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1. Introduction 

 

Over the last decade, the multivariate GARCH literature has expanded significantly, with many new 

models and empirical applications (see McAleer (2005) and Bauwens, Laurent and Rombouts 

(2005) for recent discussions). The modelling of conditional correlations has attracted particular 

interest, given their relevance for portfolio allocation, risk measurement and management, and the 

forecasting of Value-at-Risk (VaR) thresholds according to the principles of the Basel Accord. In 

the area of time-varying conditional correlations, the simplest and possibly the most popular 

specification is the Dynamic Conditional Correlation (DCC) model of Engle (2002). 

 

Several recent multivariate conditional volatility models have attracted considerable interest, 

especially given the smaller number of parameters as compared with the highly overparameterized 

multivariate BEKK and Vech models of Engle and Kroner (1995). However, they do not represent 

preferred solutions if the primary interest is to evaluate and measure risk rather than selecting an 

optimal portfolio. Regardless of whether dynamic conditional correlation models are useful for 

portfolio allocation and management, they are not as useful for risk evaluation and measurement, 

where conditional variances play a prominent role. The exclusion of any spillover effect among 

conditional variances and covariances, which is standard in DCC-type models, may lead to serious 

biases in the estimates and outcomes. 

 

Within the risk measurement framework, the relationship between the scalar BEKK and direct DCC 

models are established. This representation establishes the relevant structural and asymptotic 

properties of scalar BEKK using the theoretical results in Comte and Lieberman (2003) and Ling 

and McAleer (2003). Sufficient conditions for the direct DCC model of Engle (2002) to be 

consistent with a scalar BEKK representation are established, and an indirect DCC model that is 

implied by the scalar BEKK representation is obtained. Finally, the direct and indirect DCC models 

are compared empirically. 

 

The plan of the remainder of the paper is as follows. Section 2 presents a derivation of the scalar 

BEKK model from a multivariate extension of the Random Coefficient Autoregressive (RCA) 

model of Tsay (1987). In Section 3, the scalar BEKK (and hence indirect DCC) and direct DCC 

models are compared using an empirical example based on the DAX, CAC40 and FTSE100 stock 

market indexes. 
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2. Scalar BEKK and Dynamic Correlations 

 

Let ty  represent an 1m×  vector of asset returns, 1( | )t tE y I −  the conditional mean, tε  the random 

shock to returns, and 1tI − the information set at time 1.t −  The typical model of multivariate returns 

and risk can be represented as follows: 

 

1( | )t t t ty E y I ε−= +             (1a) 

t t tDε η=               (1b) 

t t t tQ D D= Γ               (1c) 

 

where 1 2( , ,..., ),t t t mtD diag h h h=  2
1( | ),it it th E Iε −=  '

1( | )t t t tQ E Iε ε −=  is the matrix of conditional 

covariances, ½
t t tDη ε−=  and '

1( | )t t t tE Iηη −Γ =  is the matrix of conditional correlations. 

 

The BEKK model assumes that the dynamic positive definite conditional covariance matrix is given 

as follows: 

 
' ' ' '

1 1 1t t t tQ QQ A A BQ Bε ε− − −= + +          (2) 

 

where A  and B  are square coefficient matrices, and Q  is a triangular coefficient matrix. On the 

other hand, the DCC model estimates the univariate GARCH(1,1) model in the first step. In the 

second step, DCC is estimated using the GARCH(1,1) standardized residuals. However, in order to 

interpret the dynamic components as valid conditional correlations, an appropriate standardization 

is required. The standardized conditional correlations are given as: 

 
'

1 1 1(1 )t t t tα β αη η β− − −Γ = − − Γ + + Γ           (3) 

 

where α  and β  are scalar parameters, and Γ  is the constant conditional correlation matrix in the 

absence of dynamics. The dynamic conditional correlations are finally given by: 

 

( ) ( )1 1* * ,t t t t

− −
Γ = Γ Γ Γ�  

 

where 
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( )*
11, 22, ,, ,... .t t t kk tdiagΓ = Γ Γ Γ  

 

McAleer et al. (2005) show that the multivariate BEKK model can be obtained from a Vector 

Random Coefficient Autoregressive (VRCA) process, namely: 

 
'

1 , (0, ), (0, ).t t t t t tA A IID A IID QQε ε ξ ξ−= + ∼ ∼       (4) 

 

Given the VRCA process for the unconditional shocks in equation (1a), the moment conditions and 

asymptotic theory follow directly from the theoretical results in Comte and Lieberman (2003) and 

Ling and McAleer (2003). In particular, for the scalar BEKK model considered in this paper, it can 

be shown that: 

 
½ ½

1 2

1 1 1 2 1

,   ,

,
m m

t t t t

A I B I

Q QQ Q

θ θ

θ ε ε θ− − −

= =

′′= + +
 

 

which follows directly from the scalar VRCA model, which is given for the AR(1) process as: 

 

( )
( )

1 ,
~ 0, ,

~ 0, ,

t t t t

t

t

IID

IID V

ε α ε ν
α α

ν

−= +

 

 

it follows that  

 

( )1 1 1| .t t t t tVar I Q Vε αε ε− − −
′= = +  

 

Replacing the AR(1) with an AR(∞ ) VRCA process yields the scalar BEKK model, with a 

transformation of V  as 'QQ .  

 

From (1c), it follows that tΓ  can be obtained indirectly from tQ  as: 

 
1 1.t t t tD Q D− −Γ =             (5) 
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Substitution of (2) into (5) gives the indirect DCC model, as follows: 

 
1 1 ' 1 1 ' 1 1/ 2 1 1/ 2 '

1 1 1 1( )( ) ( )( ) ( )( ) ,t t t t t t t t t t tD Q D Q D A D A D BQ D BQε ε− − − − − −
− − − −Γ = + +      (6) 

 

where 1/ 2 1/ 2
1 1 .t t tQ Q Q− − =  The conditional correlation matrix in (6) is structurally valid and directly 

interpretable as it has been derived from a VRCA process. Thus, tΓ  in (6) has explicit regularity 

conditions and asymptotic properties for the Quasi-Maximum Likelihood Estimates (QMLE) in the 

absence of multivariate normality of the vector of standardized residuals. It is worth comparing tΓ  

in (3) and (6), namely the direct and indirect DCC specifications, as follows: 

 
1 1 '(1 ) ( )( ) ,t tD Q D Qα β − −− − Γ =           (7a) 

' 1 1 '
1 1 1 1( )( ) ,t t t t t tD A D Aαη η ε ε− −
− − − −=          (7b) 

1 1/ 2 1 1/ 2 '
1 1 1( )( ) .t t t t tD BQ D BQβ − −
− − −Γ =          (7c) 

 

When 0α β= =  in (7a), 1
tD−  is also a matrix of constants. However, the restrictions on the 

parameters and variables inherent in (7b)-(7c) to obtain the direct DCC model from scalar BEKK 

are infeasible as:  

(i) except when 0α =  and 0A = , (7b) is not consistent with the definition of the vector of 

standardized residuals, tη ;  

(ii) except when 0β =  and 0B = , (7c) is not consistent with the definition of the vector of 

standardized residuals, tη .  

 

Therefore, the direct DCC model cannot be derived from a Vector Random Coefficient 

Autoregressive process with valid restrictions on the parameters and variables, which distinguished 

it from the indirect DCC model. Thus, it would seem that the direct DCC model is unlikely to have 

any valid moment conditions or asymptotic properties. 

 

3. Empirical Comparison 

 

Three stock market indexes are selected to compare the dynamic conditional correlations derived 

from the direct and indirect DCC models, namely DAX, CAC40 and FTSE100. The sample is 
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restricted to the daily closing market indexes from January 1999 to September 2005, giving a total 

of 1733 days. The daily logarithmic returns are calculated, and missing observations (due to 

different holidays) are replaced with zero returns. 

 

In order to filter out the mean dynamics, a VAR(1) model was fitted to the returns to compute the 

mean residuals, which are the object of the empirical exercise. Two models were estimated for the 

conditional variances and correlations, namely the scalar BEKK (or indirect DCC) model for the 

conditional covariances and the direct DCC model with GARCH(1,1) for the conditional variances. 

With the conditional first and second moments given as [ ]1| 0t tE Iε − =  and 1|t t t tE Iε ε −
⎡ ⎤′ = Σ
⎣ ⎦

, 

respectively, the direct and indirect DCC models are given as follows: 

 

Scalar BEKK (Indirect DCC) 

 

( ) 1 1 1

1

1

1 ,

.

t t t t

T

t t
t

T

α β αε ε β

ε ε

− − −

−

=

′Σ = − − Σ + + Σ

′Σ = ∑
 

 

Direct DCC 

 

( )

( )

( )

1, 2, ,

2 2 2 1
, , 1 , 1

1 2 1 1 1 2 1

1 1 1
11, 22, ,

1

,     , ,..., ,

,     ,

1 ,

,      ,      , ,..., .

t t t t t t t k t

j t j j j t j j t t t t

t t t t

T

t t t t t t t t t kk t
j

D D D diag

D

Q Q

T Q Q Q Q diag q q q

σ σ σ

σ ω α ε β σ η ε

θ θ θη η θ

ηη

−
− −

− − −

− − −

=

Σ = Γ =

= + + =

′= − − Γ + +

′Γ = Γ = =∑

 

 

Furthermore, the dynamic conditional correlations from the scalar BEKK model are as follows: 

 

( )
1 1

11, 22, ,

,

, ,..., .
t t t t

t t t kk tdiag σ σ σ

− −Γ = Σ Σ Σ

Σ =

�
 

 

Tables 1 and 2 report the estimated parameters for the direct DCC and scalar BEKK (or indirect 

DCC) models, while Tables 3 and 4 report the sample moments of the estimated conditional 

variances and correlations of the two models. Furthermore, Figures 1-3 report the conditional 
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variances produced by the direct and indirect DCC models, while Figures 4-6 report the conditional 

correlations from the two models. 

 

Note that both models provide highly significant estimates. Furthermore, the GARCH(1,1) models 

lead to very similar parameter estimates. This is to be expected result as markets are closely 

integrated, so they are likely to share common patterns and to react in a similar manner to shocks. 

The DCC model does not provide a particularly high estimate of 2̂ 0.819,θ =  while the scalar 

BEKK model produces a highly persistent estimate of ˆˆ 0.972,α β+ =  which is in line with typical 

GARCH(1,1) estimates. 

 

Tables 1 and 2 report the full system likelihoods, that is, the maximized likelihood for the scalar 

BEKK model, while this is equivalent to the maximized likelihood including the effects of the 

GARCH(1,1) models (that is, the likelihood for tε ) for DCC. Note that even if scalar BEKK (and 

hence indirect DCC) is a simplistic solution compared with the direct DCC model and 

GARCH(1,1), it provides a significantly higher likelihood value (specifically, at more than 10% 

higher). This is an interesting result, and may arise because BEKK estimates the conditional 

variances and covariances simultaneously. 

 

It is clear from the graphs that the scalar BEKK model provides smoother conditional variances and 

correlation estimates as compared with the direct DCC estimates. In general, the scalar BEKK (and 

hence indirect DCC) estimates are less volatile than are their direct DCC counterparts.  

 

Finally, Table 4 reports the sample correlation between the conditional variances, covariances and 

correlations estimated by the Scalar BEKK and the DCC model. The conditional variance and 

covariances series are very close while some differences emerge for the conditional correlations. In 

fact, the correlation coefficients decrease in particular when we include the FTSE index. These 

relevant discrepancies are due to the different approaches of both models and strengthen the 

preference for the Scalar-BEKK. 

 

4. Concluding Remarks 

 

The paper derives the scalar special case of the BEKK model of Engle and Kroner (1995) using a 

multivariate extension of the Random Coefficient Autoregressive (RCA) model of Tsay (1987). 

This representation establishes the relevant structural and asymptotic properties of the scalar BEKK 
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model using the theoretical results in Comte and Lieberman (2003) and Ling and McAleer (2003). 

Sufficient conditions for the direct DCC model of Engle (2002) to be consistent with a scalar BEKK 

representation are established. Moreover, an indirect DCC model that is consistent with the scalar 

BEKK representation is obtained, and is compared with the direct DCC model using an empirical 

example. It is found that the scalar BEKK model, and hence indirect DCC, generally provides less 

volatile estimates of the conditional variances and correlations than does the direct DCC model. 
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Table 1: Direct DCC with GARCH(1,1) Conditional Variances 

GARCH(1,1) 
Data Estimates ω  α  β  

Coeff. 0.002 0.073 0.922 
St.dev. 2.6x10-5 3.1x10-4 3.1x10-4 CAC40 
T-stat. 87.186 233.971 2971.770 
Coeff. 0.003 0.077 0.917 
St.dev. 3.3x10-5 2.6x10-4 2.7x10-4 DAX 
T-stat. 95.206 291.343 3377.455 
Coeff. 0.002 0.086 0.908 
St.dev. 1.9x10-5 3.8x10-4 4.1x10-4 FTSE 
T-stat. 87.946 225.064 2214.906 

Direct DCC 
Estimates 1θ  2θ  

Coeff. 0.034 0.819 
St.dev. 2.3x10-4 1.9x10-3 

Direct 
DCC 

T-stat. 160.050 429.078 

 

Full system likelihood -2574.375 
 
 
 
 
Table 2: Scalar BEKK (Indirect DCC) Estimates 

Estimates α  β  
Coeff. 0.021 0.951 
St.dev. 1.6x10-4 4.4x10-4 
T-stat. 134.255 2147.518 
Full system likelihood -2279.620 
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Table 3: Sample Moments of Dynamic Conditional Variances and Covariances 

Moments CAC 
CAC-
DAX DAX 

CAC-
FTSE 

DAX-
FTSE FTSE 

Direct DCC with GARCH(1,1) Conditional Variances 
Mean 0.409 0.385 0.526 0.257 0.266 0.263 
Stdev 0.387 0.367 0.510 0.253 0.260 0.260 
Min 0.075 0.068 0.084 0.047 0.046 0.045 
Max 2.167 2.157 3.153 1.657 1.596 1.850 

Scalar BEKK (Indirect DCC) 
Mean 0.407 0.388 0.527 0.268 0.276 0.262 
Stdev 0.169 0.167 0.224 0.124 0.123 0.108 
Min 0.253 0.240 0.321 0.165 0.170 0.163 
Max 1.110 1.119 1.471 0.831 0.782 0.784 

 
Table 4: Sample Moments of Dynamic Conditional Correlations 

Moments CAC-DAX CAC-FTSE DAX-FTSE 
Direct DCC 

Mean 0.836 0.784 0.718 
Stdev 0.027 0.033 0.036 
Min 0.544 0.527 0.514 
Max 0.897 0.851 0.819 

Scalar BEKK (Indirect DCC) 
Mean 0.836 0.814 0.738 
Stdev 0.032 0.042 0.041 
Min 0.596 0.591 0.590 
Max 0.913 0.922 0.869 

 
Table 5: Correlation between Scalar BEKK and DCC conditional variances, covariances and 
correlations 

 Series Correlation 
CAC 0.983 

CAC-DAX 0.979 
DAX 0.982 

CAC-FTSE 0.972 
DAX-FTSE 0.970 V

ar
ia

nc
es

 a
nd

 
co

va
ria

nc
es

 

FTSE 0.970 
CAC-DAX 0.822 
CAC-FTSE 0.746 

C
or

re
l

at
io

ns
 

DAX-FTSE 0.750 
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Figure 1: CAC40 conditional variances 
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Figure 2: DAX conditional variances 
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Figure 3: FTSE 100 conditional variances 
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Figure 4: CAC40-DAX conditional correlations 
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Figure 5: CAC40-FTSE100 conditional correlations 
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Figure 6: DAX-FTSE100 conditional correlations 
 
 
 


