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"A Threshold Model for Italian Stock Market Volatility.

Potential of These Models: Comparing Forecasting Performances

and Evaluation of Portfolio-Risk with Other Models."

1 - Introduction: What’s this Work About.

This work investigates the potential of Threshold Models in interpreting some

characteristics of Financial Markets through an application to Italian Stock Market

Volatility.

A SETAR (Self-Exciting Threshold AutoRegressive) model is fitted to a

volatility series built using daily returns of the Italian Stock Index MIB30.

The model is then used to obtain volatility forecasts from 1 to 30 step-ahead

and Value-at-Risk (VaR) estimates. VaR is a methodology recently introduced by

the Basle Committee for measuring the market risk of a portfolio with regard to

financial institutions, especially banks.

The performances of the SETAR model are evaluated in comparison with other

competitive models, such as a linear AR, a GARCH, a GARCH-L model and, for

VaR purposes, also the methodology used by Riskmetrics. This enables us to

assess not only if  this class of models is worth further investigation since at least

comparable with models considered appreciable, but also if it is capable of

capturing aspects of empirical data that the other ones can’t explain.

Specific attention is given to the results obtained in days of particular market

turbulence, such as the days around the slump of Tuesday October 28, 1997, due

to the financial crisis of Asian markets.

The results obtained along this investigation show a generalized better

performance of the SETAR model over the other ones. In fact it isn’t only capable

of capturing the various characteristics of volatility, but is in particular the only

one which can distinguish a persistent shock of the market from an extraordinary

shock. Its superior performance is even more evident in particularly turbulent

moments of the market. Both aspects ar appreciable for operational purposes too.

As regards VaR for instance, it is basic for a model to provide accurate VaR

estimates, even in extreme market conditions. It’s also important to understand if

a model tends to over-estimate or under-estimate VaR, since it will conduct to
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higher or lower covering costs respectively, which aren’ t negligible with respect

to the financial management of a bank. The SETAR model, for instance, in the

days of the slump provides not only more accurate VaR estimates, but doesn’t

either conduct, differently from the other models, to higher covering costs, costs

that aren’t absolutely necessary looking at the real market conditions.

From a modelling point of view the innovative procedure introduced by Tsay is

employed here. He pointed out this methodology in order to make Threshold

Models tractable in application, since previous techniques were too expensive.

Therefore the present investigation is also a sort of test for the real

implementability of these models.

It wil be shown throughout next sections that both the effectiveness of the

modelling procedure proposed by Tsay and the appreciable performance exhibited

over the other models encourage further investigation of Threshold Models from a

methodological and an applied point of view.

1.1 - Motivations. Economic, Financial and Econometric Foundations.

"It seems to be generally accepted that economics is non-linear" [Granger and

Teräsvirta, 1993], from the specification of investment functions to the business

cycle itself. Non-linearity is also present in the specific context of Financial

Markets from investors' attitudes towards risk to the generating processes of

financial variables such as stock returns, interest rates, exchange rates, and so on.

Therefore, modelling such variables demands us to draw on from non-linear

literature, but given the extent of this last one, it is suitable before to try and

isolate the reasons of these non-linear behaviours. A rather unanimous conclusion

reached in the econometric literature finds out the Volatility phenomenon, in the

specific form of Conditional Heteroskedasticity. Together with the search for an

adequate non-linear model, we therefore need to search for an adequate functional

specification for conditional heteroskedasticity.

One of the main results in this field is represented by GARCH (Generalized

Autoregressive Conditional Heteroskedasticity) models, but in spite of the

interesting characteristics of these models, there are still unexplained and

unsolved non-linearities. Research is therefore open, and it will begin by applying

to those non-linear models whose characteristics seem compatible with the

evidence of the analysed cases, verifying  this compatibility on real data.
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A class of non-linear models that has recently began arousing the attentions of

theorists and applied analysts in the analysis of financial markets is that of

Threshold Models. They have been introduced by Tong in 1980 [Tong and Lim,

1980], but the complexity of the modelling procedure has been a factor that has

somewhat restrained their utilization, especially in application. This is why Tsay

[1989] proposed a "relatively simple" procedure " as compared with that outlined

by Tong and Lim", hoping it could "help exploit the potential" of these models "in

application".

In the present work we will therefore investigate the interpretative potentialities

of these models, building a Threshold Model for the Italian Stock Market

Volatility.

Modelling volatility is important both because it sheds further light on the

generating process of the returns, and it is variously assumed as a risk measure: in

investment decisions, based for example on CAPM or APT approaches, in the

option pricing formulas, in the problems of financial risk management (definition

of hedge ratios, carried out through derivative instruments, with high leverage

effect), in the evaluation of portfolio risk through the new VaR (Value-at-Risk)

methodology. In a context then, such the present-day one, we can't any longer

keep separate the financial from the macroeconomic frame: the barriers between

the credit sector and the securities ("valori mobiliari") sector of the Financial

Market are progressively falling down, with an increasing presence, in the

macroeconomic field, not only of the monetary and credit policy transmission

effects, but also of the whole sector of the Financial Market. It becomes so more

well-founded the idea of not insignificant relations of Stock Market volatility with

(real and nominal) Macroeconomic variables: " changes  in the level of stock

market volatility can have important effects on capital investment, consumption,

and other business cycle variables" [Schwert, 1989].

The Threshold Model presented here, specified through the procedure proposed

by Tsay (which will result effective and encouraging), after the usual evaluation

of conformability to the data, is employed to obtain 1) volatilty forecasts, and 2)

VaR estimates (this last application hasn't been tried yet with Threshold Models).

If forecasting is one of the main purposes of modelling, portfolio risk evaluation,

representing a more operative utilization, gives us a further and more interesting

measure of prediction accuracy than usual indicators: models with analogous

forecasting performances could in fact reveal themselves to be not equivalent
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from an operative point of view, since for VaR purposes it is important not only

the precision of a model, but if it tends to underestimate or overestimate too.

The performances of the Threshold Model built here are then compared with

those of other models of interest in this kind of analysis: in fact  it is sensible to

make a careful study of newly explored models if they show themselves

reasonably comparable with those already well-tested for the same purposes, and

even more if they are capable of filling the gaps left by the latter ones. Among the

models employed for comparisons we have: 1) two GARCH-type models, since

they have been created just for conditional heteroskedasticity; 2) one linear model,

as it is recommended in every non-linearity analysis [Granger and Teräsvirta,

1993], in order to judge if the performances of a non-linear model justify the

greater modelling and/or computational costs compared to those of the linear one,

usually simpler; 3) for the VaR section also the model utilized by RiskMetrics,

that publishes forecasts for the VaR estimates.

A specific attention is devoted to the results we have obtained in the last days

of October 1997, a rather critical period for the consequences even on the Italian

Stock Exchange of the crisis in the Far East markets (the press has written that

October 28, Tuesday, will enter the history of Italian stock exchange). In fact it is

important to analyse the performances of a model in periods of particular market

turbulence, since in that case it becomes even more necessary to have reliable

evaluation instruments available, being the situation more unstable.

This analysis has been conducted on the Italian case since it is both of

immediate interest for us, and most of the studies applied to Threshold Models

examine other Countries. In particular, Italian Stock Market, given its peculiarity

(not big dimensions, and continuous alternations between following other major

markets and going against the general trend) needs renovated attention: both in

consideration of the financial innovation process set up in these last years, and in

view of the prospects of European Monetary Union. As recent facts (runnings to

stock investments and excessive increases in the Italian stock exchange, especially

in April '98) show, putting in evidence that stock investment could or would

become a more and more alternative option to the one in public securities1, not

only for the institutional investor, but also for the private one or the small

individual saver.

                                                       
1Even for the necessity of an alignment of Italian interest rates (and, in a certain sense, of the

market) with  the European ones.
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1.2 - Considerations on Stock Returns: towards Threshold Models.

In a rather representative article (since other previous and following authors'

thesis, both for foreign markets and the Italian ones, converge on it), Hsieh [1991]

deals with the subject of non-linearities in (USA) stock returns. The presence of

non-linear dynamics is mainly due to the rejection of the i.i.d. (identical and

independent distribution) hypothesis for the returns, which coincides with the

rejection of the Random Walk hypothesis. The simplest version of a Random

Walk is:  Pt = Pt - 1 + εt, where Pt  are the  stock  prices  and  εt  is  a disturbance

term such that εt ~ i.i.d.(0, σ2). Having a Random Walk structure, price changes

evolve in a rather unpredictable way, and the prediction (the conditional expected

value) for the price in t+1, made in t, will be the price happened in time t: in this

way, forecasts for tomorrow price, based on today price, cannot be improved by

using also the information incorporated in the past prices. As a result, the only

significant information for market operators is that provided by the most recent

price, which coincides with the definition of (informative) Efficiency2 of the

Market. Searching for plausible sources of the i.i.d. hypothesis rejection, that is 1)

non-stationarity (as synonymous with structural changes), 2) presence of low

complexity chaotic dynamics, 3) conditional heteroskedasticity (time-varying

disturbances variance, conditionally on some information set), Hsieh (and other

authors with him) finds in this last one the origin of the non-linear dynamics.

For modelling purposes it is therefore suitable to make a careful study of this

aspect. But since, Hsieh concludes, models for these purposes created,

fundamentally GARCH-type models, "do not fully capture the nonlinearity in

stock returns", we must explore the potentialities of other non-linear models. So

we will now introduce Threshold Models, given their interesting characteristics in

this respect (see section 3).

                                                       
2An important notion in a non-linearity analysis, as we shall see in the applicative part of this

work (section 5).
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2 - Introduction to Threshold Models.

Threshold Models [Tong and Lim, 1980; Tong, 1983 and 1995] are a class of

non-linear models, for which the non-linearity of a process reduces itself to a local

linear approximation across states: the total non-linear behaviour of the process is

decomposed into regimes, inside which it is linear, and transitions across regimes

are controlled by so-called "threshold" variables, variously definable.

The most widely investigated class, both at theoretic and applied level, is that

of SETAR (Self-Exciting Threshold Autoregressive) models.

2.1 - An Interesting  Threshold Model: the SETAR Model.

The univariate series yt  is a SETAR(l; k, ..., k) model, where k is repeated l

times, if:

yt = a0( j ) + Σi = 1, ... , k ai( j )yt - i + σ( j ) εt,

conditional on yt - d ∈ Rj, j = 1, 2, ..., l.

The terms "Self-Exciting" indicate that the dynamic of the process is generated by

the process itself "d" times lagged (endogenous "threshold" dynamic).

· In this model,

(-) l is the number of regimes and Rj, j = 1, ..., l, are the regimes;

(-) k is the AR order in each regime;

(-) r1, ..., rl - 1 are the threshold parameters, or threshold values, or simply the

thresholds (r0 = -∞, rl = +∞);

(-) d is the delay parameter or threshold lag;

(-) {εt( j )} is a sequence of (heterogeneous) strict white noises.

· A SETAR model is a piecewise linear model in the space of yt-d, and is

capable of providing accurate "local approximations" in this space. It is not,

however, piecewise linear in time. Alternatively, in a certain sense, one can

interpret a SETAR model as a switching linear regression model, with the diffe-

rence that the switching mechanism is controlled by the threshold variable yt - d,

not by the time index t. In fact the dynamic of the model depends on the

dimension of yt - d, that is the value taken by yt - d. This is why, at each time t,
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the process falls in one or another regime, according to the value taken by yt - d.

That is, if, at time t,  yt - d ∈ Rj, (i.e. rj - 1 < yt - d ≤ rj), j = 1, ..., l, the AR

coefficients are ai( j ), with i = 0, 1, ..., k, and the disturbance variance is σj2.

· There are many variants available of the SETAR model here presented: the

AR orders can vary across different regimes, giving rise to a SETAR(l; k1, ..., kl),

and so can the delay parameter; other lags can be included in the conditioning

expression yt - d; only the disturbance variance, or the constant term could vary

across regimes.

· The SETAR model shows sudden transitions from one regime to another.

Smooth (in time) regime switchings are offered by STAR (Smooth Threshold

Autoregressive, see for instance [Guégan, 1994]) models, which, among other

things, have been employed in business cycle modelling (see for example

Teräsvirta and Anderson, 1992]).

2.2 - Peculiarities of the SETAR Model.

The dynamic mechanism, which  generates the "threshold" structure of the

SETAR model, is endogenous (the conditional expression depends on the process

itself yt, but "d" periods lagged, therefore on yt - d, the delay variable) and of a

dimensional kind (the regime transition happens when yt - d reaches a given

numeric value, the threshold). So the model is capable of keeping simulta-

neously into account many kinds of information3, temporal and dimensional,

quantitative and qualitative information, exhibiting its own dynamic not only in

the temporal space (through the linear autoregressive structure in each regime4),

but also in the dimensional one of the delay variable. It is capable of

contemporaneously recording 1) the magnitude of past events (we consider

significant), through the AR formulation, but also 2) their "quality", through the

"threshold structure. We can better understand the importance of this

characteristic through a comparison with a linear AR model. In fact this last one,

at each time t, ponders the events happened in times t-1, t-2, ..., always by the

same coefficients. While a SETAR at each time t first looks at what happened in

                                                       
3Without expensive modelling and/or computational efforts, which could make their use not

convenient.
4At each time only one regime is activated.
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t-d, and consequently ponders the facts by the coefficients of one regime or

another. Therefore it's capable of discriminating events that, even being of the

same magnitude, are qualitatively different.

3 - Threshold Models, Financial Markets and Volatility.

Threshold Models are able to reproduce behaviours often observed on real data

from Financial Markets: cyclical and asymmetric behaviours, occasional bursts in

presence of outliers, jump phenomenons, time irreversibility.

They have been employed5 in modelling stock returns, interest rates, exchange

rates, both independently and inserted in the so-called second generation non-

linear models, in which the part in-mean and the one in-variance of a process  can

be formulated  as different models.  If,  say,   yt = g(xt - 1; a) + εt is the part in-

mean of a process, and Var(εt| xt - 1) = σt2 = f(xt - 1; q) is the part in-variance,

where a and q are vectors of parameters, and xt - 1 is the information set available

until time t-1, g(⋅) could be a Threshold Model and f(⋅) a GARCH, ..., or g(⋅) a

Threshold Model and f(⋅) a Threshold-GARCH.

Searching for a functional specification  for conditional heteroskedasticity, a

model must be capable of capturing at least some of the empirical stylized facts of

volatility (of the binomial returns-volatility): leptokurtic non-conditional

distribution of asset returns; clustering (periods of high-low volatility are followed

by periods of high-low volatility); leverage effect (prices movements are

negatively correlated with volatility); persistence of the shocks on volatility; smile

effect (biases in evaluation of option prices, arising from the use of implied

volatilities); influence on volatility of information arrivals (since frequencies of

information arrivals and prices recording are different); volatility comovements of

speculative markets of different Countries.

The behaviours reproducible by Threshold Models lend themselves to describe,

variously combined, some aspects of volatility too: one can associate asymmetric

behaviours with leverage effect,  time irreversibility and jumps with clustering,

cyclical patterns with information arrivals and persistence, bursts with fat tails in

the returns distribution.

If these characteristics suggest to try and use a Threshold Model for the Italian

                                                       
5See Chappell et al.[1996], Zakoian [1994], Li [1996].
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Stock Market Volatility, the specific model we are going to employ here is,

according to the considerations of section 2.2, a SETAR model.

4 - Building SETAR Models: Key Instruments.

The main idea of the modelling procedure proposed by Tsay [1989; 1991; Cao

and Tsay 1993], is "to transform a SETAR model into a switching regression

problem, that is into a regular change-point problem in linear regression analysis,

for which statistics can be derived to test for model changes and to explore the

dynamic structure of the process. This is achieved by using the concepts of local

estimation and arranged autoregression".

Local estimation, exploiting arranged autoregression, aims to obtain a

sequence of estimates that, once put on a graph, allow us to locate the position of

the thresholds. While arranged autoregression is employed also after the

identification of the thresholds, in order to proceed with the final estimation of the

other parameters of the model.

Local estimation is a sequential estimation which recursively provides a sequence

of "local" estimates, since it employs a fixed-length window of data: beginning

with some initial data, at every step it adds a new observation

deleting the corresponding oldest one. It can be done efficiently by a recursive

least-squares algorithm or, in case of missing values in the data, by a Kalman

filter.

Arranged autoregression is simply an autoregression, but it uses the magnitude

of the threshold variable yt - d to arrange the data, not the time index t. Consider,

for instance, a SETAR(2), where the first regime is given by L1 = ]-∞, 0[, and the

second one is L2 = [0, ∞[:

         1.3 yt - 1 -0.4 yt - 2 + εt(1) if yt - 2 < 0

yt ={

   0.3 yt - 1 +0.4 yt - 2 + εt(2) if yt - 2 ≥ 0,

Such a set-up cannot yield consistent parameter estimates by an ordinary

autoregression. The problem can be solved using an arranged autoregression. To

understand better its mechanism consider for example 10 consecutive obser-

vations of  the proposed model (see table [4]). The table clearly shows the set-up

of the components inside vectors yt, yt - 1, yt - 2. In an ordinary autoregression it
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coincides with the time order, in an arranged autoregression with the dimensional

one (given by the magnitude of the threshold variable yt - 2): the elements of

yt-2 follow an increasing order, and the elements of yt and yt-1 are consequenly

rearranged, preserving the original "intra-time" relation.

For final estimation purposes, when the delay variable and the thresold value (-

0.41, say) are known, the first four rows of the arranged autoregression are the

data we employ to estimate (by OLS, ordinary least squares method) the

parameters in the first regime, the last four ones to estimate the parameters in the

second regime: for each regime we therefore separately  run an OLS estimation.

The joint utilization of Local estimation and Arranged autoregression (that is

the so-called Recursive Local Fitting: see Appendix [I]) to locate thresholds

provides the so-called scatterplots: they plot the local estimates of some sample

statistics (such as AR-coefficients and their own t-values) versus rearranged (in

increasing order) values of the threshold variable yt - d. The local estimates

should be stable before the first change point enters the estimation window: so,

ideally, the scatterplots should look like a step function, with jumps indicating the

values of the threshold variable at which the regime changes. In practice, since the

windows overlap sequentially, the plots tend to show certain smooth transition

from one regime to another. But it isn't a serious problem (this point requires

further research [Tsay, 1991]) because the main objective of these scatterplots,

which aren't formal tests, is to provide information on the possible partitions of

the space of the threshold variable. Once the threshold values are located, we can

partition the space into several regimes, and estimate (separately) an AR model

with an appropriate order in each regime.

4.1 - The Modelling Procedure for SETAR Models.

Estimating a SETAR model6 requires previously the identification of some

parameters: the AR order7 k, the delay parameter d, the number of regimes l, and

the thresholds r1, ..., rl - 1. So, the modelling procedure proposed by Tsay consists

                                                       
6Which consists in estimating the AR coefficients and the disturbance variances of the various

regimes.
7Maximum order, since (see step 10) the AR order may be different in different regimes, and at the

beginning we have to set at least an upper bound.
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of several steps (described in the following):

1) select the maximum AR order, according to the PACF and ACF functions (and

Ljung-Box statistic), and/or AIC [Tong and Lim, 1980] and/or SC information

criteria;

2) perform nonlinearity tests8 against an unspecified alternative (the F-test of Tsay

[Cao and Tsay, 1993] and the Augmented F-test of Luukkonen, Saikkonen and

Teräsvirta9 [Guégan, 1994]);

3) select a set of possible values for the delay parameter d;

4) for each value of d entartained, perform linearity tests against the hypothesis of

threshold nonlinearity (Threshold test and  General Nonlinearity test of Tsay,

illustrated in Appendix [2]);

5) choose d according to the outputs of the tests at step 4;

6) perform a Recursive Local Fitting to locate, looking at the scatterplots, the

possible values of the thresholds;

7) estimate10 a SETAR for each possible threshold value entartained at step 6;

8) select the threshold value which allow you to minimize the global AIC (we are

using the principle of the selection criteria, associated with a loss function to be

minimized);

9) evaluate the adequacy of the adopted specification, analysing the residuals, by,

say, the BDS test [Brock et al., 1991] and the ACF and PACF functions, to check,

respectively, the i.i.d. and the uncorrelation assumption of the residuals;

10) refine, if necessary, the estimated model, by using the AIC (and/or SC)

criterion, and other model evaluation techniques, to provide a proper specification

for the AR orders, the delay parameter, and the threshold values.

                                                       
8Before fitting a non-linear model [Granger and Teräsvirta, 1993], it is recommended to test the

non-linearity of the data, using general linearity tests and/or tests against a specific alternative.
9These tests and the ones at step 4 are among the most suitable for Threshold Models, but we can

perform other tests too.
10With known thresholds (as in the Tsay's procedure) the OLS estimates of the AR coefficients

and of the residual variances are strongly consistent (see Guégan [ 1994]) if the process yt,

following a SETAR model, is ergodic, and the disturbance variances in all regimes are finite.
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Application to the Italian Stock Market Volatility

5 - MIB30 and Volatility: Data Investigation.

Daily closing prices (from January 4, 1994 to December 30, 1997) of MIB30

stock index are employed here to model the Italian Stock Market Volatility.

Building the volatility series requires the following steps:

1) calculate daily returns Rt: Rt = ln(Pt) - ln(Pt - 1) using daily  stock index prices

Pt;

2) filter returns from possible forms of linear dependence11 due to calendar12

anomalies (or regularities) and nonsynchronous trading13 effect, regressing returns

on calendar (impulse) dummies and on a certain number of lagged returns

themselves Rt - 1, ...;

3) inspect if there is a GARCH effect for the conditional variance of the residuals

ût obtained by filtering the returns in the way illustrated at step 2. If it is present

adopt a GARCH specification for them;

4) build the volatility series14: σt = |ût| √ (π/2) ;

5) since this volatility measure  is skewed, use  its Box-Cox transformation, in

order to increase the efficiency of parameter estimation  and  to  aid  model

interpretation 15: yt = (σtλ - 1)/ λ.

The Threshold Model will be fitted to this series yt.

                                                       
11It is common practice in any non-linearity analysis: in fact, getting rid of every linear

dependence, possible residual dependencies should be non-linear.
12They are stock prices changes sistematically recorded in specific calendar dates, say, initial

day of trading week, or of trading month, ...: checking their existence is a way to evaluate

(informative) efficiency of the market.
13This effect arises when we record some data (which are generated at irregular intervals) at

constant time intervals. It can cause biases in the autocorrelations: we can therefore detect its

presence analysing these last ones.
14Many authors build the volatility series in this way, since it provides an unbiased estimator

for the conditional standard deviation (volatility) of returns.
15λ is chosen in order to allow the distribution of yt to be as near as possible to the Gaussian

one: λ=0.4.
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5.1 - Italian Stock Returns: Empirical Evidence.

Here are the empirical results from data analysis:

1) regressing returns on calendar dummies, that is days of the week (Monday, ...,

Friday), Post-Holiday days (open market days following holidays different from

Saturday and Sunday) and initial days of trading month16 (following the last day

of trading month, that is the contangoes-day, or "giorno dei riporti": InTradMo),

Monday falling tendency and the settlement (end of trading month) effect have

resulted significant;

2) from the inspection of autocorrelation functions (ACF e PACF) of the residuals

obtained at step 1), we found significative the autocorrelation at lag 7. Running a

rather long17 (until lag 30) residual autoregression  the presence of a

nonsynchronous trading effect ha been confirmed;

3) the ARCH-test on the residuals obtained regressing

returns simultaneously on calendar dummies and their own lags has pointed out

the presence of a GARCH effect.

Concluding this analysis, the stock index returns, filtered from linear

dependencies and with a GARCH(1,1) specification for the conditional variance,

are described by equations [1]-[2]. Table [1] shows estimation outputs.

[1]   Rt = a1Mon + a2Tue + a3Wed + a4Thu + a5Fri +

+ a6PostHol + a7InTradMo +a8Rt - 1 + a9Rt - 2 +

+ a10Rt - 3 + a11Rt - 4 + a12Rt - 5 + a13Rt - 6 +

+ a14Rt - 7 + a15Rt - 8 + a16Rt - 9 + a17Rt - 10 + ût

[2]   σt2 = b0 + b1 ût - 12 + c σt - 12

We have now available the proper estimates ût to build the volatility series yt.

                                                       
16After the shift (February 16, 1996) from "Negoziazione a Termine" (meaning "term trading")

to "Liquidazione a Contante" (meaning "cash settlement"), the dummy for the beginning of trading

month has been set equal to 0.
17Since (Pagan, [1990]) nonsynchronous trading could be compatible with a MA(1) residual

structure, MA(1) dei residui (really pointed out on some sub-samples).
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5.2 - Volatility Models for Comparisons.

We present here the models used in the comparisons with the SETAR model

(tables [2]-[3] show estimation outputs).

The GARCH models proposed here are a GARCH(1,1) and a GARCH-L(1,

1)18. This last one, compared to the GARCH model, introduces an asymmetric

term in order to take into account the leverage effect:

[3]  σt2 = b0 + b1 ût - 12 + c σt - 12 + d × I(ût - 1 ≤ 0) × ût - 12.

As regards the linear model, the best linear model fitting the data has resulted

to be an AR(5), estimated on the same series yt employed for the SETAR:

[4]  yt = a0 + a1 yt-1 + a2 yt-2 + a3 yt - 3 + a4 yt - 4 + a5 yt - 5 + εt.

6 - A SETAR Model for Italian Stock Market Volatility.

We show here the most significant results of the analyses conducted to specify

the SETAR model for the Volatility of the Italian Stock Market.

1) Choosing the AR order: we have found k = 5 as maximum plausible AR order,

which is compatible with our data, since there are five days in the trading week.

2) Linearity tests against an unspecified alternative: the BDS test points out some

non-linear dependences in the data (tables [5a] and [5b]). So do the F-test and the

Augmented F-test 19 (table [6]): the first one, in particular, heavily rejects the null

of linearity for all AR orders, including k = 5, the selected one.

3) Possible values for the delay parameter: following several authors (Tong, Tsay,

...) we choose those values for d (integer numbers) such that 1 ≤ d ≤ k, here 1 ≤ d

≤ 5.

4) Detecting "threshold" non-linearity: the Threshold test and the General

Nonlinearity test  test the null of linearity against the "threshold" non-linearity.

Tables [7] and [8] show rejection of the null. It is important to notice that we have

the  most significant  results,  when  changing  d,  at k = 5, which is the AR order

we have chosen before.

                                                       
18The order (1, 1) has been selected among several possible combinations by using the Schwarz

(SC) and the Akaike (AIC) information criteria.
19We need to have known or previously fixed the AR order to perform these tests.



16

5) Identification of the delay parameter: we need to have known, or previously

fixed, both the AR order and the delay parameter to perform the Threshold test

and the General Nonlinearity test. Since d, on the contrary, is unknown, Tsay

[1989] proposes to perform these tests for several values of d (chosen at point 3)

and select that value of d which provides the most significant outputs of the tests

(that is the minimum p-value, or tail-probability). He therefore suggests such tests

also as a technique for the identification of d. For such purpose it is useful to look

at the outputs of the tests even for values of k different from the pre-selected one:

tables [7] and [8] show that, when changing k, d = 1 seems the most plausible

choice.

6) Looking for possible threshold values: once we have selected d = 1 as the delay

parameter, we have to detect at which value/s of yt - 1 there is/are the transition/s

from one regime to another. Almost all the scatterplots (see for instance figures

[1a,b] and [2a,b])20 show a burst, at which the relatively stable21 plot of the

estimates begins to be- come unstable, displaying a break, or discontinuity, ap-

proximatively around -2.055. So we have two regimes: the threshold will be a

point belonging to a sufficiently large interval around -2.055, and detected by a

grid-search.

7) Estimation to select the threshold value: we estimate, by OLS, an AR(5) model

using the data corresponding to the values of yt - 1 smaller than -2.055 (first

regime), and an AR(5) using the data corresponding to the values larger than -

2.055 (second regime). Then we calculate the overall AIC (adding the AIC of the

first regim to the AIC of the second regime). We apply this procedure to every

point (by a grid search) in the interval chosen at step 6.

8) Identifying the threshold value: among the points inspected at step 7,  the

overall  AIC   is minimized   when yt - 1 = -2.0682226, which we select as the

threshold value.

In  this  way  we  have  specified  and  estimated  a SETAR(2; 5, 5; 1) model:

                                                       
20As it is common practice, the last 13 points of the scatterplots have been omitted,  since extreme

observations tend to become less frequent. We have reported only two graphs for spatial

requirements, but the other graphs give the same indications as the two reported graphs.
21Tsay uses the terms "relatively stable", since the scatterplots of the different (or all of the)

coefficients mightn't be clear (as it happens in the cases examined by the author). But we

emphasize that their object is to give some indication about the presence of a break, identifying,

just approximately, the location of the threshold.
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yt = -1.549 -0.081yt - 1 +0.124yt - 2 +0.117yt - 3

       +0.054yt - 4 +0.055yt - 5 + σ1εt if yt ≤ -2.068

yt = -1.416 +0.217yt - 1 +0.028yt - 2 -0.011yt - 3

       +0.014yt - 4 +0.084yt - 5 + σ1εt if yt > -2.068.

Following Cao and Tsay [1993] we delete only the more non-significant

variables (t-value criterion, table [9]): second, third and fourth lag in the second

regime.

9) Evaluating the adopted specification: analysing the standardized residuals

(that is et(j)/st(j)), since the disturbance variance too is allowed to be different in

different regi- mes) of the estimated model, the adopted specification seems

adequate. There are no longer residual autocorre- lations looking at the PACF and

ACF functions, and the BDS test fail to reject the i.i.d. hypothesis of the residuals.

The fitting analysis too confirms the adequacy of the adopted specification: the

estimated values over the whole sample period reproduce rather well the features

of the real values. Particularly, the estimated model has been capable of

recognizing, for a good part, periods of high and of low volatility. In fact 1) it

locates the most part of 1994 in the regime of high volatility, with increasing

frequency month after month (the expectations of growing interest rates, which is

a factor influencing the stock market volatility, occured in the middle of August);

2) more than 60% of the estimated volatilities of the years 1995 and 1996 fall

inside the regime of normal-low volatility (after the investors' pessimism to Italian

markets, causing falling stock prices in '95, we had a stagnation in '96, producing

rather low average volatilities); 3) the two thirds of the '97 estimates falling in the

regime of high volatility belong to the second six months of the year (the crisis

from the Far East markets had appeared on other markets in summer) and the last

week of October 1997 is located in the uppermost band of the regime of high

volatility.

6.1 - Interpreting the Model: Remarks on Volatility.

Given the interpretative potential of the SETAR model (section 2.2), the

estimation results allow us to explain better some points, which will have

important consequences in terms of forecasting and portfolio risk evaluation.
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· The identification of two regimes clearly identifies a regime of high and a

regime of ordinary-low volatility.

· This fact, together with the identification of yt - 1 as the threshold variable,

easily describes clustering:  at each time t the SETAR model fits the volatility

using the parameters of the same regime (identified by the level, high or ordinary-

low, of the volatility which has occurred at time t-1) in which the real volatility

has fallen the previous time t-1. This is the analytical version of the fact that low -

high volatility tend to be followed by low- high volatility.

· The finding d = 1 as the delay parameter, allows a timely updating of the

information. In fact, the conditioning event (which is the interpretative key of the

facts, permitting the model to decide if it has to ponder them by the coefficients of

one or the other regime) is the value of yt - 1: this means that the information

contained in it can be incorporated from the immediately following instant.

· The mechanism controlling the transition from one regime to another  allows

the model to notice (quite timely, since it is based on yt - 1) changes in the trend,

even though unexpected, provided they are sufficiently22 large. This is the case of

shocks, a frequent phenomenon in financial markets, and typical of the volatility:

if, say, a shock23 occurs in t-1, there will be in t a regime transition.

· The same mechanism, pondering the events by parameters which are different

according to the activated regime (section 2.2), allows the model to recognize the

extraordinary or persistent nature of a shock. In fact a shock, while having the

same magnitude, might be immediately absorbed by the market or last for a longer

time.

7 - Forecastings for the Italian Stock Market Volatility.

Forecasting is one of the main objectives of modelling, and volatility

forecasting is fundamental, as we have seen, in the operational context of

Financial Markets.

We judge here the forecasting performances of the employed Threshold Model

not only in absolute terms, but also comparing them with other alternative models,

                                                       
22We have a regime change overstepping the threshold.
23Since it means (by definition) recording a particularly small or large value, with consequent

overstepping of the threshold (in either direction, even though in this context the events inducing

high volatility are more important).
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particularly a GARCH(1,1), a GARCH-L(1,1), a linear AR(5).

We make short, medium and long-term predictions (that is 1, 2, ..., 5, ... 10, ... 30

days ahead). The forecasting horizon is October 16, 1997 - December 30, 1997:

therefore we have re-specified and re-estimated all the models on the reduced

sample period, obtained eliminating those days, and we have used them to make

predictions. We have started from October 16 in order to include the days in

which the crisis of the Far East markets has affected the Italian stock exchange: in

fact it is very important to evaluate the performances of a model also in

particularly turbulent periods for the markets, during  which  it  becomes  even

more  necessary (being more difficult) to have reliable forecasts available.

For each model24 the one-step ahead predictor at time t for time y+1, fyt, t + 1,

is given by the conditional expected value25,  fyt, t + 1 = E(yt + 1| It), where It  is

an information set including past information available until time t. While multi-

step ahead forecasts are obtained by Monte Carlo method for the SETAR model

(given its appreciable performances compared to other methods, as regards

Threshold Models26 too), and recursively (that is employing iteratively the

formulas of the respective models) for the GARCH-type models (in the GARCH-

L formula the conditional expected value of the indicator function is set equal to

0.5) and the linear model.

We adopt as indicators of the forecasting performances several measures based

on the difference between predicted and real values (AAD, absolute average

deviation; MSE, mean square error; Theil Index; MEDSE, median square error),

and the correct-signs percentage, both 1-step and 30-step (according to this last

one, we forecast for t + 1, t + 2, ..., t + 30, having time t as the time origin, and

calculate on the values so obtained the percentage of increasing or decreasing

changes correctly forecasted). Better forecasts are provided by models having

lower values of the indicators AAD, MSE, Theil Index, MEDSE (we calculate the

ratio of the indicator of an alternative model on the indicator of the SETAR

model: if the ratio is greater than 1 the SETAR model provides more accurate

forecasts), and larger values of the correct-signs percentages.

We use several indicators in order to give a more objective judge of the

                                                       
24We obtain predictions also using a Random Walk model, only for theoretic "curiosity", since it

is usually the benchmark for the part-in-mean of returns or rates.
25In the Random Walk case, the forecast made in t for t+1, as for t+2, ..., is the value occurred in t.

26See for instance Clements and Smith [1997].
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obtained results. Since a model could be preferable according to one indicator,

and worse according to another one, while if it is preferable according to many

indicators, its "supremacy" is more reliable.

For the same reason we evaluate the predictive performances on several

forecasting horizons, in order to investigate if a model is sistematically preferable

or just in some specific period. Table [10] and figures [3a, b, c, d] show the results

obtained for the period October 16 - December 30, 1997.

7.1 - Importance and Implications of Forecasting Performances of the

SETAR Model.

· Table [10] show that the SETAR model displays the best performance

according to all the indicators, and for all the prediction horizons, that is for 1-

step, 2-step, ..., 30-step forecasts27.

· This result is reliable since analogous results have been obtained for other

several forecasting periods analysed.

· The reduction in 1-step MSE and 1-step Theil Index, compared to the

corresponding AAD, is due to the fact that the first two measures employ squared

prediction errors, so they are affected by larger errors, as in the case of outliers. In

fact we have here the shock of Tuesday October 28, which reveals itself to be

unexpected to all the models, making them to record a prediction error

approximately of the same magnitude. In order to reduce the outlier effect we

therefore calculate the MEDSE (in place  of  MSE  and/or  Theil Index):  the

priority  of  the SETAR model turns then fully evident.

· The graphics show that GARCH28 forecasts tend to reproduce the features of

true values, but with a certain delay, exactly equal to the number of steps ahead

employed to obtain the predictions29. That is, forecasted points look like a (ahead)

shift  of the true ones. If this can be interpreted as a form of volatility persistence,

which, for fitting purposes, makes the model capable of reproducing this

empirical stylized fact of the volatility, for forecasting purposes it may become a

                                                       
27The SETAR model displays a better performance even than the linear one in the majority of the

cases, and always in the 1-step case.
28The GARCH-L graphics are quite similar.
29We report only (for spatial requirements) the 1-step and 5-step forecasts graphs, but intermediate

and following graphs clearly, and progressively, show this behaviour.
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drawback. Because of the alternating (almost alternatively increasing or

decreasing) behaviour of volatility, this characteristic may affect the forecasting

performance, especially in presence of transitory shocks. We can see better this

effect pushing forecasts ahead, that is beyond 1-step. See, for example, the

graphic of 5-step forecasts: the shock of Tuesday October 28 persists until the

following Tuesday, considerably increasing the prediction error. In fact that shock

was absolutely extraordinary, and was immediately absorbed by the market: the

following week volatility was not only already gone down, but had continued

falling until Friday. But the GARCH model isn't capable of recognizing the nature

of the shock, treating it as if it was persistent. The consequences of this fact

depend of course on the estimation results, since the memory of the persistence

effect is related to the values of estimated coefficients, but it is in any case a

structural characteristic of the GARCH model30.

· While the SETAR model doesn't present this problem: its endogenous

"threshold" mechanism, based on the delay variable, here yt - 1, (see sections 2.2

and 6.1), allows it not only to notice (timely) a shock, but also to distinguish its

extraordinary or persistent nature. So the model is able to follow, even in

perspective, that is forecasting, terms, the market.

Obviously also here the sensitivity of the model depends on estimation results

(number of regimes, values of coefficients and significance of variables): its

characteristic structure anyway provides the model with a potential advantage,

which explains the better performances of the SETAR model compared to the

other models employed.

· We then point out that the SETAR model displays the best performance

among all the other models as regards the 1-step correct-signs percentage. But it is

the best, even in absolute terms, as regards the 1-to-30-step percentage, recording

the value of 52%. This fact is of immediate interest when we want to know if in

the short, medium and long term volatility will tend to increase or diminish. This

is important in every scenery analysis, both in the context of Financial Markets,

both in the macroeconomic one (if we accept the idea [Schwert, 1989] of relations

between stock volatility and the volatility of macroeconomic variables).

                                                       
30In fact they are able to reproduce the persistence effect.
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8 - VaR: a New Measure for Portfolio-Risk.

In the last ten years the trading activity of financial institutions has been

considerably growing (given the acceleration of the process of financial

innovation) with a consequent increase of their risk esposure. So they have in-

creased their effort to develop risk management systems, which could provide

suitable measures for risk exposure. Financial regulators have also begun to focus

their attention on the use of such systems by regulated institutions.

As a result, the Basle Committee on Banking Supervision, in the 1996 Basle

Proposal, suggests to financial institutions the procedures by which they have to

fix some criteria for capital requirements assessments, in relation to their own

market risk exposure. The 1993 EU Capital Adequacy Directive (CAD) regulates

such criteria: a financial institution with significant trading activity has the choice

between a regulation model, laid down by the CAD, and "internal models",

created by the institution itself, which are consistent with the Basle Proposal.

If the CAD model quantifies market risk solely in relation to the institution's

trading book, the instructions given by the Basle Proposal take into account

important market conditions too, being based on the VaR estimates, which depend

on market volatility. It is indeed important to have a model providing good

volatility forecasts also in the context of this new method [Aussenegg and Pichler,

1997] for Portfolio Risk evaluation, based on VaR estimates.

In an expected probability distribution of returns, VaR is definable as that

negative return (that can be interpreted as a loss) lying on the left tail of a

distribution (the Gaussian distribution is usually assumed), at which we have a

critical probability level (α), previously chosen, say 5%, 1%, or whatever,

provided it is rather low. VaR for time t is defined by: Prob(Rt ≤ VaR) = α, Rt

being the returns.

Such low probability values are consistent with larger losses, since this

approach aims to provide forecastings of larger losses, at a pre-selected

significance level: portfolio investment decisions aren't based only on the

expected return-risk relation, but also on hedging costs. So we need to measure, in

probabilistic terms, this kind of losses, using VaR as a risk measure: with a 1-day

holding period (from t to t+1), the capital requirement for general market risk is:

CRt = √10 × max{VaRt; f/60 × Σj=0, ..., 59 VaRt - j}, where f is a multiplication
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factor, depending on the zone in which the model is placed according to

Backtesting responses.

Backtesting is a test methodology to evaluate the overall reliability of a model

for VaR purposes, according to the indications given by the 1996 Basle Proposal.

Having a sample of T data it requires estimating the model on a certain number of

initial values, t for instance, and forecasting VaR for time t+1. We then update the

sample with the observation of time t+1, re-estimate the model and forecast VaR

for time t+2, and so on, recursively, for all the remaining T - t data31. For each j =

t + 1, ..., T - 1, being R(j) the return observed at time j, and VaR(j) the VaR

forecasted in time j-1 for time j, we count the number of times (N) we have

obtained that R(j) ≤ VaR(j). The nearest this number is, in percentage (that is

N/[T-t]), to the pre-selected probability level, the most reliable is the model. More

precisely the Basle Proposal fixes some "zones": for  α  =  1%, retaining the last

250 data to perform the test, if the above-mentioned relation occurs less than 5

times (out of 250) the model is regarded as reasonable, from 5 to 9 times, some

questions arise about the quality of the model, 10 or more times the model is

considered unreliable, and the supervisor will require the bank to find a better

model.

Distribution forecastings are usually 1-day predictions. Forecasting a

probability distribution requires us to have a model both for the part-in-mean of

returns and their volatility, to forecast its mean and variance.

Even though a financial institution can create its own models for VaR

estimation, there are in any case some schemes available, already predisposed.

The one provided by Riskmetrics, for instance, which publishes the related values,

follows the EWMA (Exponentially Weighted Mo- ving Average) approach.

Assuming a normal distribution, it calculates volatility as the square root of:

σt = (1 - λ) × Σt=1, ..., T λt - 1 × (Rt - µ)2

where l (0 < λ < 1) is a constant (decay factor), set by RiskMetrics equal to 0.94;

T is the number of observations in the estimation window32 we chose; Rt are the

real returns; m is the expected value of returns (usually set by RiskMetrics equal

to 0); t is the time index, but in inverse time order (the most recent observation

has t =1).

                                                       
31One can otherwise perform a rolling estimation.
32It's the same thing as the sample period for a model.
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8.1 - Estimating VaR: Comparing SETAR with Other Models.

Estimating VaR requires us to obtain previously the expected probability

distribution of returns, so we need the forecasting equations of mean return and

related volatility: the mean-forecasting equation given by the SETAR model is the

same as the GARCH and linear AR models (equation33 [1]), while the volatility-

forecasting equation is specific for each model. So, different performances in

estimating VaR will be attributable to the capability of the models of providing

more or less reliable volatility prediction, since they have a common mean-

equation, while it is volatility modelling the discriminating factor.

Before estimating VaR for specific days, we perform the Backtesting

procedure: if a model passes the test, the specific predictions it provides will be

regarded as reliable. The Backtesting procedure has been performed on the last

550 data of the sample (having in total 989 data), so, for each model, the

estimation has been initialized on the first 989-550 = 439 data, and then updated

(in the parameters) recursively34 every 5 data, increasing progressively the sample

dimension.

Choosing a significance level of 5%, the most reliable model is the one that

will provide the nearest value to 5%.

· As we can see (table [14]) the SETAR model displays the best performance;

RiskMetrics, the GARCH and GARCH-L models impose not negligible hedging

costs, while the linear model exposes the investor to a risk against which he isn't

covered. Which  becomes more dangerous in periods of greater turbulence, as it

has been during the days of the crisis in Far East markets (last days of October

and first days of November 1997).

Then, in table [15] are reported the 1-day VaR estimates for the last week of

October 1997, the most critical, because of the big slump of Tuesday 28.

· The goodness of the estimates provided by a model is judged according to the

                                                       
33Since this specification had appeared adequate (section 5.1). As regards GARCH-L, its mean-

equation isn't identical with GARCH equation, but differences are after all negligible. RiskMetrics

assumes zero-mean.
34Possible non-significant variables haven't been deleted, since it is a recursive estimation. As

regards RiskMetrics, calculating volatility as an exponential weighted moving average, using the

term estimation is improper: the procedure is anyway recursive, with one observation at a time.



25

closeness to the value provided by the Historical Simulation Approach. This

approach employs as the VaR(t+1) estimate, the α-percentile (of the left-tail) in

the set of returns (rearranged in increasing dimension order35) from time 1 to time

t. We can see that once again the SETAR model has the best performance, while

all the other models give very misleading results.

· It is very important to have such performance in such problematic days. In

fact, from a regulator's point of view, a model is required not only to provide the

most accurate VaR estimates as possible, but also to keep its own good

performance even in particularly turbulent periods. In fact in these situations the

need of having adequate risk management systems available becomes greater,

since risk exposure, already generally increased during these last ten years,

considerably grows in similar days.

· In estimating VaR, it isn't important only to provide the most accurate

forecasting as possible. Especially for a bank it is important to know if a model

tends to underestimate or overestimate VaR. In fact, in the first case it displays a

prudential attitude, since it attributes to some loss levels, larger than the pre-

selected critical threshold, a  greater probability for them to occur than the real

one. In the investment consequent to this kind of estimate, one will then tend to

make bigger hedges than is necessary. As a result, one is less exposed to risk, but

bears additional hedging costs (not negligible) that aren't necessary at all. While,

in the opposite case, hedging costs are smaller than those required against the

losses which one is interested in, and with respect to which VaR has been

calculated, but one becomes more exposed to the related risk36.

As we can see, during the analysed week the SETAR model, compared to the

other models, tends to overestimate VaR, which is particularly interesting.  In fact,

if from a regulator's point of view a model should provide the most accurate VaR

estimates as possible, from a bank's point of view they should 1) be as accurate as

necessary and 2) lead to low capital requirements. From a bank's point of view

predictive accuracy means that the model should be reasonable according to the

backtesting results, but it simultaneously should satisfy an economic criterion of

minimization of costs of capital. This is why between two models accettable from

                                                       
35In this case the distribution isn't assumed, as models usually do, but it is used the historical

one.
36If, for a model, Backtesting gives a probability level smaller than the critical one, it tends to

underestime VaR, in the opposite case it tends to overestimate.
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a regulator's point of view, a bank will choose the model that tends to provide

VaR overestimates or smaller underestimates.

Therefore, even from a bank's point of view the SETAR model displays here

an appreciable performance: in fact, the Backtesting shows that it tends to

underestimates less than the other models (it is the nearest, by diminution, to 5%),

and during the analysed week, it provides also some overestimates, versus the

excessive underestimates of all the other alternative models.

· We see that the big slump in price of Tuesday 28 is unexpected for all the

models, since their prediction errors have almost the same dimension.

· But after this slump, while the GARCH and GARCH-L models, which are

capable of noticing a shock immediately, incorporate the volatility burst,

displaying some persistence (as do, even though less evidently, RiskMetrics and

the linear model), the SETAR model incorporates this impulse, but regards an

unexpected and extraordinary burst exactly as it is: from the next day on, as the

slump is absorbed by the market, so it is absorbed by the SETAR model, and only

by itself among all the other models.

This capability of distinguishing the extraordinary or persistent nature of a

shock is due to the peculiar nonlinear structure of the SETAR model: recalling

that it follows an AR(5) in each regime, while the linear model used is an AR(5),

it becomes even clearer the advantage offered by the "threshold" nonlinearity

(section 2.2). The AR(5) incorporates the burst of Tuesday 28, and, given the

autoregressive linear structure, it retains linearly memory of it: linearly means

that, for every yt, it always ponders what happened in t-1, ..., t-5 by the same

weights. So, in the days following Tuesday 28, the burst will be memorized as any

other volatility display, even a normal one. But in this way it prevails the

dimensional impact of the shock over its transitory nature.

· We can make analogous considerations about the GARCH and GARCH-L

models, and Riskmetrics. More specifically GARCH-type models are capable of

capturing volatility persistence.  But in similar situations, in which the shock is

going to be absorbed immediately, that is not to persist, this characteristic

becomes disadvantageous. In fact, in such days, in the general nervousness of the

market, there is even more need of having reliable forecasts available. Whilst the

excessively prudential attitude of the GARCH and GARCH-L models and

RiskMetrics leads the investor towards an equally prudential attitude, but with the

burden of unjustified costs.
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· The situation here is particularly critical, since we have verified that in the

following week the GARCH and GARCH-L models (but also RiskMetrics) persist

in underestimating considerably VaR, while in those days the crisis isn't only

already absorbed, but there is also a progressive decrease of volatility, lasting until

Friday. On the contrary, in the SETAR model already since October 31, it hasn't

been persisting the burst effect, but it has been prevailing the adjustment effect.

· The SETAR model has revealed itself the only model capable of (timely)

recognizing the extraordinary or persistent nature of a shock.

9 - Concluding Remarks.

The results obtained in this work have fulfilled the intentions with which it was

been undertaken, that is  to investigate the interpretative potentialities of other

non-linear models (in this case Threshold Models) compared to the ones usually

employed, but not entirely satisfactory (we can just recall Hsieh [1991]: "ARCH-

type models do not fully capture the nonlinearity in stock returns"), in the analysis

of financial markets. In fact the Threshold Model built for the Volatility of the

Italian Stock Market has revealed itself capable of capturing the clustering effect

and the asymmetric reaction to negative or positive shock of a certain dimension.

But, above all, it is the only one, among all the models considered here, which has

been able to recognize, quite timely, the extraordinary or persistent nature, of a

shock. This characteristic, among the others, has allowed it to display a better

performance than alternative models (such as GARCH, GARCH-L, linear model,

RiskMetrics), both in terms of volatility forecasting and of portfolio risk

evaluation by the new VaR methodology. Not only in the sample period here

reported, but also in other periods investigated for check purposes, displaying

even better performances during a particularly turbulent period for the market,

that is the last days of October 1997, because of the crisis in the Far East markets.

This preminence is attributable to the capability of the model of interpreting the

events both from a quantitative and a qualitative point of view, since it is allowed

at any instant to change regime according to some continuously updatable

information (incorporated by the magnitude of the delay variable). It is worth

pointing out the efficacy here displayed by Tsay's new modelling procedure:

thanks to it the significant performances of the Threshold Model haven't required

expensive modelling and/or computational costs, which would have otherwise
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discouraged from employing these models. In fact he thought to have proposed a

"relatively simple" methodology, hoping it could "help exploit the potential of

TAR models in application" [Tsay, 1989]: so, in the course of this work, we

haven't only been allowed to appreciate the effectiveness of this procedure, but

also the theoretically-founded expectations on the potential of these models (based

on the peculiarity of their dynamic mechanism) have been supported by the

empirical evidence here investigated. Therefore all the results encourage further

research and investigation of Threshold Models, both from a methodologic and an

applied (to other problems concerning Financial Markets) point of view.
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Table [1]

Variables Coefficients t-values
Returns: Part-in-Mean

Monday -0.00159 -1.70232

Tuesday 0.00204 2.27428

Wednesday 0.00029 0.31945

Thursday 0.00081 0.80987

Friday 8.56×10-5 0.09238

post-holiday 0.00141 0.56824

initial day

trading month

0.00573 1.95797

Rt - 1 0.06064 3.53059

Rt - 2 -0.00721 -0.14528

Rt - 3 0.04482 1.82728

Rt - 4 -0.00419 -0.09738

Rt - 5 -0.04146 -2.5018

Rt - 6 -0.00849 -0.11191

Rt - 7 -0.068 -3.33722

Rt - 8 0.01876 1.06724

Rt - 9 -4.87×10-5 -0.002

Rt - 10 0.01744 1.00375

GARCH specification for Volatility

b0 (GARCH)3.25×10-5 51.12256

b1 (GARCH)0.14471 50.6594

c (GARCH) 0.6852 69.81542
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Table [2]

GARCH-L (1, 1)
Variables Coefficients t-values*
b0 3.3052×10-5 2.906712

b1 0.10939995 2.979126

c 0.68490815 8.6635115
d 0.065093 1.344735

* We point out that the estimated coefficients

of the forecasting-equation (omitting the last

50 data) are much more significant.

Table [3]
Variables Coefficients t-values
constant -1.4609 -11.377
AR(1)-coeff. 0.051363 1.611
AR(2)-coeff. 0.080359 2.516
AR(3)-coeff. 0.064345 2.011
AR(4)-coeff. 0.037569 1.176
AR(5)-coeff. 0.069308 2.172

Table [4]
Ordinary autoregression Arranged autoregression

time Yt yt - 1 yt - 2 regime time yt yt - 1 yt - 2 regime

3 -0.41 1.21 1.31 L2 8 0.12 -1.85 -3.08 L1
4 0.21 -0.41 1.21 L2 9 0.58 0.12 -1.85 L1
5 -1.12 0.21 -0.41 L1 7 -1.85 -3.08 -1.12 L1
6 -3.08 -1.12 0.21 L2 5 -1.12 0.21 -0.41 L1
7 -1.85 -3.08 -1.12 L1 10 1.28 0.58 0.12 L2
8 0.12 -1.85 -3.08 L1 6 -3.08 -1.12 0.21 L2
9 0.58 0.12 -1.85 L1 4 0.21 -0.41 1.21 L2
10 1.28 0.58 0.12 L2 3 -0.41 1.21 1.31 L2

Table [ 5a ]
BDS test of the Volatility series

m   \   ε (*) 50 % 100 % 150 % 200 %

2 1.864169516 2.124598036 2.189606136 2.891728508
3 2.393786122 2.504387321 2.443056243 2.993312524
4 2.478191824 2.472415786 2.468097391 3.02584115
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Table [ 5b ]
BDS test  of the Volatility series filtered by linear dependences [AR(5) filter]

m   \   ε (*) 50 % 100 % 150 % 200 %

2 1.555387886 1.745148729 1.553221853 2.24134242
3 1.959060198 2.091375126 1.897707305 2.501698944
4 1.648204867 1.824062538 1.822494832 2.419873909

(*) m denotes the embedding dimension, ε the percentage applied to standard deviation of the data

Table [6]

F-test of Tsay
Augmented

F-test of
Luukkonen

et al.
 AR order test-statistic Tail-probab. test-statistic Tail-probab.

1 9.2387857 0.002431613 9.8553754 0.007243233

2 4.5970825 0.003338916 15.333898 0.009026974

3 2.8228693 0.00993989 18.241817 0.032469449

4 3.128174 0.000605365 34.226972 0.001910575

5 2.1700888 0.005986367 36.139457 0.014810618

Table [7]
Threshold test

AR order: 5
 Delay
parameter: d

k = 1 k = 2 k = 3 k = 4 k = 5

d = 1    4.5592765
[0.01071562]

   3.9486001
[0.00819845]

   18.520833

[1.61×10-13]

  37.081638
[0.0000000]

   30.648253
[0.0000000]

d = 2 23.854260

[8.13×10-11]

   16.304724

[2.54×10-10]

   10.819412

[1.45×10-8]

   13.805061

[7.15×10-13]

   31.841277

[7.44×10-14]
d = 3    20.165926

[2.73×10-9]

   14.116861

[5.39×10-9]

   10.471003

[2.729×10-8]

   9.8926031

[3.22×10-9]

   10.669977

[1.81×10-11]
d = 4   0.18006411

[0.83524733]
  0.34420029
[0.79336884]

  0.24143918
[0.91485895]

   3.3648421
[0.00511846]

   3.0755128
[0.00551722]

d = 5    2.8094993
[0.06077433]

   14.719508

[2.33×10-9]

   16.746221

[4.86×10-13]

   14.141385

[4.87×10-13]

   12.713210

[1.33×10-13]
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Table [8]
General Nonlinearity test

AR order: 5

 Delay
parameter: d

k = 1 k = 2 k = 3 k = 4 k = 5

d = 1    2.9725879
[0.00703167]

   2.5550840
[0.00668233]

   7.1918190

[1.13×10-12]

   13.420037

[2.32×10-13]

   11.380308
[0.0000000]

d = 2    8.7329507

[2.93×10-9]

   6.4501720

[6.45×10-9]

   4.4631743

[5.52×10-7]

   5.3634019

[1.97×10-10]

  11.377824
[0.0000000]

d = 3    8.9125960

[1.83×10-9]

   6.5341252

[4.72×10-9]

   4.6172930

[2.69×10-7]

   4.1939526

[1.57×10-7]

   4.4499370

[2.51×10-9]
d = 4    3.9172126

[0.00071727]
   2.6241948
[0.00535925]

   1.8645330
[0.03513263]

   1.9986620
[0.01306701]

   1.9120363
[0.01237347]

d = 5    3.9812383
[0.00061210]

   7.1575368

[4.56×10-10]

   7.1661346

[1.25×10-12]

   6.0542752

[3.52×10-12]

   5.3035160

[8.08×10-12]

Table [9]
Estimation outputs for the SETAR model
 Regime 1 Regime 2

Variable Coefficient t-Student Coefficient t-Student

constant -1.5487329 -7.281555 -1.4163591 -6.397839

yt - 1 -0.0812831 -1.2435016 0.21719318 2.5273943

yt - 2 0.1241825 2.8092206 0.028371614 0.62547741

yt - 3 0.11679665 2.6563919 -0.010904324 -0.23652465

yt - 4 0.05375207 1.2294935 0.014428353 0.31452342

yt - 5 0.054710488 1.2201495 0.083818575 1.8787135
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Comparing forecasting performances of the SETAR model versus other models
SETAR GARCH / SETAR GARCH-L / SETAR Random Walk / SETAR

Steps
n.

AAD MSE THEIL AAD MSE THEIL AAD MSE THEIL AAD MSE THEIL

1 0.00882 0.00015 0.70998 1.20710 1.07652 1.03755 1.20638 1.07098 1.03488 1.34506 1.33810 1.15676
2 0.00889 0.00017 0.73588 1.18774 1.37855 1.17411 1.19790 1.37654 1.17326 1.29356 1.63872 1.28012
3 0.00894 0.00017 0.74220 1.18277 1.35714 1.16496 1.17468 1.35161 1.16259 1.26632 1.68950 1.29981
4 0.00915 0.00017 0.74441 1.19078 1.33579 1.15576 1.20416 1.34553 1.15997 1.32299 1.82578 1.35121
5 0.00929 0.00018 0.75127 1.24088 1.41062 1.18769 1.23996 1.41013 1.18749 1.48043 2.04788 1.43104
6 0.00930 0.00018 0.74258 1.17897 1.34662 1.16044 1.17370 1.33631 1.15599 1.30288 1.96561 1.40200
7 0.00936 0.00018 0.74714 1.19003 1.23662 1.11203 1.18805 1.22616 1.10732 1.30970 1.84097 1.35682
8 0.00945 0.00018 0.74508 1.23268 1.23930 1.11324 1.22928 1.23171 1.10982 1.53764 2.06992 1.43872
9 0.00922 0.00018 0.74929 1.18105 1.27379 1.12862 1.17988 1.26782 1.12597 1.39179 2.13285 1.46042
10 0.00815 0.00011 0.70780 1.21981 1.43688 1.19870 1.22406 1.44278 1.20115 1.42697 2.76459 1.66270
11 0.00719 7.2E-05 0.65804 1.29031 1.70837 1.30704 1.28750 1.70334 1.30512 1.63218 3.99570 1.99892
12 0.00696 6.6E-05 0.66696 1.29720 1.69789 1.30303 1.29613 1.68838 1.29937 1.64605 4.18949 2.04682
13 0.00703 6.7E-05 0.66573 1.19796 1.41922 1.19131 1.20156 1.42469 1.19360 1.44597 3.25976 1.80548
14 0.00692 6.6E-05 0.66957 1.22793 1.46411 1.21000 1.22746 1.46363 1.20980 1.65593 3.79080 1.94699
15 0.00720 6.9E-05 0.68890 1.22772 1.51806 1.23209 1.22459 1.50721 1.22768 1.46138 3.83999 1.95959
16 0.00713 6.9E-05 0.67557 1.25986 1.51475 1.23075 1.25701 1.50936 1.22856 1.61855 4.14558 2.03607
17 0.00699 6.7E-05 0.65853 1.25250 1.44163 1.20068 1.25403 1.44519 1.20216 1.66585 4.15241 2.03774
18 0.00708 6.9E-05 0.68051 1.24520 1.43452 1.19771 1.24486 1.43176 1.19656 1.76243 4.40459 2.09871
19 0.00706 6.9E-05 0.67222 1.22789 1.34143 1.15820 1.22713 1.33829 1.15684 1.50418 3.68474 1.91956
20 0.00694 6.7E-05 0.65348 1.21685 1.37035 1.17062 1.21691 1.37068 1.17076 1.62114 4.25602 2.06301
21 0.00710 7.1E-05 0.66105 1.21891 1.32344 1.15041 1.21651 1.31857 1.14829 1.79902 4.53114 2.12864
22 0.00722 7.3E-05 0.66327 1.20056 1.31958 1.14873 1.20032 1.31478 1.14664 1.70372 4.59974 2.14470
23 0.00726 7.3E-05 0.65388 1.14358 1.23605 1.11177 1.14483 1.23580 1.11166 1.68007 4.00268 2.00067
24 0.00708 7.1E-05 0.67072 1.15090 1.26622 1.12526 1.14968 1.26408 1.12431 1.78612 4.57012 2.13778
25 0.00716 7.2E-05 0.66881 1.19870 1.34383 1.15924 1.19642 1.33732 1.15642 1.94207 5.21704 2.28408
26 0.00704 7.0E-05 0.64840 1.18102 1.27514 1.12922 1.17770 1.26861 1.12633 1.60288 4.60756 2.14652
27 0.00722 7.3E-05 0.66323 1.20871 1.30914 1.14418 1.20741 1.30621 1.14289 2.18171 6.11831 2.47352
28 0.00724 7.5E-05 0.65720 1.18420 1.27298 1.12826 1.18230 1.26805 1.12607 2.04957 6.04234 2.45811
29 0.00731 7.6E-05 0.66904 1.19853 1.26197 1.12337 1.19533 1.25659 1.12097 1.70995 5.17234 2.27427
30 0.00731 7.7E-05 0.65853 1.18955 1.20773 1.09896 1.18715 1.20513 1.09778 1.86152 5.08202 2.25433

Correct-signs
percentage

SETAR Garch Garch-l Rand. Walk

steps n. 1 35% 31% 33% 31%
from 1
to 30

52% 45% 45%

(1-step) GARCH Median square error/SETAR Median square error RATIO =1.74334587
(1-step) GARCH-L Median square error/SETAR Median square error RATIO =1.83104304

Table [14]

Back-Testing (tail-probability = 5 %)

SETAR RiskMetrics GARCH GARCH-L AR

4.9091 % 3.8182 % 3.8182 % 3.6364 % 6 %
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Table [15]

VaR

date Price Historical

Simulation

Approach

SETAR

(2; 5, 5; 1)

RiskMetri

cs

GARCH

(1, 1)

GARCH-

L

(1, 1)

AR(5)

Mo-Oct.27 22625 -0.02131 -0.02174 -0.02588 -0.026 -0.026 -0.01892

Tu-Oct.28 21217 -0.02148 -0.0151 -0.02774 -0.02611 -0.02611 -0.01788

We-Oct.29 22286 -0.0215 -0.01981 -0.03733 -0.04714 -0.04713 -0.02574

Th-Oct.30 21724 -0.0215 -0.01964 -0.04126 -0.04516 -0.04515 -0.02535

Fr-Oct.31 21737 -0.02165 -0.02339 -0.0413 -0.04994 -0.04993 -0.03193
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Appendix [1]

We precede that the outputs obtained in this work have required us to prepare a specific software, building

the programmes in the programming language GAUSS. So, also the algorithms illustrated in the

Appendices have been implemented using this language.

*** Recursive Local Fitting ***

The Recursive local fitting [Tsay, 1991] can be carried out as follows:

(1) order the observations as in an arranged autoregression and denote by "s" the new order in-

dex for arranging the data (originally it was "t", the time index);

(2) initialize the estimation procedure by fitting, via the OLS method, an AR(k) model to the

first m (which is the dimension of the estimation window: Tsay usually [1991, 1993] employs
about 1/6 of all the data) data cases corresponding to ys, with s = 1, 2, ..., m;

(3) proceed with the estimation by
    3a) adding the next available data case, that is ym + 1 and

    3b) deleting the first data case, the "oldest" in the rectangular window, that is y 1 ;

(4) repeat step 3) until all the data cases have been processed.

The recursive algorithm here employed is called RWP (Rectangularly-Weighted-Past): it

consists of two steps at each iteration, the one to include the new data case, the other to delete

the "oldest "one. Denote
- the vector of OLS estimates of AR coefficients by  Φv, when the last data case in the

rectangular window corresponds to yv;

- the corresponding (X'X)- 1 matrix by Pv;

- the vector of regressors corresponding to the data case yj  by Xj .

Then, the addition of the data case corresponding to yv + 1 can be done recursively by

calculating
Φ*v + 1 = Φv + PvXv + 1 [1 + X'v + 1PvXv + 1]- 1[yv + 1 - X'v + 1Φv],

P*v + 1 = Pv - PvXv + 1 [1 + X'v + 1PvXv + 1]- 1X'v + 1Pv,

where Φ*v + 1 e P*v + 1 are respectively the OLS estimates and the (X'X)- 1 matrix obtained

with  the m + 1 data cases corresponding to yj , with j = v + 1 - m, ..., v + 1.

The deletion  of the first data  case  in  the rectangular window, that  is the case corresponding
to  yv + 1 - m, can be done by calculating

Φv + 1 = Φ*v + 1 + P*v + 1Xv + 1 - m [X'v + 1 - mP*v + 1Xv + 1 - m - 1]- 1 [yv + 1 - m - X'v

+ 1 - mΦ*v + 1],

Pv + 1 = P*v + 1 + P*v + 1Xv + 1 - m [X'v + 1 - mP*v + 1Xv + 1 - m - 1]- 1 X'v + 1 - mP*v +

1.
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Appendix [2]

*** Threshold test and General Nonlinearity test of Tsay ***

The Threshold test [Tsay, 1989] is based on an arranged autoregression, which is carried

out recursively (adding one observation at each iteration, then increasing progressively the

sample dimension) to calculate the so-called normalized predictive errors. It requires k (AR

order) and d (delay parameter) to be known, and is carried out as follows:

(1) order the data for an arranged autoregression, which is in fact performed on the first

rearranged m data (Tsay suggests m = (T/10)+k, where T is the sample dimension). Denote the
vector of the OLS estimates of the parameters, obtained on the first m data, by  bm , the

associated (X'X)- 1 matrix by Pm, and the vector of regressors corresponding to the first next

observation (ym + 1) entering the recursive estimation at the second iteration by xm + 1 ;

(2) proceed with the recursive autoregression. The recursive least squares estimates can be

calculated efficiently by using the following formulas:
bm + 1 = bm + km + 1 (ym + 1 - x'm + 1 bm), Dm + 1 = 1 + x'm + 1 Pm xm + 1, km + 1 = Pm
xm + 1/ Dm + 1, and

Pm + 1 = {I - Pm [(xm + 1  x'm + 1 )/ Dm + 1]}Pm, while the predictive errors are given by

Am + 1  = ym + 1  - x'm +  1 bm, and the normalized predictive errors by em + 1 = am + 1 /

√ Dm + 1;

(3) regress, via OLS, the normalized predictive errors so obtained ev on the corresponding  yv -

i and the constant (v = m + 1, ..., T - d - h + 1, h = max{1, k-d+1) and i = 1, ..., k), and save the

residuals εv ;

(4) calculate the test statistic F = (Σ e2 - Σ ε2)× (T-d-m-k-h)/ (Σ ε2)× (k+1), where the

summation index is v = m+1, ..., T-d-h+1. F follows approximatively an F-distribution, with

(k+1) and  (T-d- m - k -  h) degrees of freedom.

The General Nonlinearity test of Tsay [1991] is identical with the Threshold test as

concerns the first 2 steps, but then requires the following further steps:
(3) regress the normalized predictive errors  ev  on

- the corresponding yv - i  and the constant (v = m + 1, ..., T - d - h + 1 and i = 1, ..., k);

- (yv - i ev - i , ev - i ev - i - 1 ) for i = 1, ..., k;

- {yv - 1 exp(-yv - 1 /γ), G(zv - d), yv − 1 Gt − d }, where γ is a normalization constant, say

γ = max{|yt - 1|}, yt being the series of examined data,  zt - d = (yt - d - Myd)/ Sd, with Myd
and Sd sample mean and sample standard deviation of yt - d,  respectively, and G(⋅) the

cumulative distribution function of the standardized normal random variable;
(4) save the estimated residuals εv obtained at step 3, and calculate the test statistic, which is

identical with the Threshold test, but (k+1) and (T-d-m-k- h) are substituted by 3(k+1) and [T-

m-3(k+1)].
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FIGURE [ 1a ]

FIGURE [ 1b ]

Recursive Local Fitting: AR(2)-coefficient
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FIGURE [ 2a ]

FIGURE [ 2b ]

Recursive Local Fitting: AR(5)-coefficient
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The pick denotes the slump of Tuesday October 28, 1997

Figure [ 3a ]

Figure [ 3b ]

 1-step forecasts: SETAR
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5-step forecasts: SETAR
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Figure [ 3c ]

Figure [ 3d ]

The pick denotes the slump of Tuesday October 28, 1997.
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