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Abstract

This paper provides an extension of the Dynamic Conditional Correla-
tion model of Engle (2002) by allowing both the unconditional correlation
and the parameters to be driven by an unobservable Markov chain. We
provide the estimation algorithm and perform an empirical analysis of the
contagion phenomenon in which our model is compared to the traditional
CCC and DCC representations.

1 Introduction
Since the seminal work of Bollerslev (1990), multivariate GARCH models at-
tracted considerable interest given their direct application in both financial and
economic empirical researches. By now, they represent a fundamental tool for
asset and risk management and are employed in most financial market analyses.
They have been extended and updated following the enormous literature of the
univariate GARCH models, trying to taken into account the empirical findings
in a multivariate setting. However, a first order of problems came into play
when considering large dimension multivariate GARCH models: we refer to the
complexity of parameter estimation procedures, which directly derives from the
high number of coefficients. A second set of problems concerns the asymptotic
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properties of the quasi maximum likelihood estimators for this type of models,
which is not yet theoretically derived. In fact, Jeantheau (1998) provides con-
ditions for QMLE consistency using a pointwise convergence criterion whereas
a uniform convergence is required.
The high number of parameter problems motivated for the search of a simple

and easy-to-estimate GARCH representation, and, at the same time, prevented
for a direct use of generalised representations when the number of variables
increases. This paper belongs to this research area and provides an up-to-date
review of current feasible multivariate GARCH representation.
In particular, we extend the DCC model of Engle (2002) introducing Markov

switches in the unconditional correlation matrix and in the DCC parameters.
From the methodological point of view, this is a natural extension of the model
recently proposed by Pelletier (2004). Moreover, the interest for this exten-
sion comes from the opportunity to use these DCC GARCH representations for
contagion analysis.
In fact, the 1990s were punctuated by a series of severe financial and currency

crises: the 1992 European monetary system attacks, the 1994 Mexican peso
collapse, the 1997 East Asian crises, the 1998 Russian collapse, the 1998 LTCM
crisis, the 1999 Brazilian devaluation, and the 2000 technological crisis. One
striking characteristic of several of these crises was how an initial country-specific
shock was rapidly transmitted to markets of very different sizes and structures
around the globe. This has prompted a surge of interest in "contagion". This
is a relevant issue from the empirical and theoretical point of view. Volatility
transmission and contagion are relevant at an international level by themselves
and have important consequences for monetary policy, optimal asset allocation,
risk measurement, capital adequacy, and asset pricing.
In this paper, contagion - as opposed to interdependence - conveys the idea

that international propagation mechanisms are discontinuous and then a hidden
Markov chain can be useful to describe this discontinuity. However, there is no
agreement on this definition and many other definitions have been proposed.
In the empirical applications, we show the presence of the loss of interdepen-
dence phenomenon, which supports the thesis of discontinuities in the volatility
propagation mechanisms.
Section 2 reviews the currently available multivariate GARCH models that

consider dynamic conditional correlations. In section 3 we introduce the Markov
switching DCC model (MS-DCC). Section 4 shortly presents the contagion issue
and section 5 describes the empirical application to a set of European stock
market indices. Section 5 concludes.

2 Multivariate GARCH with Dynamic Correla-
tions

The Vech-GARCH of Engle and Kroner (1995) is one of the more general rep-
resentations; it is characterised by the following equations (the GARCH orders
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have been restricted to one for the sake of exposition, but higher orders can
easily be handled):

Yt = f
¡
It−1; θ

¢
+ εt, εt|It−1 ∼ iid (0,Ht) (1)

V ech (Ht) = C +AV ech (εtε
0
t) +BV ech (Ht−1)

where Yt is a k-dimensional vector of variables whose mean can be time de-
pendent; It−1 is the information set at time t− 1; εt is the vector of residuals
that are independently and identically distributed following a multivariate un-
specified distribution with time-dependent variance-covariance matrix Ht; fur-
thermore, Ht follows a multivariate GARCH(1,1)-type representation in which
the parameter matrices are of dimension n × n with n = k × (k + 1) /2 and
V ech (X) stacks the lower triangular elements of X.
The constraints required to ensure the positivity of conditional variances

and the positive semi-definiteness of the variance-covariance matrix create many
problems both in the implementation and in the optimisation steps. For this
reason, the largest part of the literature focuses on finding a representation that
reduces the computational burden of a Vech-Multivariate GARCH. Among oth-
ers, we cite the diagonal Vech and BEKK representations of Engle and Kroner
(1995). However, the most used structure is the Constant Conditional Correla-
tion, introduced by Bollerslev (1990).
The basic idea of the CCC-GARCH is in noting that the variance-covariance

matrix can be represented as the product of a correlation matrix by a standard
deviation matrix:

Ht = diag (σ1t, σ2t...σkt) R diag (σ1t, σ2t...σkt) = DtRDt (2)

where R is a correlation matrix and Dt is a diagonal matrix of standard devi-
ations. This simplification allows both the overcoming of most parameter re-
strictions (only the coefficients of the conditional variances have to be bounded
using the standard univariate inequality) and of a simple two-step estimation
strategy that considers univariate GARCH estimation in the first step, while
in the second step the correlation matrix is estimated by its sample estimator.
Therefore, this approach is feasible even for very large systems.
More recently, attention has been drawn to a direct modelisation of the

correlation matrix, leaving aside the conditional variances. This new field was
started by Engle (2002) who suggested generalising the CCC-GARCH model
of Bollerslev (1990), allowing the conditional correlations to vary over time.
Equation (2) is then replaced by

Ht = DtRtDt (3)
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where the correlation matrix follows a time dependent relation as follows

Rt = Q∗−1t QtQ
∗−1
t (4)

Qt = (1− α− β) Q̄+ αηt−1η
0
t−1 + βQt−1

Q∗t = diag
¡√

q11,t,
√
q22,t...

√
qkk,t

¢
Q̄ =

1

T

TX
i=1

ηt−1η
0
t−1

In this model, Q̄ represents the unconditional correlations, Q∗t guarantees that
Rt is a correlation matrix (qii,t, i = 1, ..., k are the elements of the diago-
nal of Qt) and ηt are the standardised residuals, ηt = D−1t Et where Dt =
diag (σ1t, σ2t...σkt). It is worth noting that the DCC just impose a GARCH-
type structure on the conditional correlations and uses only two parameters
to add a dynamic behaviour. A very similar approach was contemporaneously
suggested by Tse and Tsui (2002), with the only difference that they use small
sample correlation estimates (instead of the standardised residuals ηt) to avoid
the further standardisation of Q∗t .
It has also to be noted that the simplicity of the suggested approaches is

coupled with a strong restriction: the dynamic of correlation is constant among
all the variables. This constraint can be removed, as suggested by Engle (2002)
estimating an unrestricted DCC (or Generalised DCC, let us call it GDCC),
where

Qt = (ii
0 −A−B)¯ Q̄+A¯ ηt−1η

0
t−1 +B ¯Qt−1 (5)

and A and B are full square matrices of dimension k, i is a vector of ones and ¯
is the Hadamard product (i.e. the element by element product). Conditions for
positive definiteness of Qt are provided in Ding and Engle (2001). Clearly, the
unrestricted DCC model creates the well-known problem of the high number of
parameters, a motivation that was at the base of the development of the CCC
and DCC model classes. Therefore, we no longer consider this structure.
Now a lot of work is done on the modelisation of the correlation matrix. For

example, Franses and Hafner (2003) propose a restricted parameterisation of
the GDCC, suggest that A = aa0, where a is vector of dimension k and B = β is
a scalar and impose the positive definiteness by modifying the intercept term of
the GDCC equation (let us call this model the Franses-Hafner DCC, FH-DCC).
This model adds flexibility and the number of parameters decreases sensibly,
but it loses the property of correlation targeting, since the unconditional mean
of FH-DCC is not the unconditional correlation, as in the DCC model.
Other extensions of the DCC model have been suggested. Cappiello et al.

(2003) propose to add a term in the DCC equation to take into account the
asymmetry (Asymmetric DCC - ADCC). Their model is fairly general to include
all previous cases, however the to impose the positive definiteness is a very hard
computational problem.
Further extensions of DCC models are developed by Billio et al. (2004) and

Billio and Caporin (2004). The first paper introduces the Flexible DCC model
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(FDCC) where the GDCC of Engle (2002) is modified by the introduction of a
constant and of a parameter matrix structure similar to the one used by Franses
and Hafner (2003). The model is represented by the following equation

Qt = cc
0 ¯ Q̄+ aa0 ¯ ηt−1η

0
t−1 + bb

0 ¯Qt−1 (6)

where a, b and c are partitioned parameter vectors (e.g. a = [a1i (m1) ,
a2i (m2) , · · · , awi (mw)]

0, where w is the number of partitions and i (mj) is
a row vector of one of dimension mj with

P
j mj = k). The FDCC model loses

the correlation targeting property as the FH-DCC but also reduces the number
of parameters. Clearly, the number of parameters depends on the number of
partitions imposed on the coefficient vectors, which can include several assets.
Finally, the model provides a positive definite Qt since it is composed by the
sum of positive definite and semi-definite matrices.
Billio and Caporin (2004) generalise the FDCC to the Quadratic FDCC

(QFDCC), which is similar to the model of Cappiello et al. (2003) and uses the
structure of the FDCC. The QFDCC model is characterised by the following
structure

Qt = CQ̄C 0 +Aηt−1η
0
t−1A

0 +BQt−1B
0 (7)

where A, B and C are partitioned parameter matrices. If the parameter matrices
are diagonal the QFDCCmodel collapses on the FDCC one. The QFDCCmodel
provides positive definite correlation matrices if the eigenvalues of A+B are in
modulus less than one and the matrix CQ̄C0 is positive definite. This results
derive from Engle and Kroner (1995) noting that the QFDCC is similar to a
BEKK representation for the correlation matrix.
Finally, Chan et al. (2003) suggest a slightly different approach. They

provide a general representation for a dynamic correlation model with stochastic
coefficients that nests all the previous DCC-type models. The most important
issue considered by Chan et al. (2003) pertains the asymptotic properties of
their GARCC model: in fact they provide the regularity conditions under which
the Quasi Maximum Likelihood estimator is consistent. Moreover, they show
how the DCC of Engle (2002) is included as a particular case of their GARCC
and argue that even the GDCC is a particular case of their representation.
Even if all these representations are useful to deal with high dimension prob-

lems and thus can be helpful for volatility transmission analysis (following King
and Wadhwani (1990), King et al. (1994) and Ramchard and Susmel (1998)),
they cannot account for discontinuities. In fact, the standard DCC model and
its generalisations provide a feasible structure for the treatment of large systems,
but they impose a fix unconditional correlation over the sample and for long sam-
ples this may be questionable. A change in the unconditional correlation levels
can be hypothesize to explain some empirical findings and this change can be
associated with a regime switch between two or more unconditional correlation
levels.
The idea of adding Markov switching regimes to the correlation has already

been considered by Pelletier (2004), who restricted his attention to a CCC model
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with regime switches (MS-CCC thereon). In particular, Pelletier suggested the
following restricted representation for the correlation matrix

Rt = Γλ (st) + Ik [1− λ (st)] (8)

where λ (st) is a state-dependent variable assuming only positive values and
st = 1, 2, ..., S. This representation is motivated by the computational problems
related to a full estimation of S state specific correlation matrices, which clearly
involve a very high number of parameters. However, this approach does not
allow the correlations to change sign and this possibility cannot be excluded a
priori.
In the next section we extend the DCC class by allowing both the uncondi-

tional correlation and the parameters to be driven by a latent Markov chain.

2.1 The estimation issue

The class of DCC models can be estimated with a two-step Quasi Maximum
Likelihood approach, as demonstrated by Engle (2002). The full log-likelihood
can be represented as

LogL (Y ) =
1

T

TX
t=1

logL (Yt) =
1

T

TX
t=1

∙
−1
2

¡
log |Ht|+ ε0tH

−1
t εt

¢¸
(9)

but recalling that Ht = DtRtDt and that |DtRtDt| = |Dt| |Rt| |Dt| we have

LogL (Y ) = − 1

2T

TX
t=1

£
2 log |Dt|+ log |Rt|+ ε0tD

−1
t R−1t D−1t εt

¤
(10)

Therefore, replacing in a first step the correlation matrix by an identity matrix,
we can maximise only with respect to the parameters appearing in Dt. In a sec-
ond stage, the estimation will then be performed conditionally on the estimate
variances, i.e. on

LogL (Y |D) = − 1

2T

TX
t=1

£
log |Rt|+ η0tR

−1
t ηt

¤
(11)

Engle (2002) and Engle and Sheppard (2002) provide the asymptotic prop-
erties of the standard DCC model estimators, a result which is generalised by
Chan et al. (2003).
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3 ADCCmodel withMarkov switching regimes:
the MS-DCC model

To modelise a possible change in the unconditional correlations, we follow Pel-
letier (2004) and introduce a regime switch between two or more unconditional
correlation levels. Moreover, we allow for changes in the sign of the switching
correlations, a possibility which is excluded in Pelletier (2004) but cannot be
excluded a priori.
Differently from Pelletier (2004), we consider the standard DCC model in

the following reformulation:

Qt = [1− α (st)− β (st)] Q̄ (st) + α (st)ηt−1η
0
t−1 + β (st)Qt−1 (12)

where both the unconditional correlation matrix and the parameters driving the
system dynamics can be regime dependent. The Markov chain is governed by
the following transition matrix

P = {pji i, j = 1, ...S} (13)

where S is the number of regimes. In the following we refer to this model as the
MS(S)-DCC.
As in Pelletier (2004), we restrict the regime dependent structure only to

the correlations excluding any effect on variances. This restriction allows us to
consider a two-step estimation procedure. In fact, a full Markov switching model
will become highly unstable given the huge number of switching parameters.
Given the joint presence of regime switches and dynamic correlations the

estimation of model (12) is very difficult being the Hamilton filter useless. In
fact, since the matrix Qt is not observed, the equation (12) should be modified
into

Qij
t =

£
1− αj − βj

¤
Q̄j + αjηt−1η

0
t−1 + βjQ

li
t−1 (14)

where the upperscript j,i and l refers to the state in t, t−1 and t−2, respectively;
the dynamic structure of Qt induce the dependence of the current regime to all
the past regimes. Using equation (14) in a standard Hamilton filter, an S-fold
increase of possible combinations is created at any new point in time. Therefore,
some approximation is needed.
According to Kim (1994), we consider the following modified Hamilton filter:

[i] given the filtered probabilities Pr
¡
st−1 = i|It−1

¢
as inputs, determine

the joint probabilities:

Pr
¡
st = j, st−1 = i|It−1

¢
= Pr (st = j|st−1 = i) Pr

¡
st−1 = i|It−1

¢
i, j = 1...S

[ii] evaluate the regime dependent likelihood:
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Qij
t =

£
1− αj − βj

¤
Q̄j + αjηt−1η

0
t−1 + βjQ

i
t−1 i, j = 1...S

Q̃ij
t = diag

µq
qij11,t,

q
qij22,t...

q
qijkk,t

¶
Rij
t =

³
Q̃ij
t

´−1
Qij
t

³
Q̃ij
t

´−1
LogLt(Yt|Dt, st = j, st−1 = i, It−1) = − 1

2T

µ
log
¯̄̄
Rij
t

¯̄̄
+ η0t

³
Rij
t

´−1
ηt

¶
[iii] evaluate the likelihood of observation t:

LogLt(Yt|Dt, I
t−1) =

SX
j=1

SX
i=1

LogLt(Yt|Dt, st = j, st−1 = i, It−1) Pr
¡
st = j, st−1 = i|It−1

¢
LogLt = LogLt−1 + LogLt(Yt|Dt, I

t−1)

[iv] update the joint probabilities:

Pr
¡
st = j, st−1 = i|It

¢
=

LogLt(Yt|Dt, st = j, st−1 = i, It−1) Pr
¡
st = j, st−1 = i|It−1

¢
LogLt(Yt|Dt, It−1)

for i, j = 1...S;

[v] compute the filtered probabilities:

Pr
¡
st = j|It

¢
=

SX
i=1

Pr
¡
st = j, st−1 = i|It

¢
j = 1...S

[vi] update the correlation matrix using the following approximation:

Qj
t =

PS
i=1 Pr (st = j, st−1 = i|It)Qij

t

Pr (st = j|It)
[vii] iterate [i] to [vi] until the end of the sample.

Note that the last equation collapses an S2-fold into an S-fold by an approx-
imation based on the current state probabilities (the well-known Kim approxi-
mation). To initialise the filter, the regime probabilities could be set equal to the
unconditional probabilities while Qj

0 can be obtained with a sample correlation
estimator computed in two different subset of the full sample, possibly distin-
guishing before and during a crisis period. For this operation, some relevant
information can be obtained by a preliminary analysis.
We should also specify a smoother for the hidden regimes. Given the ap-

proximation used in the filter, the smoother will include itself an implicit ap-
proximation as discussed by Kim and Nelson (1998). The algorithm requires as
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inputs the filtered probabilities obtained with the approximated filter and the
transition probabilities. Since Pr

¡
sT = j|IT

¢
is known (it is obtained in the

last iteration of the filter), it can be used to initialise the smoother, which is the
following:

Pr
¡
st = j, st+1 = m|IT

¢
=
Pr
¡
st+1 = m|IT

¢
Pr (st = j|It) Pr (st+1 = m|st = j)

Pr (st+1 = m|It)

Pr
¡
st = j|IT

¢
=

SX
m=1

Pr
¡
st = j, st+1 = m|IT

¢
(15)

for j,m = 1...S.
In large systems the MS-DCC model may have some convergence problems

given the high number of parameters involved. In this case the parameterisation
suggested by Pelletier (2004) can be used also in our framework. We should
then rearrange equation (??), letting Qj = Γλ (sj) + Ik [1− λ (sj)]where j is
the regime in t. Thus, a single correlation matrix has to be estimated, sensibly
reducing the number of parameters; however, as in Pelletier (2004), changes in
the correlation sign are not allowed.
Finally, the MS structure can easily be extended to all the other DCC models

reviewed in section 2.

4 Contagion definitions and literature
The last two decades have experienced a series of financial and currency crises,
many of them carrying regional or even global consequences: the 1987 Wall
Street crash, the 1992 European monetary system collapse, the 1994 Mexican
pesos crisis, the 1997 "Asian Flu", the 1998 "Russian Cold", the 1999 Brazilian
devaluation, the 2000 Internet bubble burst and the default crisis in Argentina of
July 2001. Most of these crises hit emerging markets, which are more sensitive
to shocks because of their underdeveloped financial markets and their large
public deficits. The common feature shared by these events was that a country
specific shock spreads rapidly to other markets of different sizes and structures
all around the world.
It is still quite puzzling to justify the reason why a country reacts to a crisis

affecting another country to which the former is not linked by any economic
fundamentals. Many authors dealing with the topic of international propagation
of shocks have referred to this circumstance as a contagion phenomenon, even
if there is still no agreement on which factors lead to identify a contagion event
precisely, and it is not yet clear how to define the contagion event itself.
Referring to the World Bank’s classification, we can distinguish three defi-

nitions of contagion:
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- Broad definition: contagion is identified with the general process of shock
transmission across countries. The latter is supposed to work both in tran-
quil and crisis periods, and contagion is not only associated with negative
shocks but also with positive spillover effects;

- Restrictive definition: this is probably the most controversial definition.
Contagion is the propagation of shocks between two countries (or group
of countries) in excess of what should be expected by fundamentals and
considering the co-movements triggered by the common shocks. If we
adopt this definition of contagion, we must be aware of what constitutes
the underlying fundamentals. Otherwise, we are not able to appraise
effectively whether excess co-movements have occurred and then whether
contagion is displayed.

- Very restrictive definition: this is the one adopted by Forbes and Rigobon
(2000). Contagion should be interpreted as the change in the transmission
mechanisms that takes place during a turmoil period. For example, the
latter can be inferred by a significant increase in the cross-market corre-
lation. As we have said, this is the definition that will be used in this
paper.

Many papers have focused on the question of contagion, testing for its ex-
istence with statistical methods. Their approaches vary with regard to the
definition of contagion they choose as a starting point. As we have anticipated
we will use the third definition.
Why do we concentrate on this aspect of contagion? Why is this definition

of contagion important as is its exploration? Because, as observed by Forbes
and Rigobon, the other definitions of contagion and relative approaches of anal-
ysis are unable to shed light on three main issues: international diversification,
evaluation of the role and the potential effectiveness of international institutions
and bail-out funds, and propagation mechanisms. Indeed, a critical assumption
of investment strategies is that most economic disturbances are country specific.
As a consequence, stock in different countries should be less correlated. How-
ever, if market correlation increases after a bad shock, this would undermine
much of the rationale for international diversification.
The variety of empirical methods developed for the analysis of contagion

has the aim of testing the stability of parameters in the sphere of a chosen
econometric model. Evidence of parameter shifts is a signal of a change in the
transmission mechanism, so according to the third definition there has been
contagion. If, on the contrary, the parameters are constant, we should move to
an interdependence case. Several methodologies have been used to statistically
search for contagion in this way and others still have to be applied. Rigobon
(2001) offers a good survey of these procedures, which are mainly based on OLS
estimates (including GLS and FGLS), Principal Components, Probit models
and correlation coefficient analysis.
However, the methodologies listed above carry some imperfections because

the data often suffer from heteroskedasticity, endogenous and omitted variable
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problems. Some authors have tried to solve these problems in a similar way,
although they have reached different conclusions in terms of contagion. In par-
ticular, Forbes and Rigobon (2002) developed a correlation analysis adjusting
correlation coefficients only for heteroskedasticity under the assumption of no
omitted variables or simultaneous equations problems. Corsetti et al. (2002)
built up a model in which the specific shock of the country under crisis does not
necessarily act as a global shock because this could bias the analysis in favour
of interdependence instead of contagion. The authors therefore introduce more
sophisticated assumptions about the ratio between the variance of the country-
specific shock and the variance of the global factors weighted by factor loadings.
Nevertheless, both these tests are still highly affected by the presence of omitted
variables, the time zone and the windows used (see Billio and Pelizzon (2003)).
Working with Markov switching models and using regime probabilities (fil-

tered or smoothed) to monitor the volatility transmission process is a relatively
innovative approach, which has already suggested by Hassler (1995), Ang and
Bekaert (1999) and Baele (2003), but which has not yet completely developed in
contagion analysis (see however Pericoli and Sbracia (2003) for a review of em-
pirical works considering Markov switching models, Edward and Susmel (2003),
Gallo and Otranto (2004) and Billio et al. (2004)).
To combine a DCC-GARCHmodel with a Markov switching approach allows

us to take into account several important aspects: first of all the heteroskedas-
ticity of the data can be properly modelised; secondly, to consider dynamic
correlation permits to analyse the dynamics of contagion; finally, to consider a
latent Markov chain allows the endogenous definition of the crisis periods.

5 Detecting contagion with the MS-DCC model
This section presents an empirical application of the MS-DCC model. We con-
sider a set of daily stock market indices: Standard & Poors 500 (S&P), FTSE100
(FTSE), EuroStoxx50 (EX), Nikkey225 (NK), Hang Seng (Hong Kong - HS),
Straits (Singapore - STR) and KLSE (Malaysia - KLSE). The analysis is per-
formed on the daily returns and the series run from January 2000 to December
2003. Data have been downloaded from Datastream.
Since holiday days are not common over the stock markets, we consider

the following cut-off rule: we remove all common holidays while non-common
holidays are replaced by a zero return. This approach has the advantage of
not introducing spurious correlation in the data and to preserve all available
points in time. Furthermore, to avoid any problem due to asynchronous trading
we took the two-day moving average of the returns, as in Forbes and Rigobon
(2002).
After this step, we filtered the idiosyncratic heteroskedasticity for each se-

ries by fitting univariate GARCH models with asymmetry (see Glosten et al.
(1993)). The results are reported in Table 1. All indices evidence a relevant

11



asymmetric effect: in all cases the γ parameter is highly significant1.
On the variance-filtered series we estimated a set of static and dynamic

correlation models: the CCC, the MS(2)-CCC, the DCC and the MS(2)-DCC;
Table 2 reports the likelihoods of the four cases.
We also considered Markov switching models with three states but they

have been excluded since the third states was highly unstable (its persistence
probability resulted almost zero). It is important to note that the test for the
presence of the Markov switches is not standard, due to the presence of nuisance
parameters only under the alternative hypothesis. Thus, it is not possible to
simply compare the likelihoods for determining the optimal state number (see
Davies (1977, 1987) and Hansen (1992)). However, we can compare the DCC
model with the CCC one and the MS(2)-DCC model with the MS(2)-CCC
one by restricting the DCC coefficients to be zero (see Table 3 for the DCC
parameter estimates). In that cases, the Likelihood Ratio (LR) test statistics
(chi-squared with 2 degrees of freedom for which the 1% quantile is 9.21) are
equal to 444.772 and 423.428, respectively. In both cases the null hypothesis of
no dynamics in the correlations is strongly rejected giving a clear preference for
the Dynamic Correlation models.
Finally, we verified the null hypothesis that the β parameter of the MS(2)-

DCC model is stable over the two regimes. The associated Wald test statistics
is equal to 214.96, highly rejecting the null hypothesis.
The estimation algorithms of the two Markov switching models have been

initialised with the same starting values (for regime 0 the sample correlation ma-
trix and for regime 1 no correlation) and reports at the optimum two very similar
state dependent matrices2 . Figure 1 reports a comparison of the smoothed prob-
abilities of regime 1 obtained with the MS(2)-CCC and the MS(2)-DCC models.
The two graphs provide similar patterns, both models identify almost the same
regimes and switches among them (their concordance is 0,75). The estimation
of the Markov chain affecting market movements is thus quite robust. However,
even if the regimes classification is almost the same, the chain extraction with
the DCC model is less precise. To this respect, it is important to remember
that the filter algorithm for the MS-DCC model is approximated and this could
explain this difference.
As evidenced in Table 2, it clearly emerges that the inclusion of Markov

switches combined with the DCC dynamic evolution improves the likelihood.
Transition probability matrices (reported in Table 4) evidence that the regimes
are persistent and the DCC parameters are affected by the regime. Furthermore,
Tables 5, 6 and 7 report the unconditional correlation matrices (for the CCC
and DCC models) and the state dependent correlation matrices of the Markov
switching models. The correlation matrices of Tables 6 and 7 can be associated

1 In the GJR-GARCH model (Glosten et al., 1993) the variance equation is

σ2t = ω + αε2t−1 + γε2t−1I (εt−1) + βσ2t−1

where I (εt−1) is an indicator function assuming the value 1 for negative values of εt−1 and 0
otherwise.

2Moreover, the optimum seems not affected by the use of different starting values.
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with a high correlation state (regime 0) and a lower correlation state (regime 1).
Finally, the switches between the two regimes can be matched with the presence
of the so-called "loss of interdependence" phenomenon, which happens when the
link among the markets falls during the crisis. Whenever a turbulence starts in
a market, the other markets immediately suffer the effects of the turbulence, but
as soon as they identify the noisy signal and filter it out, the correlation with the
turbulent area reduces. In that view, the low correlation state, regime 1, appear
as the dominant regime for example after September 11, and again during the
war operations in Afghanistan and Iraq. Indeed, even if this result cannot be
accounted as contagion, correlation falls support the thesis of discontinuities in
the propagation mechanisms and it has been evidenced by several authors (see,
for example, Billio and Pelizzon (2003)).
It is also important to note that the MS-DCC α parameter associated to

regime 1 (lower correlation regime) is larger than in regime 0. This parameter
represents the loading of market shocks into the correlation dynamics and an
increase in the α associated to low correlations can be interpreted as an increase
in the reply to market movements. This is not surprising: noting that the low
correlation is associated with high volatile periods we can expect that correlation
dynamic dependence on market movements increases while the unconditional
correlation falls.

6 Conclusions
In this paper we introduce a generalisation of the DCC model of Engle (2002)
by allowing for Markov switches in both the parameter and the unconditional
correlation. Following Kim (1994), we develop a modified Hamilton algorithm
for model estimation and perform an empirical application on daily European
and US stock market index returns. The proposed MS-DCC model is clearly
preferred in terms of likelihood and allows an economic interpretation of the
identified regimes. In particular, we point to the presence of the loss of in-
terdependence phenomenon, which supports the thesis of discontinuities in the
volatility propagation mechanisms.
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Table 1: GJR-GARCH estimates

ω α γ β
0.01730 0.04662 0.15591 0.85110
0.00013 0.00051 0.00074 0.00081
0.12299 0.36178 0.18097 0.51987
0.00095 0.00164 0.00181 0.00203
0.21468 0.15853 0.18033 0.63704
0.00318 0.00151 0.00128 0.00350
0.22473 0.25267 0.06831 0.54264
0.00507 0.00370 0.00147 0.00709
0.15593 0.39825 0.17502 0.48429
0.00143 0.00206 0.00190 0.00247
0.01693 0.08890 0.09102 0.85219
0.00011 0.00052 0.00053 0.00063
0.02205 0.06315 0.13952 0.83608
0.00019 0.00059 0.00071 0.00097

NK

HS

STR

KLSE

Parameters / Standard Error

S&P

FTSE

EX

Series

Table 2: LogLikelihoods of the fitted models
Model Log-Likelihood

CCC -2357.994
MS(2)-CCC -2286.330
DCC -2135.608
MS(2)-DCC -2074.616

Table 3: DCC and MS(2)-DCC parameter estimates
DCC parameters Coeff. Std.Err.

α 0.186 0.012
β 0.403 0.044

MS-DCC α 0.160 0.057
Regime 0 β 0.379 0.030
MS-DCC α 0.237 0.026
Regime 1 β 0.360 0.069

DCC
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Table 4: Transition matrices of the MS(2)-CCC and MS(2)-DCC models
Tansition matrices
MS-CCC 0 1

0.868
0.057

0.858
0.032

MS-DCC 0 1
0.744
0.031

0.827
0.0250.142

1

0 0.132

0.142

0 0.256

1

Transition probabilities and standard errors

Table 5: Unconditional correlation matrix

1 --- --- --- --- --- ---
0.659 1 --- --- --- --- ---
0.672 0.830 1 --- --- --- ---
0.378 0.427 0.456 1 --- --- ---
0.412 0.499 0.510 0.532 1 --- ---
0.356 0.440 0.462 0.490 0.599 1
0.102 0.085 0.147 0.225 0.272 0.333 1

Correlation Matrix (CCC and DCC)

Correlations have been estimated using the sample estimator
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Table 6: State dependent correlation matrices of the MS-CCC model

S&P500 FTSE100 EX50 NIK225 HS STR KLSE

0.703
0.032
0.786 0.900
0.035 0.011
0.433 0.553 0.535
0.050 0.067 0.061
0.550 0.606 0.595 0.682
0.052 0.046 0.063 0.037
0.501 0.561 0.540 0.652 0.761
0.064 0.067 0.045 0.070 0.052
0.049 0.114 0.146 0.276 0.163 0.329
0.091 0.073 0.077 0.081 0.083 0.110

0.612
0.041
0.557 0.752
0.045 0.037
0.318 0.277 0.368
0.072 0.075 0.072
0.256 0.367 0.408 0.354
0.067 0.048 0.064 0.080
0.196 0.294 0.372 0.294 0.415
0.073 0.058 0.049 0.081 0.050
0.159 0.029 0.132 0.153 0.402 0.336
0.062 0.057 0.060 0.096 0.061 0.105

Correlation matrices - MS(2)-CCC

Regime 0

1

1

---

1

1

1 --- ---

1

1

1

1

1

1

---

---

------

---

---

---

---

---

---

---

---

---

---

---

---

---

---

---

---

---

---

---

------

---

1

1

Regime 1

1 ------

---

---

---

---

---S&P500

FTSE100 ---

--- --- ------

---

EX50

NIK225

HS

STR

KLSE

S&P500

FTSE100

EX50

NIK225

HS

STR

KLSE

Estimated coefficients and standard errors - in italics we reports non-significant
correlations at the 5% confidence level
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Table 7: state dependent correlation matrices of the MS-DCC model

S&P500 FTSE100 EX50 NIK225 HS STR KLSE

0.699
0.127
0.819 0.917
0.074 0.062
0.432 0.535 0.509
0.192 0.152 0.127
0.579 0.604 0.592 0.729
0.100 0.121 0.182 0.098
0.471 0.551 0.546 0.696 0.772
0.095 0.117 0.081 0.181 0.090
0.381 0.482 0.467 0.635 0.582 0.780
0.181 0.232 0.177 0.210 0.180 0.276

0.594
0.148
0.536 0.756
0.182 0.073
0.329 0.354 0.423
0.166 0.174 0.104
0.215 0.380 0.405 0.454
0.090 0.110 0.080 0.192
0.272 0.376 0.418 0.386 0.497
0.123 0.128 0.067 0.108 0.163
-0.128 -0.145 -0.038 -0.023 0.096 0.096
0.079 0.085 0.040 0.032 0.037 0.027

Correlation matrices - MS(2)-DCC

Regime 0

1 --- --- --- --- --- ---

1 --- --- --- --- ---

1 --- --- --- ---

1 --- --- ---

1 --- ---

1 ---

1

Regime 1

1 --- --- --- --- --- ---

1 --- --- --- --- ---

1 --- --- --- ---

1 --- --- ---

1KLSE

STR

1 --- ---

1 ---

HS

NIK225

EX50

FTSE100

S&P500

KLSE

STR

HS

NIK225

EX50

FTSE100

S&P500

Estimated coefficients and standard errors - in italics we reports non-significant
correlations at the 5% confidence level
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Figure 1: smoothed probabilities of regime 0 for MS(2)-CCC and MS(2)-
DCC models
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