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Abstract
This paper introduces a generalisation of the dynamic conditional

correlation (DCC) multivariate GARCH model proposed by Engle
(2002). In the multivariate GARCH literature one of the most rel-
evant problems is represented by the elevate number of parameters.
In order to solve this difficulty Bollerslev (1990) suggested to keep
constant the correlations (he suggested the Constant Conditional Cor-
relation model, CCC). Engle added to the CCC a limited dynamic in
the correlations, introducing a GARCH-type structure. However, the
dynamic is constrained to be equal for all the correlations. In our view,
this is an unnecessary restriction. In fact, we cannot impose that the
correlations of, say, European sectorial stock indexes are identical to
the correspondent US ones. We extend the DCC model introducing
a block-diagonal structure that solves this problem. The dynamic is
constrained to be equal only among groups of variables. We present
an application to a sectorial asset allocation problem.

Keywords: Multivariate GARCH, Dynamic Correlation, Volatility, Asset
Allocation, Risk Management.

1 Introduction

In today’s global and highly volatile markets the efficient measurement and
management of market risk has become a critical factor for the competitive-
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ness and even survival of financial institutions. One of the inputs required by
risk managers, seeking to hold efficient portfolios, is the correlation between
the securities to be included in the portfolio. Until recently, correlation was
assumed to be constant and stable over time. However, all empirical studies
that attempted to verify this finding, have failed to confirm the validity of
this assumption. In fact, most experienced practitioners would attest that
correlations increase in periods of high volatility and that both the magnitude
and persistence of correlation is affected by volatility.
The asset allocation decision entails, inter alia, an assessment of the risks

and returns of the various assets in the opportunity set. Optimal portfolio
choice requires a forecast of the covariance matrix of the returns. Similarly,
the calculation of the standard deviation of today’s portfolio requires a co-
variance matrix of all the assets in the portfolio. For actual portfolios, with
thousands of derivative and synthetic instruments, these functions require
estimation and forecasting of very large covariance matrices.
Over the past 20 years, a tremendous literature has been developed where

the dynamics of the covariance of assets has been explored, although the pri-
marily focus has been on univariate volatilities and not on correlations (or
covariances). In fact, in the multivariate GARCH literature one of the most
relevant problems is represented by the elevate number of parameters. In
order to solve this difficulty Bollerslev (1990) suggested to keep constant
the correlations and suggested the Constant Conditional Correlation model
(CCC). Only recently Engle (2002) proposes a new class of models that both
preserves the ease of estimation of the Bollerslev’s constant correlation model
but allows the correlations to change over time. Engle adds to the CCC a
limited dynamic in the correlations, introducing a GARCH-type structure.
However, the dynamic is constrained to be equal for all the correlations. In
our view, this is an unnecessary restriction. In fact, we cannot impose that
the correlations dynamic evolution of, say, European sectorial stock indexes
is identical to the correspondent US ones. We thus extend the DCC model
introducing a block-diagonal structure that solves this problem. The correla-
tion dynamic is constrained to be equal only among groups of variables. The
suggested model provide a much more flexible parameterisation of correlation
dynamic mantaining at the same time the parameter number at a feasible
level; we called this new model ”Flexible Dynamic Conditional Correlation”.
This block dynamic representation will also be useful in other fields, for

example to investigate wether the formation of the EMU in Europe has in-
creased the correlation among national assets and in more general terms to
analyse the interdependence and contagion issues.
The outline of the paper is as follows. We start by surveying the mul-

tivariate GARCH models and introuce our Flexible Dynamic Conditional
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Correlation model in Section 2. In Section 3 we discuss estimation and test-
ing of constant and dynamic conditional correlation models. In Section 4
we describe an asset allocation problem, in which we analyse sectorial stock
indexes and we empirically motivate the need for different dynamics. Section
5 concludes.

2 Multivariate GARCH models

We consider a n-dimensional process Xt, define by It (X) the information set
of X at time t and assume that:

Xt|It−1 (X) ˜id D (µt, Ht) (1)

where D (µt, Ht) is a non-specified multivariate distribution with time de-
pendent mean µt and time dependent variance covariance matrix Ht. This
formulation nests all multivariate GARCH representations that will be intro-
duced in few steps, and allows also the specification of a multivariate ARMA
process for the mean, as well as in-mean effects of the variances.
In the following, vector variables and matrices are denoted by bold or

uppercase letters, while scalars are denoted by lowercase letters. The V ech(·)
matrix operator will also be used: it stacks the lower triangular portion of a
matrix. In addition, the residuals are defined as Nt = Xt − µt.
In a general framework, a multivariate GARCH process can be repre-

sented via a dynamic equation for the variance-covariance matrix. Several
formulaer has been suggested in the literature, two of the most known are
the BEKK and the Vech representations.

2.1 The Vech representations

These formulations derive from the work of Engle and Kroner (1995). The
multivariate GARCH is represented as

V ech (Ht) = ω + C (L)V ech (Ht−1) +D (L)V ech (NtN
0
t) (2)

where ω is a vector of dimension r × 1, C (L) =
Pp

i=1CiL
i, D (L) =Pq

i=1DiL
i, Ci and Di, are square matrices of dimension r × r and r =

n(n+ 1)/2. This formulation requires r × [1 + r × (p+ q)] parameters; this
is the main constraint on the estimation and application of this model. For
example let we consider the bivariate model: the parameters will be 21. How-
ever, in this case Engle and Kroner (1995) show that the Vech-GARCH is
stationary if and only if all the eigenvalues of C (1)+D (1) are less than one
in modulus.
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A restricted case of the Vech-GARCH is its diagonal representation, the
D-Vech-GARCH: it is defined diagonal as it assumes that all parameter ma-
trices are diagonal. This boils down to a model that parameterizes all condi-
tional variances and covariances as univariate GARCH(p,q) processes. The
total number of parameters reduces to 3r, for the bivariate case 9. A much
greater problem, which is not solved by restricting to the diagonal version, is
the positive definiteness of the Ht matrix, which is very difficult to check and
requires several constraints in the optimization routines. A final comment
concerns the outcome of the Vech model: we obtain a dynamic equation for
the covariances while for practical needs (asset allocation, risk evaluation...)
the focus is on the correlations. Therefore, the Vech is a ’wrong’ model for
estimating dynamic correlations.

2.2 The BEKK representation

This formulation was suggested by Baba, Engle, Kraft and Kroner in a pre-
liminary version of Engle and Kroner (1995). The main feature is that it does
not need any restriction on parameters to get positive definiteness of the Ht

matrix, given its quadratic structure. One of the possible BEKK-GARCH
model is

Ht = ω +

pX
i=1

CiHt−iC 0
i +

qX
j=1

DjNt−jN 0
t−jD

0
j (3)

where Ci and Dj are n × n matrices and ω is a symmetric positive definite
n × n matrix. In a general formulation the number of parameters are here
r + n × n × (p+ q); for the bivariate case the number drops to only 11.
Positive definiteness of the variance covariance matrix is controlled by the
constant matrix ω, whose positive definiteness is often obtained assuming
the factorization ω = ΓΓ0, where Γ is a lower triangular matrix. The BEKK
formulation and the Vech are strictly related as shown in Engle and Kroner
(1995); in particular, the stationarity condition of the BEKK model is very
similar to the one of the Vech representation (for further details refer to the
cited paper). The comment previously referred to the Vech applies on the
BEKK: the model focuses on covariances while the practical attention is on
correlations.

2.3 The Constant Conditional Correlation GARCH

This form was introduced by Bollerslev (1990) who tried to reduce the num-
ber of parameters of the Vech and BEKK representations. He suggested the
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following structure:

Ht =


σ21,t σ12,t · · · σ1n,t
σ12,t σ22,t σ2n,t
...

. . .
...

σ1n,t σ2n,t · · · σ2n,t

 (4)

σ2i,t = ωi +

pX
j=1

βi,jσ
2
i,t−j +

qX
j=1

αi,jε
2
i,t−j i = 1...n

σij,t = ρijσi,tσj,t i, j = 1...n , i 6= j

The main difference between this formulation and the previous one is in
the assumption of constant correlation among variables. The total number
of parameters is now (p + q + 1)n + n(n + 1)/2, i.e. 7 in the bivariate
case. Positive definiteness of the variance covariance matrix is now controlled
by the correlation matrix (for the conditional variances the usual GARCH
constraints for positivity are required), since we can rewrite

Ht = diag (σ1,tσ2,t...σn,t)


1 ρ1,2 · · · ρ1,n

ρ1,2 1
...

...
. . . ρ1,n−1

ρ1,n · · · ρ1,n−1 1

 diag (σ1,tσ2,t...σn,t)(5)
= DtRDt (6)

where diag (σ1,tσ2,t...σn,t) represents a diagonal matrix with the given
elements. Moreover, the correlation matrix can be factorized similarly to the
constant of the BEKK-GARCH to impose its positive definiteness and to
ensure that it is a correlation matrix. It can be factorized as follows:

R = diag(
√
γ1,1,
√
γ2,2...

√
γn,n)ΓΓ

0diag(√γ1,1,√γ2,2...√γn,n) (7)

where the internal tringular matrices ensure positive definiteness, while the
external ones ensure the boundness of correlations and the unit value of the
main diagonal of R. Differently, a two step estimator can be used (see section
3).

2.4 The Dynamic Conditional Correlation formulations

This alternative representation try to add some limited dynamics to the CCC-
GARCH and has been introduced in recent papers by Engle and Sheppard
(2001) and Engle (2002). The idea behind this GARCH model derives from
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the CCC representation. The following factorization of the Ht matrix is
assumed:

Ht = DtRtDt (8)

where the conditional variances are parameterized as in the CCC-GARCH
and Rt is a dynamic correlation matrix satisfying

Rt = (Q∗t )
−1Qt (Q

∗
t )
−1 (9)

Qt = [1− α (1)− β (1)] Q̄+ α (L) εt−1ε0t−1 + β (L)Qt−1 (10)

εt = D−1
t Nt

Q̄ = T−1
TX
i=1

εtε
0
t (11)

α (L) =

qX
i=1

αiL
i β (L) =

pX
i=1

βiL
i

Q∗t = diag(
√
q11,t,

√
q22,t, ...

√
qnn,t)

which is just a particular kind of multivariate GARCH on the correlations.
The Q∗t diagonal matrix is introduced to ensure that Rt is a correlation
matrix, while εt represents the vectors of standardised residuals of the uni-
variate GARCH models. Given a suitable positive definite starting point (i.e.
Qo = Q̄), the model is positive defines since Qt is the sum of positive definite
([1− α (1)− β (1)] Q̄, β (L)Qt−1) and semidefinite matrices (α (L) εt−1ε0t−1).
Explosive patterns of the correlations are ruled out by imposing a GARCH-
type parameter restriction α (1)+β (1) < 1. Furthermore, the unconditional
correlation of the DCCmodel is the sample correlation Γ. We will refer to this
property as ’correlation targeting’. In this model the number of parameters
is (p+ q + 1)× n+ (p+ q) .
The DCC model was generalised by Engle (2002), who suggested the

following Generalised DCC

Qt = [ii
0 −A−B] ◦ Q̄+A ◦ εt−1ε0t−1 +B ◦Qt−1 (12)

where ◦ is the Hadamard product (elementwise matrix multiplication), A
and B are square matrices and positive definiteness is guaranteed by positive
definiteness of A and B, see Ding and Engle (2001). Moreover, the number of
parameters greatly increases and makes the model empirically inattractive.
Cappiello, Engle and Sheppard (2002) provide a different extension of

the DCC model by introducing asymmetry in the correlation dynamics and
modifying the correlation equation in the following way:
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Qt =
¡
Q̄−A0Q̄A−B0Q̄B −G0F̄G

¢
+A0εtε0tA+B0Qt−1B +G0ηt−1η

0
t−1G
(13)

where ηt = I (εt < 0) ◦ εt, ◦ being the Hadamar product (element by
element), A, B, G are diagonal parameter matrices, Q̄ is again the sample
covariance matrix of the standardized residuals and F̄ is the sample covari-
ance matrix of ηt. This model adds flexibility to the previous one, however
the number of parameters increases and positive definiteness is obtained by
constraining the matrix Q̄− A0Q̄A−B0Q̄B −G0F̄G to be positive definite,
quite a complex task.
Furthermore, Franses and Hafner (2003) suggested another Generalised

DCC:

Qt =

"
1−

nX
i=1

αi − β

#
Q̄+ αα0 ◦ εt−1ε0t−1 + βQt−1 (14)

with α being a vector of dimension n. Positive definiteness is guaranteed
but the correlation targeting property is no more valid.
Finally, Chan, Hoti and McAleer (2003) generalise the model providing

a general representation in which all the dynamic correlations can have a
different dynamic pattern. The main results provided by Chan et al.’s paper
concern the regularity conditions for all the moments and the asymptotic
properties of the Generalised Auto Regressive Conditional Correlation model.
The paper provides consistency and asymptotic distribution of the Quasi
Maximum Likelihood estimator. Moreover, it shows that the Engle’s DCC
is obtained as a special case.

2.5 Feasible Dynamic Conditional Correlation models

The previously reported models provide several extensions of the original
DCC formulation. However, they have too many parameters or they re-
quire particular parameter constraints. Going back to the Engle’s DCC, its
structure presumes that all the correlations have the same dynamic (same
parameters apply to all correlations). Unfortunately, this may not be the
case.Consider as an example a portfolio that includes several assets grouped
in homogeneous cathegories (energy, food, chemistry...): correlations within
and between groups do not generally share the same dynamic evolution. A
similar example can consider a geographical distribution (Europe, America,
Asia...) or a distinction of assets by types (stocks, bonds, cash...). Given this
consideration we suggest here two DCC-type models that allow for a block
structure in the parameters. In this way we can, on the one side, generalise
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the model allowing for different dynamic between group of assets; on the
other side, we match the needs of geographical or sectorial asset allocation.
As a starting point we can consider a particular case of (12):

Qt = [1− α (L)− β (L)] ◦ Q̄+ α (L) ◦ εtε0t + β (L) ◦Qt (15)

α (L) =

qX
i=1

αiL
i β (L) =

pX
i=1

βiL
i

where the parameter matrices have the following structure: if we group the
n variables in w sets of dimension m1,m2...mw and we indicate with i (y) a
column vector of ones if dimension y, then

αi =


αi,11i (m1) i (m1)

0 αi,12i (m1) i (m2)
0 · · · αi,w1i (m1) i (mw)

0

αi,12i (m2) i (m1)
0 αi,22i (m2) i (m2)

0 αi,w2i (m2) i (mw)
0

...
. . .

...
αi,w1i (mw) i (m1)

0 αi,w2i (mw) i (m2)
0 · · · αi,wwi (mw) i (mw)

0


(16)

similarly for βi. It is worth noting that the number of sets w and their dimen-
sions m1,m2...mw must be constant between the αi, and the βi. Clearly, to
be competitive, this representation requires a small number of groups. This
parameterisation has (p+ q+1)×n+(p+ q)×w (w − 1) /2 parameters and
it is evidently not useful in the bivariate case. However, this model requires
several constraints to ensure positive definiteness of Qt (αi, and βi are not
positive definite). Moreover, these constraint cannot explicitly derived but
must be imposed in the optimisation routines. As a result, the model is
feasible with some additional restriction: αi, and βi must be block-diagonal
matrices, with zeros in off-diagonal blocks. Let us call this model the Block
Diagonal DCC. In that case, we must impose a constraint on the matrix
[1− α (L)− β (L)] ◦ Q̄ requiring its eigenvalues to be greater than zero. Fur-
thermore, parameters included in the αi and in the βi must be positive and
satisfy the restriction αi + βi < 1.
Our final purpose is the formulation of a model that preserves the pa-

rameter block structures and that does not require too complex parameter
restrictions. Therefore, we suggest a further block structure model which can
be viewed as a modified Franses and Hafner DCC:

Qt = cc0 ◦ Q̄+ αα0 ◦ εt−1ε0t−1 + ββ0 ◦Qt−1 (17)

where α, β and c are partitioned vectors similar to

α = {α1, α1, α1, α1, α2, α2, α3, α3, α3, }
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ensuring the cross-product to be partitioned matrices. One of the new point
is the constant. This DCC-type model requires the estimation of a constant
term and therefore, the correlation targeting property is in general lost. The
correlation targeting property can be obtained as a special case imposing a
set of parameter restrictions: αiαj + βiβj + cicj = 1 for i, j = 1...n. Further-
more, the parameters must be positive and satisfy the standard GARCH-
type restrictions αiαj + βiβj < 1, needed to avoid explosive patterns in the
correlations. Finally, positive definiteness is guaranteed: assume a suitable
starting point is used, then Qt is the sum of positive definite and semidefinite
matrices. This model adds great flexibility compared to standard DCC type
models allowing a feasible estimation of block-structures. Let us call this
model the Flexible-DCC.

3 Estimation and testing

The estimation of the dynamic correlation models presented in this paper
can be carried out by Quasi-Maximum Likelihood, following the approach
suggested by Engle (2002). Let define by θ1 the parameters of the univari-
ate GARCH models and with θ2 the parameters of the dynamic correlation
structure. The likelihood of the model can be written as follows:

LogL (θ1, θ2|Xt) = −1
2

TX
t=1

£
k log (2π) + log (|Ht|) +XtH

−1
t X

0
t

¤
(18)

or, exploiting the factorization of the variance-covariance matrix and defining
Dt = |diag (σ1,tσ2,t...σn,t)|, as

LogL (θ1, θ2|Xt) = −1
2

TX
t=1

£
k log (2π) + log (Rt) + 2 log (|Dt|) +X0

tD
−1
t R−1t D−1

t Xt

¤
(19)

Engle suggests a first estimation stage where the correlation matrix is re-
placed by an identity matrix

LogL (θ1|Xt) = −1
2

TX
t=1

£
k log (2π) + log (In) + 2 log (|Dt|) +X0

tD
−1
t I−1n D−1

t Xt

¤
(20)

which is equivalent to univariate estimation of GARCH models, and a second
step conditional on the parameters estimated in the first one

LogL
³
θ2|θ̂1,Xt

´
= −1

2

TX
t=1

£
k log (2π) + log (Rt) + 2 log (|Dt|) + ε0tR−1t εt

¤
(21)
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where εt = D−1
t Xt are the first stage standardized residuals.

It is worth noting that such a procedure can be used also for the CCC-
GARCH model, the constant correlation being estimated in the second step
by simply ε0tεt/T , which is exactly equal to Q̄. This observation suggests a
possible likelihood ratio test for constant correlation.
Standard likelihood ratio tests cannot eìbe used in comparing CCC and

DCC to our BDDCC and FDCCmodels since they are not nested representa-
tions. Therefore, the comparison can be made only in terms of information
criteria. Given that all models are estimated with the same two step ap-
proach, the information criteria to be compared will be derived on the basis
of the second step likelihood (21).

4 An empirical application: sectorial asset al-
location

In this section we consider an empirical application fucusing on a dataset of
daily data from Italian Stock market indices and we tackle with a sectorial
asset allocation problem. There are three major sectors that compose the
Italian Mibtel general index: Industrials, Services, Finance. Each of this
three sub index is further divided in several sub-sectors. The composition is
summarised in Table 1.

INSERT TABLE 1

All time series were downloaded from DataStream and are expressed in
Euro. They run from from January 1991 to September 2003, yielding more
than 3000 daily observations. The problem of asynchronous data encountered
by some authors (Corsetti et al. 2002) is not present in our case, since the
closing prices are determined at the same hour in the same market (Italian
Stock market). The returns are calculated, as usual, through a log difference
transformation. In Table 2 we summarize the main statistics of each series
(full sample daily statistics).

INSERT TABLE 2

The average return of the general Mibtel index is positive, but there are
significant differences among the considered sector indexes. For example, the
major Industrial sector return is negative while the return of the major Ser-
vice sector is greatly positive, this is mainly due to the Public Utility Services
sector. The sector analysis evidence great differences even for the annualised
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standard deviations, that vary between the 18.3 of the Real Estate sector
and the 40,8 of the Finance Miscellaneous sector. The data presents also a
skewness different from zero and a relevant excess kurtosis. The skewness re-
port both positive (7 cases) and negative (13 cases) values with a prevalence,
at the aggregate level, to be negative. Finally, the excess kurtosis is always
positive, evidencing the presence of fat tails in the empirical distributions.
The Jarque-Bera test clearly rejects the null hypothesis of normality for all
the series (not reported in Table 2). The main object of our analysis is to
the study of the correlations behaviour between these series. In Table 3 the
major sector indexes and the Mibtel general index are considered and there
is a high positive correlation for all the indexes. The unconditional empiri-
cal correlations between sector indexes are summarised in Table 4 and vary
between 0.13 for Industrial misc and Finance misc and 0,83 for Banks and
Insurance (not a surprising result). The average correlation among the in-
dices composing major Industrial sectors is 0.48, while they are 0.45 and 0.51
for the major Services and Finance sectors, respectively. It is also interest-
ing to observe that within these three groups, there are sector indexes more
correlated to each other: Banks and Finance Holdings are the indices with
the highest correlations, while Industrial Misc. and Finance Misc. report the
lowest correlations (again not a surprising outcome).

INSERT TABLE 3 AND 4

If we consider a dynamic analysis of the time series of the sector indexes,
the volatility is clearly far from being constant. The GARCH specifications
can be useful to capture these features. Given the characteristics of the
series, an asymmetric GARCH specification is considered in order to cap-
ture both excess kurtosis and asymmetric effects. The parsimonious GJR-
GARCH specification is considered (Glosten et al. 1993). The results are
summarised in Table 5. The parameters are, with the exception of a few
cases, significant at the 5% confidence level.

INSERT TABLE 5

The analysis of the residuals (not included here) evidences that the GARCH
specifications are not able to explain a significant part of the non normality
of the series, with the only exception of the Minerals Metals series.
It is also interesting to analyse the behaviour of the correlations over time,

evaluating if their values are stable or not. Considering rolling empirical
correlations it is interesting to observe that almost all the correlations vary
through time and also that they present different patterns. For the sake
of simplicity, the analysis is initially restricted to the three major sectors
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(Industrial, Service, Finance) compared to the Mibtel general index. Figure
1 evidences the dynamic correlation between the general index and each
major sectors, while Figure 2 shows the dynamic correlation between the
major sectors. The figures consider a larger sample ranging from 1991 to
present. In particular, Figure 1 points out that the correlation are positive
and generally high during the sample period for all the major sector indexes
while their dynamics is very different. Let us consider for example the first
part of 2000: the Finance index correlation exhibits a sharp fall, the Service
index correlation remains nearly constant and the Industrial index correlation
increases. Even the correlations between the major sector indexes present
very dissimilar patterns.

INSERT FIGURE 1

INSERT FIGURE 2

Extending the analysis of the correlation dynamics to the sub-sectors,
other considerations are possible. In general the correlation patterns are
similar for series of the same major sector and different for series of different
major sectors. For example, the dynamics of the correlation between the
Food and Paper sector indexes is similar to the one between the Cars and
Minerals Metals sector indexes while it differs from that between Chemicals
and Finance Holding sector indexes.

INSERT FIGURE 3

In ordeer to describe these dynamic patterns dynamic correlation modesl
are estimated. The results for the CCC-GARCH proposed by Bollerslev
(1990) and the DCC-GARCH proposed by Engle (2002) are summarized in
Tables 6 and 7. In both cases the correlations are estimated by the two step
procedure described in Section 3 on the last 4 years of the sample.

INSERT TABLE 6

INSERT TABLE 7

Differently, Table 8 reports the DCC model estimated on the three macro
sectors: it is evident that parameters are different between the sectors. More-
over, Figures (4) and (5) report some dynamic correlations obtained by the
models of Table 8. The evident differences are not only in the parameters
but also in the patterns.

INSERT TABLE 8
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INSERT FIGURE 4

INSERT FIGURE 5

We move then to a FDCC type model leaving the empirical application
of the BDDCC to future studies. The model considers three groups of assets
(the three macro indices) and therefore requires the estimation of 9 parame-
ters. The results are reported in Table 9 (for comparability, even in this case
we restricted our attention on the last 4 years of the sample).

INSERT TABLE 9

The advantages of moving to a FDCC model are clearly evidenced by
a standard likelihood ratio test which rejects the null hypothesis of DCC
model (common parameters in all blocks and correlation targeting restriction
- LR statistics is in the order of 975). Moreover, all parameters are highly
significant (quasi maximum likelihood standard errors). CPU time needed
for FDCC estimation is around 20 minutes (4 year daily data).
The comparison between correlation models cannot be restricted to a pure

statistical analysis but should be combined with some empirical evidence. For
this reason, we considered a simulated exercise. Within aMarkovitz approach
and in more a restricted sample (last 2 years data) we estimate mean vari-
ance portfolios with CCC, DCC and FDCC time varying correlations models.
Portfolio weights are computed assuming no risk-free asset, with or without
positivity restrictions (short selling), no transaction costs and two weeks re-
vision (10 days). The models are estimated every 10 days, one-step-ahead
correlations and variances forecasts are computed and stored. With the one-
step-ahead variance-covariance matrix forecasts a mean-variance problem is
considered. Additional assumptions refer to the index returns on which we
base portfolio weights computation and on the portfolio required return. For
the first we consider last two months returns to get a closer matching with
maket movements. In portfolio weights computation we consider several cases
of portfolio returns: last two months return of an equally weighted portfolio;
last two month return of the general Mibtel index; the global optimal portfo-
lio; a 20% annual return. Table 10 reports the optimal portfolio annualised
standard deviations of the final estimation (last two months of the sample):

INSERT TABLE 10

Moving from the constant correlation assumption to Engle’s DCC model
the optimal portfolio variance marginally decreases; this result is stable over
the whole sample considered. Differently, the variance reduction implied by
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our Flexible DCC is more evident. Table 11 reports the estimated portfolio
weights for global optimal portfolios in the final estimation.

INSERT TABLE 11

In the following step we assume that parameters are stable for a two week
horizon and we computed a 10-day sequence of one-step-ahead forecasts of the
variance-covariance matrix. These forecasts have then been used to compute
portfolio returns for the constrained and unconstrained cases and the several
assumptions on portfolio returns. As a general result we can state that, under
the same assumption for portfolio returns, the FDCC model provides the
lowest portfolio variance and the highest portfolio return. Figure 6 reports
the returns evolution over one year of a particular case: portfolio weights are
the global optimal portfolio one’s.

INSERT FIGURE 6

5 Conclusions

We propose an extension of the new class of models recently proposed by
Engle (2002), that both preserves the ease of estimation of the Bollerslev’s
constant correlation model but allows the correlations to change over time.
Engle indeed added to the CCC a limited dynamic in the correlations, in-
troducing a GARCH-type structure. However, the dynamic is constraint to
be equal for all the correlations. However, this is an unnecessary restriction,
thus we extend the DCC model introducing a constant and a block-diagonal
structure that solves this problem. The dynamic is constrained to be equal
only among groups of variables. In fact, we cannot impose that the cor-
relations of, for example European sectorial stock indexes are equal to the
correspondent US ones. Keeping the ease of estimation of the Engle’s model,
the extension we propose allows richer dynamics of the correlations.
After discussing the estimation and testing issues, we consider an empir-

ical application of the three models (CCC, DCC and Flexible DCC). The
variables object of analysis are sectorial stock indexes representing the ma-
jor disaggregation of the Italian general stock index. The estimates of the
three models confirm, for the period of analysis, the presence of dynamics in
the correlations, as well as for the volatility, but also evidence the presence
of dissimilarities in these dynamics. A simulated portfolio allocation excer-
cise (under a Markovitz approach) shows that the FDCC model provide the
lowest optimal portfolio variance and the highest portfolio returns.
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FOOD 
CARS 
PAPER 
CHEMICALS 
CONSTRUCTION 
ELECRONICS 
PLANTS MACHINE 
INDUSTRIALS MISC 
MINERALS METALS 

INDUSTRIAL 

TEXTILE CLOTHING 
DISTRIBUTION 
MEDIA 
PUBLIC UTILITY SERVICES SERVICE 
TRANSPORT TOURISM 
INSURANCE 
BANKS 
FINANCE HOLDINGS 
FINANCE MISC 
REAL ESTATE 

MIBTEL (General) 

FINANCE 

FINANCE SERVICES 
Table 1: Italian indexes composition. 
 
 Mean Standard deviation Asymmetry Excess Kurtosis 
MIBTEL 0.015 20.346 -0.596 2.707 
INDUSTRIAL -0.001 19.848 -0.694 3.611 
FOOD 0.013 23.956 -0.193 4.097 
CARS -0.038 28.164 -0.387 2.419 
PAPER -0.043 24.914 0.175 3.677 
CHEMICALS -0.006 21.920 -0.832 4.586 
CONSTRUCTION 0.000 21.318 -0.342 2.931 
ELECRONICS -0.013 25.212 -0.160 2.607 
PLANTS & MACHINE 0.021 21.654 -0.265 4.421 
INDUSTRIALS MISC -0.001 27.743 0.694 6.266 
MINERALS METALS 0.001 24.231 -0.378 2.880 
TEXILE CLOTHING 0.022 20.475 -0.689 3.853 
SERVICE 0.051 23.108 -0.388 1.803 
DISTRIBUTION 0.014 22.090 1.392 17.425 
MEDIA 0.006 26.337 1.550 14.404 
PUB. UTIL. SERV. 0.059 25.471 -0.516 2.158 
TRANS & TOURISM 0.032 21.411 0.071 8.992 
FINANCE 0.007 21.553 -0.612 3.083 
INSURANCE 0.011 23.439 -0.438 2.567 
BANKS 0.012 22.617 -0.413 4.096 
FINANCE HOLDINGS -0.022 23.263 -0.532 2.490 
FINANCE MISC. 0.004 40.803 -2.175 18.698 
REAL ESTATE -0.004 18.273 -0.346 8.988 
FINANCE SERVICES 0.013 25.923 0.411 6.975 
Table 2: Summary statistics – Daily data – Annualised standard deviations. 
 
 
 GENERAL INDUSTRIALS SERVICES FINANCE 
GENERAL 1 0.924 0.922 0.953 
INDUSTRIALS 0.924 1 0.799 0.849 
SERVICES 0.922 0.799 1 0.804 
FINANCE 0.953 0.849 0.804 1 
Table 3: Empirical correlations. 



 

FOOD CARS PAPER CHEMICALS CONSTRUCTION ELECRONICS 

PLANTS 
& 
MACHINE 

INDUSTRIALS 
MISC MIN TEX DISTRIBUTION MEDIA 

PUB. 
UTIL. 
SERV. 

TRANS & 
TOURISM INSURANCE BANKS 

FINANCE 
HOLDINGS 

FINANCE 
MISC. 

REAL 
ESTATE 

FINANCE 
SERVICES 

1 0.571 0.422 0.592 0.587 0.480 0.496 0.275 0.453 0.542 0.396 0.311 0.562 0.491 0.621 0.611 0.645 0.193 0.407 0.449 
--- 1 0.479 0.653 0.626 0.568 0.529 0.296 0.479 0.596 0.448 0.374 0.618 0.496 0.698 0.676 0.719 0.225 0.444 0.530 
--- --- 1 0.495 0.517 0.452 0.430 0.252 0.384 0.473 0.325 0.303 0.476 0.414 0.512 0.516 0.531 0.182 0.338 0.401 
--- --- --- 1 0.664 0.636 0.549 0.307 0.507 0.630 0.469 0.419 0.657 0.520 0.695 0.705 0.726 0.259 0.481 0.524 
--- --- --- --- 1 0.604 0.563 0.346 0.486 0.621 0.489 0.378 0.637 0.562 0.686 0.701 0.728 0.261 0.520 0.539 
--- --- --- --- --- 1 0.475 0.276 0.399 0.584 0.491 0.559 0.716 0.513 0.650 0.677 0.729 0.362 0.492 0.556 

--- --- --- --- --- --- 1 0.254 0.534 0.532 0.392 0.318 0.513 0.468 0.598 0.602 0.579 0.224 0.409 0.442 
--- --- --- --- --- --- --- 1 0.242 0.303 0.245 0.177 0.288 0.272 0.297 0.293 0.346 0.134 0.249 0.234 
--- --- --- --- --- --- --- --- 1 0.461 0.334 0.290 0.513 0.440 0.557 0.552 0.514 0.165 0.364 0.386 
--- --- --- --- --- --- --- --- --- 1 0.463 0.431 0.628 0.494 0.671 0.680 0.657 0.255 0.436 0.494 
--- --- --- --- --- --- --- --- --- --- 1 0.406 0.509 0.404 0.499 0.518 0.544 0.225 0.357 0.398 
--- --- --- --- --- --- --- --- --- --- --- 1 0.494 0.351 0.466 0.496 0.539 0.317 0.359 0.391 
--- --- --- --- --- --- --- --- --- --- --- --- 1 0.526 0.731 0.725 0.733 0.277 0.454 0.538 
--- --- --- --- --- --- --- --- --- --- --- --- --- 1 0.569 0.586 0.590 0.219 0.441 0.462 
--- --- --- --- --- --- --- --- --- --- --- --- --- --- 1 0.832 0.750 0.275 0.493 0.599 
--- --- --- --- --- --- --- --- --- --- --- --- --- --- --- 1 0.760 0.299 0.515 0.627 
--- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- 1 0.339 0.549 0.607 
--- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- 1 0.266 0.271 

--- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- 1 0.433 
--- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- 1 

Table 4: Empirical correlations. 
 



 

FOOD CARS PAPER CHEMICALS CONSTRUCTION ELECRONICS 

PLANTS 
& 
MACHINE 

INDUSTRIALS 
MISC MIN TEX DISTRIBUTION MEDIA 

PUB. 
UTIL. 
SERV. 

TRANS & 
TOURISM INSURANCE BANKS 

FINANCE 
HOLDINGS 

FINANCE 
MISC. 

REAL 
ESTATE 

FINANCE 
SERVICES 

1 0.547 0.400 0.577 0.552 0.483 0.482 0.277 0.436 0.510 0.378 0.319 0.537 0.474 0.597 0.580 0.628 0.189 0.401 0.415 
--- 1 0.457 0.635 0.592 0.569 0.501 0.291 0.454 0.559 0.443 0.387 0.603 0.479 0.672 0.645 0.713 0.227 0.438 0.501 
--- --- 1 0.471 0.491 0.447 0.404 0.231 0.359 0.454 0.340 0.304 0.460 0.398 0.499 0.494 0.526 0.190 0.332 0.372 
--- --- --- 1 0.640 0.625 0.533 0.309 0.483 0.597 0.473 0.415 0.641 0.505 0.684 0.690 0.715 0.249 0.469 0.485 
--- --- --- --- 1 0.597 0.546 0.327 0.462 0.588 0.482 0.397 0.609 0.551 0.660 0.680 0.705 0.255 0.494 0.493 
--- --- --- --- --- 1 0.478 0.278 0.406 0.567 0.483 0.483 0.721 0.517 0.637 0.675 0.728 0.320 0.477 0.515 

--- --- --- --- --- --- 1 0.266 0.516 0.509 0.381 0.332 0.507 0.456 0.571 0.581 0.570 0.220 0.388 0.407 
--- --- --- --- --- --- --- 1 0.255 0.280 0.243 0.169 0.282 0.268 0.303 0.308 0.340 0.129 0.239 0.240 
--- --- --- --- --- --- --- --- 1 0.426 0.337 0.322 0.491 0.439 0.525 0.534 0.501 0.171 0.369 0.371 
--- --- --- --- --- --- --- --- --- 1 0.444 0.410 0.606 0.463 0.628 0.652 0.637 0.242 0.420 0.452 
--- --- --- --- --- --- --- --- --- --- 1 0.364 0.503 0.402 0.495 0.519 0.532 0.218 0.357 0.382 
--- --- --- --- --- --- --- --- --- --- --- 1 0.477 0.339 0.460 0.496 0.501 0.230 0.320 0.330 
--- --- --- --- --- --- --- --- --- --- --- --- 1 0.529 0.705 0.713 0.728 0.262 0.447 0.512 
--- --- --- --- --- --- --- --- --- --- --- --- --- 1 0.563 0.575 0.578 0.223 0.427 0.430 
--- --- --- --- --- --- --- --- --- --- --- --- --- --- 1 0.814 0.736 0.271 0.486 0.543 
--- --- --- --- --- --- --- --- --- --- --- --- --- --- --- 1 0.755 0.303 0.504 0.576 
--- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- 1 0.308 0.527 0.576 
--- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- 1 0.244 0.219 

--- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- 1 0.407 
--- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- 1 

Table 6: CCC correlation estimates. 
 
 



 
 
 
 ω α γ β 
FOOD 0.007667 

0.044489 
0.17429 

0.041231 
-0.042721 

0.016308 
0.945534 

0.019298 
CARS -0.018458 

0.033559 
0.181820 

0.025871 
-0.049772 

0.014939 
0.960047 

0.012635 
PAPER 0.133547 

0.080686 
0.190099 

0.027615 
-0.115743 

0.021219 
0.903522 

0.031548 
CHEMICALS 0.06875 

0.052705 
0.210777 

0.048487 
-0.042927 

0.01917 
0.905615 

0.028169 
CONSTRUCTION -0.017683 

0.040712 
0.206656 

0.035078 
-0.038557 

0.015415 
0.945024 

0.013988 
ELECRONICS -0.105743 

0.047497 
0.273387 

0.043656 
-0.037565 

0.018623 
0.960144 

0.016466 
PLANTS & 
MACHINE 

-0.001862 
0.052135 

0.257848 
0.038020 

-0.135494 
0.018234 

0.9174 
0.022963 

INDUSTRIALS 
MISC 

0.043335 
0.049291 

0.200922 
0.031524 

-0.033979 
0.015484 

0.931596 
0.021698 

MINERALS 
METALS 

0.136145 
0.112448 

0.254659 
0.051434 

-0.06675 
0.025988 

0.867494 
0.048532 

TEXILE 
CLOTHING 

-0.006179 
0.067197 

0.304888 
0.055493 

-0.103177 
0.021758 

0.896652 
0.023522 

DISTRIBUTION 0.126355 
0.080918 

0.356644 
0.056348 

-0.104257 
0.021247 

0.840823 
0.041691 

MEDIA -0.091437 
0.039332 

0.371298 
0.039381 

-0.004515 
0.018767 

0.924889 
0.017853 

PUB. UTIL. 
SERV. 

0.056750 
0.088477 

0.164620 
0.045733 

-0.022391 
0.018623 

0.929796 
0.038658 

TRANS & 
TOURISM 

0.034109 
0.086364 

0.341412 
0.041971 

-0.018215 
0.021881 

0.871284 
0.037845 

INSURANCE 0.145923 
0.110749 

0.267765 
0.041751 

-0.062281 
0.021792 

0.857678 
0.049524 

BANKS -0.004814 
0.080188 

0.339686 
0.046219 

-0.046271 
0.026547 

0.892956 
0.036466 

FINANCE 
HOLDINGS 

0.003824 
0.054225 

0.247872 
0.045694 

-0.025745 
0.020524 

0.923353 
0.025147 

FINANCE MISC. -0.009788 
0.034614 

0.443871 
0.034797 

-0.086374 
0.023577 

0.906579 
0.014537 

REAL ESTATE -0.067388 
0.035504 

0.312774 
0.026917 

0.014675 
0.016420 

0.923310 
0.016421 

FINANCE 
SERVICES 

0.125354 
0.075030 

0.334182 
0.043659 

-0.055903 
0.023690 

0.859555 
0.036751 

Table 5: GARCH specifications and parameter estimates (standard deviations in italic). 
 



 
Parameters Estimates Standard deviations z-statistics 
α 0.02077 8e-5 263.543 

β 0.48970 0.00339 144.275 
 Log Likelihood: -9810.1293  
Table 7: DCC estimates – full sample – all sectors 
 
 

INDUSTRIALS 
Parameters Estimates Standard deviations z-statistics 
α 0.01224 0.00085 14.344 

β 0.80220 0.02581 31.081 
 Log Likelihood: -4975.616  

SERVICE 
Parameters Estimates Standard deviations z-statistics 
α 0.02726 0.00037 74.414 

β 0.51168 0.01071 47.790 
 Log Likelihood: -3973.119  

FINANCE 
Parameters Estimates Standard deviations z-statistics 
α 0.02651 0.00039 68.191 

β 0.93092 0.00114 813.988 
 Log Likelihood: -1351.378  
Table 8: DCC estimates – full sample – macro sectors 
 

Parameters Estimates Standard deviations z-statistics 
c1 0.706864 0.00510 138.60 
c2 0.999311 0.01574 63.488 
c3 0.039117 0.00026 150.45 
a1 0.09456 0.00186 50.760 
a2 0.06454 0.00280 22.979 
a3 0.01931 0.00048 40.172 
b1 0.63063 0.00472 133.53 
b2 0.98445 0.00018 5292.6 
b3 0.92461 0.00096 956.65 
 Log-Likelihood -9321.6949 

Table 9: FDCC estimates – full sample – all sectors 
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Figure 1: Correlation between Mibtel general index and major sectors indexes. 
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Figure 2: Correlation between major sector indexes. 
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Figure 3: Correlation dynamics. 
 



 
CCC DCC FDCC  CCC DCC FDCC 
0.050 0.048 0.050 FOOD 0.064 0.063 0.063 

--- --- --- CARS -0.030 -0.031 -0.031 
0.013 0.014 0.026 PAPER 0.030 0.031 0.026 

--- --- --- CHEMICALS -0.076 -0.076 -0.061 
0.038 0.038 0.066 CONSTRUCTION 0.096 0.096 0.101 

--- --- --- ELECRONICS 0.027 0.026 0.015 
0.010 0.011 0.007 PLANTS MACHINE 0.051 0.051 0.040 
0.268 0.267 0.230 INDUSTRIALS MISC 0.249 0.249 0.220 

--- --- --- MINERALS METALS -0.037 -0.036 -0.011 
--- --- --- TEXTILE CLOTHING -0.018 -0.018 -0.032 

0.071 0.069 0.065 DISTRIBUTION 0.068 0.067 0.060 
--- --- --- MEDIA 0.032 0.036 0.006 
--- --- 0.017 PUBLIC UTILITY SERVICES 0.113 0.113 0.056 

0.192 0.193 0.203 TRANSPORT TOURISM 0.173 0.174 0.174 
--- --- --- INSURANCE -0.059 -0.066 -0.012 
--- --- --- BANKS -0.046 -0.043 -0.026 
--- --- 0.022 FINANCE HOLDINGS 0.004 0.006 0.082 
--- --- --- FINANCE MISC -0.025 -0.025 -0.018 

0.358 0.359 0.306 REAL ESTATE 0.364 0.365 0.328 
--- --- 0.007 FINANCE SERVICES 0.019 0.019 0.022 

Table 11: Portfolio allocation in the Markovitz approach in a constrained and a non constrained 
problem (without risk free asset) – global optimal portfolios 
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Figure 4: Static (CCC) and Dynamic correlations (bold and blue lines, respectively) between Real 
Estate and Finance Service indices (last two years) 
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Figure 5: Static (CCC) and Dynamic correlations (bold and blue lines, respectively) between Food 
and Cars indices (last two years) 
 
 

Correlation Model Type Portfolio Return CCC DCC FDCC 
Equally Weighted 6.642 6.637 6.304 

Mibtel 6.291 6.285 6.051 
Global Optimal 6.276 6.270 6.051 Unconstrained 

20% 6.732 6.728 6.387 
Equally Weighted 7.433 7.419 6.870 

Mibtel 6.781 6.765 6.308 
Global Optimal 6.759 6.743 6.314 Constrained 

Max index return 17.231 17.229 16.741 
Table 10: annualised optimal portfolio variances based on last two months of the sample; last two 
months annualised Mibtel standard deviation is 8.214; optimal portfolio variances depend on the 
required portfolio return which is in turn set equal to: last two month return of an equally weighted 
portfolio; last two month return of the Mibtel index; global optimal portfolio; 20% annual return 
(unconstrained only); among the 20 sectorial indices, the maximum last two moths return. 
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Figure 6: portfolio returns - unconstrained Markovitz approach with objective return set to 20% 
(annual return) 
 


