normal distribution. The graph plots standardized
returns (filtered and not) to avoid scale problems. A final comment on table
7 concerns the long run correlation evidenced by the Lijung-Box statistic: it
seems that the exclusion of the observations recorded in the range 9:15-9:30
create additional correlation in the filtered series. This fact can be interpreted
as an evidence of a true long memory pattern biased by abnormal movements or
by a direct effect of including jumps and breaks in an underlying autocorrelated
process. My preference is for the second hypothesis and for this reason the
model estimated of the following section will be based on the whole sample.
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Figure 9: Kernel density estimate of 5 minute returns, period 9:30-17:30

Before turning to the analysis of the volume series a couple of comments on
the estimated parameters of Table 6: the dummies reflecting the maturity date
effect are not significant, probably they will have a greater impact in the mean
than in the variance; as expected the dummy introduced to take into account
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the correction for contracts concluded between 9:15 and 9:30 is highly signi-
ficative, therefore news impact affect market movement at the opening; all the
periodic components included in the FFF regression resulted to be significant;
moreover thay remove the greater part of the periodic pattern from the data.
This indicates that the choice of a deterministic procedure was correct.

a)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 101 201 301 401 501 601 701 801 901

Log-volume

Mean-filtered Log-volume

Filtered Log-volume

b)

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 101 201 301 401 501 601 701 801 901

Absolute Filtered Log-volume

Absolute Mean-filtered Log-volume

Figure 10: Autocorrelations of Volume

Let me now consider the volume series. Before all analysis the volume is
rescaled with a log transformation, this operation will be necessary in a bi-
variate modelling view, to avoid any scale problem in parameter estimation,
moreover this will change the distribution of volumes from a lognormal (volume
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are positive by construction) to a normal setting. As for the returns we start
considering autocorrelations depicted in Figure 10. Clearly the autocorrelations
computed on volume and on its absolute value are identical.
The seasonal pattern is found here in the mean, as Figure 10 (panel a)

shows, but also in the variance: this second pattern emerges once the cyclical
component in the mean has been removed, as we can see from Figure 10 (panel
b). Therefore, for the volume the flexible Fourier form is used both on the mean
and on the variance, the representation used is the following

vt,n = E [vt,n] +
σt(,n)st,nZt,n√

N
(4)

E [vt,n] = s̄t,n +E [ṽt,n]

with two distinct seasonal components. The Harmonics used both in the mean
and in the variance are the same used for the returns (see table 3) as well as
the dummies. I tried to estimate a complete model in one step, but the elevate
number of parameters gave problems in the convergence of the optimization
algorithm, therefore I adopted a two step procedure: in the first stage I have
estimated and remove the cyclical component in the mean, while in the second
step I dealt with the seasonal pattern in the variance. The opposite filtration
scheme, at first the seasonal pattern in the variance and then the one in the
mean in not efficient. I considered this alternative approach and applied the
FFF-technique on the variances, it turned out that the cyclical component were
not completely filtered and moreover the one on the mean resulted much more
noisy. I presume that this is due both to the structure of the FFF technique and
to the volume series values, all positive. Figures 11 and 12 show the seasonal
patterns as they are found in the data and estimated by the FFF regression
on data that includes the range 9:15-9:30. This inconsistency with the figures
of the returns is introduces to verify that the cyclical patterns are relatively
influenced by the number of daily intervals.
The periodic pattern in the volume mean is really similar to the one found in

the variance of the returns: we can easily identify the peak in the first afternoon
and the abrupt increase in volumes in coincidence with New York opening.
Interestingly, the patter of volume volatility is of a very different shape, it peaks
at noon and shows the widest variations in correspondence to New York opening
and after 17 PM. This may not be so surprising: market activity is high early in
the morning and near the end of the day, with an elevate number of contracts
traded with high variation in prices, conversely at noon market activity is very
low, prices do not move since trader wait for signals from the American market,
therefore the number of contracts traded (the volume) per 5 minute intervals
vary much more than in the morning or in the late afternoon. This particular
behavior can explain the deterministic patterns of returns and volume.

18



1 3 . 4 5

1 6 . 0 0

1 5 . 2 0

1 4 . 3 0

3 . 5

4

4 . 5

5

5 . 5

6

6 . 5

9 . 1 5 9 . 5 5 1 0 . 3 5 1 1 . 1 5 1 1 . 5 5 1 2 . 3 5 1 3 . 1 5 1 3 . 5 5 1 4 . 3 5 1 5 . 1 5 1 5 . 5 5 1 6 . 3 5 1 7 . 1 5

Figure 11: cyclical patter in the mean of the volume 9:20-17:30
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Figure 12: cyclical pattern in the variance of the volume 9:20-17:30

The estimated parameters of the two FFF regressions are reported in Table
8. As for the returns most of the harmonics used in the regression resulted to be
significant, both in the mean and in the variance. The dummy for beginning of
the day is significant in both regressions while the impulse dummies for the ma-
turity dates are significant only for the variance, as if they affect only volatility
and not the level of the traded contracts. In this table I report the estimation
for the range 9:30-17:30 to compare the results with the one of table 6.
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Figure 13: kernel density estimate of the log-volume

Similarly to the Returns, filtered volume is obtained by:

vft,n =
vt,n − s̄t,n −E [ṽt,n]

st,n
(5)

Consider now Table 9, where I report moments and tests for correlation and
ARCH effects computed on the raw volume and after removing each of the two
periodic component.
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 Log-Volume - mean Log-Volume - variance 
Paameter Estimate Std. Err. t-value Estimate Std. Err. t-value 

α1 7,807 0,281 27,738 -10,885 0,819 -13,290 
α2 -9,474 0,813 -11,647 14,721 2,367 6,219 
α3 3,193 0,271 11,786 -4,972 0,788 -6,306 
γ1 0,500 0,765 0,653 -53,645 2,226 -24,096 
γ2 -0,305 0,765 -0,399 -53,645 2,226 -24,096 
γ3 0,100 0,765 0,131 -53,645 2,226 -24,096 
γ4 -0,351 0,070 -5,007 0,561 0,204 2,751 
δ1 -1,172 0,159 -7,377 2,346 0,462 5,073 
φ1 -0,222 0,024 -9,404 0,071 0,069 1,032 
δ2 -0,585 0,040 -14,758 0,642 0,115 5,561 
φ2 -0,166 0,013 -12,541 0,116 0,038 3,024 
δ3 -0,148 0,018 -8,086 0,228 0,053 4,290 
φ3 -0,040 0,010 -3,926 -0,030 0,030 -1,007 
δ4 -0,136 0,012 -11,776 0,144 0,034 4,272 
φ4 0,049 0,009 5,557 -0,095 0,026 -3,705 
δ6 0,041 0,008 5,140 -0,032 0,023 -1,387 
φ6 -0,090 0,008 -11,522 0,007 0,023 0,292 
δ8 -0,004 0,007 -0,477 0,025 0,021 1,188 
φ8 0,055 0,007 7,405 -0,010 0,022 -0,462 
δ12 -0,016 0,007 -2,243 -0,004 0,021 -0,196 
φ12 0,012 0,007 1,711 -0,033 0,021 -1,582 
δ16 0,010 0,007 1,402 -0,029 0,021 -1,391 
φ16 0,045 0,007 6,374 0,003 0,021 0,160 

 
Table 8: FFF regressions on log-volume, 9:30-17:30

Observing the table and the autocorrelations reported in Figure 10 we can
note that a long memory effect is present both on the mean and on the variance
of the volume. This effect is evident in the Portmanteau tests and in the Engle
ARCH test. Interestingly, Skewness and Kurtosis evidence a distribution very
close to the normal a fact that is much more evident in Figure 13. This particular
effect of the filtration process becomes here much more evident than in the return
case. Moreover, the estimated seasonal component in the variance is removed
by a division and, since the values of the pattern are small compared to log-
volume, the scale of the process is affected (note the increase in the standard
deviation). In the following analysis the resulting filtered volume is rescaled one
more time, dividing it by 100.
The exclusion of the contracts traded in the range 9:15-9:30 has here lower

effects, the tests and the moment and almost equivalent.
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 9:30-17:30 9:15-17:30 
Statistic Raw Mean filt. Var. Filt. Raw Mean Filt. Var. Filt. 
Mean 4,618 -1,039e-13 0,018 4,647 -4,553e-14 -0,052 

St. Dev. 0,936 0,763 71,988 0,942 0,758 73,603 
Skewness 1,053 -0,285 -0,301 1,053 -0,289 -0,310 
Kurtosis 1,137 3,853 3,511 1,137 3,866 3,439 

Q(5) 39820,279 19185,399 19610,140 42157,828 19734,710 20377,917 
Q(10) 62150,820 27802,570 28530,604 66140,347 28685,937 29768,113 
Q(20) 83851,440 39924,860 41368,364 90418,897 40847,234 42945,089 
Q(50) 93767,125 62361,783 66613,632 102471,400 65127,335 70888,597 

Q(100) 174183,170 92785,812 103294,340 180922,470 97031,012 110257,680 
Q2(5) 40061,678 5418,088 5562,467 42274,666 5894,600 6000,630 

Q2 (10) 62074,589 7039,441 6849,840 65807,611 7706,708 7551,529 
Q2 (20) 83468,164 8718,860 8546,765 89803,130 9596,364 9627,444 
Q2 (50) 93201,321 9195,682 11105,105 101891,920 10188,584 12831,137 

Q2 (100) 174763,220 12307,430 14267,603 181726,110 13240,205 16805,901 
JB 12188,761 1362,619 973,746 12569,571 1443,666 979,909 

LM(2) 12020,309 7437,703 7582,311 12616,673 7694,255 7889,679 
LM(5) 12492,956 7892,492 8042,759 13107,417 8157,775 8362,377 
LM(10) 12572,968 8070,447 8227,787 13189,415 8345,803 8552,206 
LM(20) 12622,467 8186,349 8351,431 13234,411 8461,731 8677,751 

 
Table 9: Moments and tests of log-volume series

4 Univariate analysis

Consider now the two different series of filtered returns (rft,n, in the following

Rt) and volume (v
f
t,n, in the following Vt), as we can see from the ACF in figure

4 and 5, they show a different behavior. The returns clearly have a limited
ARMA structure in the mean together with a long memory behavior in the
variance, while volumes show long memory both in mean and in variance. In
this section I try to fit a univariate model on these two series. The scope is to
provide an initial base on which I can build up a multivariate model, as well as
to have a set of starting value for its parameters. The following table reports the
best parameterisations obtained for the two filtered series. I considered model
combinations up to the order 2 for the ARMA oders p, q and for the GARCH
order m, while only up to 1 for the ARCH order l. An increase in any the
orders resulted in non significative parameter estimates. In the first column of
the table I report the parameters used in the different specifications - inside
the tables is reported the estimate and below it the correspondent standard
error - and then, in the order: the log-likelihood; the informations criteria of
Akaike (AIC), Hannan-Quinn (HQ), Schwarz (BIC) and Shibata (SH); the Box-
Pierce - Portmanteau - test for residual Q(k) and squared residual correlation
Q2(k), computed up to k lags; the sample Skewness and Kurtosis together with
the Jarque-Bera normality test; the Engle Lagrange Multiplier test LM(k) for
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residual ARCH effects computed up to lag k. The preferred model is the one
that minimises the maximum number of information criteria.

Returns Volume
9:15-17:30 9:15-17:30

0.00015 0.11343
0.21818 0.05424

0.32058
0.00723

0.40289
0.04587
0.43134 -0.06995
0.04682 0.00940
0.30999 0.14505
0.01327 0.02151
0.00074 0.06521
2.18177 0.02537
0.53403 0.51301
0.01368 0.15082
0.31495 0.42748
0.01122 0.13835

LL 20097.919 -21522.460
AIC -1.64329 1.76088
HQ -1.64254 1.76164
BIC -1.64371 1.76047
SH -1.64329 1.76088

Q(5) 12.62629 3.95188
Q(10) 32.23680 14.72679
Q(20) 37.20633 42.03025
Q(50) 58.93983 85.27074

Q(100) 119.14041 269.35450
Q²(5) 9.03280 3.57777

Q²(10) 22.57878 14.05195
Q²(20) 29.76496 22.06650
Q²(50) 62.87172 58.11797
Q²(100) 94.36597 128.33691

Sk -0.12965 0.00261
K 5.51105 3.46881
JB 6561.12520 223.98374

LM(2) 3.11289 0.78289
LM(5) 12.50059 3.96542
LM(10) 31.35756 14.81023
LM(20) 36.77267 42.52746
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Table 10 - Univariate estimation of filtered returns and volume series.

Analyzing the result of the univariate estimates and the corresponding infor-
mation criteria and tests we choose the ARFIMA(1,d,1)-FIGARCH(1,d,1) for
the returns and the ARFIMA(0,d,1)-FIGARCH(1,d,1) for the volume. These
specifications were chosen both including and including the contracts concluded
between 9:15 and 9:30. Our choice, given the results of the first chapter, was
done only on the basis of the information criteria. The whole set of estimation
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is not reported for saving space but it can be requested directly to the author.
Moreover, it is included in Caporin (2003b).

5 Multivariate analysis and causality
In this section I apply the multivariate techniques to infer the causal relations
between returns, volume and their variances. A first analysis considered the
approach of Cheung and Ng (1996): they suggest to fit univariate models that
include lagged variables in the mean and lagged squared residuals in the variance
equation as suggested by an analysis of cross correlations on the variables and
on the squared variables. In this case there is evidence the cross-correlations
evidence the existence of mean and variance causality, however the inclusion of
the additional terms suggested by Cheung and Ng provides evidence of causality
only from the returns to the volume. This analysis is not reported here and can
be found in Caporin (2003b).
The previous estimations was a first attempt to causality testing, now I turn

to a pure multivariate setting. At this point I estimate a VARFIMA(1,d,0) with
residuals following a multivariate constant conditional correlation FIGARCH,
that will be used as a benchmark model. The representation I use is the follow-
ing, where rt is the log-return series and vt is the volume series; both variables
are filtered from deterministic components:·

Rt
Ṽt

¸
=

·
µR
µV

¸
+

·
φ1,1 φ1,2
φ2,1 φ2,2

¸ ·
Rt−1
Ṽt−1

¸
+

·
εR,t
εV,t

¸
(6)

Ṽt = (1− L)d1,2 Vtµ
εR,t
εV,t

¶
∼ F

µ·
0
0

¸
,

·
σ2R,t σRV,t
σRV,t σ2V,t

¸¶
σ2R,t = ω1 + β1σ

2
R,t−1 +

h
1− β1L− (1− ψ1L) (1− L)d2,1

i
ε2R,t

σ2V,t = ω2 + β2σ
2
V,t−1 +

h
1− β2L− (1− ψ2L) (1− L)d2,2

i
ε2V,t

σRV,t = ρσR,tσV,t

The model is estimated including data recorded from 9:15 and 9:30. Results
are reportedin Table 11. As we can observe, the result contradicts the theory:
there is evidence of the return causing the volume in the mean but not the
opposite. However, we can explain this behavior reasoning on market structure.
In the FIB30 market, the market makers quote prices for different maturities
and we assume that they are as well as dealers, informed traders. Therefore as
soon as a news impact on the market they react immediately changing prices.
Differently, brokers and other traders, less informed that market makers, react
observing price changes quoted by the firsts and adjust consequently then their
positions. Using this temporal sequence, we can expect that changes in prices,
responsible of changes in returns, will have a significant impact on the market
volume.
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Whole sample 02/01/02-15/03/02 Parameters 
i=1,2 Returns Volume Returns Volume 

µi 
-0.00006 
0.00060 

0.10390 
0.04851** 

-0.00098 
0.00317 

0.25761 
0.08650* 

d1,i  0.31751 
0.00808*  

0.31944 
0.01752* 

φi,1 
-0.02714 
0.00699* 

-0.11804 
0.03113* 

-0.01533 
0.02742 

-0.12402 
0.05953* 

φi,2 
0.00073 
0.00101 

0.07261 
0.01079* 

-0.00110 
0.00409 

0.10186 
0.02426* 

ωi 
0.00075 
0.00008* 

0.03912 
0.00646* 

0.00012 
0.00148 

0.14921 
0.02351* 

d2,i 
0.31319 
0.01433* 

0.16887 
0.01549* 

0.89112 
0.24031* 

0.08892 
0.02126* 

βi 
0.53139 
0.02948* 

0.68221 
0.04202* 

0.89312 
0.09565* 

0.01883 
0.02839 

ψi 
0.30858 
0.02589 

0.58549 
0.04396* 

0.09571 
0.15126  

ρ -0.03625 
0.00635* 

-0.08009 
0.03043 

AIC -0.11433 -0.02897 
HQ -0.11261 -0.02211 
BIC -0.11541 -0.03388 
SH -0.11433 -0.02898 

Q(5) 8.932 4.213 8.524 1.629 
Q(10) 28.303 15.330 22.868 8.251 
Q(20) 33.365 42.602 29.862 23.235 
Q(50) 55.497 86.060 51.983 48.294 
Q(100) 115.731 270.169 100.756 130.971 
Q2(5) 9.411 6.543 4.698 1.484 
Q2(10) 21.794 15.599 11.810 5.625 
Q2(20) 28.645 23.804 20.890 24.365 
Q2(50) 61.259 58.715 46.827 61.304 

Q2(100) 93.059 128.313 105.199 116.434 
 
Table 11: bivariate model for returns and volume

The previous estimatio took into consideration only causality in mean, I
have not yet considered second order causality within a multivariate frame-
work. Given the complexity of the involved models and the CPU time needed
to perform the estimation, from now on the results are based on a restricted
sample. I consider the whole records of data (from 9:15 to 17:30) for a limited
period of time, ranging from 2 January 2001 up to 15 March 2001, a total of
53 days, 5247 observations. To get a benchmark model for test on residual I
re-estimated the baseline model, VARFIMA(1,d,0) with a CCC-FIGARCH, this
is again reported in table 11. In this case the Volume GARCH structure has
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been modified into a FIGARCH(1,d,0), since the FIGARCH(1,d,1) performed
very poorly. Although the β in the estimated FIGARCH(1,d,0) for the volume
resulted non significant, I decided to maintain it in the model, this to preserve
a limited short memory pattern within the volume series.
For the estimation of the model, I applied numerical optimizations proce-

dures that allow for nonlinear constraints on parameters. I used the BFGS
optimization algorithm for the first up to the third iteration, then the proce-
dure switch to the Newton method. A full set of estimation for the multivariate
benchmark model can be found in Caporin (2003b).
Given the benchmark estimates, the following step is the analysis of multi-

variate GARCH models that consider also the causal relation among variances.
A first approact simply adds in the return (or volume) GARCH equation the
lagged variance or squared residuals of the volume (return). The second model I
consider in a new type of GARCH parameterisation that includes a causal rela-
tion, the Exponential Causality-GARCH model. Given that the model structure
changes, I tried a wide range of possible specifications for the GARCH terms,
starting form the GARCH(1,1) up to the FIGARCH(1,d,1). All the results are
reported in Caporin (2003b), while here we focus on the most promising ones.
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Return Volume Return Volume Return Volume
Figarch(1,d,1) Figarch(1,d,0) Figarch(1,d,1) Figarch(0,d,0) Figarch(1,d,1) Figarch(0,d,0)

Parameters Estimate Sd. Err. Estimate Sd. Err. Estimate Sd. Err.
-0.00098 0.00317 -0.00108 0.00138 -0.00105 0.00137
0.25761 0.08650 0.25052 0.08058 0.25244 0.08024
0.31944 0.01752 0.31993 0.01804 0.31974 0.01768
-0.01533 0.02742 -0.01538 0.01869 -0.01524 0.02087
-0.00110 0.00409 -0.00128 0.00281 -0.00124 0.00253
-0.12402 0.05953 -0.12225 0.06054 -0.12202 0.05830
0.10186 0.02426 0.10055 0.02383 0.10171 0.02364
0.00012 0.00148 0.00002 0.00007 0.00000 0.00017
0.89112 2.71137 0.96960 0.17348 0.95616 0.28148
0.89312 1.31620 0.92879 0.06539 0.92281 0.11376
0.09571 1.46300 0.04987 0.11706 0.05800 0.17707
0.14921 0.02351 0.16124 0.01650 0.16045 0.01643
0.08892 0.02126 0.07877 0.01401 0.07946 0.01407
0.01883 0.02839

0.00016 0.00016 0.00027 0.00050
0.00000 0.18917 0.00000 0.01894

Correlation -0.08008 0.03044 -0.08077 0.02003 -0.08073 0.02031
Log-likelihood

AIC
HQ
BIC
SH

Return Volume Return Volume Return Volume
Q(5) 8.524 1.629 8.678 1.647 8.729 1.676

Q(10) 22.868 8.251 23.356 8.254 23.349 8.286
Q(20) 29.862 23.235 30.680 23.184 30.552 23.184
Q(50) 51.983 48.294 52.214 48.128 52.391 48.148
Q(100) 100.756 130.971 100.378 131.217 100.748 131.117
Q²(5) 4.698 1.484 4.640 1.724 4.557 1.728
Q²(10) 11.810 5.625 11.079 5.860 11.239 5.869
Q²(20) 20.890 24.365 19.142 24.705 19.562 24.724
Q²(50) 46.827 61.304 44.689 62.826 45.284 62.835

Q²(100) 105.199 116.434 102.225 118.437 102.944 118.432

87.414 88.618 87.940

VARFI(1,1)

Exogenous Variance

Volume

Return

Causality

Specification
No causality Exogenous Residuals

-0.02897
-0.02211
-0.03388
-0.02898 -0.02907

-0.03434
-0.02174
-0.02905 -0.02878

-0.02147
-0.03407
-0.02880

Table 12.a: bivariate model estimates with causality components. Coefficient
are in the order: VARFI µR, µV , dV , φ1,1, φ1,2, φ2,1, φ2,2; GARCH part ω, d,
β, φ; causality γR, γV .
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Return Volume Return Volume
Figarch(1,d,1) Figarch(1,d,0) Figarch(1,d,1) Garch(1,1)

Parameters Estimate Sd. Err. Estimate Sd. Err.
-0.00098 0.00317 -0.00122 0.00134
0.25761 0.08650 0.33331 0.10461
0.31944 0.01752 0.33207 0.01845
-0.01533 0.02742 -0.02107 0.01599
-0.00110 0.00409 -0.00156 0.00249
-0.12402 0.05953 -0.13724 0.05985
0.10186 0.02426 0.10747 0.02427
0.00012 0.00148 0.00017 0.00006
0.89112 2.71137 0.07249 0.01404
0.89312 1.31620 0.92341 0.01481
0.09571 1.46300
0.14921 0.02351 0.01391 0.01044
0.08892 0.02126 0.03002 0.01749
0.01883 0.02839 0.95826 0.04313

-0.00611 0.00706
-0.03655 0.01096

Correlation -0.08008 0.03044 -0.08374 0.01944
Log-likelihood

AIC
HQ
BIC
SH

Return Volume Return Volume
Q(5) 8.524 1.629 10.502 2.192

Q(10) 22.868 8.251 26.422 8.101
Q(20) 29.862 23.235 32.867 24.111
Q(50) 51.983 48.294 55.710 47.222
Q(100) 100.756 130.971 100.711 128.061
Q²(5) 4.698 1.484 6.743 10.741
Q²(10) 11.810 5.625 12.330 16.797
Q²(20) 20.890 24.365 18.877 33.713
Q²(50) 46.827 61.304 42.428 63.528

Q²(100) 105.199 116.434 97.129 119.462

-0.02898

87.414
-0.02897
-0.02211
-0.03388

VARFI(1,1)

Return

Volume

Causality

105.821

Specification
No causality Exponential Causality

-0.03595
-0.04122
-0.02862
-0.03593

Table 12.b: bivariate model estimate with exponential causality. Coefficient
are in the order: VARFI µR, µV , dV , φ1,1, φ1,2, φ2,1, φ2,2; GARCH part ω, d,
β, φ; causality γR, γV .

Table 12 is divided in two panels, in both I report in the first two columns the
benchmark model, while the remaining are devoted to the causality estimates: in
panel a) with the introduction of an exogenous variable in the variance equation,
while in panel b) with the introduction of a multiplicative exponential factor
(EC-GARCH model). Recalling equation (6) the variance component has been
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modified into

σ2R,t = ω1 + β1σ
2
R,t−1 + γ1f (Vt−1) + (7)h

1− β1L− (1− φ1L) (1− L)d2,1
i
ε2R,t

σ2V,t = ω2 + β2σ
2
V,t−1 + γ2f (Rt−1) +h

1− β2L− (1− L)d2,2
i
ε2V,t

for panel a, where f (Vt−1) = z2V,t−1 and f (Rt−1) = z2R,t−1. For panel b the
estimated variance equations are

σ2R,t = exp (γ1f (Vt−1))
¡
ω1 + α1ε

2
R,t−1 + β1σ

2
R,t−1

¢
(8)

σ2V,t = exp (γ2f (Rt−1))
¡
ω2 + α2ε

2
V,t−1 + β2σ

2
V,t−1

¢
where f (Vt−1) and f (Rt−1) are substituted as before. In the table parameters
are reported in the following order: for the VARFI(1,d) µR µV d1,2 φ1,1 φ1,2
φ2,1 φ2,2; for the return ω1 α1 β1; for the volume ω2 α2 β2 both models have
a GARCH(1,1) specification, as suggested in the theoretical presentation of the
model. The remaining three parameters are, in the order, γ1 γ2 ρ. Finally note
that the log-likelihoods and the information criteria (to be minimized) can be
directly compared across the different specifications. First of all we can note
that the causality parameters are non-significant in panel a, while in panel b the
causality effect of return variance on volume variance became significant, as we
were expecting. Moreover the likelihood clearly increase and all the information
criteria prefer the second fitted model. Interestingly the tests on residuals are
very close between the two models, this could be expected in the mean since
both maintain the same structure, however some difference was expected in
the variance because the first model include a long memory behavior while the
second is a modified GARCH model, a short memory one. The two models
return very close Box-Pierce statistics for elevate lags (50-100), while for the
lags up to 20 it seems that the causality GARCH model cannot explain all the
correlation. In principle the reverse should appear, the GARCH do not explain
high lag correlation since it is a short memory one, however this result has been
obtained. We conjecture that, at least in this case, the long memory behavior
of the volume and return volatility is generated by the causality structure and
an increase of the lags of the GARCH structure should be considered in order
to explain the residual correlation for the lags 2-5. Moreover an interesting
comparison could be the one of these results with a causality FIGARCH model.
These estimations will be the object of future researches.

6 Conclusions
Within this work I focused on the analysis of the seasonal patterns and on
the memory and causality structure of the FIB30 market. After the deletion
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of outliers, particular attention was givn to the identification of the cyclical
deterministic components and its relation with the inclusion of the contracts
concluded in the first 15 minutes of open market. For these analysis I considered
the approach followed by Andersen and Bollerslev (1997) which suggest the use
of Fourier regressions. The filtration process evidenced the presence of the wll-
known U shape in the variance of the returns, high volatility at the opening
and at the close of the market. Moreover, two effects due tothe lunch breack
and to the opening of the American markets are noted. The same U pattern
is found in the volume mean, while volume variance shows a reverse U pattern
which is explained by the increase in the volaility of volumes when the trading
decreases during the lunch break. The successive analysis consideres the memory
and the causality within univariate and bivariate settings. There is evidence of
long memory in the returns variance and in the volume mean and variance.
Moreover, there exist a causal relation from the mean returns to the mean
volume which contradict the theory. However, this behavious can be explained
by the existence in the market of two groups of traders differently informed.
Finally, there is also evidence of variance causality again from the returns on
the volume. For this last analysis we considered a new type of GARCH model,
the EC-GARCH which directly parameterise the variance causality. The EC-
GARCH parameterisation was clearly preferred to alternative specifications by
standard information criteria. Moreover, the short-memory EC-GARCHmodels
adequately explain the evident variance long memory patterns, a fact which will
be object of future studies.
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7 Appendix

7.1 Filtering the cyclical component

We apply the Fast Fourier Form modeling, as in Andersen and Bollerslev (1997).
This techniques is due to Gallant (1981, 1982) and is just a kind of regression
on Fourier frequencies, trying to filter the periodic component via a mixture of
harmonics. Assuming the following representation

xt,n = E [xt,n] +
σt(,n)st,nZt,n√

N
(9)

that is the return at time t (day), intraday period n is equal to its expected
value plus an heteroskedastic (daily or intradaily in that case denominator will
be 1) error. Acting as in Bollerslev and Mikkelsen we estimate on unfiltered
data the conditional variances with an MA(1)-GARCH(1,1), then we apply the
following log-transformation

yt,n = 2 ln [|xt,n −E [xt,n]|]− lnσ2t(,n) + lnN = ln s2t,n + lnZ
2
t,n (10)

The resulting relation can be also viewed as the sum of a cyclical function plus
a noise

yt,n = f
¡
σt(,n), n, θ

¢
+ ηt,n (11)
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Following the cited papers we specified the function as

f
¡
σt(,n), n, θ

¢
=

JX
j=0

σjt(,n)

·
α1,j + 2α2,jn/ (N + 1) + 6α3,jn

2/ ((N + 1) (N + 2))

+
PI
i=i γi,jIn=di +

PL
l=1

¡
δl,j cos

nl2π
N + φl,j sin

nl2π
N

¢ ¸
(12)

It is the sum of three different components: a quadratic term, a set of dummies
and a group of harmonics. All are multiplied by a scaling factor that involve
volatility. In this paper, given the elevate number of harmonic considered J is
set in all cases identically equal to 0, this imply no scaling factor. The seasonal
function is evaluated and parameters are estimated with OLS, given a preliminar
estimate of daily conditional volatility. Given the estimated seasonal function
it is necessary to reconstruct the cyclical component of equation (9), a point
solved using

ŝt,n =
T exp

³
f̂t,n/2

´
PT/N
t=1

PN
n=1 exp

³
f̂t,n/2

´ (13)

Given this component the variance filtering is performed with

x̃t,n = xt,n/ŝt,n (14)

For the purposes of our analysis we are also interested in a filtration of a cyclical
component in the mean and in the variance, the whole model is then

yt,n = xt,n − s̄t,n = E [xt,n − s̄t,n] +
σt(,n)st,nZt,n√

N
(15)

where s̄t,n follow directly (12) with J = 0. Then the log-transformation corre-
spondent to (10) become

yt,n = 2 ln [|yt,n −E [yt,n]|]− lnσ2t(,n) + lnN = ln s2t,n + lnZ
2
t,n (16)

therefore, given the estimated parameters filtration is performed using

x̃t,n = (xt,n − s̄t,n) /ŝt,n (17)

chosen frequencies 1-2-3-4-6-8-12-16, equivalent respectively to 1 day (8 hrs.),
4 hrs, 2 hrs and 40’, 2 hrs, 1 hr, 40’ and 30’.

7.2 The Exponential Causality GARCH (EC-GARCH)

Traditional GARCH parameterisations share a common problem: strong zero
parameter restrictions or assumptions on the relations among volatilities are re-
quired to avoid complex numerical evaluation, unrealistinc computing time and
elevate number of parameters. Consequently, simple specifications are preferred,
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specially in the financial practice. One of the most used if the Constant Con-
ditinanl Correlation GARCH of Bolleslev (1990). However, most of the currest
specifications imply non-causality among variances, or provide parameters which
are not interpretable (such as the BEKK of Engle and Kroner (1995)). There-
fore, in Caporin (2003a and 2003c) I suggest an alternative parameterisation
that directly extends the CCC-GARCH introducing in the variance equations
a causality function dependant on the innovations of the other variables. The
general bivariate model can be represented as·

X1,t
X2,t

¸
=

·
µ1,t

¡
It−1

¢
µ2,t

¡
It−1

¢ ¸+ · ε1,t
ε2,t

¸
(18)·

ε1,t
ε2,t

¸
˜iid

µ·
0
0

¸
,

·
σ21,t ρσ1,tσ2,t

ρσ1,tσ2,t σ22,t

¸¶
where the mean dynamic is not specified and we can allow for time dependence
based on the information set up to time t − 1 ¡It−1¢ including therefore also
GARCH-in-mean effects. The variances are represented as

σ21,t = exp
£
f1
¡
It−1

¢¤ £
ω1 + β1σ

2
1,t−1 + α1ε

2
1,t−1

¤
(19)

σ22,t = exp
£
f2
¡
It−1

¢¤ £
ω2 + β2σ

2
2,t−1 + α2ε

2
2,t−1

¤
(20)

where I included a standard GARCH(1,1) model but there are no constraint to
consider a general GARCH(p,q) as well as any alternative GARCH specification
such as the FIGARCH of Baillie, Bollerslev and Mikkelsen (1994), the leverage
GARCH of Glosten, Jagannathan and Runkle (1993) or the asymmetric power
ARCH of Ding, Granger and Engle (1993). Moreover, the different variances
can have different structures. The causal relation is driven by the functions
f1
¡
It−1

¢
and f2

¡
It−1

¢
that depends on the information sets up to time t− 1,

and are represente ad

f1
¡
It−1

¢
= γ1z

2
2,t−1 (21)

In this setup the causality effect, driven by the parameter γ1, allows for positive
and negative causality: i.e. in the sense that an increase in the variance of
the second series imply an increase in the variance of the first series only if the
function fi (·) is greater than 1 (the parameter greater than zero), otherwise we
will have a decrease. Non causality is associated with a zero parameter. More-
over parameters need not to be constrained given the exponential formulation.
Therefore, a significativity test on the parameter γ1 will indicate the existence
or not of a causal relation between the variances of the two series, while its sign
can be interpreted as the causality direction. Moreover, the model is station-
ary, as verified in Caporin (2003c) and it nests the CCC-GARCH which can be
obtained with the zero restrictions on the causality parameters.
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